xref: /linux-6.15/kernel/locking/mutex.c (revision 2b0b2111)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
29 
30 #ifdef CONFIG_DEBUG_MUTEXES
31 # include "mutex-debug.h"
32 #else
33 # include "mutex.h"
34 #endif
35 
36 void
37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
38 {
39 	atomic_long_set(&lock->owner, 0);
40 	spin_lock_init(&lock->wait_lock);
41 	INIT_LIST_HEAD(&lock->wait_list);
42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 	osq_lock_init(&lock->osq);
44 #endif
45 
46 	debug_mutex_init(lock, name, key);
47 }
48 EXPORT_SYMBOL(__mutex_init);
49 
50 /*
51  * @owner: contains: 'struct task_struct *' to the current lock owner,
52  * NULL means not owned. Since task_struct pointers are aligned at
53  * at least L1_CACHE_BYTES, we have low bits to store extra state.
54  *
55  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
56  * Bit1 indicates unlock needs to hand the lock to the top-waiter
57  * Bit2 indicates handoff has been done and we're waiting for pickup.
58  */
59 #define MUTEX_FLAG_WAITERS	0x01
60 #define MUTEX_FLAG_HANDOFF	0x02
61 #define MUTEX_FLAG_PICKUP	0x04
62 
63 #define MUTEX_FLAGS		0x07
64 
65 static inline struct task_struct *__owner_task(unsigned long owner)
66 {
67 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
68 }
69 
70 static inline unsigned long __owner_flags(unsigned long owner)
71 {
72 	return owner & MUTEX_FLAGS;
73 }
74 
75 /*
76  * Trylock variant that retuns the owning task on failure.
77  */
78 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
79 {
80 	unsigned long owner, curr = (unsigned long)current;
81 
82 	owner = atomic_long_read(&lock->owner);
83 	for (;;) { /* must loop, can race against a flag */
84 		unsigned long old, flags = __owner_flags(owner);
85 		unsigned long task = owner & ~MUTEX_FLAGS;
86 
87 		if (task) {
88 			if (likely(task != curr))
89 				break;
90 
91 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
92 				break;
93 
94 			flags &= ~MUTEX_FLAG_PICKUP;
95 		} else {
96 #ifdef CONFIG_DEBUG_MUTEXES
97 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
98 #endif
99 		}
100 
101 		/*
102 		 * We set the HANDOFF bit, we must make sure it doesn't live
103 		 * past the point where we acquire it. This would be possible
104 		 * if we (accidentally) set the bit on an unlocked mutex.
105 		 */
106 		flags &= ~MUTEX_FLAG_HANDOFF;
107 
108 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
109 		if (old == owner)
110 			return NULL;
111 
112 		owner = old;
113 	}
114 
115 	return __owner_task(owner);
116 }
117 
118 /*
119  * Actual trylock that will work on any unlocked state.
120  */
121 static inline bool __mutex_trylock(struct mutex *lock)
122 {
123 	return !__mutex_trylock_or_owner(lock);
124 }
125 
126 #ifndef CONFIG_DEBUG_LOCK_ALLOC
127 /*
128  * Lockdep annotations are contained to the slow paths for simplicity.
129  * There is nothing that would stop spreading the lockdep annotations outwards
130  * except more code.
131  */
132 
133 /*
134  * Optimistic trylock that only works in the uncontended case. Make sure to
135  * follow with a __mutex_trylock() before failing.
136  */
137 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
138 {
139 	unsigned long curr = (unsigned long)current;
140 
141 	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
142 		return true;
143 
144 	return false;
145 }
146 
147 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
148 {
149 	unsigned long curr = (unsigned long)current;
150 
151 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
152 		return true;
153 
154 	return false;
155 }
156 #endif
157 
158 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
159 {
160 	atomic_long_or(flag, &lock->owner);
161 }
162 
163 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
164 {
165 	atomic_long_andnot(flag, &lock->owner);
166 }
167 
168 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
169 {
170 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
171 }
172 
173 /*
174  * Give up ownership to a specific task, when @task = NULL, this is equivalent
175  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
176  * WAITERS. Provides RELEASE semantics like a regular unlock, the
177  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
178  */
179 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
180 {
181 	unsigned long owner = atomic_long_read(&lock->owner);
182 
183 	for (;;) {
184 		unsigned long old, new;
185 
186 #ifdef CONFIG_DEBUG_MUTEXES
187 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
188 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
189 #endif
190 
191 		new = (owner & MUTEX_FLAG_WAITERS);
192 		new |= (unsigned long)task;
193 		if (task)
194 			new |= MUTEX_FLAG_PICKUP;
195 
196 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
197 		if (old == owner)
198 			break;
199 
200 		owner = old;
201 	}
202 }
203 
204 #ifndef CONFIG_DEBUG_LOCK_ALLOC
205 /*
206  * We split the mutex lock/unlock logic into separate fastpath and
207  * slowpath functions, to reduce the register pressure on the fastpath.
208  * We also put the fastpath first in the kernel image, to make sure the
209  * branch is predicted by the CPU as default-untaken.
210  */
211 static void __sched __mutex_lock_slowpath(struct mutex *lock);
212 
213 /**
214  * mutex_lock - acquire the mutex
215  * @lock: the mutex to be acquired
216  *
217  * Lock the mutex exclusively for this task. If the mutex is not
218  * available right now, it will sleep until it can get it.
219  *
220  * The mutex must later on be released by the same task that
221  * acquired it. Recursive locking is not allowed. The task
222  * may not exit without first unlocking the mutex. Also, kernel
223  * memory where the mutex resides must not be freed with
224  * the mutex still locked. The mutex must first be initialized
225  * (or statically defined) before it can be locked. memset()-ing
226  * the mutex to 0 is not allowed.
227  *
228  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
229  *   checks that will enforce the restrictions and will also do
230  *   deadlock debugging. )
231  *
232  * This function is similar to (but not equivalent to) down().
233  */
234 void __sched mutex_lock(struct mutex *lock)
235 {
236 	might_sleep();
237 
238 	if (!__mutex_trylock_fast(lock))
239 		__mutex_lock_slowpath(lock);
240 }
241 EXPORT_SYMBOL(mutex_lock);
242 #endif
243 
244 static __always_inline void
245 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
246 {
247 #ifdef CONFIG_DEBUG_MUTEXES
248 	/*
249 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
250 	 * but released with a normal mutex_unlock in this call.
251 	 *
252 	 * This should never happen, always use ww_mutex_unlock.
253 	 */
254 	DEBUG_LOCKS_WARN_ON(ww->ctx);
255 
256 	/*
257 	 * Not quite done after calling ww_acquire_done() ?
258 	 */
259 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
260 
261 	if (ww_ctx->contending_lock) {
262 		/*
263 		 * After -EDEADLK you tried to
264 		 * acquire a different ww_mutex? Bad!
265 		 */
266 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
267 
268 		/*
269 		 * You called ww_mutex_lock after receiving -EDEADLK,
270 		 * but 'forgot' to unlock everything else first?
271 		 */
272 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
273 		ww_ctx->contending_lock = NULL;
274 	}
275 
276 	/*
277 	 * Naughty, using a different class will lead to undefined behavior!
278 	 */
279 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
280 #endif
281 	ww_ctx->acquired++;
282 }
283 
284 static inline bool __sched
285 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
286 {
287 	return a->stamp - b->stamp <= LONG_MAX &&
288 	       (a->stamp != b->stamp || a > b);
289 }
290 
291 /*
292  * Wake up any waiters that may have to back off when the lock is held by the
293  * given context.
294  *
295  * Due to the invariants on the wait list, this can only affect the first
296  * waiter with a context.
297  *
298  * The current task must not be on the wait list.
299  */
300 static void __sched
301 __ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
302 {
303 	struct mutex_waiter *cur;
304 
305 	lockdep_assert_held(&lock->wait_lock);
306 
307 	list_for_each_entry(cur, &lock->wait_list, list) {
308 		if (!cur->ww_ctx)
309 			continue;
310 
311 		if (cur->ww_ctx->acquired > 0 &&
312 		    __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) {
313 			debug_mutex_wake_waiter(lock, cur);
314 			wake_up_process(cur->task);
315 		}
316 
317 		break;
318 	}
319 }
320 
321 /*
322  * After acquiring lock with fastpath or when we lost out in contested
323  * slowpath, set ctx and wake up any waiters so they can recheck.
324  */
325 static __always_inline void
326 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
327 {
328 	unsigned long flags;
329 
330 	ww_mutex_lock_acquired(lock, ctx);
331 
332 	lock->ctx = ctx;
333 
334 	/*
335 	 * The lock->ctx update should be visible on all cores before
336 	 * the atomic read is done, otherwise contended waiters might be
337 	 * missed. The contended waiters will either see ww_ctx == NULL
338 	 * and keep spinning, or it will acquire wait_lock, add itself
339 	 * to waiter list and sleep.
340 	 */
341 	smp_mb(); /* ^^^ */
342 
343 	/*
344 	 * Check if lock is contended, if not there is nobody to wake up
345 	 */
346 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
347 		return;
348 
349 	/*
350 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
351 	 * so they can see the new lock->ctx.
352 	 */
353 	spin_lock_mutex(&lock->base.wait_lock, flags);
354 	__ww_mutex_wakeup_for_backoff(&lock->base, ctx);
355 	spin_unlock_mutex(&lock->base.wait_lock, flags);
356 }
357 
358 /*
359  * After acquiring lock in the slowpath set ctx.
360  *
361  * Unlike for the fast path, the caller ensures that waiters are woken up where
362  * necessary.
363  *
364  * Callers must hold the mutex wait_lock.
365  */
366 static __always_inline void
367 ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
368 {
369 	ww_mutex_lock_acquired(lock, ctx);
370 	lock->ctx = ctx;
371 }
372 
373 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
374 
375 static inline
376 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
377 			    struct mutex_waiter *waiter)
378 {
379 	struct ww_mutex *ww;
380 
381 	ww = container_of(lock, struct ww_mutex, base);
382 
383 	/*
384 	 * If ww->ctx is set the contents are undefined, only
385 	 * by acquiring wait_lock there is a guarantee that
386 	 * they are not invalid when reading.
387 	 *
388 	 * As such, when deadlock detection needs to be
389 	 * performed the optimistic spinning cannot be done.
390 	 *
391 	 * Check this in every inner iteration because we may
392 	 * be racing against another thread's ww_mutex_lock.
393 	 */
394 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
395 		return false;
396 
397 	/*
398 	 * If we aren't on the wait list yet, cancel the spin
399 	 * if there are waiters. We want  to avoid stealing the
400 	 * lock from a waiter with an earlier stamp, since the
401 	 * other thread may already own a lock that we also
402 	 * need.
403 	 */
404 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
405 		return false;
406 
407 	/*
408 	 * Similarly, stop spinning if we are no longer the
409 	 * first waiter.
410 	 */
411 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
412 		return false;
413 
414 	return true;
415 }
416 
417 /*
418  * Look out! "owner" is an entirely speculative pointer access and not
419  * reliable.
420  *
421  * "noinline" so that this function shows up on perf profiles.
422  */
423 static noinline
424 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
425 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
426 {
427 	bool ret = true;
428 
429 	rcu_read_lock();
430 	while (__mutex_owner(lock) == owner) {
431 		/*
432 		 * Ensure we emit the owner->on_cpu, dereference _after_
433 		 * checking lock->owner still matches owner. If that fails,
434 		 * owner might point to freed memory. If it still matches,
435 		 * the rcu_read_lock() ensures the memory stays valid.
436 		 */
437 		barrier();
438 
439 		/*
440 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
441 		 */
442 		if (!owner->on_cpu || need_resched() ||
443 				vcpu_is_preempted(task_cpu(owner))) {
444 			ret = false;
445 			break;
446 		}
447 
448 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
449 			ret = false;
450 			break;
451 		}
452 
453 		cpu_relax();
454 	}
455 	rcu_read_unlock();
456 
457 	return ret;
458 }
459 
460 /*
461  * Initial check for entering the mutex spinning loop
462  */
463 static inline int mutex_can_spin_on_owner(struct mutex *lock)
464 {
465 	struct task_struct *owner;
466 	int retval = 1;
467 
468 	if (need_resched())
469 		return 0;
470 
471 	rcu_read_lock();
472 	owner = __mutex_owner(lock);
473 
474 	/*
475 	 * As lock holder preemption issue, we both skip spinning if task is not
476 	 * on cpu or its cpu is preempted
477 	 */
478 	if (owner)
479 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
480 	rcu_read_unlock();
481 
482 	/*
483 	 * If lock->owner is not set, the mutex has been released. Return true
484 	 * such that we'll trylock in the spin path, which is a faster option
485 	 * than the blocking slow path.
486 	 */
487 	return retval;
488 }
489 
490 /*
491  * Optimistic spinning.
492  *
493  * We try to spin for acquisition when we find that the lock owner
494  * is currently running on a (different) CPU and while we don't
495  * need to reschedule. The rationale is that if the lock owner is
496  * running, it is likely to release the lock soon.
497  *
498  * The mutex spinners are queued up using MCS lock so that only one
499  * spinner can compete for the mutex. However, if mutex spinning isn't
500  * going to happen, there is no point in going through the lock/unlock
501  * overhead.
502  *
503  * Returns true when the lock was taken, otherwise false, indicating
504  * that we need to jump to the slowpath and sleep.
505  *
506  * The waiter flag is set to true if the spinner is a waiter in the wait
507  * queue. The waiter-spinner will spin on the lock directly and concurrently
508  * with the spinner at the head of the OSQ, if present, until the owner is
509  * changed to itself.
510  */
511 static __always_inline bool
512 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
513 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
514 {
515 	if (!waiter) {
516 		/*
517 		 * The purpose of the mutex_can_spin_on_owner() function is
518 		 * to eliminate the overhead of osq_lock() and osq_unlock()
519 		 * in case spinning isn't possible. As a waiter-spinner
520 		 * is not going to take OSQ lock anyway, there is no need
521 		 * to call mutex_can_spin_on_owner().
522 		 */
523 		if (!mutex_can_spin_on_owner(lock))
524 			goto fail;
525 
526 		/*
527 		 * In order to avoid a stampede of mutex spinners trying to
528 		 * acquire the mutex all at once, the spinners need to take a
529 		 * MCS (queued) lock first before spinning on the owner field.
530 		 */
531 		if (!osq_lock(&lock->osq))
532 			goto fail;
533 	}
534 
535 	for (;;) {
536 		struct task_struct *owner;
537 
538 		/* Try to acquire the mutex... */
539 		owner = __mutex_trylock_or_owner(lock);
540 		if (!owner)
541 			break;
542 
543 		/*
544 		 * There's an owner, wait for it to either
545 		 * release the lock or go to sleep.
546 		 */
547 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
548 			goto fail_unlock;
549 
550 		/*
551 		 * The cpu_relax() call is a compiler barrier which forces
552 		 * everything in this loop to be re-loaded. We don't need
553 		 * memory barriers as we'll eventually observe the right
554 		 * values at the cost of a few extra spins.
555 		 */
556 		cpu_relax();
557 	}
558 
559 	if (!waiter)
560 		osq_unlock(&lock->osq);
561 
562 	return true;
563 
564 
565 fail_unlock:
566 	if (!waiter)
567 		osq_unlock(&lock->osq);
568 
569 fail:
570 	/*
571 	 * If we fell out of the spin path because of need_resched(),
572 	 * reschedule now, before we try-lock the mutex. This avoids getting
573 	 * scheduled out right after we obtained the mutex.
574 	 */
575 	if (need_resched()) {
576 		/*
577 		 * We _should_ have TASK_RUNNING here, but just in case
578 		 * we do not, make it so, otherwise we might get stuck.
579 		 */
580 		__set_current_state(TASK_RUNNING);
581 		schedule_preempt_disabled();
582 	}
583 
584 	return false;
585 }
586 #else
587 static __always_inline bool
588 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
589 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
590 {
591 	return false;
592 }
593 #endif
594 
595 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
596 
597 /**
598  * mutex_unlock - release the mutex
599  * @lock: the mutex to be released
600  *
601  * Unlock a mutex that has been locked by this task previously.
602  *
603  * This function must not be used in interrupt context. Unlocking
604  * of a not locked mutex is not allowed.
605  *
606  * This function is similar to (but not equivalent to) up().
607  */
608 void __sched mutex_unlock(struct mutex *lock)
609 {
610 #ifndef CONFIG_DEBUG_LOCK_ALLOC
611 	if (__mutex_unlock_fast(lock))
612 		return;
613 #endif
614 	__mutex_unlock_slowpath(lock, _RET_IP_);
615 }
616 EXPORT_SYMBOL(mutex_unlock);
617 
618 /**
619  * ww_mutex_unlock - release the w/w mutex
620  * @lock: the mutex to be released
621  *
622  * Unlock a mutex that has been locked by this task previously with any of the
623  * ww_mutex_lock* functions (with or without an acquire context). It is
624  * forbidden to release the locks after releasing the acquire context.
625  *
626  * This function must not be used in interrupt context. Unlocking
627  * of a unlocked mutex is not allowed.
628  */
629 void __sched ww_mutex_unlock(struct ww_mutex *lock)
630 {
631 	/*
632 	 * The unlocking fastpath is the 0->1 transition from 'locked'
633 	 * into 'unlocked' state:
634 	 */
635 	if (lock->ctx) {
636 #ifdef CONFIG_DEBUG_MUTEXES
637 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
638 #endif
639 		if (lock->ctx->acquired > 0)
640 			lock->ctx->acquired--;
641 		lock->ctx = NULL;
642 	}
643 
644 	mutex_unlock(&lock->base);
645 }
646 EXPORT_SYMBOL(ww_mutex_unlock);
647 
648 static inline int __sched
649 __ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter,
650 			    struct ww_acquire_ctx *ctx)
651 {
652 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
653 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
654 	struct mutex_waiter *cur;
655 
656 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
657 		goto deadlock;
658 
659 	/*
660 	 * If there is a waiter in front of us that has a context, then its
661 	 * stamp is earlier than ours and we must back off.
662 	 */
663 	cur = waiter;
664 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
665 		if (cur->ww_ctx)
666 			goto deadlock;
667 	}
668 
669 	return 0;
670 
671 deadlock:
672 #ifdef CONFIG_DEBUG_MUTEXES
673 	DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
674 	ctx->contending_lock = ww;
675 #endif
676 	return -EDEADLK;
677 }
678 
679 static inline int __sched
680 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
681 		      struct mutex *lock,
682 		      struct ww_acquire_ctx *ww_ctx)
683 {
684 	struct mutex_waiter *cur;
685 	struct list_head *pos;
686 
687 	if (!ww_ctx) {
688 		list_add_tail(&waiter->list, &lock->wait_list);
689 		return 0;
690 	}
691 
692 	/*
693 	 * Add the waiter before the first waiter with a higher stamp.
694 	 * Waiters without a context are skipped to avoid starving
695 	 * them.
696 	 */
697 	pos = &lock->wait_list;
698 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
699 		if (!cur->ww_ctx)
700 			continue;
701 
702 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
703 			/* Back off immediately if necessary. */
704 			if (ww_ctx->acquired > 0) {
705 #ifdef CONFIG_DEBUG_MUTEXES
706 				struct ww_mutex *ww;
707 
708 				ww = container_of(lock, struct ww_mutex, base);
709 				DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
710 				ww_ctx->contending_lock = ww;
711 #endif
712 				return -EDEADLK;
713 			}
714 
715 			break;
716 		}
717 
718 		pos = &cur->list;
719 
720 		/*
721 		 * Wake up the waiter so that it gets a chance to back
722 		 * off.
723 		 */
724 		if (cur->ww_ctx->acquired > 0) {
725 			debug_mutex_wake_waiter(lock, cur);
726 			wake_up_process(cur->task);
727 		}
728 	}
729 
730 	list_add_tail(&waiter->list, pos);
731 	return 0;
732 }
733 
734 /*
735  * Lock a mutex (possibly interruptible), slowpath:
736  */
737 static __always_inline int __sched
738 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
739 		    struct lockdep_map *nest_lock, unsigned long ip,
740 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
741 {
742 	struct mutex_waiter waiter;
743 	unsigned long flags;
744 	bool first = false;
745 	struct ww_mutex *ww;
746 	int ret;
747 
748 	might_sleep();
749 
750 	ww = container_of(lock, struct ww_mutex, base);
751 	if (use_ww_ctx && ww_ctx) {
752 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
753 			return -EALREADY;
754 	}
755 
756 	preempt_disable();
757 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
758 
759 	if (__mutex_trylock(lock) ||
760 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
761 		/* got the lock, yay! */
762 		lock_acquired(&lock->dep_map, ip);
763 		if (use_ww_ctx && ww_ctx)
764 			ww_mutex_set_context_fastpath(ww, ww_ctx);
765 		preempt_enable();
766 		return 0;
767 	}
768 
769 	spin_lock_mutex(&lock->wait_lock, flags);
770 	/*
771 	 * After waiting to acquire the wait_lock, try again.
772 	 */
773 	if (__mutex_trylock(lock)) {
774 		if (use_ww_ctx && ww_ctx)
775 			__ww_mutex_wakeup_for_backoff(lock, ww_ctx);
776 
777 		goto skip_wait;
778 	}
779 
780 	debug_mutex_lock_common(lock, &waiter);
781 	debug_mutex_add_waiter(lock, &waiter, current);
782 
783 	lock_contended(&lock->dep_map, ip);
784 
785 	if (!use_ww_ctx) {
786 		/* add waiting tasks to the end of the waitqueue (FIFO): */
787 		list_add_tail(&waiter.list, &lock->wait_list);
788 
789 #ifdef CONFIG_DEBUG_MUTEXES
790 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
791 #endif
792 	} else {
793 		/* Add in stamp order, waking up waiters that must back off. */
794 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
795 		if (ret)
796 			goto err_early_backoff;
797 
798 		waiter.ww_ctx = ww_ctx;
799 	}
800 
801 	waiter.task = current;
802 
803 	if (__mutex_waiter_is_first(lock, &waiter))
804 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
805 
806 	set_current_state(state);
807 	for (;;) {
808 		/*
809 		 * Once we hold wait_lock, we're serialized against
810 		 * mutex_unlock() handing the lock off to us, do a trylock
811 		 * before testing the error conditions to make sure we pick up
812 		 * the handoff.
813 		 */
814 		if (__mutex_trylock(lock))
815 			goto acquired;
816 
817 		/*
818 		 * Check for signals and wound conditions while holding
819 		 * wait_lock. This ensures the lock cancellation is ordered
820 		 * against mutex_unlock() and wake-ups do not go missing.
821 		 */
822 		if (unlikely(signal_pending_state(state, current))) {
823 			ret = -EINTR;
824 			goto err;
825 		}
826 
827 		if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) {
828 			ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx);
829 			if (ret)
830 				goto err;
831 		}
832 
833 		spin_unlock_mutex(&lock->wait_lock, flags);
834 		schedule_preempt_disabled();
835 
836 		/*
837 		 * ww_mutex needs to always recheck its position since its waiter
838 		 * list is not FIFO ordered.
839 		 */
840 		if ((use_ww_ctx && ww_ctx) || !first) {
841 			first = __mutex_waiter_is_first(lock, &waiter);
842 			if (first)
843 				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
844 		}
845 
846 		set_current_state(state);
847 		/*
848 		 * Here we order against unlock; we must either see it change
849 		 * state back to RUNNING and fall through the next schedule(),
850 		 * or we must see its unlock and acquire.
851 		 */
852 		if (__mutex_trylock(lock) ||
853 		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
854 			break;
855 
856 		spin_lock_mutex(&lock->wait_lock, flags);
857 	}
858 	spin_lock_mutex(&lock->wait_lock, flags);
859 acquired:
860 	__set_current_state(TASK_RUNNING);
861 
862 	mutex_remove_waiter(lock, &waiter, current);
863 	if (likely(list_empty(&lock->wait_list)))
864 		__mutex_clear_flag(lock, MUTEX_FLAGS);
865 
866 	debug_mutex_free_waiter(&waiter);
867 
868 skip_wait:
869 	/* got the lock - cleanup and rejoice! */
870 	lock_acquired(&lock->dep_map, ip);
871 
872 	if (use_ww_ctx && ww_ctx)
873 		ww_mutex_set_context_slowpath(ww, ww_ctx);
874 
875 	spin_unlock_mutex(&lock->wait_lock, flags);
876 	preempt_enable();
877 	return 0;
878 
879 err:
880 	__set_current_state(TASK_RUNNING);
881 	mutex_remove_waiter(lock, &waiter, current);
882 err_early_backoff:
883 	spin_unlock_mutex(&lock->wait_lock, flags);
884 	debug_mutex_free_waiter(&waiter);
885 	mutex_release(&lock->dep_map, 1, ip);
886 	preempt_enable();
887 	return ret;
888 }
889 
890 static int __sched
891 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
892 	     struct lockdep_map *nest_lock, unsigned long ip)
893 {
894 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
895 }
896 
897 static int __sched
898 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
899 		struct lockdep_map *nest_lock, unsigned long ip,
900 		struct ww_acquire_ctx *ww_ctx)
901 {
902 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
903 }
904 
905 #ifdef CONFIG_DEBUG_LOCK_ALLOC
906 void __sched
907 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
908 {
909 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
910 }
911 
912 EXPORT_SYMBOL_GPL(mutex_lock_nested);
913 
914 void __sched
915 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
916 {
917 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
918 }
919 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
920 
921 int __sched
922 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
923 {
924 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
925 }
926 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
927 
928 int __sched
929 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
930 {
931 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
932 }
933 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
934 
935 static inline int
936 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
937 {
938 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
939 	unsigned tmp;
940 
941 	if (ctx->deadlock_inject_countdown-- == 0) {
942 		tmp = ctx->deadlock_inject_interval;
943 		if (tmp > UINT_MAX/4)
944 			tmp = UINT_MAX;
945 		else
946 			tmp = tmp*2 + tmp + tmp/2;
947 
948 		ctx->deadlock_inject_interval = tmp;
949 		ctx->deadlock_inject_countdown = tmp;
950 		ctx->contending_lock = lock;
951 
952 		ww_mutex_unlock(lock);
953 
954 		return -EDEADLK;
955 	}
956 #endif
957 
958 	return 0;
959 }
960 
961 int __sched
962 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
963 {
964 	int ret;
965 
966 	might_sleep();
967 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
968 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
969 			       ctx);
970 	if (!ret && ctx && ctx->acquired > 1)
971 		return ww_mutex_deadlock_injection(lock, ctx);
972 
973 	return ret;
974 }
975 EXPORT_SYMBOL_GPL(ww_mutex_lock);
976 
977 int __sched
978 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
979 {
980 	int ret;
981 
982 	might_sleep();
983 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
984 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
985 			      ctx);
986 
987 	if (!ret && ctx && ctx->acquired > 1)
988 		return ww_mutex_deadlock_injection(lock, ctx);
989 
990 	return ret;
991 }
992 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
993 
994 #endif
995 
996 /*
997  * Release the lock, slowpath:
998  */
999 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1000 {
1001 	struct task_struct *next = NULL;
1002 	unsigned long owner, flags;
1003 	DEFINE_WAKE_Q(wake_q);
1004 
1005 	mutex_release(&lock->dep_map, 1, ip);
1006 
1007 	/*
1008 	 * Release the lock before (potentially) taking the spinlock such that
1009 	 * other contenders can get on with things ASAP.
1010 	 *
1011 	 * Except when HANDOFF, in that case we must not clear the owner field,
1012 	 * but instead set it to the top waiter.
1013 	 */
1014 	owner = atomic_long_read(&lock->owner);
1015 	for (;;) {
1016 		unsigned long old;
1017 
1018 #ifdef CONFIG_DEBUG_MUTEXES
1019 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1020 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1021 #endif
1022 
1023 		if (owner & MUTEX_FLAG_HANDOFF)
1024 			break;
1025 
1026 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1027 						  __owner_flags(owner));
1028 		if (old == owner) {
1029 			if (owner & MUTEX_FLAG_WAITERS)
1030 				break;
1031 
1032 			return;
1033 		}
1034 
1035 		owner = old;
1036 	}
1037 
1038 	spin_lock_mutex(&lock->wait_lock, flags);
1039 	debug_mutex_unlock(lock);
1040 	if (!list_empty(&lock->wait_list)) {
1041 		/* get the first entry from the wait-list: */
1042 		struct mutex_waiter *waiter =
1043 			list_first_entry(&lock->wait_list,
1044 					 struct mutex_waiter, list);
1045 
1046 		next = waiter->task;
1047 
1048 		debug_mutex_wake_waiter(lock, waiter);
1049 		wake_q_add(&wake_q, next);
1050 	}
1051 
1052 	if (owner & MUTEX_FLAG_HANDOFF)
1053 		__mutex_handoff(lock, next);
1054 
1055 	spin_unlock_mutex(&lock->wait_lock, flags);
1056 
1057 	wake_up_q(&wake_q);
1058 }
1059 
1060 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1061 /*
1062  * Here come the less common (and hence less performance-critical) APIs:
1063  * mutex_lock_interruptible() and mutex_trylock().
1064  */
1065 static noinline int __sched
1066 __mutex_lock_killable_slowpath(struct mutex *lock);
1067 
1068 static noinline int __sched
1069 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1070 
1071 /**
1072  * mutex_lock_interruptible - acquire the mutex, interruptible
1073  * @lock: the mutex to be acquired
1074  *
1075  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
1076  * been acquired or sleep until the mutex becomes available. If a
1077  * signal arrives while waiting for the lock then this function
1078  * returns -EINTR.
1079  *
1080  * This function is similar to (but not equivalent to) down_interruptible().
1081  */
1082 int __sched mutex_lock_interruptible(struct mutex *lock)
1083 {
1084 	might_sleep();
1085 
1086 	if (__mutex_trylock_fast(lock))
1087 		return 0;
1088 
1089 	return __mutex_lock_interruptible_slowpath(lock);
1090 }
1091 
1092 EXPORT_SYMBOL(mutex_lock_interruptible);
1093 
1094 int __sched mutex_lock_killable(struct mutex *lock)
1095 {
1096 	might_sleep();
1097 
1098 	if (__mutex_trylock_fast(lock))
1099 		return 0;
1100 
1101 	return __mutex_lock_killable_slowpath(lock);
1102 }
1103 EXPORT_SYMBOL(mutex_lock_killable);
1104 
1105 static noinline void __sched
1106 __mutex_lock_slowpath(struct mutex *lock)
1107 {
1108 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1109 }
1110 
1111 static noinline int __sched
1112 __mutex_lock_killable_slowpath(struct mutex *lock)
1113 {
1114 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1115 }
1116 
1117 static noinline int __sched
1118 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1119 {
1120 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1121 }
1122 
1123 static noinline int __sched
1124 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1125 {
1126 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1127 			       _RET_IP_, ctx);
1128 }
1129 
1130 static noinline int __sched
1131 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1132 					    struct ww_acquire_ctx *ctx)
1133 {
1134 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1135 			       _RET_IP_, ctx);
1136 }
1137 
1138 #endif
1139 
1140 /**
1141  * mutex_trylock - try to acquire the mutex, without waiting
1142  * @lock: the mutex to be acquired
1143  *
1144  * Try to acquire the mutex atomically. Returns 1 if the mutex
1145  * has been acquired successfully, and 0 on contention.
1146  *
1147  * NOTE: this function follows the spin_trylock() convention, so
1148  * it is negated from the down_trylock() return values! Be careful
1149  * about this when converting semaphore users to mutexes.
1150  *
1151  * This function must not be used in interrupt context. The
1152  * mutex must be released by the same task that acquired it.
1153  */
1154 int __sched mutex_trylock(struct mutex *lock)
1155 {
1156 	bool locked = __mutex_trylock(lock);
1157 
1158 	if (locked)
1159 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1160 
1161 	return locked;
1162 }
1163 EXPORT_SYMBOL(mutex_trylock);
1164 
1165 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1166 int __sched
1167 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1168 {
1169 	might_sleep();
1170 
1171 	if (__mutex_trylock_fast(&lock->base)) {
1172 		if (ctx)
1173 			ww_mutex_set_context_fastpath(lock, ctx);
1174 		return 0;
1175 	}
1176 
1177 	return __ww_mutex_lock_slowpath(lock, ctx);
1178 }
1179 EXPORT_SYMBOL(ww_mutex_lock);
1180 
1181 int __sched
1182 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1183 {
1184 	might_sleep();
1185 
1186 	if (__mutex_trylock_fast(&lock->base)) {
1187 		if (ctx)
1188 			ww_mutex_set_context_fastpath(lock, ctx);
1189 		return 0;
1190 	}
1191 
1192 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1193 }
1194 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1195 
1196 #endif
1197 
1198 /**
1199  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1200  * @cnt: the atomic which we are to dec
1201  * @lock: the mutex to return holding if we dec to 0
1202  *
1203  * return true and hold lock if we dec to 0, return false otherwise
1204  */
1205 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1206 {
1207 	/* dec if we can't possibly hit 0 */
1208 	if (atomic_add_unless(cnt, -1, 1))
1209 		return 0;
1210 	/* we might hit 0, so take the lock */
1211 	mutex_lock(lock);
1212 	if (!atomic_dec_and_test(cnt)) {
1213 		/* when we actually did the dec, we didn't hit 0 */
1214 		mutex_unlock(lock);
1215 		return 0;
1216 	}
1217 	/* we hit 0, and we hold the lock */
1218 	return 1;
1219 }
1220 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1221