1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #include "mutex.h" 34 35 #ifdef CONFIG_DEBUG_MUTEXES 36 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 37 #else 38 # define MUTEX_WARN_ON(cond) 39 #endif 40 41 void 42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 43 { 44 atomic_long_set(&lock->owner, 0); 45 raw_spin_lock_init(&lock->wait_lock); 46 INIT_LIST_HEAD(&lock->wait_list); 47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 48 osq_lock_init(&lock->osq); 49 #endif 50 51 debug_mutex_init(lock, name, key); 52 } 53 EXPORT_SYMBOL(__mutex_init); 54 55 /* 56 * @owner: contains: 'struct task_struct *' to the current lock owner, 57 * NULL means not owned. Since task_struct pointers are aligned at 58 * at least L1_CACHE_BYTES, we have low bits to store extra state. 59 * 60 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 61 * Bit1 indicates unlock needs to hand the lock to the top-waiter 62 * Bit2 indicates handoff has been done and we're waiting for pickup. 63 */ 64 #define MUTEX_FLAG_WAITERS 0x01 65 #define MUTEX_FLAG_HANDOFF 0x02 66 #define MUTEX_FLAG_PICKUP 0x04 67 68 #define MUTEX_FLAGS 0x07 69 70 /* 71 * Internal helper function; C doesn't allow us to hide it :/ 72 * 73 * DO NOT USE (outside of mutex code). 74 */ 75 static inline struct task_struct *__mutex_owner(struct mutex *lock) 76 { 77 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 78 } 79 80 static inline struct task_struct *__owner_task(unsigned long owner) 81 { 82 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 83 } 84 85 bool mutex_is_locked(struct mutex *lock) 86 { 87 return __mutex_owner(lock) != NULL; 88 } 89 EXPORT_SYMBOL(mutex_is_locked); 90 91 static inline unsigned long __owner_flags(unsigned long owner) 92 { 93 return owner & MUTEX_FLAGS; 94 } 95 96 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 97 { 98 unsigned long owner, curr = (unsigned long)current; 99 100 owner = atomic_long_read(&lock->owner); 101 for (;;) { /* must loop, can race against a flag */ 102 unsigned long flags = __owner_flags(owner); 103 unsigned long task = owner & ~MUTEX_FLAGS; 104 105 if (task) { 106 if (flags & MUTEX_FLAG_PICKUP) { 107 if (task != curr) 108 break; 109 flags &= ~MUTEX_FLAG_PICKUP; 110 } else if (handoff) { 111 if (flags & MUTEX_FLAG_HANDOFF) 112 break; 113 flags |= MUTEX_FLAG_HANDOFF; 114 } else { 115 break; 116 } 117 } else { 118 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 119 task = curr; 120 } 121 122 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 123 if (task == curr) 124 return NULL; 125 break; 126 } 127 } 128 129 return __owner_task(owner); 130 } 131 132 /* 133 * Trylock or set HANDOFF 134 */ 135 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 136 { 137 return !__mutex_trylock_common(lock, handoff); 138 } 139 140 /* 141 * Actual trylock that will work on any unlocked state. 142 */ 143 static inline bool __mutex_trylock(struct mutex *lock) 144 { 145 return !__mutex_trylock_common(lock, false); 146 } 147 148 #ifndef CONFIG_DEBUG_LOCK_ALLOC 149 /* 150 * Lockdep annotations are contained to the slow paths for simplicity. 151 * There is nothing that would stop spreading the lockdep annotations outwards 152 * except more code. 153 */ 154 155 /* 156 * Optimistic trylock that only works in the uncontended case. Make sure to 157 * follow with a __mutex_trylock() before failing. 158 */ 159 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 160 { 161 unsigned long curr = (unsigned long)current; 162 unsigned long zero = 0UL; 163 164 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 165 return true; 166 167 return false; 168 } 169 170 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 171 { 172 unsigned long curr = (unsigned long)current; 173 174 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 175 } 176 #endif 177 178 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 179 { 180 atomic_long_or(flag, &lock->owner); 181 } 182 183 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 184 { 185 atomic_long_andnot(flag, &lock->owner); 186 } 187 188 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 189 { 190 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 191 } 192 193 /* 194 * Add @waiter to a given location in the lock wait_list and set the 195 * FLAG_WAITERS flag if it's the first waiter. 196 */ 197 static void 198 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 199 struct list_head *list) 200 { 201 debug_mutex_add_waiter(lock, waiter, current); 202 203 list_add_tail(&waiter->list, list); 204 if (__mutex_waiter_is_first(lock, waiter)) 205 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 206 } 207 208 static void 209 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 210 { 211 list_del(&waiter->list); 212 if (likely(list_empty(&lock->wait_list))) 213 __mutex_clear_flag(lock, MUTEX_FLAGS); 214 215 debug_mutex_remove_waiter(lock, waiter, current); 216 } 217 218 /* 219 * Give up ownership to a specific task, when @task = NULL, this is equivalent 220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 221 * WAITERS. Provides RELEASE semantics like a regular unlock, the 222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 223 */ 224 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 225 { 226 unsigned long owner = atomic_long_read(&lock->owner); 227 228 for (;;) { 229 unsigned long new; 230 231 MUTEX_WARN_ON(__owner_task(owner) != current); 232 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 233 234 new = (owner & MUTEX_FLAG_WAITERS); 235 new |= (unsigned long)task; 236 if (task) 237 new |= MUTEX_FLAG_PICKUP; 238 239 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 240 break; 241 } 242 } 243 244 #ifndef CONFIG_DEBUG_LOCK_ALLOC 245 /* 246 * We split the mutex lock/unlock logic into separate fastpath and 247 * slowpath functions, to reduce the register pressure on the fastpath. 248 * We also put the fastpath first in the kernel image, to make sure the 249 * branch is predicted by the CPU as default-untaken. 250 */ 251 static void __sched __mutex_lock_slowpath(struct mutex *lock); 252 253 /** 254 * mutex_lock - acquire the mutex 255 * @lock: the mutex to be acquired 256 * 257 * Lock the mutex exclusively for this task. If the mutex is not 258 * available right now, it will sleep until it can get it. 259 * 260 * The mutex must later on be released by the same task that 261 * acquired it. Recursive locking is not allowed. The task 262 * may not exit without first unlocking the mutex. Also, kernel 263 * memory where the mutex resides must not be freed with 264 * the mutex still locked. The mutex must first be initialized 265 * (or statically defined) before it can be locked. memset()-ing 266 * the mutex to 0 is not allowed. 267 * 268 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 269 * checks that will enforce the restrictions and will also do 270 * deadlock debugging) 271 * 272 * This function is similar to (but not equivalent to) down(). 273 */ 274 void __sched mutex_lock(struct mutex *lock) 275 { 276 might_sleep(); 277 278 if (!__mutex_trylock_fast(lock)) 279 __mutex_lock_slowpath(lock); 280 } 281 EXPORT_SYMBOL(mutex_lock); 282 #endif 283 284 #include "ww_mutex.h" 285 286 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 287 288 /* 289 * Trylock variant that returns the owning task on failure. 290 */ 291 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 292 { 293 return __mutex_trylock_common(lock, false); 294 } 295 296 static inline 297 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 298 struct mutex_waiter *waiter) 299 { 300 struct ww_mutex *ww; 301 302 ww = container_of(lock, struct ww_mutex, base); 303 304 /* 305 * If ww->ctx is set the contents are undefined, only 306 * by acquiring wait_lock there is a guarantee that 307 * they are not invalid when reading. 308 * 309 * As such, when deadlock detection needs to be 310 * performed the optimistic spinning cannot be done. 311 * 312 * Check this in every inner iteration because we may 313 * be racing against another thread's ww_mutex_lock. 314 */ 315 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 316 return false; 317 318 /* 319 * If we aren't on the wait list yet, cancel the spin 320 * if there are waiters. We want to avoid stealing the 321 * lock from a waiter with an earlier stamp, since the 322 * other thread may already own a lock that we also 323 * need. 324 */ 325 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 326 return false; 327 328 /* 329 * Similarly, stop spinning if we are no longer the 330 * first waiter. 331 */ 332 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 333 return false; 334 335 return true; 336 } 337 338 /* 339 * Look out! "owner" is an entirely speculative pointer access and not 340 * reliable. 341 * 342 * "noinline" so that this function shows up on perf profiles. 343 */ 344 static noinline 345 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 346 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 347 { 348 bool ret = true; 349 350 rcu_read_lock(); 351 while (__mutex_owner(lock) == owner) { 352 /* 353 * Ensure we emit the owner->on_cpu, dereference _after_ 354 * checking lock->owner still matches owner. If that fails, 355 * owner might point to freed memory. If it still matches, 356 * the rcu_read_lock() ensures the memory stays valid. 357 */ 358 barrier(); 359 360 /* 361 * Use vcpu_is_preempted to detect lock holder preemption issue. 362 */ 363 if (!owner->on_cpu || need_resched() || 364 vcpu_is_preempted(task_cpu(owner))) { 365 ret = false; 366 break; 367 } 368 369 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 370 ret = false; 371 break; 372 } 373 374 cpu_relax(); 375 } 376 rcu_read_unlock(); 377 378 return ret; 379 } 380 381 /* 382 * Initial check for entering the mutex spinning loop 383 */ 384 static inline int mutex_can_spin_on_owner(struct mutex *lock) 385 { 386 struct task_struct *owner; 387 int retval = 1; 388 389 if (need_resched()) 390 return 0; 391 392 rcu_read_lock(); 393 owner = __mutex_owner(lock); 394 395 /* 396 * As lock holder preemption issue, we both skip spinning if task is not 397 * on cpu or its cpu is preempted 398 */ 399 if (owner) 400 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 401 rcu_read_unlock(); 402 403 /* 404 * If lock->owner is not set, the mutex has been released. Return true 405 * such that we'll trylock in the spin path, which is a faster option 406 * than the blocking slow path. 407 */ 408 return retval; 409 } 410 411 /* 412 * Optimistic spinning. 413 * 414 * We try to spin for acquisition when we find that the lock owner 415 * is currently running on a (different) CPU and while we don't 416 * need to reschedule. The rationale is that if the lock owner is 417 * running, it is likely to release the lock soon. 418 * 419 * The mutex spinners are queued up using MCS lock so that only one 420 * spinner can compete for the mutex. However, if mutex spinning isn't 421 * going to happen, there is no point in going through the lock/unlock 422 * overhead. 423 * 424 * Returns true when the lock was taken, otherwise false, indicating 425 * that we need to jump to the slowpath and sleep. 426 * 427 * The waiter flag is set to true if the spinner is a waiter in the wait 428 * queue. The waiter-spinner will spin on the lock directly and concurrently 429 * with the spinner at the head of the OSQ, if present, until the owner is 430 * changed to itself. 431 */ 432 static __always_inline bool 433 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 434 struct mutex_waiter *waiter) 435 { 436 if (!waiter) { 437 /* 438 * The purpose of the mutex_can_spin_on_owner() function is 439 * to eliminate the overhead of osq_lock() and osq_unlock() 440 * in case spinning isn't possible. As a waiter-spinner 441 * is not going to take OSQ lock anyway, there is no need 442 * to call mutex_can_spin_on_owner(). 443 */ 444 if (!mutex_can_spin_on_owner(lock)) 445 goto fail; 446 447 /* 448 * In order to avoid a stampede of mutex spinners trying to 449 * acquire the mutex all at once, the spinners need to take a 450 * MCS (queued) lock first before spinning on the owner field. 451 */ 452 if (!osq_lock(&lock->osq)) 453 goto fail; 454 } 455 456 for (;;) { 457 struct task_struct *owner; 458 459 /* Try to acquire the mutex... */ 460 owner = __mutex_trylock_or_owner(lock); 461 if (!owner) 462 break; 463 464 /* 465 * There's an owner, wait for it to either 466 * release the lock or go to sleep. 467 */ 468 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 469 goto fail_unlock; 470 471 /* 472 * The cpu_relax() call is a compiler barrier which forces 473 * everything in this loop to be re-loaded. We don't need 474 * memory barriers as we'll eventually observe the right 475 * values at the cost of a few extra spins. 476 */ 477 cpu_relax(); 478 } 479 480 if (!waiter) 481 osq_unlock(&lock->osq); 482 483 return true; 484 485 486 fail_unlock: 487 if (!waiter) 488 osq_unlock(&lock->osq); 489 490 fail: 491 /* 492 * If we fell out of the spin path because of need_resched(), 493 * reschedule now, before we try-lock the mutex. This avoids getting 494 * scheduled out right after we obtained the mutex. 495 */ 496 if (need_resched()) { 497 /* 498 * We _should_ have TASK_RUNNING here, but just in case 499 * we do not, make it so, otherwise we might get stuck. 500 */ 501 __set_current_state(TASK_RUNNING); 502 schedule_preempt_disabled(); 503 } 504 505 return false; 506 } 507 #else 508 static __always_inline bool 509 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 510 struct mutex_waiter *waiter) 511 { 512 return false; 513 } 514 #endif 515 516 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 517 518 /** 519 * mutex_unlock - release the mutex 520 * @lock: the mutex to be released 521 * 522 * Unlock a mutex that has been locked by this task previously. 523 * 524 * This function must not be used in interrupt context. Unlocking 525 * of a not locked mutex is not allowed. 526 * 527 * This function is similar to (but not equivalent to) up(). 528 */ 529 void __sched mutex_unlock(struct mutex *lock) 530 { 531 #ifndef CONFIG_DEBUG_LOCK_ALLOC 532 if (__mutex_unlock_fast(lock)) 533 return; 534 #endif 535 __mutex_unlock_slowpath(lock, _RET_IP_); 536 } 537 EXPORT_SYMBOL(mutex_unlock); 538 539 /** 540 * ww_mutex_unlock - release the w/w mutex 541 * @lock: the mutex to be released 542 * 543 * Unlock a mutex that has been locked by this task previously with any of the 544 * ww_mutex_lock* functions (with or without an acquire context). It is 545 * forbidden to release the locks after releasing the acquire context. 546 * 547 * This function must not be used in interrupt context. Unlocking 548 * of a unlocked mutex is not allowed. 549 */ 550 void __sched ww_mutex_unlock(struct ww_mutex *lock) 551 { 552 __ww_mutex_unlock(lock); 553 mutex_unlock(&lock->base); 554 } 555 EXPORT_SYMBOL(ww_mutex_unlock); 556 557 /* 558 * Lock a mutex (possibly interruptible), slowpath: 559 */ 560 static __always_inline int __sched 561 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 562 struct lockdep_map *nest_lock, unsigned long ip, 563 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 564 { 565 struct mutex_waiter waiter; 566 struct ww_mutex *ww; 567 int ret; 568 569 if (!use_ww_ctx) 570 ww_ctx = NULL; 571 572 might_sleep(); 573 574 MUTEX_WARN_ON(lock->magic != lock); 575 576 ww = container_of(lock, struct ww_mutex, base); 577 if (ww_ctx) { 578 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 579 return -EALREADY; 580 581 /* 582 * Reset the wounded flag after a kill. No other process can 583 * race and wound us here since they can't have a valid owner 584 * pointer if we don't have any locks held. 585 */ 586 if (ww_ctx->acquired == 0) 587 ww_ctx->wounded = 0; 588 589 #ifdef CONFIG_DEBUG_LOCK_ALLOC 590 nest_lock = &ww_ctx->dep_map; 591 #endif 592 } 593 594 preempt_disable(); 595 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 596 597 if (__mutex_trylock(lock) || 598 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 599 /* got the lock, yay! */ 600 lock_acquired(&lock->dep_map, ip); 601 if (ww_ctx) 602 ww_mutex_set_context_fastpath(ww, ww_ctx); 603 preempt_enable(); 604 return 0; 605 } 606 607 raw_spin_lock(&lock->wait_lock); 608 /* 609 * After waiting to acquire the wait_lock, try again. 610 */ 611 if (__mutex_trylock(lock)) { 612 if (ww_ctx) 613 __ww_mutex_check_waiters(lock, ww_ctx); 614 615 goto skip_wait; 616 } 617 618 debug_mutex_lock_common(lock, &waiter); 619 waiter.task = current; 620 if (ww_ctx) 621 waiter.ww_ctx = ww_ctx; 622 623 lock_contended(&lock->dep_map, ip); 624 625 if (!use_ww_ctx) { 626 /* add waiting tasks to the end of the waitqueue (FIFO): */ 627 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 628 } else { 629 /* 630 * Add in stamp order, waking up waiters that must kill 631 * themselves. 632 */ 633 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 634 if (ret) 635 goto err_early_kill; 636 } 637 638 set_current_state(state); 639 for (;;) { 640 bool first; 641 642 /* 643 * Once we hold wait_lock, we're serialized against 644 * mutex_unlock() handing the lock off to us, do a trylock 645 * before testing the error conditions to make sure we pick up 646 * the handoff. 647 */ 648 if (__mutex_trylock(lock)) 649 goto acquired; 650 651 /* 652 * Check for signals and kill conditions while holding 653 * wait_lock. This ensures the lock cancellation is ordered 654 * against mutex_unlock() and wake-ups do not go missing. 655 */ 656 if (signal_pending_state(state, current)) { 657 ret = -EINTR; 658 goto err; 659 } 660 661 if (ww_ctx) { 662 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 663 if (ret) 664 goto err; 665 } 666 667 raw_spin_unlock(&lock->wait_lock); 668 schedule_preempt_disabled(); 669 670 first = __mutex_waiter_is_first(lock, &waiter); 671 672 set_current_state(state); 673 /* 674 * Here we order against unlock; we must either see it change 675 * state back to RUNNING and fall through the next schedule(), 676 * or we must see its unlock and acquire. 677 */ 678 if (__mutex_trylock_or_handoff(lock, first) || 679 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter))) 680 break; 681 682 raw_spin_lock(&lock->wait_lock); 683 } 684 raw_spin_lock(&lock->wait_lock); 685 acquired: 686 __set_current_state(TASK_RUNNING); 687 688 if (ww_ctx) { 689 /* 690 * Wound-Wait; we stole the lock (!first_waiter), check the 691 * waiters as anyone might want to wound us. 692 */ 693 if (!ww_ctx->is_wait_die && 694 !__mutex_waiter_is_first(lock, &waiter)) 695 __ww_mutex_check_waiters(lock, ww_ctx); 696 } 697 698 __mutex_remove_waiter(lock, &waiter); 699 700 debug_mutex_free_waiter(&waiter); 701 702 skip_wait: 703 /* got the lock - cleanup and rejoice! */ 704 lock_acquired(&lock->dep_map, ip); 705 706 if (ww_ctx) 707 ww_mutex_lock_acquired(ww, ww_ctx); 708 709 raw_spin_unlock(&lock->wait_lock); 710 preempt_enable(); 711 return 0; 712 713 err: 714 __set_current_state(TASK_RUNNING); 715 __mutex_remove_waiter(lock, &waiter); 716 err_early_kill: 717 raw_spin_unlock(&lock->wait_lock); 718 debug_mutex_free_waiter(&waiter); 719 mutex_release(&lock->dep_map, ip); 720 preempt_enable(); 721 return ret; 722 } 723 724 static int __sched 725 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 726 struct lockdep_map *nest_lock, unsigned long ip) 727 { 728 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 729 } 730 731 static int __sched 732 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 733 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 734 { 735 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 736 } 737 738 #ifdef CONFIG_DEBUG_LOCK_ALLOC 739 void __sched 740 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 741 { 742 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 743 } 744 745 EXPORT_SYMBOL_GPL(mutex_lock_nested); 746 747 void __sched 748 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 749 { 750 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 751 } 752 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 753 754 int __sched 755 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 756 { 757 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 758 } 759 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 760 761 int __sched 762 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 763 { 764 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 765 } 766 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 767 768 void __sched 769 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 770 { 771 int token; 772 773 might_sleep(); 774 775 token = io_schedule_prepare(); 776 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 777 subclass, NULL, _RET_IP_, NULL, 0); 778 io_schedule_finish(token); 779 } 780 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 781 782 static inline int 783 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 784 { 785 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 786 unsigned tmp; 787 788 if (ctx->deadlock_inject_countdown-- == 0) { 789 tmp = ctx->deadlock_inject_interval; 790 if (tmp > UINT_MAX/4) 791 tmp = UINT_MAX; 792 else 793 tmp = tmp*2 + tmp + tmp/2; 794 795 ctx->deadlock_inject_interval = tmp; 796 ctx->deadlock_inject_countdown = tmp; 797 ctx->contending_lock = lock; 798 799 ww_mutex_unlock(lock); 800 801 return -EDEADLK; 802 } 803 #endif 804 805 return 0; 806 } 807 808 int __sched 809 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 810 { 811 int ret; 812 813 might_sleep(); 814 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 815 0, _RET_IP_, ctx); 816 if (!ret && ctx && ctx->acquired > 1) 817 return ww_mutex_deadlock_injection(lock, ctx); 818 819 return ret; 820 } 821 EXPORT_SYMBOL_GPL(ww_mutex_lock); 822 823 int __sched 824 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 825 { 826 int ret; 827 828 might_sleep(); 829 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 830 0, _RET_IP_, ctx); 831 832 if (!ret && ctx && ctx->acquired > 1) 833 return ww_mutex_deadlock_injection(lock, ctx); 834 835 return ret; 836 } 837 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 838 839 #endif 840 841 /* 842 * Release the lock, slowpath: 843 */ 844 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 845 { 846 struct task_struct *next = NULL; 847 DEFINE_WAKE_Q(wake_q); 848 unsigned long owner; 849 850 mutex_release(&lock->dep_map, ip); 851 852 /* 853 * Release the lock before (potentially) taking the spinlock such that 854 * other contenders can get on with things ASAP. 855 * 856 * Except when HANDOFF, in that case we must not clear the owner field, 857 * but instead set it to the top waiter. 858 */ 859 owner = atomic_long_read(&lock->owner); 860 for (;;) { 861 MUTEX_WARN_ON(__owner_task(owner) != current); 862 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 863 864 if (owner & MUTEX_FLAG_HANDOFF) 865 break; 866 867 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 868 if (owner & MUTEX_FLAG_WAITERS) 869 break; 870 871 return; 872 } 873 } 874 875 raw_spin_lock(&lock->wait_lock); 876 debug_mutex_unlock(lock); 877 if (!list_empty(&lock->wait_list)) { 878 /* get the first entry from the wait-list: */ 879 struct mutex_waiter *waiter = 880 list_first_entry(&lock->wait_list, 881 struct mutex_waiter, list); 882 883 next = waiter->task; 884 885 debug_mutex_wake_waiter(lock, waiter); 886 wake_q_add(&wake_q, next); 887 } 888 889 if (owner & MUTEX_FLAG_HANDOFF) 890 __mutex_handoff(lock, next); 891 892 raw_spin_unlock(&lock->wait_lock); 893 894 wake_up_q(&wake_q); 895 } 896 897 #ifndef CONFIG_DEBUG_LOCK_ALLOC 898 /* 899 * Here come the less common (and hence less performance-critical) APIs: 900 * mutex_lock_interruptible() and mutex_trylock(). 901 */ 902 static noinline int __sched 903 __mutex_lock_killable_slowpath(struct mutex *lock); 904 905 static noinline int __sched 906 __mutex_lock_interruptible_slowpath(struct mutex *lock); 907 908 /** 909 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 910 * @lock: The mutex to be acquired. 911 * 912 * Lock the mutex like mutex_lock(). If a signal is delivered while the 913 * process is sleeping, this function will return without acquiring the 914 * mutex. 915 * 916 * Context: Process context. 917 * Return: 0 if the lock was successfully acquired or %-EINTR if a 918 * signal arrived. 919 */ 920 int __sched mutex_lock_interruptible(struct mutex *lock) 921 { 922 might_sleep(); 923 924 if (__mutex_trylock_fast(lock)) 925 return 0; 926 927 return __mutex_lock_interruptible_slowpath(lock); 928 } 929 930 EXPORT_SYMBOL(mutex_lock_interruptible); 931 932 /** 933 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 934 * @lock: The mutex to be acquired. 935 * 936 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 937 * the current process is delivered while the process is sleeping, this 938 * function will return without acquiring the mutex. 939 * 940 * Context: Process context. 941 * Return: 0 if the lock was successfully acquired or %-EINTR if a 942 * fatal signal arrived. 943 */ 944 int __sched mutex_lock_killable(struct mutex *lock) 945 { 946 might_sleep(); 947 948 if (__mutex_trylock_fast(lock)) 949 return 0; 950 951 return __mutex_lock_killable_slowpath(lock); 952 } 953 EXPORT_SYMBOL(mutex_lock_killable); 954 955 /** 956 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 957 * @lock: The mutex to be acquired. 958 * 959 * Lock the mutex like mutex_lock(). While the task is waiting for this 960 * mutex, it will be accounted as being in the IO wait state by the 961 * scheduler. 962 * 963 * Context: Process context. 964 */ 965 void __sched mutex_lock_io(struct mutex *lock) 966 { 967 int token; 968 969 token = io_schedule_prepare(); 970 mutex_lock(lock); 971 io_schedule_finish(token); 972 } 973 EXPORT_SYMBOL_GPL(mutex_lock_io); 974 975 static noinline void __sched 976 __mutex_lock_slowpath(struct mutex *lock) 977 { 978 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 979 } 980 981 static noinline int __sched 982 __mutex_lock_killable_slowpath(struct mutex *lock) 983 { 984 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 985 } 986 987 static noinline int __sched 988 __mutex_lock_interruptible_slowpath(struct mutex *lock) 989 { 990 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 991 } 992 993 static noinline int __sched 994 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 995 { 996 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 997 _RET_IP_, ctx); 998 } 999 1000 static noinline int __sched 1001 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1002 struct ww_acquire_ctx *ctx) 1003 { 1004 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1005 _RET_IP_, ctx); 1006 } 1007 1008 #endif 1009 1010 /** 1011 * mutex_trylock - try to acquire the mutex, without waiting 1012 * @lock: the mutex to be acquired 1013 * 1014 * Try to acquire the mutex atomically. Returns 1 if the mutex 1015 * has been acquired successfully, and 0 on contention. 1016 * 1017 * NOTE: this function follows the spin_trylock() convention, so 1018 * it is negated from the down_trylock() return values! Be careful 1019 * about this when converting semaphore users to mutexes. 1020 * 1021 * This function must not be used in interrupt context. The 1022 * mutex must be released by the same task that acquired it. 1023 */ 1024 int __sched mutex_trylock(struct mutex *lock) 1025 { 1026 bool locked; 1027 1028 MUTEX_WARN_ON(lock->magic != lock); 1029 1030 locked = __mutex_trylock(lock); 1031 if (locked) 1032 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1033 1034 return locked; 1035 } 1036 EXPORT_SYMBOL(mutex_trylock); 1037 1038 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1039 int __sched 1040 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1041 { 1042 might_sleep(); 1043 1044 if (__mutex_trylock_fast(&lock->base)) { 1045 if (ctx) 1046 ww_mutex_set_context_fastpath(lock, ctx); 1047 return 0; 1048 } 1049 1050 return __ww_mutex_lock_slowpath(lock, ctx); 1051 } 1052 EXPORT_SYMBOL(ww_mutex_lock); 1053 1054 int __sched 1055 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1056 { 1057 might_sleep(); 1058 1059 if (__mutex_trylock_fast(&lock->base)) { 1060 if (ctx) 1061 ww_mutex_set_context_fastpath(lock, ctx); 1062 return 0; 1063 } 1064 1065 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1066 } 1067 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1068 1069 #endif 1070 1071 /** 1072 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1073 * @cnt: the atomic which we are to dec 1074 * @lock: the mutex to return holding if we dec to 0 1075 * 1076 * return true and hold lock if we dec to 0, return false otherwise 1077 */ 1078 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1079 { 1080 /* dec if we can't possibly hit 0 */ 1081 if (atomic_add_unless(cnt, -1, 1)) 1082 return 0; 1083 /* we might hit 0, so take the lock */ 1084 mutex_lock(lock); 1085 if (!atomic_dec_and_test(cnt)) { 1086 /* when we actually did the dec, we didn't hit 0 */ 1087 mutex_unlock(lock); 1088 return 0; 1089 } 1090 /* we hit 0, and we hold the lock */ 1091 return 1; 1092 } 1093 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1094