1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #ifdef CONFIG_DEBUG_MUTEXES 34 # include "mutex-debug.h" 35 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 36 #else 37 # include "mutex.h" 38 # define MUTEX_WARN_ON(cond) 39 #endif 40 41 void 42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 43 { 44 atomic_long_set(&lock->owner, 0); 45 spin_lock_init(&lock->wait_lock); 46 INIT_LIST_HEAD(&lock->wait_list); 47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 48 osq_lock_init(&lock->osq); 49 #endif 50 51 debug_mutex_init(lock, name, key); 52 } 53 EXPORT_SYMBOL(__mutex_init); 54 55 /* 56 * @owner: contains: 'struct task_struct *' to the current lock owner, 57 * NULL means not owned. Since task_struct pointers are aligned at 58 * at least L1_CACHE_BYTES, we have low bits to store extra state. 59 * 60 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 61 * Bit1 indicates unlock needs to hand the lock to the top-waiter 62 * Bit2 indicates handoff has been done and we're waiting for pickup. 63 */ 64 #define MUTEX_FLAG_WAITERS 0x01 65 #define MUTEX_FLAG_HANDOFF 0x02 66 #define MUTEX_FLAG_PICKUP 0x04 67 68 #define MUTEX_FLAGS 0x07 69 70 /* 71 * Internal helper function; C doesn't allow us to hide it :/ 72 * 73 * DO NOT USE (outside of mutex code). 74 */ 75 static inline struct task_struct *__mutex_owner(struct mutex *lock) 76 { 77 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 78 } 79 80 static inline struct task_struct *__owner_task(unsigned long owner) 81 { 82 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 83 } 84 85 bool mutex_is_locked(struct mutex *lock) 86 { 87 return __mutex_owner(lock) != NULL; 88 } 89 EXPORT_SYMBOL(mutex_is_locked); 90 91 static inline unsigned long __owner_flags(unsigned long owner) 92 { 93 return owner & MUTEX_FLAGS; 94 } 95 96 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 97 { 98 unsigned long owner, curr = (unsigned long)current; 99 100 owner = atomic_long_read(&lock->owner); 101 for (;;) { /* must loop, can race against a flag */ 102 unsigned long flags = __owner_flags(owner); 103 unsigned long task = owner & ~MUTEX_FLAGS; 104 105 if (task) { 106 if (flags & MUTEX_FLAG_PICKUP) { 107 if (task != curr) 108 break; 109 flags &= ~MUTEX_FLAG_PICKUP; 110 } else if (handoff) { 111 if (flags & MUTEX_FLAG_HANDOFF) 112 break; 113 flags |= MUTEX_FLAG_HANDOFF; 114 } else { 115 break; 116 } 117 } else { 118 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 119 task = curr; 120 } 121 122 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 123 if (task == curr) 124 return NULL; 125 break; 126 } 127 } 128 129 return __owner_task(owner); 130 } 131 132 /* 133 * Trylock or set HANDOFF 134 */ 135 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 136 { 137 return !__mutex_trylock_common(lock, handoff); 138 } 139 140 /* 141 * Actual trylock that will work on any unlocked state. 142 */ 143 static inline bool __mutex_trylock(struct mutex *lock) 144 { 145 return !__mutex_trylock_common(lock, false); 146 } 147 148 #ifndef CONFIG_DEBUG_LOCK_ALLOC 149 /* 150 * Lockdep annotations are contained to the slow paths for simplicity. 151 * There is nothing that would stop spreading the lockdep annotations outwards 152 * except more code. 153 */ 154 155 /* 156 * Optimistic trylock that only works in the uncontended case. Make sure to 157 * follow with a __mutex_trylock() before failing. 158 */ 159 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 160 { 161 unsigned long curr = (unsigned long)current; 162 unsigned long zero = 0UL; 163 164 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 165 return true; 166 167 return false; 168 } 169 170 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 171 { 172 unsigned long curr = (unsigned long)current; 173 174 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 175 } 176 #endif 177 178 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 179 { 180 atomic_long_or(flag, &lock->owner); 181 } 182 183 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 184 { 185 atomic_long_andnot(flag, &lock->owner); 186 } 187 188 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 189 { 190 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 191 } 192 193 /* 194 * Add @waiter to a given location in the lock wait_list and set the 195 * FLAG_WAITERS flag if it's the first waiter. 196 */ 197 static void __sched 198 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 199 struct list_head *list) 200 { 201 debug_mutex_add_waiter(lock, waiter, current); 202 203 list_add_tail(&waiter->list, list); 204 if (__mutex_waiter_is_first(lock, waiter)) 205 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 206 } 207 208 /* 209 * Give up ownership to a specific task, when @task = NULL, this is equivalent 210 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 211 * WAITERS. Provides RELEASE semantics like a regular unlock, the 212 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 213 */ 214 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 215 { 216 unsigned long owner = atomic_long_read(&lock->owner); 217 218 for (;;) { 219 unsigned long new; 220 221 MUTEX_WARN_ON(__owner_task(owner) != current); 222 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 223 224 new = (owner & MUTEX_FLAG_WAITERS); 225 new |= (unsigned long)task; 226 if (task) 227 new |= MUTEX_FLAG_PICKUP; 228 229 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 230 break; 231 } 232 } 233 234 #ifndef CONFIG_DEBUG_LOCK_ALLOC 235 /* 236 * We split the mutex lock/unlock logic into separate fastpath and 237 * slowpath functions, to reduce the register pressure on the fastpath. 238 * We also put the fastpath first in the kernel image, to make sure the 239 * branch is predicted by the CPU as default-untaken. 240 */ 241 static void __sched __mutex_lock_slowpath(struct mutex *lock); 242 243 /** 244 * mutex_lock - acquire the mutex 245 * @lock: the mutex to be acquired 246 * 247 * Lock the mutex exclusively for this task. If the mutex is not 248 * available right now, it will sleep until it can get it. 249 * 250 * The mutex must later on be released by the same task that 251 * acquired it. Recursive locking is not allowed. The task 252 * may not exit without first unlocking the mutex. Also, kernel 253 * memory where the mutex resides must not be freed with 254 * the mutex still locked. The mutex must first be initialized 255 * (or statically defined) before it can be locked. memset()-ing 256 * the mutex to 0 is not allowed. 257 * 258 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 259 * checks that will enforce the restrictions and will also do 260 * deadlock debugging) 261 * 262 * This function is similar to (but not equivalent to) down(). 263 */ 264 void __sched mutex_lock(struct mutex *lock) 265 { 266 might_sleep(); 267 268 if (!__mutex_trylock_fast(lock)) 269 __mutex_lock_slowpath(lock); 270 } 271 EXPORT_SYMBOL(mutex_lock); 272 #endif 273 274 /* 275 * Wait-Die: 276 * The newer transactions are killed when: 277 * It (the new transaction) makes a request for a lock being held 278 * by an older transaction. 279 * 280 * Wound-Wait: 281 * The newer transactions are wounded when: 282 * An older transaction makes a request for a lock being held by 283 * the newer transaction. 284 */ 285 286 /* 287 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired 288 * it. 289 */ 290 static __always_inline void 291 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 292 { 293 #ifdef CONFIG_DEBUG_MUTEXES 294 /* 295 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 296 * but released with a normal mutex_unlock in this call. 297 * 298 * This should never happen, always use ww_mutex_unlock. 299 */ 300 DEBUG_LOCKS_WARN_ON(ww->ctx); 301 302 /* 303 * Not quite done after calling ww_acquire_done() ? 304 */ 305 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 306 307 if (ww_ctx->contending_lock) { 308 /* 309 * After -EDEADLK you tried to 310 * acquire a different ww_mutex? Bad! 311 */ 312 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 313 314 /* 315 * You called ww_mutex_lock after receiving -EDEADLK, 316 * but 'forgot' to unlock everything else first? 317 */ 318 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 319 ww_ctx->contending_lock = NULL; 320 } 321 322 /* 323 * Naughty, using a different class will lead to undefined behavior! 324 */ 325 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 326 #endif 327 ww_ctx->acquired++; 328 ww->ctx = ww_ctx; 329 } 330 331 /* 332 * Determine if context @a is 'after' context @b. IOW, @a is a younger 333 * transaction than @b and depending on algorithm either needs to wait for 334 * @b or die. 335 */ 336 static inline bool __sched 337 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 338 { 339 340 return (signed long)(a->stamp - b->stamp) > 0; 341 } 342 343 /* 344 * Wait-Die; wake a younger waiter context (when locks held) such that it can 345 * die. 346 * 347 * Among waiters with context, only the first one can have other locks acquired 348 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and 349 * __ww_mutex_check_kill() wake any but the earliest context. 350 */ 351 static bool __sched 352 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, 353 struct ww_acquire_ctx *ww_ctx) 354 { 355 if (!ww_ctx->is_wait_die) 356 return false; 357 358 if (waiter->ww_ctx->acquired > 0 && 359 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { 360 debug_mutex_wake_waiter(lock, waiter); 361 wake_up_process(waiter->task); 362 } 363 364 return true; 365 } 366 367 /* 368 * Wound-Wait; wound a younger @hold_ctx if it holds the lock. 369 * 370 * Wound the lock holder if there are waiters with older transactions than 371 * the lock holders. Even if multiple waiters may wound the lock holder, 372 * it's sufficient that only one does. 373 */ 374 static bool __ww_mutex_wound(struct mutex *lock, 375 struct ww_acquire_ctx *ww_ctx, 376 struct ww_acquire_ctx *hold_ctx) 377 { 378 struct task_struct *owner = __mutex_owner(lock); 379 380 lockdep_assert_held(&lock->wait_lock); 381 382 /* 383 * Possible through __ww_mutex_add_waiter() when we race with 384 * ww_mutex_set_context_fastpath(). In that case we'll get here again 385 * through __ww_mutex_check_waiters(). 386 */ 387 if (!hold_ctx) 388 return false; 389 390 /* 391 * Can have !owner because of __mutex_unlock_slowpath(), but if owner, 392 * it cannot go away because we'll have FLAG_WAITERS set and hold 393 * wait_lock. 394 */ 395 if (!owner) 396 return false; 397 398 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { 399 hold_ctx->wounded = 1; 400 401 /* 402 * wake_up_process() paired with set_current_state() 403 * inserts sufficient barriers to make sure @owner either sees 404 * it's wounded in __ww_mutex_check_kill() or has a 405 * wakeup pending to re-read the wounded state. 406 */ 407 if (owner != current) 408 wake_up_process(owner); 409 410 return true; 411 } 412 413 return false; 414 } 415 416 /* 417 * We just acquired @lock under @ww_ctx, if there are later contexts waiting 418 * behind us on the wait-list, check if they need to die, or wound us. 419 * 420 * See __ww_mutex_add_waiter() for the list-order construction; basically the 421 * list is ordered by stamp, smallest (oldest) first. 422 * 423 * This relies on never mixing wait-die/wound-wait on the same wait-list; 424 * which is currently ensured by that being a ww_class property. 425 * 426 * The current task must not be on the wait list. 427 */ 428 static void __sched 429 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 430 { 431 struct mutex_waiter *cur; 432 433 lockdep_assert_held(&lock->wait_lock); 434 435 list_for_each_entry(cur, &lock->wait_list, list) { 436 if (!cur->ww_ctx) 437 continue; 438 439 if (__ww_mutex_die(lock, cur, ww_ctx) || 440 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) 441 break; 442 } 443 } 444 445 /* 446 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx 447 * and wake up any waiters so they can recheck. 448 */ 449 static __always_inline void 450 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 451 { 452 ww_mutex_lock_acquired(lock, ctx); 453 454 /* 455 * The lock->ctx update should be visible on all cores before 456 * the WAITERS check is done, otherwise contended waiters might be 457 * missed. The contended waiters will either see ww_ctx == NULL 458 * and keep spinning, or it will acquire wait_lock, add itself 459 * to waiter list and sleep. 460 */ 461 smp_mb(); /* See comments above and below. */ 462 463 /* 464 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS 465 * MB MB 466 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx 467 * 468 * The memory barrier above pairs with the memory barrier in 469 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx 470 * and/or !empty list. 471 */ 472 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 473 return; 474 475 /* 476 * Uh oh, we raced in fastpath, check if any of the waiters need to 477 * die or wound us. 478 */ 479 spin_lock(&lock->base.wait_lock); 480 __ww_mutex_check_waiters(&lock->base, ctx); 481 spin_unlock(&lock->base.wait_lock); 482 } 483 484 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 485 486 /* 487 * Trylock variant that returns the owning task on failure. 488 */ 489 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 490 { 491 return __mutex_trylock_common(lock, false); 492 } 493 494 static inline 495 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 496 struct mutex_waiter *waiter) 497 { 498 struct ww_mutex *ww; 499 500 ww = container_of(lock, struct ww_mutex, base); 501 502 /* 503 * If ww->ctx is set the contents are undefined, only 504 * by acquiring wait_lock there is a guarantee that 505 * they are not invalid when reading. 506 * 507 * As such, when deadlock detection needs to be 508 * performed the optimistic spinning cannot be done. 509 * 510 * Check this in every inner iteration because we may 511 * be racing against another thread's ww_mutex_lock. 512 */ 513 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 514 return false; 515 516 /* 517 * If we aren't on the wait list yet, cancel the spin 518 * if there are waiters. We want to avoid stealing the 519 * lock from a waiter with an earlier stamp, since the 520 * other thread may already own a lock that we also 521 * need. 522 */ 523 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 524 return false; 525 526 /* 527 * Similarly, stop spinning if we are no longer the 528 * first waiter. 529 */ 530 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 531 return false; 532 533 return true; 534 } 535 536 /* 537 * Look out! "owner" is an entirely speculative pointer access and not 538 * reliable. 539 * 540 * "noinline" so that this function shows up on perf profiles. 541 */ 542 static noinline 543 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 544 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 545 { 546 bool ret = true; 547 548 rcu_read_lock(); 549 while (__mutex_owner(lock) == owner) { 550 /* 551 * Ensure we emit the owner->on_cpu, dereference _after_ 552 * checking lock->owner still matches owner. If that fails, 553 * owner might point to freed memory. If it still matches, 554 * the rcu_read_lock() ensures the memory stays valid. 555 */ 556 barrier(); 557 558 /* 559 * Use vcpu_is_preempted to detect lock holder preemption issue. 560 */ 561 if (!owner->on_cpu || need_resched() || 562 vcpu_is_preempted(task_cpu(owner))) { 563 ret = false; 564 break; 565 } 566 567 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 568 ret = false; 569 break; 570 } 571 572 cpu_relax(); 573 } 574 rcu_read_unlock(); 575 576 return ret; 577 } 578 579 /* 580 * Initial check for entering the mutex spinning loop 581 */ 582 static inline int mutex_can_spin_on_owner(struct mutex *lock) 583 { 584 struct task_struct *owner; 585 int retval = 1; 586 587 if (need_resched()) 588 return 0; 589 590 rcu_read_lock(); 591 owner = __mutex_owner(lock); 592 593 /* 594 * As lock holder preemption issue, we both skip spinning if task is not 595 * on cpu or its cpu is preempted 596 */ 597 if (owner) 598 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 599 rcu_read_unlock(); 600 601 /* 602 * If lock->owner is not set, the mutex has been released. Return true 603 * such that we'll trylock in the spin path, which is a faster option 604 * than the blocking slow path. 605 */ 606 return retval; 607 } 608 609 /* 610 * Optimistic spinning. 611 * 612 * We try to spin for acquisition when we find that the lock owner 613 * is currently running on a (different) CPU and while we don't 614 * need to reschedule. The rationale is that if the lock owner is 615 * running, it is likely to release the lock soon. 616 * 617 * The mutex spinners are queued up using MCS lock so that only one 618 * spinner can compete for the mutex. However, if mutex spinning isn't 619 * going to happen, there is no point in going through the lock/unlock 620 * overhead. 621 * 622 * Returns true when the lock was taken, otherwise false, indicating 623 * that we need to jump to the slowpath and sleep. 624 * 625 * The waiter flag is set to true if the spinner is a waiter in the wait 626 * queue. The waiter-spinner will spin on the lock directly and concurrently 627 * with the spinner at the head of the OSQ, if present, until the owner is 628 * changed to itself. 629 */ 630 static __always_inline bool 631 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 632 struct mutex_waiter *waiter) 633 { 634 if (!waiter) { 635 /* 636 * The purpose of the mutex_can_spin_on_owner() function is 637 * to eliminate the overhead of osq_lock() and osq_unlock() 638 * in case spinning isn't possible. As a waiter-spinner 639 * is not going to take OSQ lock anyway, there is no need 640 * to call mutex_can_spin_on_owner(). 641 */ 642 if (!mutex_can_spin_on_owner(lock)) 643 goto fail; 644 645 /* 646 * In order to avoid a stampede of mutex spinners trying to 647 * acquire the mutex all at once, the spinners need to take a 648 * MCS (queued) lock first before spinning on the owner field. 649 */ 650 if (!osq_lock(&lock->osq)) 651 goto fail; 652 } 653 654 for (;;) { 655 struct task_struct *owner; 656 657 /* Try to acquire the mutex... */ 658 owner = __mutex_trylock_or_owner(lock); 659 if (!owner) 660 break; 661 662 /* 663 * There's an owner, wait for it to either 664 * release the lock or go to sleep. 665 */ 666 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 667 goto fail_unlock; 668 669 /* 670 * The cpu_relax() call is a compiler barrier which forces 671 * everything in this loop to be re-loaded. We don't need 672 * memory barriers as we'll eventually observe the right 673 * values at the cost of a few extra spins. 674 */ 675 cpu_relax(); 676 } 677 678 if (!waiter) 679 osq_unlock(&lock->osq); 680 681 return true; 682 683 684 fail_unlock: 685 if (!waiter) 686 osq_unlock(&lock->osq); 687 688 fail: 689 /* 690 * If we fell out of the spin path because of need_resched(), 691 * reschedule now, before we try-lock the mutex. This avoids getting 692 * scheduled out right after we obtained the mutex. 693 */ 694 if (need_resched()) { 695 /* 696 * We _should_ have TASK_RUNNING here, but just in case 697 * we do not, make it so, otherwise we might get stuck. 698 */ 699 __set_current_state(TASK_RUNNING); 700 schedule_preempt_disabled(); 701 } 702 703 return false; 704 } 705 #else 706 static __always_inline bool 707 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 708 struct mutex_waiter *waiter) 709 { 710 return false; 711 } 712 #endif 713 714 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 715 716 /** 717 * mutex_unlock - release the mutex 718 * @lock: the mutex to be released 719 * 720 * Unlock a mutex that has been locked by this task previously. 721 * 722 * This function must not be used in interrupt context. Unlocking 723 * of a not locked mutex is not allowed. 724 * 725 * This function is similar to (but not equivalent to) up(). 726 */ 727 void __sched mutex_unlock(struct mutex *lock) 728 { 729 #ifndef CONFIG_DEBUG_LOCK_ALLOC 730 if (__mutex_unlock_fast(lock)) 731 return; 732 #endif 733 __mutex_unlock_slowpath(lock, _RET_IP_); 734 } 735 EXPORT_SYMBOL(mutex_unlock); 736 737 /** 738 * ww_mutex_unlock - release the w/w mutex 739 * @lock: the mutex to be released 740 * 741 * Unlock a mutex that has been locked by this task previously with any of the 742 * ww_mutex_lock* functions (with or without an acquire context). It is 743 * forbidden to release the locks after releasing the acquire context. 744 * 745 * This function must not be used in interrupt context. Unlocking 746 * of a unlocked mutex is not allowed. 747 */ 748 void __sched ww_mutex_unlock(struct ww_mutex *lock) 749 { 750 /* 751 * The unlocking fastpath is the 0->1 transition from 'locked' 752 * into 'unlocked' state: 753 */ 754 if (lock->ctx) { 755 MUTEX_WARN_ON(!lock->ctx->acquired); 756 if (lock->ctx->acquired > 0) 757 lock->ctx->acquired--; 758 lock->ctx = NULL; 759 } 760 761 mutex_unlock(&lock->base); 762 } 763 EXPORT_SYMBOL(ww_mutex_unlock); 764 765 766 static __always_inline int __sched 767 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 768 { 769 if (ww_ctx->acquired > 0) { 770 #ifdef CONFIG_DEBUG_MUTEXES 771 struct ww_mutex *ww; 772 773 ww = container_of(lock, struct ww_mutex, base); 774 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 775 ww_ctx->contending_lock = ww; 776 #endif 777 return -EDEADLK; 778 } 779 780 return 0; 781 } 782 783 784 /* 785 * Check the wound condition for the current lock acquire. 786 * 787 * Wound-Wait: If we're wounded, kill ourself. 788 * 789 * Wait-Die: If we're trying to acquire a lock already held by an older 790 * context, kill ourselves. 791 * 792 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to 793 * look at waiters before us in the wait-list. 794 */ 795 static inline int __sched 796 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, 797 struct ww_acquire_ctx *ctx) 798 { 799 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 800 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 801 struct mutex_waiter *cur; 802 803 if (ctx->acquired == 0) 804 return 0; 805 806 if (!ctx->is_wait_die) { 807 if (ctx->wounded) 808 return __ww_mutex_kill(lock, ctx); 809 810 return 0; 811 } 812 813 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 814 return __ww_mutex_kill(lock, ctx); 815 816 /* 817 * If there is a waiter in front of us that has a context, then its 818 * stamp is earlier than ours and we must kill ourself. 819 */ 820 cur = waiter; 821 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 822 if (!cur->ww_ctx) 823 continue; 824 825 return __ww_mutex_kill(lock, ctx); 826 } 827 828 return 0; 829 } 830 831 /* 832 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest 833 * first. Such that older contexts are preferred to acquire the lock over 834 * younger contexts. 835 * 836 * Waiters without context are interspersed in FIFO order. 837 * 838 * Furthermore, for Wait-Die kill ourself immediately when possible (there are 839 * older contexts already waiting) to avoid unnecessary waiting and for 840 * Wound-Wait ensure we wound the owning context when it is younger. 841 */ 842 static inline int __sched 843 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 844 struct mutex *lock, 845 struct ww_acquire_ctx *ww_ctx) 846 { 847 struct mutex_waiter *cur; 848 struct list_head *pos; 849 bool is_wait_die; 850 851 if (!ww_ctx) { 852 __mutex_add_waiter(lock, waiter, &lock->wait_list); 853 return 0; 854 } 855 856 is_wait_die = ww_ctx->is_wait_die; 857 858 /* 859 * Add the waiter before the first waiter with a higher stamp. 860 * Waiters without a context are skipped to avoid starving 861 * them. Wait-Die waiters may die here. Wound-Wait waiters 862 * never die here, but they are sorted in stamp order and 863 * may wound the lock holder. 864 */ 865 pos = &lock->wait_list; 866 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 867 if (!cur->ww_ctx) 868 continue; 869 870 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 871 /* 872 * Wait-Die: if we find an older context waiting, there 873 * is no point in queueing behind it, as we'd have to 874 * die the moment it would acquire the lock. 875 */ 876 if (is_wait_die) { 877 int ret = __ww_mutex_kill(lock, ww_ctx); 878 879 if (ret) 880 return ret; 881 } 882 883 break; 884 } 885 886 pos = &cur->list; 887 888 /* Wait-Die: ensure younger waiters die. */ 889 __ww_mutex_die(lock, cur, ww_ctx); 890 } 891 892 __mutex_add_waiter(lock, waiter, pos); 893 894 /* 895 * Wound-Wait: if we're blocking on a mutex owned by a younger context, 896 * wound that such that we might proceed. 897 */ 898 if (!is_wait_die) { 899 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 900 901 /* 902 * See ww_mutex_set_context_fastpath(). Orders setting 903 * MUTEX_FLAG_WAITERS vs the ww->ctx load, 904 * such that either we or the fastpath will wound @ww->ctx. 905 */ 906 smp_mb(); 907 __ww_mutex_wound(lock, ww_ctx, ww->ctx); 908 } 909 910 return 0; 911 } 912 913 /* 914 * Lock a mutex (possibly interruptible), slowpath: 915 */ 916 static __always_inline int __sched 917 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 918 struct lockdep_map *nest_lock, unsigned long ip, 919 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 920 { 921 struct mutex_waiter waiter; 922 struct ww_mutex *ww; 923 int ret; 924 925 if (!use_ww_ctx) 926 ww_ctx = NULL; 927 928 might_sleep(); 929 930 MUTEX_WARN_ON(lock->magic != lock); 931 932 ww = container_of(lock, struct ww_mutex, base); 933 if (ww_ctx) { 934 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 935 return -EALREADY; 936 937 /* 938 * Reset the wounded flag after a kill. No other process can 939 * race and wound us here since they can't have a valid owner 940 * pointer if we don't have any locks held. 941 */ 942 if (ww_ctx->acquired == 0) 943 ww_ctx->wounded = 0; 944 } 945 946 preempt_disable(); 947 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 948 949 if (__mutex_trylock(lock) || 950 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 951 /* got the lock, yay! */ 952 lock_acquired(&lock->dep_map, ip); 953 if (ww_ctx) 954 ww_mutex_set_context_fastpath(ww, ww_ctx); 955 preempt_enable(); 956 return 0; 957 } 958 959 spin_lock(&lock->wait_lock); 960 /* 961 * After waiting to acquire the wait_lock, try again. 962 */ 963 if (__mutex_trylock(lock)) { 964 if (ww_ctx) 965 __ww_mutex_check_waiters(lock, ww_ctx); 966 967 goto skip_wait; 968 } 969 970 debug_mutex_lock_common(lock, &waiter); 971 972 lock_contended(&lock->dep_map, ip); 973 974 if (!use_ww_ctx) { 975 /* add waiting tasks to the end of the waitqueue (FIFO): */ 976 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 977 978 979 #ifdef CONFIG_DEBUG_MUTEXES 980 waiter.ww_ctx = MUTEX_POISON_WW_CTX; 981 #endif 982 } else { 983 /* 984 * Add in stamp order, waking up waiters that must kill 985 * themselves. 986 */ 987 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 988 if (ret) 989 goto err_early_kill; 990 991 waiter.ww_ctx = ww_ctx; 992 } 993 994 waiter.task = current; 995 996 set_current_state(state); 997 for (;;) { 998 bool first; 999 1000 /* 1001 * Once we hold wait_lock, we're serialized against 1002 * mutex_unlock() handing the lock off to us, do a trylock 1003 * before testing the error conditions to make sure we pick up 1004 * the handoff. 1005 */ 1006 if (__mutex_trylock(lock)) 1007 goto acquired; 1008 1009 /* 1010 * Check for signals and kill conditions while holding 1011 * wait_lock. This ensures the lock cancellation is ordered 1012 * against mutex_unlock() and wake-ups do not go missing. 1013 */ 1014 if (signal_pending_state(state, current)) { 1015 ret = -EINTR; 1016 goto err; 1017 } 1018 1019 if (ww_ctx) { 1020 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 1021 if (ret) 1022 goto err; 1023 } 1024 1025 spin_unlock(&lock->wait_lock); 1026 schedule_preempt_disabled(); 1027 1028 first = __mutex_waiter_is_first(lock, &waiter); 1029 1030 set_current_state(state); 1031 /* 1032 * Here we order against unlock; we must either see it change 1033 * state back to RUNNING and fall through the next schedule(), 1034 * or we must see its unlock and acquire. 1035 */ 1036 if (__mutex_trylock_or_handoff(lock, first) || 1037 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter))) 1038 break; 1039 1040 spin_lock(&lock->wait_lock); 1041 } 1042 spin_lock(&lock->wait_lock); 1043 acquired: 1044 __set_current_state(TASK_RUNNING); 1045 1046 if (ww_ctx) { 1047 /* 1048 * Wound-Wait; we stole the lock (!first_waiter), check the 1049 * waiters as anyone might want to wound us. 1050 */ 1051 if (!ww_ctx->is_wait_die && 1052 !__mutex_waiter_is_first(lock, &waiter)) 1053 __ww_mutex_check_waiters(lock, ww_ctx); 1054 } 1055 1056 mutex_remove_waiter(lock, &waiter, current); 1057 if (likely(list_empty(&lock->wait_list))) 1058 __mutex_clear_flag(lock, MUTEX_FLAGS); 1059 1060 debug_mutex_free_waiter(&waiter); 1061 1062 skip_wait: 1063 /* got the lock - cleanup and rejoice! */ 1064 lock_acquired(&lock->dep_map, ip); 1065 1066 if (ww_ctx) 1067 ww_mutex_lock_acquired(ww, ww_ctx); 1068 1069 spin_unlock(&lock->wait_lock); 1070 preempt_enable(); 1071 return 0; 1072 1073 err: 1074 __set_current_state(TASK_RUNNING); 1075 mutex_remove_waiter(lock, &waiter, current); 1076 err_early_kill: 1077 spin_unlock(&lock->wait_lock); 1078 debug_mutex_free_waiter(&waiter); 1079 mutex_release(&lock->dep_map, ip); 1080 preempt_enable(); 1081 return ret; 1082 } 1083 1084 static int __sched 1085 __mutex_lock(struct mutex *lock, long state, unsigned int subclass, 1086 struct lockdep_map *nest_lock, unsigned long ip) 1087 { 1088 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 1089 } 1090 1091 static int __sched 1092 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, 1093 struct lockdep_map *nest_lock, unsigned long ip, 1094 struct ww_acquire_ctx *ww_ctx) 1095 { 1096 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); 1097 } 1098 1099 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1100 void __sched 1101 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 1102 { 1103 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 1104 } 1105 1106 EXPORT_SYMBOL_GPL(mutex_lock_nested); 1107 1108 void __sched 1109 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 1110 { 1111 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 1112 } 1113 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 1114 1115 int __sched 1116 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 1117 { 1118 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 1119 } 1120 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 1121 1122 int __sched 1123 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 1124 { 1125 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 1126 } 1127 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 1128 1129 void __sched 1130 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 1131 { 1132 int token; 1133 1134 might_sleep(); 1135 1136 token = io_schedule_prepare(); 1137 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 1138 subclass, NULL, _RET_IP_, NULL, 0); 1139 io_schedule_finish(token); 1140 } 1141 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 1142 1143 static inline int 1144 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1145 { 1146 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 1147 unsigned tmp; 1148 1149 if (ctx->deadlock_inject_countdown-- == 0) { 1150 tmp = ctx->deadlock_inject_interval; 1151 if (tmp > UINT_MAX/4) 1152 tmp = UINT_MAX; 1153 else 1154 tmp = tmp*2 + tmp + tmp/2; 1155 1156 ctx->deadlock_inject_interval = tmp; 1157 ctx->deadlock_inject_countdown = tmp; 1158 ctx->contending_lock = lock; 1159 1160 ww_mutex_unlock(lock); 1161 1162 return -EDEADLK; 1163 } 1164 #endif 1165 1166 return 0; 1167 } 1168 1169 int __sched 1170 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1171 { 1172 int ret; 1173 1174 might_sleep(); 1175 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 1176 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 1177 ctx); 1178 if (!ret && ctx && ctx->acquired > 1) 1179 return ww_mutex_deadlock_injection(lock, ctx); 1180 1181 return ret; 1182 } 1183 EXPORT_SYMBOL_GPL(ww_mutex_lock); 1184 1185 int __sched 1186 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1187 { 1188 int ret; 1189 1190 might_sleep(); 1191 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 1192 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 1193 ctx); 1194 1195 if (!ret && ctx && ctx->acquired > 1) 1196 return ww_mutex_deadlock_injection(lock, ctx); 1197 1198 return ret; 1199 } 1200 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 1201 1202 #endif 1203 1204 /* 1205 * Release the lock, slowpath: 1206 */ 1207 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1208 { 1209 struct task_struct *next = NULL; 1210 DEFINE_WAKE_Q(wake_q); 1211 unsigned long owner; 1212 1213 mutex_release(&lock->dep_map, ip); 1214 1215 /* 1216 * Release the lock before (potentially) taking the spinlock such that 1217 * other contenders can get on with things ASAP. 1218 * 1219 * Except when HANDOFF, in that case we must not clear the owner field, 1220 * but instead set it to the top waiter. 1221 */ 1222 owner = atomic_long_read(&lock->owner); 1223 for (;;) { 1224 MUTEX_WARN_ON(__owner_task(owner) != current); 1225 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1226 1227 if (owner & MUTEX_FLAG_HANDOFF) 1228 break; 1229 1230 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 1231 if (owner & MUTEX_FLAG_WAITERS) 1232 break; 1233 1234 return; 1235 } 1236 } 1237 1238 spin_lock(&lock->wait_lock); 1239 debug_mutex_unlock(lock); 1240 if (!list_empty(&lock->wait_list)) { 1241 /* get the first entry from the wait-list: */ 1242 struct mutex_waiter *waiter = 1243 list_first_entry(&lock->wait_list, 1244 struct mutex_waiter, list); 1245 1246 next = waiter->task; 1247 1248 debug_mutex_wake_waiter(lock, waiter); 1249 wake_q_add(&wake_q, next); 1250 } 1251 1252 if (owner & MUTEX_FLAG_HANDOFF) 1253 __mutex_handoff(lock, next); 1254 1255 spin_unlock(&lock->wait_lock); 1256 1257 wake_up_q(&wake_q); 1258 } 1259 1260 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1261 /* 1262 * Here come the less common (and hence less performance-critical) APIs: 1263 * mutex_lock_interruptible() and mutex_trylock(). 1264 */ 1265 static noinline int __sched 1266 __mutex_lock_killable_slowpath(struct mutex *lock); 1267 1268 static noinline int __sched 1269 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1270 1271 /** 1272 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 1273 * @lock: The mutex to be acquired. 1274 * 1275 * Lock the mutex like mutex_lock(). If a signal is delivered while the 1276 * process is sleeping, this function will return without acquiring the 1277 * mutex. 1278 * 1279 * Context: Process context. 1280 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1281 * signal arrived. 1282 */ 1283 int __sched mutex_lock_interruptible(struct mutex *lock) 1284 { 1285 might_sleep(); 1286 1287 if (__mutex_trylock_fast(lock)) 1288 return 0; 1289 1290 return __mutex_lock_interruptible_slowpath(lock); 1291 } 1292 1293 EXPORT_SYMBOL(mutex_lock_interruptible); 1294 1295 /** 1296 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1297 * @lock: The mutex to be acquired. 1298 * 1299 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1300 * the current process is delivered while the process is sleeping, this 1301 * function will return without acquiring the mutex. 1302 * 1303 * Context: Process context. 1304 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1305 * fatal signal arrived. 1306 */ 1307 int __sched mutex_lock_killable(struct mutex *lock) 1308 { 1309 might_sleep(); 1310 1311 if (__mutex_trylock_fast(lock)) 1312 return 0; 1313 1314 return __mutex_lock_killable_slowpath(lock); 1315 } 1316 EXPORT_SYMBOL(mutex_lock_killable); 1317 1318 /** 1319 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1320 * @lock: The mutex to be acquired. 1321 * 1322 * Lock the mutex like mutex_lock(). While the task is waiting for this 1323 * mutex, it will be accounted as being in the IO wait state by the 1324 * scheduler. 1325 * 1326 * Context: Process context. 1327 */ 1328 void __sched mutex_lock_io(struct mutex *lock) 1329 { 1330 int token; 1331 1332 token = io_schedule_prepare(); 1333 mutex_lock(lock); 1334 io_schedule_finish(token); 1335 } 1336 EXPORT_SYMBOL_GPL(mutex_lock_io); 1337 1338 static noinline void __sched 1339 __mutex_lock_slowpath(struct mutex *lock) 1340 { 1341 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1342 } 1343 1344 static noinline int __sched 1345 __mutex_lock_killable_slowpath(struct mutex *lock) 1346 { 1347 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1348 } 1349 1350 static noinline int __sched 1351 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1352 { 1353 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1354 } 1355 1356 static noinline int __sched 1357 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1358 { 1359 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, 1360 _RET_IP_, ctx); 1361 } 1362 1363 static noinline int __sched 1364 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1365 struct ww_acquire_ctx *ctx) 1366 { 1367 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, 1368 _RET_IP_, ctx); 1369 } 1370 1371 #endif 1372 1373 /** 1374 * mutex_trylock - try to acquire the mutex, without waiting 1375 * @lock: the mutex to be acquired 1376 * 1377 * Try to acquire the mutex atomically. Returns 1 if the mutex 1378 * has been acquired successfully, and 0 on contention. 1379 * 1380 * NOTE: this function follows the spin_trylock() convention, so 1381 * it is negated from the down_trylock() return values! Be careful 1382 * about this when converting semaphore users to mutexes. 1383 * 1384 * This function must not be used in interrupt context. The 1385 * mutex must be released by the same task that acquired it. 1386 */ 1387 int __sched mutex_trylock(struct mutex *lock) 1388 { 1389 bool locked; 1390 1391 MUTEX_WARN_ON(lock->magic != lock); 1392 1393 locked = __mutex_trylock(lock); 1394 if (locked) 1395 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1396 1397 return locked; 1398 } 1399 EXPORT_SYMBOL(mutex_trylock); 1400 1401 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1402 int __sched 1403 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1404 { 1405 might_sleep(); 1406 1407 if (__mutex_trylock_fast(&lock->base)) { 1408 if (ctx) 1409 ww_mutex_set_context_fastpath(lock, ctx); 1410 return 0; 1411 } 1412 1413 return __ww_mutex_lock_slowpath(lock, ctx); 1414 } 1415 EXPORT_SYMBOL(ww_mutex_lock); 1416 1417 int __sched 1418 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1419 { 1420 might_sleep(); 1421 1422 if (__mutex_trylock_fast(&lock->base)) { 1423 if (ctx) 1424 ww_mutex_set_context_fastpath(lock, ctx); 1425 return 0; 1426 } 1427 1428 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1429 } 1430 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1431 1432 #endif 1433 1434 /** 1435 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1436 * @cnt: the atomic which we are to dec 1437 * @lock: the mutex to return holding if we dec to 0 1438 * 1439 * return true and hold lock if we dec to 0, return false otherwise 1440 */ 1441 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1442 { 1443 /* dec if we can't possibly hit 0 */ 1444 if (atomic_add_unless(cnt, -1, 1)) 1445 return 0; 1446 /* we might hit 0, so take the lock */ 1447 mutex_lock(lock); 1448 if (!atomic_dec_and_test(cnt)) { 1449 /* when we actually did the dec, we didn't hit 0 */ 1450 mutex_unlock(lock); 1451 return 0; 1452 } 1453 /* we hit 0, and we hold the lock */ 1454 return 1; 1455 } 1456 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1457