1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #include "mutex.h" 34 35 #ifdef CONFIG_DEBUG_MUTEXES 36 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 37 #else 38 # define MUTEX_WARN_ON(cond) 39 #endif 40 41 void 42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 43 { 44 atomic_long_set(&lock->owner, 0); 45 raw_spin_lock_init(&lock->wait_lock); 46 INIT_LIST_HEAD(&lock->wait_list); 47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 48 osq_lock_init(&lock->osq); 49 #endif 50 51 debug_mutex_init(lock, name, key); 52 } 53 EXPORT_SYMBOL(__mutex_init); 54 55 /* 56 * @owner: contains: 'struct task_struct *' to the current lock owner, 57 * NULL means not owned. Since task_struct pointers are aligned at 58 * at least L1_CACHE_BYTES, we have low bits to store extra state. 59 * 60 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 61 * Bit1 indicates unlock needs to hand the lock to the top-waiter 62 * Bit2 indicates handoff has been done and we're waiting for pickup. 63 */ 64 #define MUTEX_FLAG_WAITERS 0x01 65 #define MUTEX_FLAG_HANDOFF 0x02 66 #define MUTEX_FLAG_PICKUP 0x04 67 68 #define MUTEX_FLAGS 0x07 69 70 /* 71 * Internal helper function; C doesn't allow us to hide it :/ 72 * 73 * DO NOT USE (outside of mutex code). 74 */ 75 static inline struct task_struct *__mutex_owner(struct mutex *lock) 76 { 77 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 78 } 79 80 static inline struct task_struct *__owner_task(unsigned long owner) 81 { 82 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 83 } 84 85 bool mutex_is_locked(struct mutex *lock) 86 { 87 return __mutex_owner(lock) != NULL; 88 } 89 EXPORT_SYMBOL(mutex_is_locked); 90 91 static inline unsigned long __owner_flags(unsigned long owner) 92 { 93 return owner & MUTEX_FLAGS; 94 } 95 96 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 97 { 98 unsigned long owner, curr = (unsigned long)current; 99 100 owner = atomic_long_read(&lock->owner); 101 for (;;) { /* must loop, can race against a flag */ 102 unsigned long flags = __owner_flags(owner); 103 unsigned long task = owner & ~MUTEX_FLAGS; 104 105 if (task) { 106 if (flags & MUTEX_FLAG_PICKUP) { 107 if (task != curr) 108 break; 109 flags &= ~MUTEX_FLAG_PICKUP; 110 } else if (handoff) { 111 if (flags & MUTEX_FLAG_HANDOFF) 112 break; 113 flags |= MUTEX_FLAG_HANDOFF; 114 } else { 115 break; 116 } 117 } else { 118 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 119 task = curr; 120 } 121 122 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 123 if (task == curr) 124 return NULL; 125 break; 126 } 127 } 128 129 return __owner_task(owner); 130 } 131 132 /* 133 * Trylock or set HANDOFF 134 */ 135 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 136 { 137 return !__mutex_trylock_common(lock, handoff); 138 } 139 140 /* 141 * Actual trylock that will work on any unlocked state. 142 */ 143 static inline bool __mutex_trylock(struct mutex *lock) 144 { 145 return !__mutex_trylock_common(lock, false); 146 } 147 148 #ifndef CONFIG_DEBUG_LOCK_ALLOC 149 /* 150 * Lockdep annotations are contained to the slow paths for simplicity. 151 * There is nothing that would stop spreading the lockdep annotations outwards 152 * except more code. 153 */ 154 155 /* 156 * Optimistic trylock that only works in the uncontended case. Make sure to 157 * follow with a __mutex_trylock() before failing. 158 */ 159 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 160 { 161 unsigned long curr = (unsigned long)current; 162 unsigned long zero = 0UL; 163 164 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 165 return true; 166 167 return false; 168 } 169 170 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 171 { 172 unsigned long curr = (unsigned long)current; 173 174 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 175 } 176 #endif 177 178 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 179 { 180 atomic_long_or(flag, &lock->owner); 181 } 182 183 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 184 { 185 atomic_long_andnot(flag, &lock->owner); 186 } 187 188 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 189 { 190 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 191 } 192 193 /* 194 * Add @waiter to a given location in the lock wait_list and set the 195 * FLAG_WAITERS flag if it's the first waiter. 196 */ 197 static void 198 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 199 struct list_head *list) 200 { 201 debug_mutex_add_waiter(lock, waiter, current); 202 203 list_add_tail(&waiter->list, list); 204 if (__mutex_waiter_is_first(lock, waiter)) 205 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 206 } 207 208 static void 209 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 210 { 211 list_del(&waiter->list); 212 if (likely(list_empty(&lock->wait_list))) 213 __mutex_clear_flag(lock, MUTEX_FLAGS); 214 215 debug_mutex_remove_waiter(lock, waiter, current); 216 } 217 218 /* 219 * Give up ownership to a specific task, when @task = NULL, this is equivalent 220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 221 * WAITERS. Provides RELEASE semantics like a regular unlock, the 222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 223 */ 224 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 225 { 226 unsigned long owner = atomic_long_read(&lock->owner); 227 228 for (;;) { 229 unsigned long new; 230 231 MUTEX_WARN_ON(__owner_task(owner) != current); 232 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 233 234 new = (owner & MUTEX_FLAG_WAITERS); 235 new |= (unsigned long)task; 236 if (task) 237 new |= MUTEX_FLAG_PICKUP; 238 239 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 240 break; 241 } 242 } 243 244 #ifndef CONFIG_DEBUG_LOCK_ALLOC 245 /* 246 * We split the mutex lock/unlock logic into separate fastpath and 247 * slowpath functions, to reduce the register pressure on the fastpath. 248 * We also put the fastpath first in the kernel image, to make sure the 249 * branch is predicted by the CPU as default-untaken. 250 */ 251 static void __sched __mutex_lock_slowpath(struct mutex *lock); 252 253 /** 254 * mutex_lock - acquire the mutex 255 * @lock: the mutex to be acquired 256 * 257 * Lock the mutex exclusively for this task. If the mutex is not 258 * available right now, it will sleep until it can get it. 259 * 260 * The mutex must later on be released by the same task that 261 * acquired it. Recursive locking is not allowed. The task 262 * may not exit without first unlocking the mutex. Also, kernel 263 * memory where the mutex resides must not be freed with 264 * the mutex still locked. The mutex must first be initialized 265 * (or statically defined) before it can be locked. memset()-ing 266 * the mutex to 0 is not allowed. 267 * 268 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 269 * checks that will enforce the restrictions and will also do 270 * deadlock debugging) 271 * 272 * This function is similar to (but not equivalent to) down(). 273 */ 274 void __sched mutex_lock(struct mutex *lock) 275 { 276 might_sleep(); 277 278 if (!__mutex_trylock_fast(lock)) 279 __mutex_lock_slowpath(lock); 280 } 281 EXPORT_SYMBOL(mutex_lock); 282 #endif 283 284 /* 285 * Wait-Die: 286 * The newer transactions are killed when: 287 * It (the new transaction) makes a request for a lock being held 288 * by an older transaction. 289 * 290 * Wound-Wait: 291 * The newer transactions are wounded when: 292 * An older transaction makes a request for a lock being held by 293 * the newer transaction. 294 */ 295 296 /* 297 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired 298 * it. 299 */ 300 static __always_inline void 301 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 302 { 303 #ifdef CONFIG_DEBUG_MUTEXES 304 /* 305 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 306 * but released with a normal mutex_unlock in this call. 307 * 308 * This should never happen, always use ww_mutex_unlock. 309 */ 310 DEBUG_LOCKS_WARN_ON(ww->ctx); 311 312 /* 313 * Not quite done after calling ww_acquire_done() ? 314 */ 315 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 316 317 if (ww_ctx->contending_lock) { 318 /* 319 * After -EDEADLK you tried to 320 * acquire a different ww_mutex? Bad! 321 */ 322 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 323 324 /* 325 * You called ww_mutex_lock after receiving -EDEADLK, 326 * but 'forgot' to unlock everything else first? 327 */ 328 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 329 ww_ctx->contending_lock = NULL; 330 } 331 332 /* 333 * Naughty, using a different class will lead to undefined behavior! 334 */ 335 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 336 #endif 337 ww_ctx->acquired++; 338 ww->ctx = ww_ctx; 339 } 340 341 /* 342 * Determine if context @a is 'after' context @b. IOW, @a is a younger 343 * transaction than @b and depending on algorithm either needs to wait for 344 * @b or die. 345 */ 346 static inline bool __sched 347 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 348 { 349 350 return (signed long)(a->stamp - b->stamp) > 0; 351 } 352 353 /* 354 * Wait-Die; wake a younger waiter context (when locks held) such that it can 355 * die. 356 * 357 * Among waiters with context, only the first one can have other locks acquired 358 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and 359 * __ww_mutex_check_kill() wake any but the earliest context. 360 */ 361 static bool __sched 362 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, 363 struct ww_acquire_ctx *ww_ctx) 364 { 365 if (!ww_ctx->is_wait_die) 366 return false; 367 368 if (waiter->ww_ctx->acquired > 0 && 369 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { 370 debug_mutex_wake_waiter(lock, waiter); 371 wake_up_process(waiter->task); 372 } 373 374 return true; 375 } 376 377 /* 378 * Wound-Wait; wound a younger @hold_ctx if it holds the lock. 379 * 380 * Wound the lock holder if there are waiters with older transactions than 381 * the lock holders. Even if multiple waiters may wound the lock holder, 382 * it's sufficient that only one does. 383 */ 384 static bool __ww_mutex_wound(struct mutex *lock, 385 struct ww_acquire_ctx *ww_ctx, 386 struct ww_acquire_ctx *hold_ctx) 387 { 388 struct task_struct *owner = __mutex_owner(lock); 389 390 lockdep_assert_held(&lock->wait_lock); 391 392 /* 393 * Possible through __ww_mutex_add_waiter() when we race with 394 * ww_mutex_set_context_fastpath(). In that case we'll get here again 395 * through __ww_mutex_check_waiters(). 396 */ 397 if (!hold_ctx) 398 return false; 399 400 /* 401 * Can have !owner because of __mutex_unlock_slowpath(), but if owner, 402 * it cannot go away because we'll have FLAG_WAITERS set and hold 403 * wait_lock. 404 */ 405 if (!owner) 406 return false; 407 408 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { 409 hold_ctx->wounded = 1; 410 411 /* 412 * wake_up_process() paired with set_current_state() 413 * inserts sufficient barriers to make sure @owner either sees 414 * it's wounded in __ww_mutex_check_kill() or has a 415 * wakeup pending to re-read the wounded state. 416 */ 417 if (owner != current) 418 wake_up_process(owner); 419 420 return true; 421 } 422 423 return false; 424 } 425 426 /* 427 * We just acquired @lock under @ww_ctx, if there are later contexts waiting 428 * behind us on the wait-list, check if they need to die, or wound us. 429 * 430 * See __ww_mutex_add_waiter() for the list-order construction; basically the 431 * list is ordered by stamp, smallest (oldest) first. 432 * 433 * This relies on never mixing wait-die/wound-wait on the same wait-list; 434 * which is currently ensured by that being a ww_class property. 435 * 436 * The current task must not be on the wait list. 437 */ 438 static void __sched 439 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 440 { 441 struct mutex_waiter *cur; 442 443 lockdep_assert_held(&lock->wait_lock); 444 445 list_for_each_entry(cur, &lock->wait_list, list) { 446 if (!cur->ww_ctx) 447 continue; 448 449 if (__ww_mutex_die(lock, cur, ww_ctx) || 450 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) 451 break; 452 } 453 } 454 455 /* 456 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx 457 * and wake up any waiters so they can recheck. 458 */ 459 static __always_inline void 460 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 461 { 462 ww_mutex_lock_acquired(lock, ctx); 463 464 /* 465 * The lock->ctx update should be visible on all cores before 466 * the WAITERS check is done, otherwise contended waiters might be 467 * missed. The contended waiters will either see ww_ctx == NULL 468 * and keep spinning, or it will acquire wait_lock, add itself 469 * to waiter list and sleep. 470 */ 471 smp_mb(); /* See comments above and below. */ 472 473 /* 474 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS 475 * MB MB 476 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx 477 * 478 * The memory barrier above pairs with the memory barrier in 479 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx 480 * and/or !empty list. 481 */ 482 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 483 return; 484 485 /* 486 * Uh oh, we raced in fastpath, check if any of the waiters need to 487 * die or wound us. 488 */ 489 raw_spin_lock(&lock->base.wait_lock); 490 __ww_mutex_check_waiters(&lock->base, ctx); 491 raw_spin_unlock(&lock->base.wait_lock); 492 } 493 494 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 495 496 /* 497 * Trylock variant that returns the owning task on failure. 498 */ 499 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 500 { 501 return __mutex_trylock_common(lock, false); 502 } 503 504 static inline 505 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 506 struct mutex_waiter *waiter) 507 { 508 struct ww_mutex *ww; 509 510 ww = container_of(lock, struct ww_mutex, base); 511 512 /* 513 * If ww->ctx is set the contents are undefined, only 514 * by acquiring wait_lock there is a guarantee that 515 * they are not invalid when reading. 516 * 517 * As such, when deadlock detection needs to be 518 * performed the optimistic spinning cannot be done. 519 * 520 * Check this in every inner iteration because we may 521 * be racing against another thread's ww_mutex_lock. 522 */ 523 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 524 return false; 525 526 /* 527 * If we aren't on the wait list yet, cancel the spin 528 * if there are waiters. We want to avoid stealing the 529 * lock from a waiter with an earlier stamp, since the 530 * other thread may already own a lock that we also 531 * need. 532 */ 533 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 534 return false; 535 536 /* 537 * Similarly, stop spinning if we are no longer the 538 * first waiter. 539 */ 540 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 541 return false; 542 543 return true; 544 } 545 546 /* 547 * Look out! "owner" is an entirely speculative pointer access and not 548 * reliable. 549 * 550 * "noinline" so that this function shows up on perf profiles. 551 */ 552 static noinline 553 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 554 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 555 { 556 bool ret = true; 557 558 rcu_read_lock(); 559 while (__mutex_owner(lock) == owner) { 560 /* 561 * Ensure we emit the owner->on_cpu, dereference _after_ 562 * checking lock->owner still matches owner. If that fails, 563 * owner might point to freed memory. If it still matches, 564 * the rcu_read_lock() ensures the memory stays valid. 565 */ 566 barrier(); 567 568 /* 569 * Use vcpu_is_preempted to detect lock holder preemption issue. 570 */ 571 if (!owner->on_cpu || need_resched() || 572 vcpu_is_preempted(task_cpu(owner))) { 573 ret = false; 574 break; 575 } 576 577 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 578 ret = false; 579 break; 580 } 581 582 cpu_relax(); 583 } 584 rcu_read_unlock(); 585 586 return ret; 587 } 588 589 /* 590 * Initial check for entering the mutex spinning loop 591 */ 592 static inline int mutex_can_spin_on_owner(struct mutex *lock) 593 { 594 struct task_struct *owner; 595 int retval = 1; 596 597 if (need_resched()) 598 return 0; 599 600 rcu_read_lock(); 601 owner = __mutex_owner(lock); 602 603 /* 604 * As lock holder preemption issue, we both skip spinning if task is not 605 * on cpu or its cpu is preempted 606 */ 607 if (owner) 608 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 609 rcu_read_unlock(); 610 611 /* 612 * If lock->owner is not set, the mutex has been released. Return true 613 * such that we'll trylock in the spin path, which is a faster option 614 * than the blocking slow path. 615 */ 616 return retval; 617 } 618 619 /* 620 * Optimistic spinning. 621 * 622 * We try to spin for acquisition when we find that the lock owner 623 * is currently running on a (different) CPU and while we don't 624 * need to reschedule. The rationale is that if the lock owner is 625 * running, it is likely to release the lock soon. 626 * 627 * The mutex spinners are queued up using MCS lock so that only one 628 * spinner can compete for the mutex. However, if mutex spinning isn't 629 * going to happen, there is no point in going through the lock/unlock 630 * overhead. 631 * 632 * Returns true when the lock was taken, otherwise false, indicating 633 * that we need to jump to the slowpath and sleep. 634 * 635 * The waiter flag is set to true if the spinner is a waiter in the wait 636 * queue. The waiter-spinner will spin on the lock directly and concurrently 637 * with the spinner at the head of the OSQ, if present, until the owner is 638 * changed to itself. 639 */ 640 static __always_inline bool 641 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 642 struct mutex_waiter *waiter) 643 { 644 if (!waiter) { 645 /* 646 * The purpose of the mutex_can_spin_on_owner() function is 647 * to eliminate the overhead of osq_lock() and osq_unlock() 648 * in case spinning isn't possible. As a waiter-spinner 649 * is not going to take OSQ lock anyway, there is no need 650 * to call mutex_can_spin_on_owner(). 651 */ 652 if (!mutex_can_spin_on_owner(lock)) 653 goto fail; 654 655 /* 656 * In order to avoid a stampede of mutex spinners trying to 657 * acquire the mutex all at once, the spinners need to take a 658 * MCS (queued) lock first before spinning on the owner field. 659 */ 660 if (!osq_lock(&lock->osq)) 661 goto fail; 662 } 663 664 for (;;) { 665 struct task_struct *owner; 666 667 /* Try to acquire the mutex... */ 668 owner = __mutex_trylock_or_owner(lock); 669 if (!owner) 670 break; 671 672 /* 673 * There's an owner, wait for it to either 674 * release the lock or go to sleep. 675 */ 676 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 677 goto fail_unlock; 678 679 /* 680 * The cpu_relax() call is a compiler barrier which forces 681 * everything in this loop to be re-loaded. We don't need 682 * memory barriers as we'll eventually observe the right 683 * values at the cost of a few extra spins. 684 */ 685 cpu_relax(); 686 } 687 688 if (!waiter) 689 osq_unlock(&lock->osq); 690 691 return true; 692 693 694 fail_unlock: 695 if (!waiter) 696 osq_unlock(&lock->osq); 697 698 fail: 699 /* 700 * If we fell out of the spin path because of need_resched(), 701 * reschedule now, before we try-lock the mutex. This avoids getting 702 * scheduled out right after we obtained the mutex. 703 */ 704 if (need_resched()) { 705 /* 706 * We _should_ have TASK_RUNNING here, but just in case 707 * we do not, make it so, otherwise we might get stuck. 708 */ 709 __set_current_state(TASK_RUNNING); 710 schedule_preempt_disabled(); 711 } 712 713 return false; 714 } 715 #else 716 static __always_inline bool 717 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 718 struct mutex_waiter *waiter) 719 { 720 return false; 721 } 722 #endif 723 724 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 725 726 /** 727 * mutex_unlock - release the mutex 728 * @lock: the mutex to be released 729 * 730 * Unlock a mutex that has been locked by this task previously. 731 * 732 * This function must not be used in interrupt context. Unlocking 733 * of a not locked mutex is not allowed. 734 * 735 * This function is similar to (but not equivalent to) up(). 736 */ 737 void __sched mutex_unlock(struct mutex *lock) 738 { 739 #ifndef CONFIG_DEBUG_LOCK_ALLOC 740 if (__mutex_unlock_fast(lock)) 741 return; 742 #endif 743 __mutex_unlock_slowpath(lock, _RET_IP_); 744 } 745 EXPORT_SYMBOL(mutex_unlock); 746 747 /** 748 * ww_mutex_unlock - release the w/w mutex 749 * @lock: the mutex to be released 750 * 751 * Unlock a mutex that has been locked by this task previously with any of the 752 * ww_mutex_lock* functions (with or without an acquire context). It is 753 * forbidden to release the locks after releasing the acquire context. 754 * 755 * This function must not be used in interrupt context. Unlocking 756 * of a unlocked mutex is not allowed. 757 */ 758 void __sched ww_mutex_unlock(struct ww_mutex *lock) 759 { 760 /* 761 * The unlocking fastpath is the 0->1 transition from 'locked' 762 * into 'unlocked' state: 763 */ 764 if (lock->ctx) { 765 MUTEX_WARN_ON(!lock->ctx->acquired); 766 if (lock->ctx->acquired > 0) 767 lock->ctx->acquired--; 768 lock->ctx = NULL; 769 } 770 771 mutex_unlock(&lock->base); 772 } 773 EXPORT_SYMBOL(ww_mutex_unlock); 774 775 776 static __always_inline int __sched 777 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 778 { 779 if (ww_ctx->acquired > 0) { 780 #ifdef CONFIG_DEBUG_MUTEXES 781 struct ww_mutex *ww; 782 783 ww = container_of(lock, struct ww_mutex, base); 784 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 785 ww_ctx->contending_lock = ww; 786 #endif 787 return -EDEADLK; 788 } 789 790 return 0; 791 } 792 793 794 /* 795 * Check the wound condition for the current lock acquire. 796 * 797 * Wound-Wait: If we're wounded, kill ourself. 798 * 799 * Wait-Die: If we're trying to acquire a lock already held by an older 800 * context, kill ourselves. 801 * 802 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to 803 * look at waiters before us in the wait-list. 804 */ 805 static inline int __sched 806 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, 807 struct ww_acquire_ctx *ctx) 808 { 809 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 810 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 811 struct mutex_waiter *cur; 812 813 if (ctx->acquired == 0) 814 return 0; 815 816 if (!ctx->is_wait_die) { 817 if (ctx->wounded) 818 return __ww_mutex_kill(lock, ctx); 819 820 return 0; 821 } 822 823 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 824 return __ww_mutex_kill(lock, ctx); 825 826 /* 827 * If there is a waiter in front of us that has a context, then its 828 * stamp is earlier than ours and we must kill ourself. 829 */ 830 cur = waiter; 831 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 832 if (!cur->ww_ctx) 833 continue; 834 835 return __ww_mutex_kill(lock, ctx); 836 } 837 838 return 0; 839 } 840 841 /* 842 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest 843 * first. Such that older contexts are preferred to acquire the lock over 844 * younger contexts. 845 * 846 * Waiters without context are interspersed in FIFO order. 847 * 848 * Furthermore, for Wait-Die kill ourself immediately when possible (there are 849 * older contexts already waiting) to avoid unnecessary waiting and for 850 * Wound-Wait ensure we wound the owning context when it is younger. 851 */ 852 static inline int __sched 853 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 854 struct mutex *lock, 855 struct ww_acquire_ctx *ww_ctx) 856 { 857 struct mutex_waiter *cur; 858 struct list_head *pos; 859 bool is_wait_die; 860 861 if (!ww_ctx) { 862 __mutex_add_waiter(lock, waiter, &lock->wait_list); 863 return 0; 864 } 865 866 is_wait_die = ww_ctx->is_wait_die; 867 868 /* 869 * Add the waiter before the first waiter with a higher stamp. 870 * Waiters without a context are skipped to avoid starving 871 * them. Wait-Die waiters may die here. Wound-Wait waiters 872 * never die here, but they are sorted in stamp order and 873 * may wound the lock holder. 874 */ 875 pos = &lock->wait_list; 876 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 877 if (!cur->ww_ctx) 878 continue; 879 880 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 881 /* 882 * Wait-Die: if we find an older context waiting, there 883 * is no point in queueing behind it, as we'd have to 884 * die the moment it would acquire the lock. 885 */ 886 if (is_wait_die) { 887 int ret = __ww_mutex_kill(lock, ww_ctx); 888 889 if (ret) 890 return ret; 891 } 892 893 break; 894 } 895 896 pos = &cur->list; 897 898 /* Wait-Die: ensure younger waiters die. */ 899 __ww_mutex_die(lock, cur, ww_ctx); 900 } 901 902 __mutex_add_waiter(lock, waiter, pos); 903 904 /* 905 * Wound-Wait: if we're blocking on a mutex owned by a younger context, 906 * wound that such that we might proceed. 907 */ 908 if (!is_wait_die) { 909 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 910 911 /* 912 * See ww_mutex_set_context_fastpath(). Orders setting 913 * MUTEX_FLAG_WAITERS vs the ww->ctx load, 914 * such that either we or the fastpath will wound @ww->ctx. 915 */ 916 smp_mb(); 917 __ww_mutex_wound(lock, ww_ctx, ww->ctx); 918 } 919 920 return 0; 921 } 922 923 /* 924 * Lock a mutex (possibly interruptible), slowpath: 925 */ 926 static __always_inline int __sched 927 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 928 struct lockdep_map *nest_lock, unsigned long ip, 929 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 930 { 931 struct mutex_waiter waiter; 932 struct ww_mutex *ww; 933 int ret; 934 935 if (!use_ww_ctx) 936 ww_ctx = NULL; 937 938 might_sleep(); 939 940 MUTEX_WARN_ON(lock->magic != lock); 941 942 ww = container_of(lock, struct ww_mutex, base); 943 if (ww_ctx) { 944 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 945 return -EALREADY; 946 947 /* 948 * Reset the wounded flag after a kill. No other process can 949 * race and wound us here since they can't have a valid owner 950 * pointer if we don't have any locks held. 951 */ 952 if (ww_ctx->acquired == 0) 953 ww_ctx->wounded = 0; 954 955 #ifdef CONFIG_DEBUG_LOCK_ALLOC 956 nest_lock = &ww_ctx->dep_map; 957 #endif 958 } 959 960 preempt_disable(); 961 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 962 963 if (__mutex_trylock(lock) || 964 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 965 /* got the lock, yay! */ 966 lock_acquired(&lock->dep_map, ip); 967 if (ww_ctx) 968 ww_mutex_set_context_fastpath(ww, ww_ctx); 969 preempt_enable(); 970 return 0; 971 } 972 973 raw_spin_lock(&lock->wait_lock); 974 /* 975 * After waiting to acquire the wait_lock, try again. 976 */ 977 if (__mutex_trylock(lock)) { 978 if (ww_ctx) 979 __ww_mutex_check_waiters(lock, ww_ctx); 980 981 goto skip_wait; 982 } 983 984 debug_mutex_lock_common(lock, &waiter); 985 waiter.task = current; 986 if (ww_ctx) 987 waiter.ww_ctx = ww_ctx; 988 989 lock_contended(&lock->dep_map, ip); 990 991 if (!use_ww_ctx) { 992 /* add waiting tasks to the end of the waitqueue (FIFO): */ 993 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 994 } else { 995 /* 996 * Add in stamp order, waking up waiters that must kill 997 * themselves. 998 */ 999 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 1000 if (ret) 1001 goto err_early_kill; 1002 } 1003 1004 set_current_state(state); 1005 for (;;) { 1006 bool first; 1007 1008 /* 1009 * Once we hold wait_lock, we're serialized against 1010 * mutex_unlock() handing the lock off to us, do a trylock 1011 * before testing the error conditions to make sure we pick up 1012 * the handoff. 1013 */ 1014 if (__mutex_trylock(lock)) 1015 goto acquired; 1016 1017 /* 1018 * Check for signals and kill conditions while holding 1019 * wait_lock. This ensures the lock cancellation is ordered 1020 * against mutex_unlock() and wake-ups do not go missing. 1021 */ 1022 if (signal_pending_state(state, current)) { 1023 ret = -EINTR; 1024 goto err; 1025 } 1026 1027 if (ww_ctx) { 1028 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 1029 if (ret) 1030 goto err; 1031 } 1032 1033 raw_spin_unlock(&lock->wait_lock); 1034 schedule_preempt_disabled(); 1035 1036 first = __mutex_waiter_is_first(lock, &waiter); 1037 1038 set_current_state(state); 1039 /* 1040 * Here we order against unlock; we must either see it change 1041 * state back to RUNNING and fall through the next schedule(), 1042 * or we must see its unlock and acquire. 1043 */ 1044 if (__mutex_trylock_or_handoff(lock, first) || 1045 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter))) 1046 break; 1047 1048 raw_spin_lock(&lock->wait_lock); 1049 } 1050 raw_spin_lock(&lock->wait_lock); 1051 acquired: 1052 __set_current_state(TASK_RUNNING); 1053 1054 if (ww_ctx) { 1055 /* 1056 * Wound-Wait; we stole the lock (!first_waiter), check the 1057 * waiters as anyone might want to wound us. 1058 */ 1059 if (!ww_ctx->is_wait_die && 1060 !__mutex_waiter_is_first(lock, &waiter)) 1061 __ww_mutex_check_waiters(lock, ww_ctx); 1062 } 1063 1064 __mutex_remove_waiter(lock, &waiter); 1065 1066 debug_mutex_free_waiter(&waiter); 1067 1068 skip_wait: 1069 /* got the lock - cleanup and rejoice! */ 1070 lock_acquired(&lock->dep_map, ip); 1071 1072 if (ww_ctx) 1073 ww_mutex_lock_acquired(ww, ww_ctx); 1074 1075 raw_spin_unlock(&lock->wait_lock); 1076 preempt_enable(); 1077 return 0; 1078 1079 err: 1080 __set_current_state(TASK_RUNNING); 1081 __mutex_remove_waiter(lock, &waiter); 1082 err_early_kill: 1083 raw_spin_unlock(&lock->wait_lock); 1084 debug_mutex_free_waiter(&waiter); 1085 mutex_release(&lock->dep_map, ip); 1086 preempt_enable(); 1087 return ret; 1088 } 1089 1090 static int __sched 1091 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 1092 struct lockdep_map *nest_lock, unsigned long ip) 1093 { 1094 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 1095 } 1096 1097 static int __sched 1098 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 1099 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 1100 { 1101 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 1102 } 1103 1104 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1105 void __sched 1106 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 1107 { 1108 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 1109 } 1110 1111 EXPORT_SYMBOL_GPL(mutex_lock_nested); 1112 1113 void __sched 1114 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 1115 { 1116 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 1117 } 1118 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 1119 1120 int __sched 1121 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 1122 { 1123 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 1124 } 1125 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 1126 1127 int __sched 1128 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 1129 { 1130 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 1131 } 1132 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 1133 1134 void __sched 1135 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 1136 { 1137 int token; 1138 1139 might_sleep(); 1140 1141 token = io_schedule_prepare(); 1142 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 1143 subclass, NULL, _RET_IP_, NULL, 0); 1144 io_schedule_finish(token); 1145 } 1146 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 1147 1148 static inline int 1149 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1150 { 1151 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 1152 unsigned tmp; 1153 1154 if (ctx->deadlock_inject_countdown-- == 0) { 1155 tmp = ctx->deadlock_inject_interval; 1156 if (tmp > UINT_MAX/4) 1157 tmp = UINT_MAX; 1158 else 1159 tmp = tmp*2 + tmp + tmp/2; 1160 1161 ctx->deadlock_inject_interval = tmp; 1162 ctx->deadlock_inject_countdown = tmp; 1163 ctx->contending_lock = lock; 1164 1165 ww_mutex_unlock(lock); 1166 1167 return -EDEADLK; 1168 } 1169 #endif 1170 1171 return 0; 1172 } 1173 1174 int __sched 1175 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1176 { 1177 int ret; 1178 1179 might_sleep(); 1180 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 1181 0, _RET_IP_, ctx); 1182 if (!ret && ctx && ctx->acquired > 1) 1183 return ww_mutex_deadlock_injection(lock, ctx); 1184 1185 return ret; 1186 } 1187 EXPORT_SYMBOL_GPL(ww_mutex_lock); 1188 1189 int __sched 1190 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1191 { 1192 int ret; 1193 1194 might_sleep(); 1195 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 1196 0, _RET_IP_, ctx); 1197 1198 if (!ret && ctx && ctx->acquired > 1) 1199 return ww_mutex_deadlock_injection(lock, ctx); 1200 1201 return ret; 1202 } 1203 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 1204 1205 #endif 1206 1207 /* 1208 * Release the lock, slowpath: 1209 */ 1210 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1211 { 1212 struct task_struct *next = NULL; 1213 DEFINE_WAKE_Q(wake_q); 1214 unsigned long owner; 1215 1216 mutex_release(&lock->dep_map, ip); 1217 1218 /* 1219 * Release the lock before (potentially) taking the spinlock such that 1220 * other contenders can get on with things ASAP. 1221 * 1222 * Except when HANDOFF, in that case we must not clear the owner field, 1223 * but instead set it to the top waiter. 1224 */ 1225 owner = atomic_long_read(&lock->owner); 1226 for (;;) { 1227 MUTEX_WARN_ON(__owner_task(owner) != current); 1228 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1229 1230 if (owner & MUTEX_FLAG_HANDOFF) 1231 break; 1232 1233 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 1234 if (owner & MUTEX_FLAG_WAITERS) 1235 break; 1236 1237 return; 1238 } 1239 } 1240 1241 raw_spin_lock(&lock->wait_lock); 1242 debug_mutex_unlock(lock); 1243 if (!list_empty(&lock->wait_list)) { 1244 /* get the first entry from the wait-list: */ 1245 struct mutex_waiter *waiter = 1246 list_first_entry(&lock->wait_list, 1247 struct mutex_waiter, list); 1248 1249 next = waiter->task; 1250 1251 debug_mutex_wake_waiter(lock, waiter); 1252 wake_q_add(&wake_q, next); 1253 } 1254 1255 if (owner & MUTEX_FLAG_HANDOFF) 1256 __mutex_handoff(lock, next); 1257 1258 raw_spin_unlock(&lock->wait_lock); 1259 1260 wake_up_q(&wake_q); 1261 } 1262 1263 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1264 /* 1265 * Here come the less common (and hence less performance-critical) APIs: 1266 * mutex_lock_interruptible() and mutex_trylock(). 1267 */ 1268 static noinline int __sched 1269 __mutex_lock_killable_slowpath(struct mutex *lock); 1270 1271 static noinline int __sched 1272 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1273 1274 /** 1275 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 1276 * @lock: The mutex to be acquired. 1277 * 1278 * Lock the mutex like mutex_lock(). If a signal is delivered while the 1279 * process is sleeping, this function will return without acquiring the 1280 * mutex. 1281 * 1282 * Context: Process context. 1283 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1284 * signal arrived. 1285 */ 1286 int __sched mutex_lock_interruptible(struct mutex *lock) 1287 { 1288 might_sleep(); 1289 1290 if (__mutex_trylock_fast(lock)) 1291 return 0; 1292 1293 return __mutex_lock_interruptible_slowpath(lock); 1294 } 1295 1296 EXPORT_SYMBOL(mutex_lock_interruptible); 1297 1298 /** 1299 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1300 * @lock: The mutex to be acquired. 1301 * 1302 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1303 * the current process is delivered while the process is sleeping, this 1304 * function will return without acquiring the mutex. 1305 * 1306 * Context: Process context. 1307 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1308 * fatal signal arrived. 1309 */ 1310 int __sched mutex_lock_killable(struct mutex *lock) 1311 { 1312 might_sleep(); 1313 1314 if (__mutex_trylock_fast(lock)) 1315 return 0; 1316 1317 return __mutex_lock_killable_slowpath(lock); 1318 } 1319 EXPORT_SYMBOL(mutex_lock_killable); 1320 1321 /** 1322 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1323 * @lock: The mutex to be acquired. 1324 * 1325 * Lock the mutex like mutex_lock(). While the task is waiting for this 1326 * mutex, it will be accounted as being in the IO wait state by the 1327 * scheduler. 1328 * 1329 * Context: Process context. 1330 */ 1331 void __sched mutex_lock_io(struct mutex *lock) 1332 { 1333 int token; 1334 1335 token = io_schedule_prepare(); 1336 mutex_lock(lock); 1337 io_schedule_finish(token); 1338 } 1339 EXPORT_SYMBOL_GPL(mutex_lock_io); 1340 1341 static noinline void __sched 1342 __mutex_lock_slowpath(struct mutex *lock) 1343 { 1344 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1345 } 1346 1347 static noinline int __sched 1348 __mutex_lock_killable_slowpath(struct mutex *lock) 1349 { 1350 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1351 } 1352 1353 static noinline int __sched 1354 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1355 { 1356 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1357 } 1358 1359 static noinline int __sched 1360 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1361 { 1362 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1363 _RET_IP_, ctx); 1364 } 1365 1366 static noinline int __sched 1367 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1368 struct ww_acquire_ctx *ctx) 1369 { 1370 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1371 _RET_IP_, ctx); 1372 } 1373 1374 #endif 1375 1376 /** 1377 * mutex_trylock - try to acquire the mutex, without waiting 1378 * @lock: the mutex to be acquired 1379 * 1380 * Try to acquire the mutex atomically. Returns 1 if the mutex 1381 * has been acquired successfully, and 0 on contention. 1382 * 1383 * NOTE: this function follows the spin_trylock() convention, so 1384 * it is negated from the down_trylock() return values! Be careful 1385 * about this when converting semaphore users to mutexes. 1386 * 1387 * This function must not be used in interrupt context. The 1388 * mutex must be released by the same task that acquired it. 1389 */ 1390 int __sched mutex_trylock(struct mutex *lock) 1391 { 1392 bool locked; 1393 1394 MUTEX_WARN_ON(lock->magic != lock); 1395 1396 locked = __mutex_trylock(lock); 1397 if (locked) 1398 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1399 1400 return locked; 1401 } 1402 EXPORT_SYMBOL(mutex_trylock); 1403 1404 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1405 int __sched 1406 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1407 { 1408 might_sleep(); 1409 1410 if (__mutex_trylock_fast(&lock->base)) { 1411 if (ctx) 1412 ww_mutex_set_context_fastpath(lock, ctx); 1413 return 0; 1414 } 1415 1416 return __ww_mutex_lock_slowpath(lock, ctx); 1417 } 1418 EXPORT_SYMBOL(ww_mutex_lock); 1419 1420 int __sched 1421 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1422 { 1423 might_sleep(); 1424 1425 if (__mutex_trylock_fast(&lock->base)) { 1426 if (ctx) 1427 ww_mutex_set_context_fastpath(lock, ctx); 1428 return 0; 1429 } 1430 1431 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1432 } 1433 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1434 1435 #endif 1436 1437 /** 1438 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1439 * @cnt: the atomic which we are to dec 1440 * @lock: the mutex to return holding if we dec to 0 1441 * 1442 * return true and hold lock if we dec to 0, return false otherwise 1443 */ 1444 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1445 { 1446 /* dec if we can't possibly hit 0 */ 1447 if (atomic_add_unless(cnt, -1, 1)) 1448 return 0; 1449 /* we might hit 0, so take the lock */ 1450 mutex_lock(lock); 1451 if (!atomic_dec_and_test(cnt)) { 1452 /* when we actually did the dec, we didn't hit 0 */ 1453 mutex_unlock(lock); 1454 return 0; 1455 } 1456 /* we hit 0, and we hold the lock */ 1457 return 1; 1458 } 1459 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1460