1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched.h> 23 #include <linux/sched/rt.h> 24 #include <linux/export.h> 25 #include <linux/spinlock.h> 26 #include <linux/interrupt.h> 27 #include <linux/debug_locks.h> 28 #include <linux/osq_lock.h> 29 30 #ifdef CONFIG_DEBUG_MUTEXES 31 # include "mutex-debug.h" 32 #else 33 # include "mutex.h" 34 #endif 35 36 void 37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 38 { 39 atomic_long_set(&lock->owner, 0); 40 spin_lock_init(&lock->wait_lock); 41 INIT_LIST_HEAD(&lock->wait_list); 42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 43 osq_lock_init(&lock->osq); 44 #endif 45 46 debug_mutex_init(lock, name, key); 47 } 48 EXPORT_SYMBOL(__mutex_init); 49 50 /* 51 * @owner: contains: 'struct task_struct *' to the current lock owner, 52 * NULL means not owned. Since task_struct pointers are aligned at 53 * at least L1_CACHE_BYTES, we have low bits to store extra state. 54 * 55 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 56 * Bit1 indicates unlock needs to hand the lock to the top-waiter 57 * Bit2 indicates handoff has been done and we're waiting for pickup. 58 */ 59 #define MUTEX_FLAG_WAITERS 0x01 60 #define MUTEX_FLAG_HANDOFF 0x02 61 #define MUTEX_FLAG_PICKUP 0x04 62 63 #define MUTEX_FLAGS 0x07 64 65 static inline struct task_struct *__owner_task(unsigned long owner) 66 { 67 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 68 } 69 70 static inline unsigned long __owner_flags(unsigned long owner) 71 { 72 return owner & MUTEX_FLAGS; 73 } 74 75 /* 76 * Trylock variant that retuns the owning task on failure. 77 */ 78 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 79 { 80 unsigned long owner, curr = (unsigned long)current; 81 82 owner = atomic_long_read(&lock->owner); 83 for (;;) { /* must loop, can race against a flag */ 84 unsigned long old, flags = __owner_flags(owner); 85 unsigned long task = owner & ~MUTEX_FLAGS; 86 87 if (task) { 88 if (likely(task != curr)) 89 break; 90 91 if (likely(!(flags & MUTEX_FLAG_PICKUP))) 92 break; 93 94 flags &= ~MUTEX_FLAG_PICKUP; 95 } else { 96 #ifdef CONFIG_DEBUG_MUTEXES 97 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP); 98 #endif 99 } 100 101 /* 102 * We set the HANDOFF bit, we must make sure it doesn't live 103 * past the point where we acquire it. This would be possible 104 * if we (accidentally) set the bit on an unlocked mutex. 105 */ 106 flags &= ~MUTEX_FLAG_HANDOFF; 107 108 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 109 if (old == owner) 110 return NULL; 111 112 owner = old; 113 } 114 115 return __owner_task(owner); 116 } 117 118 /* 119 * Actual trylock that will work on any unlocked state. 120 */ 121 static inline bool __mutex_trylock(struct mutex *lock) 122 { 123 return !__mutex_trylock_or_owner(lock); 124 } 125 126 #ifndef CONFIG_DEBUG_LOCK_ALLOC 127 /* 128 * Lockdep annotations are contained to the slow paths for simplicity. 129 * There is nothing that would stop spreading the lockdep annotations outwards 130 * except more code. 131 */ 132 133 /* 134 * Optimistic trylock that only works in the uncontended case. Make sure to 135 * follow with a __mutex_trylock() before failing. 136 */ 137 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 138 { 139 unsigned long curr = (unsigned long)current; 140 141 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr)) 142 return true; 143 144 return false; 145 } 146 147 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 148 { 149 unsigned long curr = (unsigned long)current; 150 151 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 152 return true; 153 154 return false; 155 } 156 #endif 157 158 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 159 { 160 atomic_long_or(flag, &lock->owner); 161 } 162 163 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 164 { 165 atomic_long_andnot(flag, &lock->owner); 166 } 167 168 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 169 { 170 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 171 } 172 173 /* 174 * Give up ownership to a specific task, when @task = NULL, this is equivalent 175 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves 176 * WAITERS. Provides RELEASE semantics like a regular unlock, the 177 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 178 */ 179 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 180 { 181 unsigned long owner = atomic_long_read(&lock->owner); 182 183 for (;;) { 184 unsigned long old, new; 185 186 #ifdef CONFIG_DEBUG_MUTEXES 187 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 188 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 189 #endif 190 191 new = (owner & MUTEX_FLAG_WAITERS); 192 new |= (unsigned long)task; 193 if (task) 194 new |= MUTEX_FLAG_PICKUP; 195 196 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 197 if (old == owner) 198 break; 199 200 owner = old; 201 } 202 } 203 204 #ifndef CONFIG_DEBUG_LOCK_ALLOC 205 /* 206 * We split the mutex lock/unlock logic into separate fastpath and 207 * slowpath functions, to reduce the register pressure on the fastpath. 208 * We also put the fastpath first in the kernel image, to make sure the 209 * branch is predicted by the CPU as default-untaken. 210 */ 211 static void __sched __mutex_lock_slowpath(struct mutex *lock); 212 213 /** 214 * mutex_lock - acquire the mutex 215 * @lock: the mutex to be acquired 216 * 217 * Lock the mutex exclusively for this task. If the mutex is not 218 * available right now, it will sleep until it can get it. 219 * 220 * The mutex must later on be released by the same task that 221 * acquired it. Recursive locking is not allowed. The task 222 * may not exit without first unlocking the mutex. Also, kernel 223 * memory where the mutex resides must not be freed with 224 * the mutex still locked. The mutex must first be initialized 225 * (or statically defined) before it can be locked. memset()-ing 226 * the mutex to 0 is not allowed. 227 * 228 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging 229 * checks that will enforce the restrictions and will also do 230 * deadlock debugging. ) 231 * 232 * This function is similar to (but not equivalent to) down(). 233 */ 234 void __sched mutex_lock(struct mutex *lock) 235 { 236 might_sleep(); 237 238 if (!__mutex_trylock_fast(lock)) 239 __mutex_lock_slowpath(lock); 240 } 241 EXPORT_SYMBOL(mutex_lock); 242 #endif 243 244 static __always_inline void 245 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 246 { 247 #ifdef CONFIG_DEBUG_MUTEXES 248 /* 249 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 250 * but released with a normal mutex_unlock in this call. 251 * 252 * This should never happen, always use ww_mutex_unlock. 253 */ 254 DEBUG_LOCKS_WARN_ON(ww->ctx); 255 256 /* 257 * Not quite done after calling ww_acquire_done() ? 258 */ 259 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 260 261 if (ww_ctx->contending_lock) { 262 /* 263 * After -EDEADLK you tried to 264 * acquire a different ww_mutex? Bad! 265 */ 266 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 267 268 /* 269 * You called ww_mutex_lock after receiving -EDEADLK, 270 * but 'forgot' to unlock everything else first? 271 */ 272 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 273 ww_ctx->contending_lock = NULL; 274 } 275 276 /* 277 * Naughty, using a different class will lead to undefined behavior! 278 */ 279 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 280 #endif 281 ww_ctx->acquired++; 282 } 283 284 static inline bool __sched 285 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 286 { 287 return a->stamp - b->stamp <= LONG_MAX && 288 (a->stamp != b->stamp || a > b); 289 } 290 291 /* 292 * Wake up any waiters that may have to back off when the lock is held by the 293 * given context. 294 * 295 * Due to the invariants on the wait list, this can only affect the first 296 * waiter with a context. 297 * 298 * The current task must not be on the wait list. 299 */ 300 static void __sched 301 __ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 302 { 303 struct mutex_waiter *cur; 304 305 lockdep_assert_held(&lock->wait_lock); 306 307 list_for_each_entry(cur, &lock->wait_list, list) { 308 if (!cur->ww_ctx) 309 continue; 310 311 if (cur->ww_ctx->acquired > 0 && 312 __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) { 313 debug_mutex_wake_waiter(lock, cur); 314 wake_up_process(cur->task); 315 } 316 317 break; 318 } 319 } 320 321 /* 322 * After acquiring lock with fastpath or when we lost out in contested 323 * slowpath, set ctx and wake up any waiters so they can recheck. 324 */ 325 static __always_inline void 326 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 327 { 328 unsigned long flags; 329 330 ww_mutex_lock_acquired(lock, ctx); 331 332 lock->ctx = ctx; 333 334 /* 335 * The lock->ctx update should be visible on all cores before 336 * the atomic read is done, otherwise contended waiters might be 337 * missed. The contended waiters will either see ww_ctx == NULL 338 * and keep spinning, or it will acquire wait_lock, add itself 339 * to waiter list and sleep. 340 */ 341 smp_mb(); /* ^^^ */ 342 343 /* 344 * Check if lock is contended, if not there is nobody to wake up 345 */ 346 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 347 return; 348 349 /* 350 * Uh oh, we raced in fastpath, wake up everyone in this case, 351 * so they can see the new lock->ctx. 352 */ 353 spin_lock_mutex(&lock->base.wait_lock, flags); 354 __ww_mutex_wakeup_for_backoff(&lock->base, ctx); 355 spin_unlock_mutex(&lock->base.wait_lock, flags); 356 } 357 358 /* 359 * After acquiring lock in the slowpath set ctx. 360 * 361 * Unlike for the fast path, the caller ensures that waiters are woken up where 362 * necessary. 363 * 364 * Callers must hold the mutex wait_lock. 365 */ 366 static __always_inline void 367 ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 368 { 369 ww_mutex_lock_acquired(lock, ctx); 370 lock->ctx = ctx; 371 } 372 373 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 374 375 static inline 376 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 377 struct mutex_waiter *waiter) 378 { 379 struct ww_mutex *ww; 380 381 ww = container_of(lock, struct ww_mutex, base); 382 383 /* 384 * If ww->ctx is set the contents are undefined, only 385 * by acquiring wait_lock there is a guarantee that 386 * they are not invalid when reading. 387 * 388 * As such, when deadlock detection needs to be 389 * performed the optimistic spinning cannot be done. 390 * 391 * Check this in every inner iteration because we may 392 * be racing against another thread's ww_mutex_lock. 393 */ 394 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 395 return false; 396 397 /* 398 * If we aren't on the wait list yet, cancel the spin 399 * if there are waiters. We want to avoid stealing the 400 * lock from a waiter with an earlier stamp, since the 401 * other thread may already own a lock that we also 402 * need. 403 */ 404 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 405 return false; 406 407 /* 408 * Similarly, stop spinning if we are no longer the 409 * first waiter. 410 */ 411 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 412 return false; 413 414 return true; 415 } 416 417 /* 418 * Look out! "owner" is an entirely speculative pointer access and not 419 * reliable. 420 * 421 * "noinline" so that this function shows up on perf profiles. 422 */ 423 static noinline 424 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 425 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 426 { 427 bool ret = true; 428 429 rcu_read_lock(); 430 while (__mutex_owner(lock) == owner) { 431 /* 432 * Ensure we emit the owner->on_cpu, dereference _after_ 433 * checking lock->owner still matches owner. If that fails, 434 * owner might point to freed memory. If it still matches, 435 * the rcu_read_lock() ensures the memory stays valid. 436 */ 437 barrier(); 438 439 /* 440 * Use vcpu_is_preempted to detect lock holder preemption issue. 441 */ 442 if (!owner->on_cpu || need_resched() || 443 vcpu_is_preempted(task_cpu(owner))) { 444 ret = false; 445 break; 446 } 447 448 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 449 ret = false; 450 break; 451 } 452 453 cpu_relax(); 454 } 455 rcu_read_unlock(); 456 457 return ret; 458 } 459 460 /* 461 * Initial check for entering the mutex spinning loop 462 */ 463 static inline int mutex_can_spin_on_owner(struct mutex *lock) 464 { 465 struct task_struct *owner; 466 int retval = 1; 467 468 if (need_resched()) 469 return 0; 470 471 rcu_read_lock(); 472 owner = __mutex_owner(lock); 473 474 /* 475 * As lock holder preemption issue, we both skip spinning if task is not 476 * on cpu or its cpu is preempted 477 */ 478 if (owner) 479 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 480 rcu_read_unlock(); 481 482 /* 483 * If lock->owner is not set, the mutex has been released. Return true 484 * such that we'll trylock in the spin path, which is a faster option 485 * than the blocking slow path. 486 */ 487 return retval; 488 } 489 490 /* 491 * Optimistic spinning. 492 * 493 * We try to spin for acquisition when we find that the lock owner 494 * is currently running on a (different) CPU and while we don't 495 * need to reschedule. The rationale is that if the lock owner is 496 * running, it is likely to release the lock soon. 497 * 498 * The mutex spinners are queued up using MCS lock so that only one 499 * spinner can compete for the mutex. However, if mutex spinning isn't 500 * going to happen, there is no point in going through the lock/unlock 501 * overhead. 502 * 503 * Returns true when the lock was taken, otherwise false, indicating 504 * that we need to jump to the slowpath and sleep. 505 * 506 * The waiter flag is set to true if the spinner is a waiter in the wait 507 * queue. The waiter-spinner will spin on the lock directly and concurrently 508 * with the spinner at the head of the OSQ, if present, until the owner is 509 * changed to itself. 510 */ 511 static __always_inline bool 512 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 513 const bool use_ww_ctx, struct mutex_waiter *waiter) 514 { 515 if (!waiter) { 516 /* 517 * The purpose of the mutex_can_spin_on_owner() function is 518 * to eliminate the overhead of osq_lock() and osq_unlock() 519 * in case spinning isn't possible. As a waiter-spinner 520 * is not going to take OSQ lock anyway, there is no need 521 * to call mutex_can_spin_on_owner(). 522 */ 523 if (!mutex_can_spin_on_owner(lock)) 524 goto fail; 525 526 /* 527 * In order to avoid a stampede of mutex spinners trying to 528 * acquire the mutex all at once, the spinners need to take a 529 * MCS (queued) lock first before spinning on the owner field. 530 */ 531 if (!osq_lock(&lock->osq)) 532 goto fail; 533 } 534 535 for (;;) { 536 struct task_struct *owner; 537 538 /* Try to acquire the mutex... */ 539 owner = __mutex_trylock_or_owner(lock); 540 if (!owner) 541 break; 542 543 /* 544 * There's an owner, wait for it to either 545 * release the lock or go to sleep. 546 */ 547 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 548 goto fail_unlock; 549 550 /* 551 * The cpu_relax() call is a compiler barrier which forces 552 * everything in this loop to be re-loaded. We don't need 553 * memory barriers as we'll eventually observe the right 554 * values at the cost of a few extra spins. 555 */ 556 cpu_relax(); 557 } 558 559 if (!waiter) 560 osq_unlock(&lock->osq); 561 562 return true; 563 564 565 fail_unlock: 566 if (!waiter) 567 osq_unlock(&lock->osq); 568 569 fail: 570 /* 571 * If we fell out of the spin path because of need_resched(), 572 * reschedule now, before we try-lock the mutex. This avoids getting 573 * scheduled out right after we obtained the mutex. 574 */ 575 if (need_resched()) { 576 /* 577 * We _should_ have TASK_RUNNING here, but just in case 578 * we do not, make it so, otherwise we might get stuck. 579 */ 580 __set_current_state(TASK_RUNNING); 581 schedule_preempt_disabled(); 582 } 583 584 return false; 585 } 586 #else 587 static __always_inline bool 588 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 589 const bool use_ww_ctx, struct mutex_waiter *waiter) 590 { 591 return false; 592 } 593 #endif 594 595 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 596 597 /** 598 * mutex_unlock - release the mutex 599 * @lock: the mutex to be released 600 * 601 * Unlock a mutex that has been locked by this task previously. 602 * 603 * This function must not be used in interrupt context. Unlocking 604 * of a not locked mutex is not allowed. 605 * 606 * This function is similar to (but not equivalent to) up(). 607 */ 608 void __sched mutex_unlock(struct mutex *lock) 609 { 610 #ifndef CONFIG_DEBUG_LOCK_ALLOC 611 if (__mutex_unlock_fast(lock)) 612 return; 613 #endif 614 __mutex_unlock_slowpath(lock, _RET_IP_); 615 } 616 EXPORT_SYMBOL(mutex_unlock); 617 618 /** 619 * ww_mutex_unlock - release the w/w mutex 620 * @lock: the mutex to be released 621 * 622 * Unlock a mutex that has been locked by this task previously with any of the 623 * ww_mutex_lock* functions (with or without an acquire context). It is 624 * forbidden to release the locks after releasing the acquire context. 625 * 626 * This function must not be used in interrupt context. Unlocking 627 * of a unlocked mutex is not allowed. 628 */ 629 void __sched ww_mutex_unlock(struct ww_mutex *lock) 630 { 631 /* 632 * The unlocking fastpath is the 0->1 transition from 'locked' 633 * into 'unlocked' state: 634 */ 635 if (lock->ctx) { 636 #ifdef CONFIG_DEBUG_MUTEXES 637 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 638 #endif 639 if (lock->ctx->acquired > 0) 640 lock->ctx->acquired--; 641 lock->ctx = NULL; 642 } 643 644 mutex_unlock(&lock->base); 645 } 646 EXPORT_SYMBOL(ww_mutex_unlock); 647 648 static inline int __sched 649 __ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter, 650 struct ww_acquire_ctx *ctx) 651 { 652 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 653 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 654 struct mutex_waiter *cur; 655 656 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 657 goto deadlock; 658 659 /* 660 * If there is a waiter in front of us that has a context, then its 661 * stamp is earlier than ours and we must back off. 662 */ 663 cur = waiter; 664 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 665 if (cur->ww_ctx) 666 goto deadlock; 667 } 668 669 return 0; 670 671 deadlock: 672 #ifdef CONFIG_DEBUG_MUTEXES 673 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 674 ctx->contending_lock = ww; 675 #endif 676 return -EDEADLK; 677 } 678 679 static inline int __sched 680 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 681 struct mutex *lock, 682 struct ww_acquire_ctx *ww_ctx) 683 { 684 struct mutex_waiter *cur; 685 struct list_head *pos; 686 687 if (!ww_ctx) { 688 list_add_tail(&waiter->list, &lock->wait_list); 689 return 0; 690 } 691 692 /* 693 * Add the waiter before the first waiter with a higher stamp. 694 * Waiters without a context are skipped to avoid starving 695 * them. 696 */ 697 pos = &lock->wait_list; 698 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 699 if (!cur->ww_ctx) 700 continue; 701 702 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 703 /* Back off immediately if necessary. */ 704 if (ww_ctx->acquired > 0) { 705 #ifdef CONFIG_DEBUG_MUTEXES 706 struct ww_mutex *ww; 707 708 ww = container_of(lock, struct ww_mutex, base); 709 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 710 ww_ctx->contending_lock = ww; 711 #endif 712 return -EDEADLK; 713 } 714 715 break; 716 } 717 718 pos = &cur->list; 719 720 /* 721 * Wake up the waiter so that it gets a chance to back 722 * off. 723 */ 724 if (cur->ww_ctx->acquired > 0) { 725 debug_mutex_wake_waiter(lock, cur); 726 wake_up_process(cur->task); 727 } 728 } 729 730 list_add_tail(&waiter->list, pos); 731 return 0; 732 } 733 734 /* 735 * Lock a mutex (possibly interruptible), slowpath: 736 */ 737 static __always_inline int __sched 738 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 739 struct lockdep_map *nest_lock, unsigned long ip, 740 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 741 { 742 struct mutex_waiter waiter; 743 unsigned long flags; 744 bool first = false; 745 struct ww_mutex *ww; 746 int ret; 747 748 might_sleep(); 749 750 ww = container_of(lock, struct ww_mutex, base); 751 if (use_ww_ctx && ww_ctx) { 752 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 753 return -EALREADY; 754 } 755 756 preempt_disable(); 757 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 758 759 if (__mutex_trylock(lock) || 760 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) { 761 /* got the lock, yay! */ 762 lock_acquired(&lock->dep_map, ip); 763 if (use_ww_ctx && ww_ctx) 764 ww_mutex_set_context_fastpath(ww, ww_ctx); 765 preempt_enable(); 766 return 0; 767 } 768 769 spin_lock_mutex(&lock->wait_lock, flags); 770 /* 771 * After waiting to acquire the wait_lock, try again. 772 */ 773 if (__mutex_trylock(lock)) { 774 if (use_ww_ctx && ww_ctx) 775 __ww_mutex_wakeup_for_backoff(lock, ww_ctx); 776 777 goto skip_wait; 778 } 779 780 debug_mutex_lock_common(lock, &waiter); 781 debug_mutex_add_waiter(lock, &waiter, current); 782 783 lock_contended(&lock->dep_map, ip); 784 785 if (!use_ww_ctx) { 786 /* add waiting tasks to the end of the waitqueue (FIFO): */ 787 list_add_tail(&waiter.list, &lock->wait_list); 788 789 #ifdef CONFIG_DEBUG_MUTEXES 790 waiter.ww_ctx = MUTEX_POISON_WW_CTX; 791 #endif 792 } else { 793 /* Add in stamp order, waking up waiters that must back off. */ 794 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 795 if (ret) 796 goto err_early_backoff; 797 798 waiter.ww_ctx = ww_ctx; 799 } 800 801 waiter.task = current; 802 803 if (__mutex_waiter_is_first(lock, &waiter)) 804 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 805 806 set_current_state(state); 807 for (;;) { 808 /* 809 * Once we hold wait_lock, we're serialized against 810 * mutex_unlock() handing the lock off to us, do a trylock 811 * before testing the error conditions to make sure we pick up 812 * the handoff. 813 */ 814 if (__mutex_trylock(lock)) 815 goto acquired; 816 817 /* 818 * Check for signals and wound conditions while holding 819 * wait_lock. This ensures the lock cancellation is ordered 820 * against mutex_unlock() and wake-ups do not go missing. 821 */ 822 if (unlikely(signal_pending_state(state, current))) { 823 ret = -EINTR; 824 goto err; 825 } 826 827 if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) { 828 ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx); 829 if (ret) 830 goto err; 831 } 832 833 spin_unlock_mutex(&lock->wait_lock, flags); 834 schedule_preempt_disabled(); 835 836 /* 837 * ww_mutex needs to always recheck its position since its waiter 838 * list is not FIFO ordered. 839 */ 840 if ((use_ww_ctx && ww_ctx) || !first) { 841 first = __mutex_waiter_is_first(lock, &waiter); 842 if (first) 843 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 844 } 845 846 set_current_state(state); 847 /* 848 * Here we order against unlock; we must either see it change 849 * state back to RUNNING and fall through the next schedule(), 850 * or we must see its unlock and acquire. 851 */ 852 if (__mutex_trylock(lock) || 853 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter))) 854 break; 855 856 spin_lock_mutex(&lock->wait_lock, flags); 857 } 858 spin_lock_mutex(&lock->wait_lock, flags); 859 acquired: 860 __set_current_state(TASK_RUNNING); 861 862 mutex_remove_waiter(lock, &waiter, current); 863 if (likely(list_empty(&lock->wait_list))) 864 __mutex_clear_flag(lock, MUTEX_FLAGS); 865 866 debug_mutex_free_waiter(&waiter); 867 868 skip_wait: 869 /* got the lock - cleanup and rejoice! */ 870 lock_acquired(&lock->dep_map, ip); 871 872 if (use_ww_ctx && ww_ctx) 873 ww_mutex_set_context_slowpath(ww, ww_ctx); 874 875 spin_unlock_mutex(&lock->wait_lock, flags); 876 preempt_enable(); 877 return 0; 878 879 err: 880 __set_current_state(TASK_RUNNING); 881 mutex_remove_waiter(lock, &waiter, current); 882 err_early_backoff: 883 spin_unlock_mutex(&lock->wait_lock, flags); 884 debug_mutex_free_waiter(&waiter); 885 mutex_release(&lock->dep_map, 1, ip); 886 preempt_enable(); 887 return ret; 888 } 889 890 static int __sched 891 __mutex_lock(struct mutex *lock, long state, unsigned int subclass, 892 struct lockdep_map *nest_lock, unsigned long ip) 893 { 894 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 895 } 896 897 static int __sched 898 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, 899 struct lockdep_map *nest_lock, unsigned long ip, 900 struct ww_acquire_ctx *ww_ctx) 901 { 902 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); 903 } 904 905 #ifdef CONFIG_DEBUG_LOCK_ALLOC 906 void __sched 907 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 908 { 909 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 910 } 911 912 EXPORT_SYMBOL_GPL(mutex_lock_nested); 913 914 void __sched 915 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 916 { 917 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 918 } 919 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 920 921 int __sched 922 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 923 { 924 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 925 } 926 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 927 928 int __sched 929 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 930 { 931 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 932 } 933 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 934 935 static inline int 936 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 937 { 938 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 939 unsigned tmp; 940 941 if (ctx->deadlock_inject_countdown-- == 0) { 942 tmp = ctx->deadlock_inject_interval; 943 if (tmp > UINT_MAX/4) 944 tmp = UINT_MAX; 945 else 946 tmp = tmp*2 + tmp + tmp/2; 947 948 ctx->deadlock_inject_interval = tmp; 949 ctx->deadlock_inject_countdown = tmp; 950 ctx->contending_lock = lock; 951 952 ww_mutex_unlock(lock); 953 954 return -EDEADLK; 955 } 956 #endif 957 958 return 0; 959 } 960 961 int __sched 962 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 963 { 964 int ret; 965 966 might_sleep(); 967 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 968 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 969 ctx); 970 if (!ret && ctx && ctx->acquired > 1) 971 return ww_mutex_deadlock_injection(lock, ctx); 972 973 return ret; 974 } 975 EXPORT_SYMBOL_GPL(ww_mutex_lock); 976 977 int __sched 978 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 979 { 980 int ret; 981 982 might_sleep(); 983 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 984 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 985 ctx); 986 987 if (!ret && ctx && ctx->acquired > 1) 988 return ww_mutex_deadlock_injection(lock, ctx); 989 990 return ret; 991 } 992 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 993 994 #endif 995 996 /* 997 * Release the lock, slowpath: 998 */ 999 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1000 { 1001 struct task_struct *next = NULL; 1002 unsigned long owner, flags; 1003 DEFINE_WAKE_Q(wake_q); 1004 1005 mutex_release(&lock->dep_map, 1, ip); 1006 1007 /* 1008 * Release the lock before (potentially) taking the spinlock such that 1009 * other contenders can get on with things ASAP. 1010 * 1011 * Except when HANDOFF, in that case we must not clear the owner field, 1012 * but instead set it to the top waiter. 1013 */ 1014 owner = atomic_long_read(&lock->owner); 1015 for (;;) { 1016 unsigned long old; 1017 1018 #ifdef CONFIG_DEBUG_MUTEXES 1019 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 1020 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1021 #endif 1022 1023 if (owner & MUTEX_FLAG_HANDOFF) 1024 break; 1025 1026 old = atomic_long_cmpxchg_release(&lock->owner, owner, 1027 __owner_flags(owner)); 1028 if (old == owner) { 1029 if (owner & MUTEX_FLAG_WAITERS) 1030 break; 1031 1032 return; 1033 } 1034 1035 owner = old; 1036 } 1037 1038 spin_lock_mutex(&lock->wait_lock, flags); 1039 debug_mutex_unlock(lock); 1040 if (!list_empty(&lock->wait_list)) { 1041 /* get the first entry from the wait-list: */ 1042 struct mutex_waiter *waiter = 1043 list_first_entry(&lock->wait_list, 1044 struct mutex_waiter, list); 1045 1046 next = waiter->task; 1047 1048 debug_mutex_wake_waiter(lock, waiter); 1049 wake_q_add(&wake_q, next); 1050 } 1051 1052 if (owner & MUTEX_FLAG_HANDOFF) 1053 __mutex_handoff(lock, next); 1054 1055 spin_unlock_mutex(&lock->wait_lock, flags); 1056 1057 wake_up_q(&wake_q); 1058 } 1059 1060 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1061 /* 1062 * Here come the less common (and hence less performance-critical) APIs: 1063 * mutex_lock_interruptible() and mutex_trylock(). 1064 */ 1065 static noinline int __sched 1066 __mutex_lock_killable_slowpath(struct mutex *lock); 1067 1068 static noinline int __sched 1069 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1070 1071 /** 1072 * mutex_lock_interruptible - acquire the mutex, interruptible 1073 * @lock: the mutex to be acquired 1074 * 1075 * Lock the mutex like mutex_lock(), and return 0 if the mutex has 1076 * been acquired or sleep until the mutex becomes available. If a 1077 * signal arrives while waiting for the lock then this function 1078 * returns -EINTR. 1079 * 1080 * This function is similar to (but not equivalent to) down_interruptible(). 1081 */ 1082 int __sched mutex_lock_interruptible(struct mutex *lock) 1083 { 1084 might_sleep(); 1085 1086 if (__mutex_trylock_fast(lock)) 1087 return 0; 1088 1089 return __mutex_lock_interruptible_slowpath(lock); 1090 } 1091 1092 EXPORT_SYMBOL(mutex_lock_interruptible); 1093 1094 int __sched mutex_lock_killable(struct mutex *lock) 1095 { 1096 might_sleep(); 1097 1098 if (__mutex_trylock_fast(lock)) 1099 return 0; 1100 1101 return __mutex_lock_killable_slowpath(lock); 1102 } 1103 EXPORT_SYMBOL(mutex_lock_killable); 1104 1105 static noinline void __sched 1106 __mutex_lock_slowpath(struct mutex *lock) 1107 { 1108 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1109 } 1110 1111 static noinline int __sched 1112 __mutex_lock_killable_slowpath(struct mutex *lock) 1113 { 1114 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1115 } 1116 1117 static noinline int __sched 1118 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1119 { 1120 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1121 } 1122 1123 static noinline int __sched 1124 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1125 { 1126 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, 1127 _RET_IP_, ctx); 1128 } 1129 1130 static noinline int __sched 1131 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1132 struct ww_acquire_ctx *ctx) 1133 { 1134 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, 1135 _RET_IP_, ctx); 1136 } 1137 1138 #endif 1139 1140 /** 1141 * mutex_trylock - try to acquire the mutex, without waiting 1142 * @lock: the mutex to be acquired 1143 * 1144 * Try to acquire the mutex atomically. Returns 1 if the mutex 1145 * has been acquired successfully, and 0 on contention. 1146 * 1147 * NOTE: this function follows the spin_trylock() convention, so 1148 * it is negated from the down_trylock() return values! Be careful 1149 * about this when converting semaphore users to mutexes. 1150 * 1151 * This function must not be used in interrupt context. The 1152 * mutex must be released by the same task that acquired it. 1153 */ 1154 int __sched mutex_trylock(struct mutex *lock) 1155 { 1156 bool locked = __mutex_trylock(lock); 1157 1158 if (locked) 1159 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1160 1161 return locked; 1162 } 1163 EXPORT_SYMBOL(mutex_trylock); 1164 1165 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1166 int __sched 1167 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1168 { 1169 might_sleep(); 1170 1171 if (__mutex_trylock_fast(&lock->base)) { 1172 if (ctx) 1173 ww_mutex_set_context_fastpath(lock, ctx); 1174 return 0; 1175 } 1176 1177 return __ww_mutex_lock_slowpath(lock, ctx); 1178 } 1179 EXPORT_SYMBOL(ww_mutex_lock); 1180 1181 int __sched 1182 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1183 { 1184 might_sleep(); 1185 1186 if (__mutex_trylock_fast(&lock->base)) { 1187 if (ctx) 1188 ww_mutex_set_context_fastpath(lock, ctx); 1189 return 0; 1190 } 1191 1192 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1193 } 1194 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1195 1196 #endif 1197 1198 /** 1199 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1200 * @cnt: the atomic which we are to dec 1201 * @lock: the mutex to return holding if we dec to 0 1202 * 1203 * return true and hold lock if we dec to 0, return false otherwise 1204 */ 1205 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1206 { 1207 /* dec if we can't possibly hit 0 */ 1208 if (atomic_add_unless(cnt, -1, 1)) 1209 return 0; 1210 /* we might hit 0, so take the lock */ 1211 mutex_lock(lock); 1212 if (!atomic_dec_and_test(cnt)) { 1213 /* when we actually did the dec, we didn't hit 0 */ 1214 mutex_unlock(lock); 1215 return 0; 1216 } 1217 /* we hit 0, and we hold the lock */ 1218 return 1; 1219 } 1220 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1221