1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/lock.h> 35 36 #ifndef CONFIG_PREEMPT_RT 37 #include "mutex.h" 38 39 #ifdef CONFIG_DEBUG_MUTEXES 40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 41 #else 42 # define MUTEX_WARN_ON(cond) 43 #endif 44 45 void 46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 47 { 48 atomic_long_set(&lock->owner, 0); 49 raw_spin_lock_init(&lock->wait_lock); 50 INIT_LIST_HEAD(&lock->wait_list); 51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 52 osq_lock_init(&lock->osq); 53 #endif 54 55 debug_mutex_init(lock, name, key); 56 } 57 EXPORT_SYMBOL(__mutex_init); 58 59 /* 60 * @owner: contains: 'struct task_struct *' to the current lock owner, 61 * NULL means not owned. Since task_struct pointers are aligned at 62 * at least L1_CACHE_BYTES, we have low bits to store extra state. 63 * 64 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 65 * Bit1 indicates unlock needs to hand the lock to the top-waiter 66 * Bit2 indicates handoff has been done and we're waiting for pickup. 67 */ 68 #define MUTEX_FLAG_WAITERS 0x01 69 #define MUTEX_FLAG_HANDOFF 0x02 70 #define MUTEX_FLAG_PICKUP 0x04 71 72 #define MUTEX_FLAGS 0x07 73 74 /* 75 * Internal helper function; C doesn't allow us to hide it :/ 76 * 77 * DO NOT USE (outside of mutex code). 78 */ 79 static inline struct task_struct *__mutex_owner(struct mutex *lock) 80 { 81 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 82 } 83 84 static inline struct task_struct *__owner_task(unsigned long owner) 85 { 86 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 87 } 88 89 bool mutex_is_locked(struct mutex *lock) 90 { 91 return __mutex_owner(lock) != NULL; 92 } 93 EXPORT_SYMBOL(mutex_is_locked); 94 95 static inline unsigned long __owner_flags(unsigned long owner) 96 { 97 return owner & MUTEX_FLAGS; 98 } 99 100 /* 101 * Returns: __mutex_owner(lock) on failure or NULL on success. 102 */ 103 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 104 { 105 unsigned long owner, curr = (unsigned long)current; 106 107 owner = atomic_long_read(&lock->owner); 108 for (;;) { /* must loop, can race against a flag */ 109 unsigned long flags = __owner_flags(owner); 110 unsigned long task = owner & ~MUTEX_FLAGS; 111 112 if (task) { 113 if (flags & MUTEX_FLAG_PICKUP) { 114 if (task != curr) 115 break; 116 flags &= ~MUTEX_FLAG_PICKUP; 117 } else if (handoff) { 118 if (flags & MUTEX_FLAG_HANDOFF) 119 break; 120 flags |= MUTEX_FLAG_HANDOFF; 121 } else { 122 break; 123 } 124 } else { 125 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 126 task = curr; 127 } 128 129 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 130 if (task == curr) 131 return NULL; 132 break; 133 } 134 } 135 136 return __owner_task(owner); 137 } 138 139 /* 140 * Trylock or set HANDOFF 141 */ 142 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 143 { 144 return !__mutex_trylock_common(lock, handoff); 145 } 146 147 /* 148 * Actual trylock that will work on any unlocked state. 149 */ 150 static inline bool __mutex_trylock(struct mutex *lock) 151 { 152 return !__mutex_trylock_common(lock, false); 153 } 154 155 #ifndef CONFIG_DEBUG_LOCK_ALLOC 156 /* 157 * Lockdep annotations are contained to the slow paths for simplicity. 158 * There is nothing that would stop spreading the lockdep annotations outwards 159 * except more code. 160 */ 161 162 /* 163 * Optimistic trylock that only works in the uncontended case. Make sure to 164 * follow with a __mutex_trylock() before failing. 165 */ 166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 167 { 168 unsigned long curr = (unsigned long)current; 169 unsigned long zero = 0UL; 170 171 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 172 return true; 173 174 return false; 175 } 176 177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 178 { 179 unsigned long curr = (unsigned long)current; 180 181 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 182 } 183 #endif 184 185 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 186 { 187 atomic_long_or(flag, &lock->owner); 188 } 189 190 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 191 { 192 atomic_long_andnot(flag, &lock->owner); 193 } 194 195 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 196 { 197 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 198 } 199 200 /* 201 * Add @waiter to a given location in the lock wait_list and set the 202 * FLAG_WAITERS flag if it's the first waiter. 203 */ 204 static void 205 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 206 struct list_head *list) 207 { 208 debug_mutex_add_waiter(lock, waiter, current); 209 210 list_add_tail(&waiter->list, list); 211 if (__mutex_waiter_is_first(lock, waiter)) 212 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 213 } 214 215 static void 216 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 217 { 218 list_del(&waiter->list); 219 if (likely(list_empty(&lock->wait_list))) 220 __mutex_clear_flag(lock, MUTEX_FLAGS); 221 222 debug_mutex_remove_waiter(lock, waiter, current); 223 } 224 225 /* 226 * Give up ownership to a specific task, when @task = NULL, this is equivalent 227 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 228 * WAITERS. Provides RELEASE semantics like a regular unlock, the 229 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 230 */ 231 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 232 { 233 unsigned long owner = atomic_long_read(&lock->owner); 234 235 for (;;) { 236 unsigned long new; 237 238 MUTEX_WARN_ON(__owner_task(owner) != current); 239 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 240 241 new = (owner & MUTEX_FLAG_WAITERS); 242 new |= (unsigned long)task; 243 if (task) 244 new |= MUTEX_FLAG_PICKUP; 245 246 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 247 break; 248 } 249 } 250 251 #ifndef CONFIG_DEBUG_LOCK_ALLOC 252 /* 253 * We split the mutex lock/unlock logic into separate fastpath and 254 * slowpath functions, to reduce the register pressure on the fastpath. 255 * We also put the fastpath first in the kernel image, to make sure the 256 * branch is predicted by the CPU as default-untaken. 257 */ 258 static void __sched __mutex_lock_slowpath(struct mutex *lock); 259 260 /** 261 * mutex_lock - acquire the mutex 262 * @lock: the mutex to be acquired 263 * 264 * Lock the mutex exclusively for this task. If the mutex is not 265 * available right now, it will sleep until it can get it. 266 * 267 * The mutex must later on be released by the same task that 268 * acquired it. Recursive locking is not allowed. The task 269 * may not exit without first unlocking the mutex. Also, kernel 270 * memory where the mutex resides must not be freed with 271 * the mutex still locked. The mutex must first be initialized 272 * (or statically defined) before it can be locked. memset()-ing 273 * the mutex to 0 is not allowed. 274 * 275 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 276 * checks that will enforce the restrictions and will also do 277 * deadlock debugging) 278 * 279 * This function is similar to (but not equivalent to) down(). 280 */ 281 void __sched mutex_lock(struct mutex *lock) 282 { 283 might_sleep(); 284 285 if (!__mutex_trylock_fast(lock)) 286 __mutex_lock_slowpath(lock); 287 } 288 EXPORT_SYMBOL(mutex_lock); 289 #endif 290 291 #include "ww_mutex.h" 292 293 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 294 295 /* 296 * Trylock variant that returns the owning task on failure. 297 */ 298 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 299 { 300 return __mutex_trylock_common(lock, false); 301 } 302 303 static inline 304 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 305 struct mutex_waiter *waiter) 306 { 307 struct ww_mutex *ww; 308 309 ww = container_of(lock, struct ww_mutex, base); 310 311 /* 312 * If ww->ctx is set the contents are undefined, only 313 * by acquiring wait_lock there is a guarantee that 314 * they are not invalid when reading. 315 * 316 * As such, when deadlock detection needs to be 317 * performed the optimistic spinning cannot be done. 318 * 319 * Check this in every inner iteration because we may 320 * be racing against another thread's ww_mutex_lock. 321 */ 322 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 323 return false; 324 325 /* 326 * If we aren't on the wait list yet, cancel the spin 327 * if there are waiters. We want to avoid stealing the 328 * lock from a waiter with an earlier stamp, since the 329 * other thread may already own a lock that we also 330 * need. 331 */ 332 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 333 return false; 334 335 /* 336 * Similarly, stop spinning if we are no longer the 337 * first waiter. 338 */ 339 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 340 return false; 341 342 return true; 343 } 344 345 /* 346 * Look out! "owner" is an entirely speculative pointer access and not 347 * reliable. 348 * 349 * "noinline" so that this function shows up on perf profiles. 350 */ 351 static noinline 352 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 353 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 354 { 355 bool ret = true; 356 357 lockdep_assert_preemption_disabled(); 358 359 while (__mutex_owner(lock) == owner) { 360 /* 361 * Ensure we emit the owner->on_cpu, dereference _after_ 362 * checking lock->owner still matches owner. And we already 363 * disabled preemption which is equal to the RCU read-side 364 * crital section in optimistic spinning code. Thus the 365 * task_strcut structure won't go away during the spinning 366 * period 367 */ 368 barrier(); 369 370 /* 371 * Use vcpu_is_preempted to detect lock holder preemption issue. 372 */ 373 if (!owner_on_cpu(owner) || need_resched()) { 374 ret = false; 375 break; 376 } 377 378 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 379 ret = false; 380 break; 381 } 382 383 cpu_relax(); 384 } 385 386 return ret; 387 } 388 389 /* 390 * Initial check for entering the mutex spinning loop 391 */ 392 static inline int mutex_can_spin_on_owner(struct mutex *lock) 393 { 394 struct task_struct *owner; 395 int retval = 1; 396 397 lockdep_assert_preemption_disabled(); 398 399 if (need_resched()) 400 return 0; 401 402 /* 403 * We already disabled preemption which is equal to the RCU read-side 404 * crital section in optimistic spinning code. Thus the task_strcut 405 * structure won't go away during the spinning period. 406 */ 407 owner = __mutex_owner(lock); 408 if (owner) 409 retval = owner_on_cpu(owner); 410 411 /* 412 * If lock->owner is not set, the mutex has been released. Return true 413 * such that we'll trylock in the spin path, which is a faster option 414 * than the blocking slow path. 415 */ 416 return retval; 417 } 418 419 /* 420 * Optimistic spinning. 421 * 422 * We try to spin for acquisition when we find that the lock owner 423 * is currently running on a (different) CPU and while we don't 424 * need to reschedule. The rationale is that if the lock owner is 425 * running, it is likely to release the lock soon. 426 * 427 * The mutex spinners are queued up using MCS lock so that only one 428 * spinner can compete for the mutex. However, if mutex spinning isn't 429 * going to happen, there is no point in going through the lock/unlock 430 * overhead. 431 * 432 * Returns true when the lock was taken, otherwise false, indicating 433 * that we need to jump to the slowpath and sleep. 434 * 435 * The waiter flag is set to true if the spinner is a waiter in the wait 436 * queue. The waiter-spinner will spin on the lock directly and concurrently 437 * with the spinner at the head of the OSQ, if present, until the owner is 438 * changed to itself. 439 */ 440 static __always_inline bool 441 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 442 struct mutex_waiter *waiter) 443 { 444 if (!waiter) { 445 /* 446 * The purpose of the mutex_can_spin_on_owner() function is 447 * to eliminate the overhead of osq_lock() and osq_unlock() 448 * in case spinning isn't possible. As a waiter-spinner 449 * is not going to take OSQ lock anyway, there is no need 450 * to call mutex_can_spin_on_owner(). 451 */ 452 if (!mutex_can_spin_on_owner(lock)) 453 goto fail; 454 455 /* 456 * In order to avoid a stampede of mutex spinners trying to 457 * acquire the mutex all at once, the spinners need to take a 458 * MCS (queued) lock first before spinning on the owner field. 459 */ 460 if (!osq_lock(&lock->osq)) 461 goto fail; 462 } 463 464 for (;;) { 465 struct task_struct *owner; 466 467 /* Try to acquire the mutex... */ 468 owner = __mutex_trylock_or_owner(lock); 469 if (!owner) 470 break; 471 472 /* 473 * There's an owner, wait for it to either 474 * release the lock or go to sleep. 475 */ 476 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 477 goto fail_unlock; 478 479 /* 480 * The cpu_relax() call is a compiler barrier which forces 481 * everything in this loop to be re-loaded. We don't need 482 * memory barriers as we'll eventually observe the right 483 * values at the cost of a few extra spins. 484 */ 485 cpu_relax(); 486 } 487 488 if (!waiter) 489 osq_unlock(&lock->osq); 490 491 return true; 492 493 494 fail_unlock: 495 if (!waiter) 496 osq_unlock(&lock->osq); 497 498 fail: 499 /* 500 * If we fell out of the spin path because of need_resched(), 501 * reschedule now, before we try-lock the mutex. This avoids getting 502 * scheduled out right after we obtained the mutex. 503 */ 504 if (need_resched()) { 505 /* 506 * We _should_ have TASK_RUNNING here, but just in case 507 * we do not, make it so, otherwise we might get stuck. 508 */ 509 __set_current_state(TASK_RUNNING); 510 schedule_preempt_disabled(); 511 } 512 513 return false; 514 } 515 #else 516 static __always_inline bool 517 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 518 struct mutex_waiter *waiter) 519 { 520 return false; 521 } 522 #endif 523 524 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 525 526 /** 527 * mutex_unlock - release the mutex 528 * @lock: the mutex to be released 529 * 530 * Unlock a mutex that has been locked by this task previously. 531 * 532 * This function must not be used in interrupt context. Unlocking 533 * of a not locked mutex is not allowed. 534 * 535 * The caller must ensure that the mutex stays alive until this function has 536 * returned - mutex_unlock() can NOT directly be used to release an object such 537 * that another concurrent task can free it. 538 * Mutexes are different from spinlocks & refcounts in this aspect. 539 * 540 * This function is similar to (but not equivalent to) up(). 541 */ 542 void __sched mutex_unlock(struct mutex *lock) 543 { 544 #ifndef CONFIG_DEBUG_LOCK_ALLOC 545 if (__mutex_unlock_fast(lock)) 546 return; 547 #endif 548 __mutex_unlock_slowpath(lock, _RET_IP_); 549 } 550 EXPORT_SYMBOL(mutex_unlock); 551 552 /** 553 * ww_mutex_unlock - release the w/w mutex 554 * @lock: the mutex to be released 555 * 556 * Unlock a mutex that has been locked by this task previously with any of the 557 * ww_mutex_lock* functions (with or without an acquire context). It is 558 * forbidden to release the locks after releasing the acquire context. 559 * 560 * This function must not be used in interrupt context. Unlocking 561 * of a unlocked mutex is not allowed. 562 */ 563 void __sched ww_mutex_unlock(struct ww_mutex *lock) 564 { 565 __ww_mutex_unlock(lock); 566 mutex_unlock(&lock->base); 567 } 568 EXPORT_SYMBOL(ww_mutex_unlock); 569 570 /* 571 * Lock a mutex (possibly interruptible), slowpath: 572 */ 573 static __always_inline int __sched 574 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 575 struct lockdep_map *nest_lock, unsigned long ip, 576 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 577 { 578 DEFINE_WAKE_Q(wake_q); 579 struct mutex_waiter waiter; 580 struct ww_mutex *ww; 581 int ret; 582 583 if (!use_ww_ctx) 584 ww_ctx = NULL; 585 586 might_sleep(); 587 588 MUTEX_WARN_ON(lock->magic != lock); 589 590 ww = container_of(lock, struct ww_mutex, base); 591 if (ww_ctx) { 592 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 593 return -EALREADY; 594 595 /* 596 * Reset the wounded flag after a kill. No other process can 597 * race and wound us here since they can't have a valid owner 598 * pointer if we don't have any locks held. 599 */ 600 if (ww_ctx->acquired == 0) 601 ww_ctx->wounded = 0; 602 603 #ifdef CONFIG_DEBUG_LOCK_ALLOC 604 nest_lock = &ww_ctx->dep_map; 605 #endif 606 } 607 608 preempt_disable(); 609 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 610 611 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 612 if (__mutex_trylock(lock) || 613 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 614 /* got the lock, yay! */ 615 lock_acquired(&lock->dep_map, ip); 616 if (ww_ctx) 617 ww_mutex_set_context_fastpath(ww, ww_ctx); 618 trace_contention_end(lock, 0); 619 preempt_enable(); 620 return 0; 621 } 622 623 raw_spin_lock(&lock->wait_lock); 624 /* 625 * After waiting to acquire the wait_lock, try again. 626 */ 627 if (__mutex_trylock(lock)) { 628 if (ww_ctx) 629 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 630 631 goto skip_wait; 632 } 633 634 debug_mutex_lock_common(lock, &waiter); 635 waiter.task = current; 636 if (use_ww_ctx) 637 waiter.ww_ctx = ww_ctx; 638 639 lock_contended(&lock->dep_map, ip); 640 641 if (!use_ww_ctx) { 642 /* add waiting tasks to the end of the waitqueue (FIFO): */ 643 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 644 } else { 645 /* 646 * Add in stamp order, waking up waiters that must kill 647 * themselves. 648 */ 649 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q); 650 if (ret) 651 goto err_early_kill; 652 } 653 654 set_current_state(state); 655 trace_contention_begin(lock, LCB_F_MUTEX); 656 for (;;) { 657 bool first; 658 659 /* 660 * Once we hold wait_lock, we're serialized against 661 * mutex_unlock() handing the lock off to us, do a trylock 662 * before testing the error conditions to make sure we pick up 663 * the handoff. 664 */ 665 if (__mutex_trylock(lock)) 666 goto acquired; 667 668 /* 669 * Check for signals and kill conditions while holding 670 * wait_lock. This ensures the lock cancellation is ordered 671 * against mutex_unlock() and wake-ups do not go missing. 672 */ 673 if (signal_pending_state(state, current)) { 674 ret = -EINTR; 675 goto err; 676 } 677 678 if (ww_ctx) { 679 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 680 if (ret) 681 goto err; 682 } 683 684 raw_spin_unlock(&lock->wait_lock); 685 /* Make sure we do wakeups before calling schedule */ 686 wake_up_q(&wake_q); 687 wake_q_init(&wake_q); 688 689 schedule_preempt_disabled(); 690 691 first = __mutex_waiter_is_first(lock, &waiter); 692 693 set_current_state(state); 694 /* 695 * Here we order against unlock; we must either see it change 696 * state back to RUNNING and fall through the next schedule(), 697 * or we must see its unlock and acquire. 698 */ 699 if (__mutex_trylock_or_handoff(lock, first)) 700 break; 701 702 if (first) { 703 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 704 if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) 705 break; 706 trace_contention_begin(lock, LCB_F_MUTEX); 707 } 708 709 raw_spin_lock(&lock->wait_lock); 710 } 711 raw_spin_lock(&lock->wait_lock); 712 acquired: 713 __set_current_state(TASK_RUNNING); 714 715 if (ww_ctx) { 716 /* 717 * Wound-Wait; we stole the lock (!first_waiter), check the 718 * waiters as anyone might want to wound us. 719 */ 720 if (!ww_ctx->is_wait_die && 721 !__mutex_waiter_is_first(lock, &waiter)) 722 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 723 } 724 725 __mutex_remove_waiter(lock, &waiter); 726 727 debug_mutex_free_waiter(&waiter); 728 729 skip_wait: 730 /* got the lock - cleanup and rejoice! */ 731 lock_acquired(&lock->dep_map, ip); 732 trace_contention_end(lock, 0); 733 734 if (ww_ctx) 735 ww_mutex_lock_acquired(ww, ww_ctx); 736 737 raw_spin_unlock(&lock->wait_lock); 738 wake_up_q(&wake_q); 739 preempt_enable(); 740 return 0; 741 742 err: 743 __set_current_state(TASK_RUNNING); 744 __mutex_remove_waiter(lock, &waiter); 745 err_early_kill: 746 trace_contention_end(lock, ret); 747 raw_spin_unlock(&lock->wait_lock); 748 debug_mutex_free_waiter(&waiter); 749 mutex_release(&lock->dep_map, ip); 750 wake_up_q(&wake_q); 751 preempt_enable(); 752 return ret; 753 } 754 755 static int __sched 756 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 757 struct lockdep_map *nest_lock, unsigned long ip) 758 { 759 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 760 } 761 762 static int __sched 763 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 764 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 765 { 766 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 767 } 768 769 /** 770 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 771 * @ww: mutex to lock 772 * @ww_ctx: optional w/w acquire context 773 * 774 * Trylocks a mutex with the optional acquire context; no deadlock detection is 775 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 776 * 777 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 778 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 779 * 780 * A mutex acquired with this function must be released with ww_mutex_unlock. 781 */ 782 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 783 { 784 if (!ww_ctx) 785 return mutex_trylock(&ww->base); 786 787 MUTEX_WARN_ON(ww->base.magic != &ww->base); 788 789 /* 790 * Reset the wounded flag after a kill. No other process can 791 * race and wound us here, since they can't have a valid owner 792 * pointer if we don't have any locks held. 793 */ 794 if (ww_ctx->acquired == 0) 795 ww_ctx->wounded = 0; 796 797 if (__mutex_trylock(&ww->base)) { 798 ww_mutex_set_context_fastpath(ww, ww_ctx); 799 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 800 return 1; 801 } 802 803 return 0; 804 } 805 EXPORT_SYMBOL(ww_mutex_trylock); 806 807 #ifdef CONFIG_DEBUG_LOCK_ALLOC 808 void __sched 809 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 810 { 811 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 812 } 813 814 EXPORT_SYMBOL_GPL(mutex_lock_nested); 815 816 void __sched 817 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 818 { 819 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 820 } 821 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 822 823 int __sched 824 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 825 { 826 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 827 } 828 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 829 830 int __sched 831 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 832 { 833 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 834 } 835 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 836 837 void __sched 838 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 839 { 840 int token; 841 842 might_sleep(); 843 844 token = io_schedule_prepare(); 845 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 846 subclass, NULL, _RET_IP_, NULL, 0); 847 io_schedule_finish(token); 848 } 849 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 850 851 static inline int 852 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 853 { 854 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 855 unsigned tmp; 856 857 if (ctx->deadlock_inject_countdown-- == 0) { 858 tmp = ctx->deadlock_inject_interval; 859 if (tmp > UINT_MAX/4) 860 tmp = UINT_MAX; 861 else 862 tmp = tmp*2 + tmp + tmp/2; 863 864 ctx->deadlock_inject_interval = tmp; 865 ctx->deadlock_inject_countdown = tmp; 866 ctx->contending_lock = lock; 867 868 ww_mutex_unlock(lock); 869 870 return -EDEADLK; 871 } 872 #endif 873 874 return 0; 875 } 876 877 int __sched 878 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 879 { 880 int ret; 881 882 might_sleep(); 883 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 884 0, _RET_IP_, ctx); 885 if (!ret && ctx && ctx->acquired > 1) 886 return ww_mutex_deadlock_injection(lock, ctx); 887 888 return ret; 889 } 890 EXPORT_SYMBOL_GPL(ww_mutex_lock); 891 892 int __sched 893 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 894 { 895 int ret; 896 897 might_sleep(); 898 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 899 0, _RET_IP_, ctx); 900 901 if (!ret && ctx && ctx->acquired > 1) 902 return ww_mutex_deadlock_injection(lock, ctx); 903 904 return ret; 905 } 906 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 907 908 #endif 909 910 /* 911 * Release the lock, slowpath: 912 */ 913 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 914 { 915 struct task_struct *next = NULL; 916 DEFINE_WAKE_Q(wake_q); 917 unsigned long owner; 918 919 mutex_release(&lock->dep_map, ip); 920 921 /* 922 * Release the lock before (potentially) taking the spinlock such that 923 * other contenders can get on with things ASAP. 924 * 925 * Except when HANDOFF, in that case we must not clear the owner field, 926 * but instead set it to the top waiter. 927 */ 928 owner = atomic_long_read(&lock->owner); 929 for (;;) { 930 MUTEX_WARN_ON(__owner_task(owner) != current); 931 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 932 933 if (owner & MUTEX_FLAG_HANDOFF) 934 break; 935 936 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 937 if (owner & MUTEX_FLAG_WAITERS) 938 break; 939 940 return; 941 } 942 } 943 944 raw_spin_lock(&lock->wait_lock); 945 debug_mutex_unlock(lock); 946 if (!list_empty(&lock->wait_list)) { 947 /* get the first entry from the wait-list: */ 948 struct mutex_waiter *waiter = 949 list_first_entry(&lock->wait_list, 950 struct mutex_waiter, list); 951 952 next = waiter->task; 953 954 debug_mutex_wake_waiter(lock, waiter); 955 wake_q_add(&wake_q, next); 956 } 957 958 if (owner & MUTEX_FLAG_HANDOFF) 959 __mutex_handoff(lock, next); 960 961 preempt_disable(); 962 raw_spin_unlock(&lock->wait_lock); 963 wake_up_q(&wake_q); 964 preempt_enable(); 965 } 966 967 #ifndef CONFIG_DEBUG_LOCK_ALLOC 968 /* 969 * Here come the less common (and hence less performance-critical) APIs: 970 * mutex_lock_interruptible() and mutex_trylock(). 971 */ 972 static noinline int __sched 973 __mutex_lock_killable_slowpath(struct mutex *lock); 974 975 static noinline int __sched 976 __mutex_lock_interruptible_slowpath(struct mutex *lock); 977 978 /** 979 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 980 * @lock: The mutex to be acquired. 981 * 982 * Lock the mutex like mutex_lock(). If a signal is delivered while the 983 * process is sleeping, this function will return without acquiring the 984 * mutex. 985 * 986 * Context: Process context. 987 * Return: 0 if the lock was successfully acquired or %-EINTR if a 988 * signal arrived. 989 */ 990 int __sched mutex_lock_interruptible(struct mutex *lock) 991 { 992 might_sleep(); 993 994 if (__mutex_trylock_fast(lock)) 995 return 0; 996 997 return __mutex_lock_interruptible_slowpath(lock); 998 } 999 1000 EXPORT_SYMBOL(mutex_lock_interruptible); 1001 1002 /** 1003 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1004 * @lock: The mutex to be acquired. 1005 * 1006 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1007 * the current process is delivered while the process is sleeping, this 1008 * function will return without acquiring the mutex. 1009 * 1010 * Context: Process context. 1011 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1012 * fatal signal arrived. 1013 */ 1014 int __sched mutex_lock_killable(struct mutex *lock) 1015 { 1016 might_sleep(); 1017 1018 if (__mutex_trylock_fast(lock)) 1019 return 0; 1020 1021 return __mutex_lock_killable_slowpath(lock); 1022 } 1023 EXPORT_SYMBOL(mutex_lock_killable); 1024 1025 /** 1026 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1027 * @lock: The mutex to be acquired. 1028 * 1029 * Lock the mutex like mutex_lock(). While the task is waiting for this 1030 * mutex, it will be accounted as being in the IO wait state by the 1031 * scheduler. 1032 * 1033 * Context: Process context. 1034 */ 1035 void __sched mutex_lock_io(struct mutex *lock) 1036 { 1037 int token; 1038 1039 token = io_schedule_prepare(); 1040 mutex_lock(lock); 1041 io_schedule_finish(token); 1042 } 1043 EXPORT_SYMBOL_GPL(mutex_lock_io); 1044 1045 static noinline void __sched 1046 __mutex_lock_slowpath(struct mutex *lock) 1047 { 1048 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1049 } 1050 1051 static noinline int __sched 1052 __mutex_lock_killable_slowpath(struct mutex *lock) 1053 { 1054 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1055 } 1056 1057 static noinline int __sched 1058 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1059 { 1060 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1061 } 1062 1063 static noinline int __sched 1064 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1065 { 1066 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1067 _RET_IP_, ctx); 1068 } 1069 1070 static noinline int __sched 1071 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1072 struct ww_acquire_ctx *ctx) 1073 { 1074 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1075 _RET_IP_, ctx); 1076 } 1077 1078 #endif 1079 1080 /** 1081 * mutex_trylock - try to acquire the mutex, without waiting 1082 * @lock: the mutex to be acquired 1083 * 1084 * Try to acquire the mutex atomically. Returns 1 if the mutex 1085 * has been acquired successfully, and 0 on contention. 1086 * 1087 * NOTE: this function follows the spin_trylock() convention, so 1088 * it is negated from the down_trylock() return values! Be careful 1089 * about this when converting semaphore users to mutexes. 1090 * 1091 * This function must not be used in interrupt context. The 1092 * mutex must be released by the same task that acquired it. 1093 */ 1094 int __sched mutex_trylock(struct mutex *lock) 1095 { 1096 bool locked; 1097 1098 MUTEX_WARN_ON(lock->magic != lock); 1099 1100 locked = __mutex_trylock(lock); 1101 if (locked) 1102 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1103 1104 return locked; 1105 } 1106 EXPORT_SYMBOL(mutex_trylock); 1107 1108 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1109 int __sched 1110 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1111 { 1112 might_sleep(); 1113 1114 if (__mutex_trylock_fast(&lock->base)) { 1115 if (ctx) 1116 ww_mutex_set_context_fastpath(lock, ctx); 1117 return 0; 1118 } 1119 1120 return __ww_mutex_lock_slowpath(lock, ctx); 1121 } 1122 EXPORT_SYMBOL(ww_mutex_lock); 1123 1124 int __sched 1125 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1126 { 1127 might_sleep(); 1128 1129 if (__mutex_trylock_fast(&lock->base)) { 1130 if (ctx) 1131 ww_mutex_set_context_fastpath(lock, ctx); 1132 return 0; 1133 } 1134 1135 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1136 } 1137 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1138 1139 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1140 #endif /* !CONFIG_PREEMPT_RT */ 1141 1142 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); 1143 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); 1144 1145 /** 1146 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1147 * @cnt: the atomic which we are to dec 1148 * @lock: the mutex to return holding if we dec to 0 1149 * 1150 * return true and hold lock if we dec to 0, return false otherwise 1151 */ 1152 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1153 { 1154 /* dec if we can't possibly hit 0 */ 1155 if (atomic_add_unless(cnt, -1, 1)) 1156 return 0; 1157 /* we might hit 0, so take the lock */ 1158 mutex_lock(lock); 1159 if (!atomic_dec_and_test(cnt)) { 1160 /* when we actually did the dec, we didn't hit 0 */ 1161 mutex_unlock(lock); 1162 return 0; 1163 } 1164 /* we hit 0, and we hold the lock */ 1165 return 1; 1166 } 1167 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1168