xref: /linux-6.15/kernel/locking/mutex.c (revision f3e615b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
36 #else
37 # include "mutex.h"
38 # define MUTEX_WARN_ON(cond)
39 #endif
40 
41 void
42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
43 {
44 	atomic_long_set(&lock->owner, 0);
45 	spin_lock_init(&lock->wait_lock);
46 	INIT_LIST_HEAD(&lock->wait_list);
47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
48 	osq_lock_init(&lock->osq);
49 #endif
50 
51 	debug_mutex_init(lock, name, key);
52 }
53 EXPORT_SYMBOL(__mutex_init);
54 
55 /*
56  * @owner: contains: 'struct task_struct *' to the current lock owner,
57  * NULL means not owned. Since task_struct pointers are aligned at
58  * at least L1_CACHE_BYTES, we have low bits to store extra state.
59  *
60  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
61  * Bit1 indicates unlock needs to hand the lock to the top-waiter
62  * Bit2 indicates handoff has been done and we're waiting for pickup.
63  */
64 #define MUTEX_FLAG_WAITERS	0x01
65 #define MUTEX_FLAG_HANDOFF	0x02
66 #define MUTEX_FLAG_PICKUP	0x04
67 
68 #define MUTEX_FLAGS		0x07
69 
70 /*
71  * Internal helper function; C doesn't allow us to hide it :/
72  *
73  * DO NOT USE (outside of mutex code).
74  */
75 static inline struct task_struct *__mutex_owner(struct mutex *lock)
76 {
77 	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
78 }
79 
80 static inline struct task_struct *__owner_task(unsigned long owner)
81 {
82 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
83 }
84 
85 bool mutex_is_locked(struct mutex *lock)
86 {
87 	return __mutex_owner(lock) != NULL;
88 }
89 EXPORT_SYMBOL(mutex_is_locked);
90 
91 static inline unsigned long __owner_flags(unsigned long owner)
92 {
93 	return owner & MUTEX_FLAGS;
94 }
95 
96 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
97 {
98 	unsigned long owner, curr = (unsigned long)current;
99 
100 	owner = atomic_long_read(&lock->owner);
101 	for (;;) { /* must loop, can race against a flag */
102 		unsigned long flags = __owner_flags(owner);
103 		unsigned long task = owner & ~MUTEX_FLAGS;
104 
105 		if (task) {
106 			if (flags & MUTEX_FLAG_PICKUP) {
107 				if (task != curr)
108 					break;
109 				flags &= ~MUTEX_FLAG_PICKUP;
110 			} else if (handoff) {
111 				if (flags & MUTEX_FLAG_HANDOFF)
112 					break;
113 				flags |= MUTEX_FLAG_HANDOFF;
114 			} else {
115 				break;
116 			}
117 		} else {
118 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
119 			task = curr;
120 		}
121 
122 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
123 			if (task == curr)
124 				return NULL;
125 			break;
126 		}
127 	}
128 
129 	return __owner_task(owner);
130 }
131 
132 /*
133  * Trylock or set HANDOFF
134  */
135 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
136 {
137 	return !__mutex_trylock_common(lock, handoff);
138 }
139 
140 /*
141  * Actual trylock that will work on any unlocked state.
142  */
143 static inline bool __mutex_trylock(struct mutex *lock)
144 {
145 	return !__mutex_trylock_common(lock, false);
146 }
147 
148 #ifndef CONFIG_DEBUG_LOCK_ALLOC
149 /*
150  * Lockdep annotations are contained to the slow paths for simplicity.
151  * There is nothing that would stop spreading the lockdep annotations outwards
152  * except more code.
153  */
154 
155 /*
156  * Optimistic trylock that only works in the uncontended case. Make sure to
157  * follow with a __mutex_trylock() before failing.
158  */
159 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
160 {
161 	unsigned long curr = (unsigned long)current;
162 	unsigned long zero = 0UL;
163 
164 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
165 		return true;
166 
167 	return false;
168 }
169 
170 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
171 {
172 	unsigned long curr = (unsigned long)current;
173 
174 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
175 }
176 #endif
177 
178 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
179 {
180 	atomic_long_or(flag, &lock->owner);
181 }
182 
183 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
184 {
185 	atomic_long_andnot(flag, &lock->owner);
186 }
187 
188 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
189 {
190 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
191 }
192 
193 /*
194  * Add @waiter to a given location in the lock wait_list and set the
195  * FLAG_WAITERS flag if it's the first waiter.
196  */
197 static void __sched
198 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
199 		   struct list_head *list)
200 {
201 	debug_mutex_add_waiter(lock, waiter, current);
202 
203 	list_add_tail(&waiter->list, list);
204 	if (__mutex_waiter_is_first(lock, waiter))
205 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
206 }
207 
208 /*
209  * Give up ownership to a specific task, when @task = NULL, this is equivalent
210  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
211  * WAITERS. Provides RELEASE semantics like a regular unlock, the
212  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
213  */
214 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
215 {
216 	unsigned long owner = atomic_long_read(&lock->owner);
217 
218 	for (;;) {
219 		unsigned long new;
220 
221 		MUTEX_WARN_ON(__owner_task(owner) != current);
222 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
223 
224 		new = (owner & MUTEX_FLAG_WAITERS);
225 		new |= (unsigned long)task;
226 		if (task)
227 			new |= MUTEX_FLAG_PICKUP;
228 
229 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
230 			break;
231 	}
232 }
233 
234 #ifndef CONFIG_DEBUG_LOCK_ALLOC
235 /*
236  * We split the mutex lock/unlock logic into separate fastpath and
237  * slowpath functions, to reduce the register pressure on the fastpath.
238  * We also put the fastpath first in the kernel image, to make sure the
239  * branch is predicted by the CPU as default-untaken.
240  */
241 static void __sched __mutex_lock_slowpath(struct mutex *lock);
242 
243 /**
244  * mutex_lock - acquire the mutex
245  * @lock: the mutex to be acquired
246  *
247  * Lock the mutex exclusively for this task. If the mutex is not
248  * available right now, it will sleep until it can get it.
249  *
250  * The mutex must later on be released by the same task that
251  * acquired it. Recursive locking is not allowed. The task
252  * may not exit without first unlocking the mutex. Also, kernel
253  * memory where the mutex resides must not be freed with
254  * the mutex still locked. The mutex must first be initialized
255  * (or statically defined) before it can be locked. memset()-ing
256  * the mutex to 0 is not allowed.
257  *
258  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
259  * checks that will enforce the restrictions and will also do
260  * deadlock debugging)
261  *
262  * This function is similar to (but not equivalent to) down().
263  */
264 void __sched mutex_lock(struct mutex *lock)
265 {
266 	might_sleep();
267 
268 	if (!__mutex_trylock_fast(lock))
269 		__mutex_lock_slowpath(lock);
270 }
271 EXPORT_SYMBOL(mutex_lock);
272 #endif
273 
274 /*
275  * Wait-Die:
276  *   The newer transactions are killed when:
277  *     It (the new transaction) makes a request for a lock being held
278  *     by an older transaction.
279  *
280  * Wound-Wait:
281  *   The newer transactions are wounded when:
282  *     An older transaction makes a request for a lock being held by
283  *     the newer transaction.
284  */
285 
286 /*
287  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
288  * it.
289  */
290 static __always_inline void
291 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
292 {
293 #ifdef CONFIG_DEBUG_MUTEXES
294 	/*
295 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
296 	 * but released with a normal mutex_unlock in this call.
297 	 *
298 	 * This should never happen, always use ww_mutex_unlock.
299 	 */
300 	DEBUG_LOCKS_WARN_ON(ww->ctx);
301 
302 	/*
303 	 * Not quite done after calling ww_acquire_done() ?
304 	 */
305 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
306 
307 	if (ww_ctx->contending_lock) {
308 		/*
309 		 * After -EDEADLK you tried to
310 		 * acquire a different ww_mutex? Bad!
311 		 */
312 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
313 
314 		/*
315 		 * You called ww_mutex_lock after receiving -EDEADLK,
316 		 * but 'forgot' to unlock everything else first?
317 		 */
318 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
319 		ww_ctx->contending_lock = NULL;
320 	}
321 
322 	/*
323 	 * Naughty, using a different class will lead to undefined behavior!
324 	 */
325 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
326 #endif
327 	ww_ctx->acquired++;
328 	ww->ctx = ww_ctx;
329 }
330 
331 /*
332  * Determine if context @a is 'after' context @b. IOW, @a is a younger
333  * transaction than @b and depending on algorithm either needs to wait for
334  * @b or die.
335  */
336 static inline bool __sched
337 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
338 {
339 
340 	return (signed long)(a->stamp - b->stamp) > 0;
341 }
342 
343 /*
344  * Wait-Die; wake a younger waiter context (when locks held) such that it can
345  * die.
346  *
347  * Among waiters with context, only the first one can have other locks acquired
348  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
349  * __ww_mutex_check_kill() wake any but the earliest context.
350  */
351 static bool __sched
352 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
353 	       struct ww_acquire_ctx *ww_ctx)
354 {
355 	if (!ww_ctx->is_wait_die)
356 		return false;
357 
358 	if (waiter->ww_ctx->acquired > 0 &&
359 			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
360 		debug_mutex_wake_waiter(lock, waiter);
361 		wake_up_process(waiter->task);
362 	}
363 
364 	return true;
365 }
366 
367 /*
368  * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
369  *
370  * Wound the lock holder if there are waiters with older transactions than
371  * the lock holders. Even if multiple waiters may wound the lock holder,
372  * it's sufficient that only one does.
373  */
374 static bool __ww_mutex_wound(struct mutex *lock,
375 			     struct ww_acquire_ctx *ww_ctx,
376 			     struct ww_acquire_ctx *hold_ctx)
377 {
378 	struct task_struct *owner = __mutex_owner(lock);
379 
380 	lockdep_assert_held(&lock->wait_lock);
381 
382 	/*
383 	 * Possible through __ww_mutex_add_waiter() when we race with
384 	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
385 	 * through __ww_mutex_check_waiters().
386 	 */
387 	if (!hold_ctx)
388 		return false;
389 
390 	/*
391 	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
392 	 * it cannot go away because we'll have FLAG_WAITERS set and hold
393 	 * wait_lock.
394 	 */
395 	if (!owner)
396 		return false;
397 
398 	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
399 		hold_ctx->wounded = 1;
400 
401 		/*
402 		 * wake_up_process() paired with set_current_state()
403 		 * inserts sufficient barriers to make sure @owner either sees
404 		 * it's wounded in __ww_mutex_check_kill() or has a
405 		 * wakeup pending to re-read the wounded state.
406 		 */
407 		if (owner != current)
408 			wake_up_process(owner);
409 
410 		return true;
411 	}
412 
413 	return false;
414 }
415 
416 /*
417  * We just acquired @lock under @ww_ctx, if there are later contexts waiting
418  * behind us on the wait-list, check if they need to die, or wound us.
419  *
420  * See __ww_mutex_add_waiter() for the list-order construction; basically the
421  * list is ordered by stamp, smallest (oldest) first.
422  *
423  * This relies on never mixing wait-die/wound-wait on the same wait-list;
424  * which is currently ensured by that being a ww_class property.
425  *
426  * The current task must not be on the wait list.
427  */
428 static void __sched
429 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
430 {
431 	struct mutex_waiter *cur;
432 
433 	lockdep_assert_held(&lock->wait_lock);
434 
435 	list_for_each_entry(cur, &lock->wait_list, list) {
436 		if (!cur->ww_ctx)
437 			continue;
438 
439 		if (__ww_mutex_die(lock, cur, ww_ctx) ||
440 		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
441 			break;
442 	}
443 }
444 
445 /*
446  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
447  * and wake up any waiters so they can recheck.
448  */
449 static __always_inline void
450 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
451 {
452 	ww_mutex_lock_acquired(lock, ctx);
453 
454 	/*
455 	 * The lock->ctx update should be visible on all cores before
456 	 * the WAITERS check is done, otherwise contended waiters might be
457 	 * missed. The contended waiters will either see ww_ctx == NULL
458 	 * and keep spinning, or it will acquire wait_lock, add itself
459 	 * to waiter list and sleep.
460 	 */
461 	smp_mb(); /* See comments above and below. */
462 
463 	/*
464 	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
465 	 *     MB		        MB
466 	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
467 	 *
468 	 * The memory barrier above pairs with the memory barrier in
469 	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
470 	 * and/or !empty list.
471 	 */
472 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
473 		return;
474 
475 	/*
476 	 * Uh oh, we raced in fastpath, check if any of the waiters need to
477 	 * die or wound us.
478 	 */
479 	spin_lock(&lock->base.wait_lock);
480 	__ww_mutex_check_waiters(&lock->base, ctx);
481 	spin_unlock(&lock->base.wait_lock);
482 }
483 
484 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
485 
486 /*
487  * Trylock variant that returns the owning task on failure.
488  */
489 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
490 {
491 	return __mutex_trylock_common(lock, false);
492 }
493 
494 static inline
495 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
496 			    struct mutex_waiter *waiter)
497 {
498 	struct ww_mutex *ww;
499 
500 	ww = container_of(lock, struct ww_mutex, base);
501 
502 	/*
503 	 * If ww->ctx is set the contents are undefined, only
504 	 * by acquiring wait_lock there is a guarantee that
505 	 * they are not invalid when reading.
506 	 *
507 	 * As such, when deadlock detection needs to be
508 	 * performed the optimistic spinning cannot be done.
509 	 *
510 	 * Check this in every inner iteration because we may
511 	 * be racing against another thread's ww_mutex_lock.
512 	 */
513 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
514 		return false;
515 
516 	/*
517 	 * If we aren't on the wait list yet, cancel the spin
518 	 * if there are waiters. We want  to avoid stealing the
519 	 * lock from a waiter with an earlier stamp, since the
520 	 * other thread may already own a lock that we also
521 	 * need.
522 	 */
523 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
524 		return false;
525 
526 	/*
527 	 * Similarly, stop spinning if we are no longer the
528 	 * first waiter.
529 	 */
530 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
531 		return false;
532 
533 	return true;
534 }
535 
536 /*
537  * Look out! "owner" is an entirely speculative pointer access and not
538  * reliable.
539  *
540  * "noinline" so that this function shows up on perf profiles.
541  */
542 static noinline
543 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
544 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
545 {
546 	bool ret = true;
547 
548 	rcu_read_lock();
549 	while (__mutex_owner(lock) == owner) {
550 		/*
551 		 * Ensure we emit the owner->on_cpu, dereference _after_
552 		 * checking lock->owner still matches owner. If that fails,
553 		 * owner might point to freed memory. If it still matches,
554 		 * the rcu_read_lock() ensures the memory stays valid.
555 		 */
556 		barrier();
557 
558 		/*
559 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
560 		 */
561 		if (!owner->on_cpu || need_resched() ||
562 				vcpu_is_preempted(task_cpu(owner))) {
563 			ret = false;
564 			break;
565 		}
566 
567 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
568 			ret = false;
569 			break;
570 		}
571 
572 		cpu_relax();
573 	}
574 	rcu_read_unlock();
575 
576 	return ret;
577 }
578 
579 /*
580  * Initial check for entering the mutex spinning loop
581  */
582 static inline int mutex_can_spin_on_owner(struct mutex *lock)
583 {
584 	struct task_struct *owner;
585 	int retval = 1;
586 
587 	if (need_resched())
588 		return 0;
589 
590 	rcu_read_lock();
591 	owner = __mutex_owner(lock);
592 
593 	/*
594 	 * As lock holder preemption issue, we both skip spinning if task is not
595 	 * on cpu or its cpu is preempted
596 	 */
597 	if (owner)
598 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
599 	rcu_read_unlock();
600 
601 	/*
602 	 * If lock->owner is not set, the mutex has been released. Return true
603 	 * such that we'll trylock in the spin path, which is a faster option
604 	 * than the blocking slow path.
605 	 */
606 	return retval;
607 }
608 
609 /*
610  * Optimistic spinning.
611  *
612  * We try to spin for acquisition when we find that the lock owner
613  * is currently running on a (different) CPU and while we don't
614  * need to reschedule. The rationale is that if the lock owner is
615  * running, it is likely to release the lock soon.
616  *
617  * The mutex spinners are queued up using MCS lock so that only one
618  * spinner can compete for the mutex. However, if mutex spinning isn't
619  * going to happen, there is no point in going through the lock/unlock
620  * overhead.
621  *
622  * Returns true when the lock was taken, otherwise false, indicating
623  * that we need to jump to the slowpath and sleep.
624  *
625  * The waiter flag is set to true if the spinner is a waiter in the wait
626  * queue. The waiter-spinner will spin on the lock directly and concurrently
627  * with the spinner at the head of the OSQ, if present, until the owner is
628  * changed to itself.
629  */
630 static __always_inline bool
631 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
632 		      struct mutex_waiter *waiter)
633 {
634 	if (!waiter) {
635 		/*
636 		 * The purpose of the mutex_can_spin_on_owner() function is
637 		 * to eliminate the overhead of osq_lock() and osq_unlock()
638 		 * in case spinning isn't possible. As a waiter-spinner
639 		 * is not going to take OSQ lock anyway, there is no need
640 		 * to call mutex_can_spin_on_owner().
641 		 */
642 		if (!mutex_can_spin_on_owner(lock))
643 			goto fail;
644 
645 		/*
646 		 * In order to avoid a stampede of mutex spinners trying to
647 		 * acquire the mutex all at once, the spinners need to take a
648 		 * MCS (queued) lock first before spinning on the owner field.
649 		 */
650 		if (!osq_lock(&lock->osq))
651 			goto fail;
652 	}
653 
654 	for (;;) {
655 		struct task_struct *owner;
656 
657 		/* Try to acquire the mutex... */
658 		owner = __mutex_trylock_or_owner(lock);
659 		if (!owner)
660 			break;
661 
662 		/*
663 		 * There's an owner, wait for it to either
664 		 * release the lock or go to sleep.
665 		 */
666 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
667 			goto fail_unlock;
668 
669 		/*
670 		 * The cpu_relax() call is a compiler barrier which forces
671 		 * everything in this loop to be re-loaded. We don't need
672 		 * memory barriers as we'll eventually observe the right
673 		 * values at the cost of a few extra spins.
674 		 */
675 		cpu_relax();
676 	}
677 
678 	if (!waiter)
679 		osq_unlock(&lock->osq);
680 
681 	return true;
682 
683 
684 fail_unlock:
685 	if (!waiter)
686 		osq_unlock(&lock->osq);
687 
688 fail:
689 	/*
690 	 * If we fell out of the spin path because of need_resched(),
691 	 * reschedule now, before we try-lock the mutex. This avoids getting
692 	 * scheduled out right after we obtained the mutex.
693 	 */
694 	if (need_resched()) {
695 		/*
696 		 * We _should_ have TASK_RUNNING here, but just in case
697 		 * we do not, make it so, otherwise we might get stuck.
698 		 */
699 		__set_current_state(TASK_RUNNING);
700 		schedule_preempt_disabled();
701 	}
702 
703 	return false;
704 }
705 #else
706 static __always_inline bool
707 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
708 		      struct mutex_waiter *waiter)
709 {
710 	return false;
711 }
712 #endif
713 
714 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
715 
716 /**
717  * mutex_unlock - release the mutex
718  * @lock: the mutex to be released
719  *
720  * Unlock a mutex that has been locked by this task previously.
721  *
722  * This function must not be used in interrupt context. Unlocking
723  * of a not locked mutex is not allowed.
724  *
725  * This function is similar to (but not equivalent to) up().
726  */
727 void __sched mutex_unlock(struct mutex *lock)
728 {
729 #ifndef CONFIG_DEBUG_LOCK_ALLOC
730 	if (__mutex_unlock_fast(lock))
731 		return;
732 #endif
733 	__mutex_unlock_slowpath(lock, _RET_IP_);
734 }
735 EXPORT_SYMBOL(mutex_unlock);
736 
737 /**
738  * ww_mutex_unlock - release the w/w mutex
739  * @lock: the mutex to be released
740  *
741  * Unlock a mutex that has been locked by this task previously with any of the
742  * ww_mutex_lock* functions (with or without an acquire context). It is
743  * forbidden to release the locks after releasing the acquire context.
744  *
745  * This function must not be used in interrupt context. Unlocking
746  * of a unlocked mutex is not allowed.
747  */
748 void __sched ww_mutex_unlock(struct ww_mutex *lock)
749 {
750 	/*
751 	 * The unlocking fastpath is the 0->1 transition from 'locked'
752 	 * into 'unlocked' state:
753 	 */
754 	if (lock->ctx) {
755 		MUTEX_WARN_ON(!lock->ctx->acquired);
756 		if (lock->ctx->acquired > 0)
757 			lock->ctx->acquired--;
758 		lock->ctx = NULL;
759 	}
760 
761 	mutex_unlock(&lock->base);
762 }
763 EXPORT_SYMBOL(ww_mutex_unlock);
764 
765 
766 static __always_inline int __sched
767 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
768 {
769 	if (ww_ctx->acquired > 0) {
770 #ifdef CONFIG_DEBUG_MUTEXES
771 		struct ww_mutex *ww;
772 
773 		ww = container_of(lock, struct ww_mutex, base);
774 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
775 		ww_ctx->contending_lock = ww;
776 #endif
777 		return -EDEADLK;
778 	}
779 
780 	return 0;
781 }
782 
783 
784 /*
785  * Check the wound condition for the current lock acquire.
786  *
787  * Wound-Wait: If we're wounded, kill ourself.
788  *
789  * Wait-Die: If we're trying to acquire a lock already held by an older
790  *           context, kill ourselves.
791  *
792  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
793  * look at waiters before us in the wait-list.
794  */
795 static inline int __sched
796 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
797 		      struct ww_acquire_ctx *ctx)
798 {
799 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
800 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
801 	struct mutex_waiter *cur;
802 
803 	if (ctx->acquired == 0)
804 		return 0;
805 
806 	if (!ctx->is_wait_die) {
807 		if (ctx->wounded)
808 			return __ww_mutex_kill(lock, ctx);
809 
810 		return 0;
811 	}
812 
813 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
814 		return __ww_mutex_kill(lock, ctx);
815 
816 	/*
817 	 * If there is a waiter in front of us that has a context, then its
818 	 * stamp is earlier than ours and we must kill ourself.
819 	 */
820 	cur = waiter;
821 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
822 		if (!cur->ww_ctx)
823 			continue;
824 
825 		return __ww_mutex_kill(lock, ctx);
826 	}
827 
828 	return 0;
829 }
830 
831 /*
832  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
833  * first. Such that older contexts are preferred to acquire the lock over
834  * younger contexts.
835  *
836  * Waiters without context are interspersed in FIFO order.
837  *
838  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
839  * older contexts already waiting) to avoid unnecessary waiting and for
840  * Wound-Wait ensure we wound the owning context when it is younger.
841  */
842 static inline int __sched
843 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
844 		      struct mutex *lock,
845 		      struct ww_acquire_ctx *ww_ctx)
846 {
847 	struct mutex_waiter *cur;
848 	struct list_head *pos;
849 	bool is_wait_die;
850 
851 	if (!ww_ctx) {
852 		__mutex_add_waiter(lock, waiter, &lock->wait_list);
853 		return 0;
854 	}
855 
856 	is_wait_die = ww_ctx->is_wait_die;
857 
858 	/*
859 	 * Add the waiter before the first waiter with a higher stamp.
860 	 * Waiters without a context are skipped to avoid starving
861 	 * them. Wait-Die waiters may die here. Wound-Wait waiters
862 	 * never die here, but they are sorted in stamp order and
863 	 * may wound the lock holder.
864 	 */
865 	pos = &lock->wait_list;
866 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
867 		if (!cur->ww_ctx)
868 			continue;
869 
870 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
871 			/*
872 			 * Wait-Die: if we find an older context waiting, there
873 			 * is no point in queueing behind it, as we'd have to
874 			 * die the moment it would acquire the lock.
875 			 */
876 			if (is_wait_die) {
877 				int ret = __ww_mutex_kill(lock, ww_ctx);
878 
879 				if (ret)
880 					return ret;
881 			}
882 
883 			break;
884 		}
885 
886 		pos = &cur->list;
887 
888 		/* Wait-Die: ensure younger waiters die. */
889 		__ww_mutex_die(lock, cur, ww_ctx);
890 	}
891 
892 	__mutex_add_waiter(lock, waiter, pos);
893 
894 	/*
895 	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
896 	 * wound that such that we might proceed.
897 	 */
898 	if (!is_wait_die) {
899 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
900 
901 		/*
902 		 * See ww_mutex_set_context_fastpath(). Orders setting
903 		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
904 		 * such that either we or the fastpath will wound @ww->ctx.
905 		 */
906 		smp_mb();
907 		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * Lock a mutex (possibly interruptible), slowpath:
915  */
916 static __always_inline int __sched
917 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
918 		    struct lockdep_map *nest_lock, unsigned long ip,
919 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
920 {
921 	struct mutex_waiter waiter;
922 	struct ww_mutex *ww;
923 	int ret;
924 
925 	if (!use_ww_ctx)
926 		ww_ctx = NULL;
927 
928 	might_sleep();
929 
930 	MUTEX_WARN_ON(lock->magic != lock);
931 
932 	ww = container_of(lock, struct ww_mutex, base);
933 	if (ww_ctx) {
934 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
935 			return -EALREADY;
936 
937 		/*
938 		 * Reset the wounded flag after a kill. No other process can
939 		 * race and wound us here since they can't have a valid owner
940 		 * pointer if we don't have any locks held.
941 		 */
942 		if (ww_ctx->acquired == 0)
943 			ww_ctx->wounded = 0;
944 	}
945 
946 	preempt_disable();
947 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
948 
949 	if (__mutex_trylock(lock) ||
950 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
951 		/* got the lock, yay! */
952 		lock_acquired(&lock->dep_map, ip);
953 		if (ww_ctx)
954 			ww_mutex_set_context_fastpath(ww, ww_ctx);
955 		preempt_enable();
956 		return 0;
957 	}
958 
959 	spin_lock(&lock->wait_lock);
960 	/*
961 	 * After waiting to acquire the wait_lock, try again.
962 	 */
963 	if (__mutex_trylock(lock)) {
964 		if (ww_ctx)
965 			__ww_mutex_check_waiters(lock, ww_ctx);
966 
967 		goto skip_wait;
968 	}
969 
970 	debug_mutex_lock_common(lock, &waiter);
971 
972 	lock_contended(&lock->dep_map, ip);
973 
974 	if (!use_ww_ctx) {
975 		/* add waiting tasks to the end of the waitqueue (FIFO): */
976 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
977 
978 
979 #ifdef CONFIG_DEBUG_MUTEXES
980 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
981 #endif
982 	} else {
983 		/*
984 		 * Add in stamp order, waking up waiters that must kill
985 		 * themselves.
986 		 */
987 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
988 		if (ret)
989 			goto err_early_kill;
990 
991 		waiter.ww_ctx = ww_ctx;
992 	}
993 
994 	waiter.task = current;
995 
996 	set_current_state(state);
997 	for (;;) {
998 		bool first;
999 
1000 		/*
1001 		 * Once we hold wait_lock, we're serialized against
1002 		 * mutex_unlock() handing the lock off to us, do a trylock
1003 		 * before testing the error conditions to make sure we pick up
1004 		 * the handoff.
1005 		 */
1006 		if (__mutex_trylock(lock))
1007 			goto acquired;
1008 
1009 		/*
1010 		 * Check for signals and kill conditions while holding
1011 		 * wait_lock. This ensures the lock cancellation is ordered
1012 		 * against mutex_unlock() and wake-ups do not go missing.
1013 		 */
1014 		if (signal_pending_state(state, current)) {
1015 			ret = -EINTR;
1016 			goto err;
1017 		}
1018 
1019 		if (ww_ctx) {
1020 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1021 			if (ret)
1022 				goto err;
1023 		}
1024 
1025 		spin_unlock(&lock->wait_lock);
1026 		schedule_preempt_disabled();
1027 
1028 		first = __mutex_waiter_is_first(lock, &waiter);
1029 
1030 		set_current_state(state);
1031 		/*
1032 		 * Here we order against unlock; we must either see it change
1033 		 * state back to RUNNING and fall through the next schedule(),
1034 		 * or we must see its unlock and acquire.
1035 		 */
1036 		if (__mutex_trylock_or_handoff(lock, first) ||
1037 		    (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
1038 			break;
1039 
1040 		spin_lock(&lock->wait_lock);
1041 	}
1042 	spin_lock(&lock->wait_lock);
1043 acquired:
1044 	__set_current_state(TASK_RUNNING);
1045 
1046 	if (ww_ctx) {
1047 		/*
1048 		 * Wound-Wait; we stole the lock (!first_waiter), check the
1049 		 * waiters as anyone might want to wound us.
1050 		 */
1051 		if (!ww_ctx->is_wait_die &&
1052 		    !__mutex_waiter_is_first(lock, &waiter))
1053 			__ww_mutex_check_waiters(lock, ww_ctx);
1054 	}
1055 
1056 	mutex_remove_waiter(lock, &waiter, current);
1057 	if (likely(list_empty(&lock->wait_list)))
1058 		__mutex_clear_flag(lock, MUTEX_FLAGS);
1059 
1060 	debug_mutex_free_waiter(&waiter);
1061 
1062 skip_wait:
1063 	/* got the lock - cleanup and rejoice! */
1064 	lock_acquired(&lock->dep_map, ip);
1065 
1066 	if (ww_ctx)
1067 		ww_mutex_lock_acquired(ww, ww_ctx);
1068 
1069 	spin_unlock(&lock->wait_lock);
1070 	preempt_enable();
1071 	return 0;
1072 
1073 err:
1074 	__set_current_state(TASK_RUNNING);
1075 	mutex_remove_waiter(lock, &waiter, current);
1076 err_early_kill:
1077 	spin_unlock(&lock->wait_lock);
1078 	debug_mutex_free_waiter(&waiter);
1079 	mutex_release(&lock->dep_map, ip);
1080 	preempt_enable();
1081 	return ret;
1082 }
1083 
1084 static int __sched
1085 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1086 	     struct lockdep_map *nest_lock, unsigned long ip)
1087 {
1088 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1089 }
1090 
1091 static int __sched
1092 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1093 		struct lockdep_map *nest_lock, unsigned long ip,
1094 		struct ww_acquire_ctx *ww_ctx)
1095 {
1096 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1097 }
1098 
1099 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1100 void __sched
1101 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1102 {
1103 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1104 }
1105 
1106 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1107 
1108 void __sched
1109 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1110 {
1111 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1112 }
1113 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1114 
1115 int __sched
1116 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1117 {
1118 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1119 }
1120 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1121 
1122 int __sched
1123 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1124 {
1125 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1126 }
1127 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1128 
1129 void __sched
1130 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1131 {
1132 	int token;
1133 
1134 	might_sleep();
1135 
1136 	token = io_schedule_prepare();
1137 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1138 			    subclass, NULL, _RET_IP_, NULL, 0);
1139 	io_schedule_finish(token);
1140 }
1141 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1142 
1143 static inline int
1144 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1145 {
1146 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1147 	unsigned tmp;
1148 
1149 	if (ctx->deadlock_inject_countdown-- == 0) {
1150 		tmp = ctx->deadlock_inject_interval;
1151 		if (tmp > UINT_MAX/4)
1152 			tmp = UINT_MAX;
1153 		else
1154 			tmp = tmp*2 + tmp + tmp/2;
1155 
1156 		ctx->deadlock_inject_interval = tmp;
1157 		ctx->deadlock_inject_countdown = tmp;
1158 		ctx->contending_lock = lock;
1159 
1160 		ww_mutex_unlock(lock);
1161 
1162 		return -EDEADLK;
1163 	}
1164 #endif
1165 
1166 	return 0;
1167 }
1168 
1169 int __sched
1170 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1171 {
1172 	int ret;
1173 
1174 	might_sleep();
1175 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1176 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1177 			       ctx);
1178 	if (!ret && ctx && ctx->acquired > 1)
1179 		return ww_mutex_deadlock_injection(lock, ctx);
1180 
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1184 
1185 int __sched
1186 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1187 {
1188 	int ret;
1189 
1190 	might_sleep();
1191 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1192 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1193 			      ctx);
1194 
1195 	if (!ret && ctx && ctx->acquired > 1)
1196 		return ww_mutex_deadlock_injection(lock, ctx);
1197 
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1201 
1202 #endif
1203 
1204 /*
1205  * Release the lock, slowpath:
1206  */
1207 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1208 {
1209 	struct task_struct *next = NULL;
1210 	DEFINE_WAKE_Q(wake_q);
1211 	unsigned long owner;
1212 
1213 	mutex_release(&lock->dep_map, ip);
1214 
1215 	/*
1216 	 * Release the lock before (potentially) taking the spinlock such that
1217 	 * other contenders can get on with things ASAP.
1218 	 *
1219 	 * Except when HANDOFF, in that case we must not clear the owner field,
1220 	 * but instead set it to the top waiter.
1221 	 */
1222 	owner = atomic_long_read(&lock->owner);
1223 	for (;;) {
1224 		MUTEX_WARN_ON(__owner_task(owner) != current);
1225 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1226 
1227 		if (owner & MUTEX_FLAG_HANDOFF)
1228 			break;
1229 
1230 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
1231 			if (owner & MUTEX_FLAG_WAITERS)
1232 				break;
1233 
1234 			return;
1235 		}
1236 	}
1237 
1238 	spin_lock(&lock->wait_lock);
1239 	debug_mutex_unlock(lock);
1240 	if (!list_empty(&lock->wait_list)) {
1241 		/* get the first entry from the wait-list: */
1242 		struct mutex_waiter *waiter =
1243 			list_first_entry(&lock->wait_list,
1244 					 struct mutex_waiter, list);
1245 
1246 		next = waiter->task;
1247 
1248 		debug_mutex_wake_waiter(lock, waiter);
1249 		wake_q_add(&wake_q, next);
1250 	}
1251 
1252 	if (owner & MUTEX_FLAG_HANDOFF)
1253 		__mutex_handoff(lock, next);
1254 
1255 	spin_unlock(&lock->wait_lock);
1256 
1257 	wake_up_q(&wake_q);
1258 }
1259 
1260 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1261 /*
1262  * Here come the less common (and hence less performance-critical) APIs:
1263  * mutex_lock_interruptible() and mutex_trylock().
1264  */
1265 static noinline int __sched
1266 __mutex_lock_killable_slowpath(struct mutex *lock);
1267 
1268 static noinline int __sched
1269 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1270 
1271 /**
1272  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1273  * @lock: The mutex to be acquired.
1274  *
1275  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1276  * process is sleeping, this function will return without acquiring the
1277  * mutex.
1278  *
1279  * Context: Process context.
1280  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1281  * signal arrived.
1282  */
1283 int __sched mutex_lock_interruptible(struct mutex *lock)
1284 {
1285 	might_sleep();
1286 
1287 	if (__mutex_trylock_fast(lock))
1288 		return 0;
1289 
1290 	return __mutex_lock_interruptible_slowpath(lock);
1291 }
1292 
1293 EXPORT_SYMBOL(mutex_lock_interruptible);
1294 
1295 /**
1296  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1297  * @lock: The mutex to be acquired.
1298  *
1299  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1300  * the current process is delivered while the process is sleeping, this
1301  * function will return without acquiring the mutex.
1302  *
1303  * Context: Process context.
1304  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1305  * fatal signal arrived.
1306  */
1307 int __sched mutex_lock_killable(struct mutex *lock)
1308 {
1309 	might_sleep();
1310 
1311 	if (__mutex_trylock_fast(lock))
1312 		return 0;
1313 
1314 	return __mutex_lock_killable_slowpath(lock);
1315 }
1316 EXPORT_SYMBOL(mutex_lock_killable);
1317 
1318 /**
1319  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1320  * @lock: The mutex to be acquired.
1321  *
1322  * Lock the mutex like mutex_lock().  While the task is waiting for this
1323  * mutex, it will be accounted as being in the IO wait state by the
1324  * scheduler.
1325  *
1326  * Context: Process context.
1327  */
1328 void __sched mutex_lock_io(struct mutex *lock)
1329 {
1330 	int token;
1331 
1332 	token = io_schedule_prepare();
1333 	mutex_lock(lock);
1334 	io_schedule_finish(token);
1335 }
1336 EXPORT_SYMBOL_GPL(mutex_lock_io);
1337 
1338 static noinline void __sched
1339 __mutex_lock_slowpath(struct mutex *lock)
1340 {
1341 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1342 }
1343 
1344 static noinline int __sched
1345 __mutex_lock_killable_slowpath(struct mutex *lock)
1346 {
1347 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1348 }
1349 
1350 static noinline int __sched
1351 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1352 {
1353 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1354 }
1355 
1356 static noinline int __sched
1357 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1358 {
1359 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1360 			       _RET_IP_, ctx);
1361 }
1362 
1363 static noinline int __sched
1364 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1365 					    struct ww_acquire_ctx *ctx)
1366 {
1367 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1368 			       _RET_IP_, ctx);
1369 }
1370 
1371 #endif
1372 
1373 /**
1374  * mutex_trylock - try to acquire the mutex, without waiting
1375  * @lock: the mutex to be acquired
1376  *
1377  * Try to acquire the mutex atomically. Returns 1 if the mutex
1378  * has been acquired successfully, and 0 on contention.
1379  *
1380  * NOTE: this function follows the spin_trylock() convention, so
1381  * it is negated from the down_trylock() return values! Be careful
1382  * about this when converting semaphore users to mutexes.
1383  *
1384  * This function must not be used in interrupt context. The
1385  * mutex must be released by the same task that acquired it.
1386  */
1387 int __sched mutex_trylock(struct mutex *lock)
1388 {
1389 	bool locked;
1390 
1391 	MUTEX_WARN_ON(lock->magic != lock);
1392 
1393 	locked = __mutex_trylock(lock);
1394 	if (locked)
1395 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1396 
1397 	return locked;
1398 }
1399 EXPORT_SYMBOL(mutex_trylock);
1400 
1401 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1402 int __sched
1403 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1404 {
1405 	might_sleep();
1406 
1407 	if (__mutex_trylock_fast(&lock->base)) {
1408 		if (ctx)
1409 			ww_mutex_set_context_fastpath(lock, ctx);
1410 		return 0;
1411 	}
1412 
1413 	return __ww_mutex_lock_slowpath(lock, ctx);
1414 }
1415 EXPORT_SYMBOL(ww_mutex_lock);
1416 
1417 int __sched
1418 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1419 {
1420 	might_sleep();
1421 
1422 	if (__mutex_trylock_fast(&lock->base)) {
1423 		if (ctx)
1424 			ww_mutex_set_context_fastpath(lock, ctx);
1425 		return 0;
1426 	}
1427 
1428 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1429 }
1430 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1431 
1432 #endif
1433 
1434 /**
1435  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1436  * @cnt: the atomic which we are to dec
1437  * @lock: the mutex to return holding if we dec to 0
1438  *
1439  * return true and hold lock if we dec to 0, return false otherwise
1440  */
1441 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1442 {
1443 	/* dec if we can't possibly hit 0 */
1444 	if (atomic_add_unless(cnt, -1, 1))
1445 		return 0;
1446 	/* we might hit 0, so take the lock */
1447 	mutex_lock(lock);
1448 	if (!atomic_dec_and_test(cnt)) {
1449 		/* when we actually did the dec, we didn't hit 0 */
1450 		mutex_unlock(lock);
1451 		return 0;
1452 	}
1453 	/* we hit 0, and we hold the lock */
1454 	return 1;
1455 }
1456 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1457