1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * rtmutex API 4 */ 5 #include <linux/spinlock.h> 6 #include <linux/export.h> 7 8 #define RT_MUTEX_BUILD_MUTEX 9 #include "rtmutex.c" 10 11 /* 12 * Max number of times we'll walk the boosting chain: 13 */ 14 int max_lock_depth = 1024; 15 16 /* 17 * Debug aware fast / slowpath lock,trylock,unlock 18 * 19 * The atomic acquire/release ops are compiled away, when either the 20 * architecture does not support cmpxchg or when debugging is enabled. 21 */ 22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock, 23 unsigned int state, 24 unsigned int subclass) 25 { 26 int ret; 27 28 might_sleep(); 29 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); 30 ret = __rt_mutex_lock(&lock->rtmutex, state); 31 if (ret) 32 mutex_release(&lock->dep_map, _RET_IP_); 33 return ret; 34 } 35 36 void rt_mutex_base_init(struct rt_mutex_base *rtb) 37 { 38 __rt_mutex_base_init(rtb); 39 } 40 EXPORT_SYMBOL(rt_mutex_base_init); 41 42 #ifdef CONFIG_DEBUG_LOCK_ALLOC 43 /** 44 * rt_mutex_lock_nested - lock a rt_mutex 45 * 46 * @lock: the rt_mutex to be locked 47 * @subclass: the lockdep subclass 48 */ 49 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) 50 { 51 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass); 52 } 53 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); 54 55 #else /* !CONFIG_DEBUG_LOCK_ALLOC */ 56 57 /** 58 * rt_mutex_lock - lock a rt_mutex 59 * 60 * @lock: the rt_mutex to be locked 61 */ 62 void __sched rt_mutex_lock(struct rt_mutex *lock) 63 { 64 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0); 65 } 66 EXPORT_SYMBOL_GPL(rt_mutex_lock); 67 #endif 68 69 /** 70 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 71 * 72 * @lock: the rt_mutex to be locked 73 * 74 * Returns: 75 * 0 on success 76 * -EINTR when interrupted by a signal 77 */ 78 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 79 { 80 return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0); 81 } 82 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 83 84 /** 85 * rt_mutex_trylock - try to lock a rt_mutex 86 * 87 * @lock: the rt_mutex to be locked 88 * 89 * This function can only be called in thread context. It's safe to call it 90 * from atomic regions, but not from hard or soft interrupt context. 91 * 92 * Returns: 93 * 1 on success 94 * 0 on contention 95 */ 96 int __sched rt_mutex_trylock(struct rt_mutex *lock) 97 { 98 int ret; 99 100 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 101 return 0; 102 103 ret = __rt_mutex_trylock(&lock->rtmutex); 104 if (ret) 105 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 106 107 return ret; 108 } 109 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 110 111 /** 112 * rt_mutex_unlock - unlock a rt_mutex 113 * 114 * @lock: the rt_mutex to be unlocked 115 */ 116 void __sched rt_mutex_unlock(struct rt_mutex *lock) 117 { 118 mutex_release(&lock->dep_map, _RET_IP_); 119 __rt_mutex_unlock(&lock->rtmutex); 120 } 121 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 122 123 /* 124 * Futex variants, must not use fastpath. 125 */ 126 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock) 127 { 128 return rt_mutex_slowtrylock(lock); 129 } 130 131 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock) 132 { 133 return __rt_mutex_slowtrylock(lock); 134 } 135 136 /** 137 * __rt_mutex_futex_unlock - Futex variant, that since futex variants 138 * do not use the fast-path, can be simple and will not need to retry. 139 * 140 * @lock: The rt_mutex to be unlocked 141 * @wqh: The wake queue head from which to get the next lock waiter 142 */ 143 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock, 144 struct rt_wake_q_head *wqh) 145 { 146 lockdep_assert_held(&lock->wait_lock); 147 148 debug_rt_mutex_unlock(lock); 149 150 if (!rt_mutex_has_waiters(lock)) { 151 lock->owner = NULL; 152 return false; /* done */ 153 } 154 155 /* 156 * We've already deboosted, mark_wakeup_next_waiter() will 157 * retain preempt_disabled when we drop the wait_lock, to 158 * avoid inversion prior to the wakeup. preempt_disable() 159 * therein pairs with rt_mutex_postunlock(). 160 */ 161 mark_wakeup_next_waiter(wqh, lock); 162 163 return true; /* call postunlock() */ 164 } 165 166 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock) 167 { 168 DEFINE_RT_WAKE_Q(wqh); 169 unsigned long flags; 170 bool postunlock; 171 172 raw_spin_lock_irqsave(&lock->wait_lock, flags); 173 postunlock = __rt_mutex_futex_unlock(lock, &wqh); 174 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 175 176 if (postunlock) 177 rt_mutex_postunlock(&wqh); 178 } 179 180 /** 181 * __rt_mutex_init - initialize the rt_mutex 182 * 183 * @lock: The rt_mutex to be initialized 184 * @name: The lock name used for debugging 185 * @key: The lock class key used for debugging 186 * 187 * Initialize the rt_mutex to unlocked state. 188 * 189 * Initializing of a locked rt_mutex is not allowed 190 */ 191 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name, 192 struct lock_class_key *key) 193 { 194 debug_check_no_locks_freed((void *)lock, sizeof(*lock)); 195 __rt_mutex_base_init(&lock->rtmutex); 196 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP); 197 } 198 EXPORT_SYMBOL_GPL(__rt_mutex_init); 199 200 /** 201 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 202 * proxy owner 203 * 204 * @lock: the rt_mutex to be locked 205 * @proxy_owner:the task to set as owner 206 * 207 * No locking. Caller has to do serializing itself 208 * 209 * Special API call for PI-futex support. This initializes the rtmutex and 210 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not 211 * possible at this point because the pi_state which contains the rtmutex 212 * is not yet visible to other tasks. 213 */ 214 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock, 215 struct task_struct *proxy_owner) 216 { 217 __rt_mutex_base_init(lock); 218 rt_mutex_set_owner(lock, proxy_owner); 219 } 220 221 /** 222 * rt_mutex_proxy_unlock - release a lock on behalf of owner 223 * 224 * @lock: the rt_mutex to be locked 225 * 226 * No locking. Caller has to do serializing itself 227 * 228 * Special API call for PI-futex support. This just cleans up the rtmutex 229 * (debugging) state. Concurrent operations on this rt_mutex are not 230 * possible because it belongs to the pi_state which is about to be freed 231 * and it is not longer visible to other tasks. 232 */ 233 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock) 234 { 235 debug_rt_mutex_proxy_unlock(lock); 236 rt_mutex_set_owner(lock, NULL); 237 } 238 239 /** 240 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task 241 * @lock: the rt_mutex to take 242 * @waiter: the pre-initialized rt_mutex_waiter 243 * @task: the task to prepare 244 * 245 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 246 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 247 * 248 * NOTE: does _NOT_ remove the @waiter on failure; must either call 249 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. 250 * 251 * Returns: 252 * 0 - task blocked on lock 253 * 1 - acquired the lock for task, caller should wake it up 254 * <0 - error 255 * 256 * Special API call for PI-futex support. 257 */ 258 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 259 struct rt_mutex_waiter *waiter, 260 struct task_struct *task) 261 { 262 int ret; 263 264 lockdep_assert_held(&lock->wait_lock); 265 266 if (try_to_take_rt_mutex(lock, task, NULL)) 267 return 1; 268 269 /* We enforce deadlock detection for futexes */ 270 ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL, 271 RT_MUTEX_FULL_CHAINWALK); 272 273 if (ret && !rt_mutex_owner(lock)) { 274 /* 275 * Reset the return value. We might have 276 * returned with -EDEADLK and the owner 277 * released the lock while we were walking the 278 * pi chain. Let the waiter sort it out. 279 */ 280 ret = 0; 281 } 282 283 return ret; 284 } 285 286 /** 287 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 288 * @lock: the rt_mutex to take 289 * @waiter: the pre-initialized rt_mutex_waiter 290 * @task: the task to prepare 291 * 292 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 293 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 294 * 295 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter 296 * on failure. 297 * 298 * Returns: 299 * 0 - task blocked on lock 300 * 1 - acquired the lock for task, caller should wake it up 301 * <0 - error 302 * 303 * Special API call for PI-futex support. 304 */ 305 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 306 struct rt_mutex_waiter *waiter, 307 struct task_struct *task) 308 { 309 int ret; 310 311 raw_spin_lock_irq(&lock->wait_lock); 312 ret = __rt_mutex_start_proxy_lock(lock, waiter, task); 313 if (unlikely(ret)) 314 remove_waiter(lock, waiter); 315 raw_spin_unlock_irq(&lock->wait_lock); 316 317 return ret; 318 } 319 320 /** 321 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition 322 * @lock: the rt_mutex we were woken on 323 * @to: the timeout, null if none. hrtimer should already have 324 * been started. 325 * @waiter: the pre-initialized rt_mutex_waiter 326 * 327 * Wait for the lock acquisition started on our behalf by 328 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call 329 * rt_mutex_cleanup_proxy_lock(). 330 * 331 * Returns: 332 * 0 - success 333 * <0 - error, one of -EINTR, -ETIMEDOUT 334 * 335 * Special API call for PI-futex support 336 */ 337 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock, 338 struct hrtimer_sleeper *to, 339 struct rt_mutex_waiter *waiter) 340 { 341 int ret; 342 343 raw_spin_lock_irq(&lock->wait_lock); 344 /* sleep on the mutex */ 345 set_current_state(TASK_INTERRUPTIBLE); 346 ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter); 347 /* 348 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 349 * have to fix that up. 350 */ 351 fixup_rt_mutex_waiters(lock); 352 raw_spin_unlock_irq(&lock->wait_lock); 353 354 return ret; 355 } 356 357 /** 358 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition 359 * @lock: the rt_mutex we were woken on 360 * @waiter: the pre-initialized rt_mutex_waiter 361 * 362 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or 363 * rt_mutex_wait_proxy_lock(). 364 * 365 * Unless we acquired the lock; we're still enqueued on the wait-list and can 366 * in fact still be granted ownership until we're removed. Therefore we can 367 * find we are in fact the owner and must disregard the 368 * rt_mutex_wait_proxy_lock() failure. 369 * 370 * Returns: 371 * true - did the cleanup, we done. 372 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, 373 * caller should disregards its return value. 374 * 375 * Special API call for PI-futex support 376 */ 377 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock, 378 struct rt_mutex_waiter *waiter) 379 { 380 bool cleanup = false; 381 382 raw_spin_lock_irq(&lock->wait_lock); 383 /* 384 * Do an unconditional try-lock, this deals with the lock stealing 385 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() 386 * sets a NULL owner. 387 * 388 * We're not interested in the return value, because the subsequent 389 * test on rt_mutex_owner() will infer that. If the trylock succeeded, 390 * we will own the lock and it will have removed the waiter. If we 391 * failed the trylock, we're still not owner and we need to remove 392 * ourselves. 393 */ 394 try_to_take_rt_mutex(lock, current, waiter); 395 /* 396 * Unless we're the owner; we're still enqueued on the wait_list. 397 * So check if we became owner, if not, take us off the wait_list. 398 */ 399 if (rt_mutex_owner(lock) != current) { 400 remove_waiter(lock, waiter); 401 cleanup = true; 402 } 403 /* 404 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 405 * have to fix that up. 406 */ 407 fixup_rt_mutex_waiters(lock); 408 409 raw_spin_unlock_irq(&lock->wait_lock); 410 411 return cleanup; 412 } 413 414 /* 415 * Recheck the pi chain, in case we got a priority setting 416 * 417 * Called from sched_setscheduler 418 */ 419 void __sched rt_mutex_adjust_pi(struct task_struct *task) 420 { 421 struct rt_mutex_waiter *waiter; 422 struct rt_mutex_base *next_lock; 423 unsigned long flags; 424 425 raw_spin_lock_irqsave(&task->pi_lock, flags); 426 427 waiter = task->pi_blocked_on; 428 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 429 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 430 return; 431 } 432 next_lock = waiter->lock; 433 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 434 435 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 436 get_task_struct(task); 437 438 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 439 next_lock, NULL, task); 440 } 441 442 /* 443 * Performs the wakeup of the top-waiter and re-enables preemption. 444 */ 445 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh) 446 { 447 rt_mutex_wake_up_q(wqh); 448 } 449 450 #ifdef CONFIG_DEBUG_RT_MUTEXES 451 void rt_mutex_debug_task_free(struct task_struct *task) 452 { 453 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); 454 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); 455 } 456 #endif 457 458 #ifdef CONFIG_PREEMPT_RT 459 /* Mutexes */ 460 void __mutex_rt_init(struct mutex *mutex, const char *name, 461 struct lock_class_key *key) 462 { 463 debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); 464 lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP); 465 } 466 EXPORT_SYMBOL(__mutex_rt_init); 467 468 static __always_inline int __mutex_lock_common(struct mutex *lock, 469 unsigned int state, 470 unsigned int subclass, 471 struct lockdep_map *nest_lock, 472 unsigned long ip) 473 { 474 int ret; 475 476 might_sleep(); 477 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 478 ret = __rt_mutex_lock(&lock->rtmutex, state); 479 if (ret) 480 mutex_release(&lock->dep_map, ip); 481 else 482 lock_acquired(&lock->dep_map, ip); 483 return ret; 484 } 485 486 #ifdef CONFIG_DEBUG_LOCK_ALLOC 487 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) 488 { 489 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 490 } 491 EXPORT_SYMBOL_GPL(mutex_lock_nested); 492 493 void __sched _mutex_lock_nest_lock(struct mutex *lock, 494 struct lockdep_map *nest_lock) 495 { 496 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_); 497 } 498 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 499 500 int __sched mutex_lock_interruptible_nested(struct mutex *lock, 501 unsigned int subclass) 502 { 503 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 504 } 505 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 506 507 int __sched mutex_lock_killable_nested(struct mutex *lock, 508 unsigned int subclass) 509 { 510 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 511 } 512 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 513 514 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 515 { 516 int token; 517 518 might_sleep(); 519 520 token = io_schedule_prepare(); 521 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 522 io_schedule_finish(token); 523 } 524 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 525 526 #else /* CONFIG_DEBUG_LOCK_ALLOC */ 527 528 void __sched mutex_lock(struct mutex *lock) 529 { 530 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 531 } 532 EXPORT_SYMBOL(mutex_lock); 533 534 int __sched mutex_lock_interruptible(struct mutex *lock) 535 { 536 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 537 } 538 EXPORT_SYMBOL(mutex_lock_interruptible); 539 540 int __sched mutex_lock_killable(struct mutex *lock) 541 { 542 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 543 } 544 EXPORT_SYMBOL(mutex_lock_killable); 545 546 void __sched mutex_lock_io(struct mutex *lock) 547 { 548 int token = io_schedule_prepare(); 549 550 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 551 io_schedule_finish(token); 552 } 553 EXPORT_SYMBOL(mutex_lock_io); 554 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 555 556 int __sched mutex_trylock(struct mutex *lock) 557 { 558 int ret; 559 560 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 561 return 0; 562 563 ret = __rt_mutex_trylock(&lock->rtmutex); 564 if (ret) 565 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 566 567 return ret; 568 } 569 EXPORT_SYMBOL(mutex_trylock); 570 571 void __sched mutex_unlock(struct mutex *lock) 572 { 573 mutex_release(&lock->dep_map, _RET_IP_); 574 __rt_mutex_unlock(&lock->rtmutex); 575 } 576 EXPORT_SYMBOL(mutex_unlock); 577 578 #endif /* CONFIG_PREEMPT_RT */ 579