1 /* 2 * transition.c - Kernel Live Patching transition functions 3 * 4 * Copyright (C) 2015-2016 Josh Poimboeuf <[email protected]> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/cpu.h> 23 #include <linux/stacktrace.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "transition.h" 27 #include "../sched/sched.h" 28 29 #define MAX_STACK_ENTRIES 100 30 #define STACK_ERR_BUF_SIZE 128 31 32 #define SIGNALS_TIMEOUT 15 33 34 struct klp_patch *klp_transition_patch; 35 36 static int klp_target_state = KLP_UNDEFINED; 37 38 static unsigned int klp_signals_cnt; 39 40 /* 41 * This work can be performed periodically to finish patching or unpatching any 42 * "straggler" tasks which failed to transition in the first attempt. 43 */ 44 static void klp_transition_work_fn(struct work_struct *work) 45 { 46 mutex_lock(&klp_mutex); 47 48 if (klp_transition_patch) 49 klp_try_complete_transition(); 50 51 mutex_unlock(&klp_mutex); 52 } 53 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); 54 55 /* 56 * This function is just a stub to implement a hard force 57 * of synchronize_rcu(). This requires synchronizing 58 * tasks even in userspace and idle. 59 */ 60 static void klp_sync(struct work_struct *work) 61 { 62 } 63 64 /* 65 * We allow to patch also functions where RCU is not watching, 66 * e.g. before user_exit(). We can not rely on the RCU infrastructure 67 * to do the synchronization. Instead hard force the sched synchronization. 68 * 69 * This approach allows to use RCU functions for manipulating func_stack 70 * safely. 71 */ 72 static void klp_synchronize_transition(void) 73 { 74 schedule_on_each_cpu(klp_sync); 75 } 76 77 /* 78 * The transition to the target patch state is complete. Clean up the data 79 * structures. 80 */ 81 static void klp_complete_transition(void) 82 { 83 struct klp_object *obj; 84 struct klp_func *func; 85 struct task_struct *g, *task; 86 unsigned int cpu; 87 88 pr_debug("'%s': completing %s transition\n", 89 klp_transition_patch->mod->name, 90 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 91 92 if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) { 93 klp_discard_replaced_patches(klp_transition_patch); 94 klp_discard_nops(klp_transition_patch); 95 } 96 97 if (klp_target_state == KLP_UNPATCHED) { 98 /* 99 * All tasks have transitioned to KLP_UNPATCHED so we can now 100 * remove the new functions from the func_stack. 101 */ 102 klp_unpatch_objects(klp_transition_patch); 103 104 /* 105 * Make sure klp_ftrace_handler() can no longer see functions 106 * from this patch on the ops->func_stack. Otherwise, after 107 * func->transition gets cleared, the handler may choose a 108 * removed function. 109 */ 110 klp_synchronize_transition(); 111 } 112 113 klp_for_each_object(klp_transition_patch, obj) 114 klp_for_each_func(obj, func) 115 func->transition = false; 116 117 /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */ 118 if (klp_target_state == KLP_PATCHED) 119 klp_synchronize_transition(); 120 121 read_lock(&tasklist_lock); 122 for_each_process_thread(g, task) { 123 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 124 task->patch_state = KLP_UNDEFINED; 125 } 126 read_unlock(&tasklist_lock); 127 128 for_each_possible_cpu(cpu) { 129 task = idle_task(cpu); 130 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 131 task->patch_state = KLP_UNDEFINED; 132 } 133 134 klp_for_each_object(klp_transition_patch, obj) { 135 if (!klp_is_object_loaded(obj)) 136 continue; 137 if (klp_target_state == KLP_PATCHED) 138 klp_post_patch_callback(obj); 139 else if (klp_target_state == KLP_UNPATCHED) 140 klp_post_unpatch_callback(obj); 141 } 142 143 pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, 144 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 145 146 klp_target_state = KLP_UNDEFINED; 147 klp_transition_patch = NULL; 148 } 149 150 /* 151 * This is called in the error path, to cancel a transition before it has 152 * started, i.e. klp_init_transition() has been called but 153 * klp_start_transition() hasn't. If the transition *has* been started, 154 * klp_reverse_transition() should be used instead. 155 */ 156 void klp_cancel_transition(void) 157 { 158 if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED)) 159 return; 160 161 pr_debug("'%s': canceling patching transition, going to unpatch\n", 162 klp_transition_patch->mod->name); 163 164 klp_target_state = KLP_UNPATCHED; 165 klp_complete_transition(); 166 } 167 168 /* 169 * Switch the patched state of the task to the set of functions in the target 170 * patch state. 171 * 172 * NOTE: If task is not 'current', the caller must ensure the task is inactive. 173 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. 174 */ 175 void klp_update_patch_state(struct task_struct *task) 176 { 177 /* 178 * A variant of synchronize_rcu() is used to allow patching functions 179 * where RCU is not watching, see klp_synchronize_transition(). 180 */ 181 preempt_disable_notrace(); 182 183 /* 184 * This test_and_clear_tsk_thread_flag() call also serves as a read 185 * barrier (smp_rmb) for two cases: 186 * 187 * 1) Enforce the order of the TIF_PATCH_PENDING read and the 188 * klp_target_state read. The corresponding write barrier is in 189 * klp_init_transition(). 190 * 191 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read 192 * of func->transition, if klp_ftrace_handler() is called later on 193 * the same CPU. See __klp_disable_patch(). 194 */ 195 if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) 196 task->patch_state = READ_ONCE(klp_target_state); 197 198 preempt_enable_notrace(); 199 } 200 201 /* 202 * Determine whether the given stack trace includes any references to a 203 * to-be-patched or to-be-unpatched function. 204 */ 205 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries, 206 unsigned int nr_entries) 207 { 208 unsigned long func_addr, func_size, address; 209 struct klp_ops *ops; 210 int i; 211 212 for (i = 0; i < nr_entries; i++) { 213 address = entries[i]; 214 215 if (klp_target_state == KLP_UNPATCHED) { 216 /* 217 * Check for the to-be-unpatched function 218 * (the func itself). 219 */ 220 func_addr = (unsigned long)func->new_func; 221 func_size = func->new_size; 222 } else { 223 /* 224 * Check for the to-be-patched function 225 * (the previous func). 226 */ 227 ops = klp_find_ops(func->old_func); 228 229 if (list_is_singular(&ops->func_stack)) { 230 /* original function */ 231 func_addr = (unsigned long)func->old_func; 232 func_size = func->old_size; 233 } else { 234 /* previously patched function */ 235 struct klp_func *prev; 236 237 prev = list_next_entry(func, stack_node); 238 func_addr = (unsigned long)prev->new_func; 239 func_size = prev->new_size; 240 } 241 } 242 243 if (address >= func_addr && address < func_addr + func_size) 244 return -EAGAIN; 245 } 246 247 return 0; 248 } 249 250 /* 251 * Determine whether it's safe to transition the task to the target patch state 252 * by looking for any to-be-patched or to-be-unpatched functions on its stack. 253 */ 254 static int klp_check_stack(struct task_struct *task, char *err_buf) 255 { 256 static unsigned long entries[MAX_STACK_ENTRIES]; 257 struct klp_object *obj; 258 struct klp_func *func; 259 int ret, nr_entries; 260 261 ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries)); 262 if (ret < 0) { 263 snprintf(err_buf, STACK_ERR_BUF_SIZE, 264 "%s: %s:%d has an unreliable stack\n", 265 __func__, task->comm, task->pid); 266 return ret; 267 } 268 nr_entries = ret; 269 270 klp_for_each_object(klp_transition_patch, obj) { 271 if (!obj->patched) 272 continue; 273 klp_for_each_func(obj, func) { 274 ret = klp_check_stack_func(func, entries, nr_entries); 275 if (ret) { 276 snprintf(err_buf, STACK_ERR_BUF_SIZE, 277 "%s: %s:%d is sleeping on function %s\n", 278 __func__, task->comm, task->pid, 279 func->old_name); 280 return ret; 281 } 282 } 283 } 284 285 return 0; 286 } 287 288 /* 289 * Try to safely switch a task to the target patch state. If it's currently 290 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or 291 * if the stack is unreliable, return false. 292 */ 293 static bool klp_try_switch_task(struct task_struct *task) 294 { 295 static char err_buf[STACK_ERR_BUF_SIZE]; 296 struct rq *rq; 297 struct rq_flags flags; 298 int ret; 299 bool success = false; 300 301 err_buf[0] = '\0'; 302 303 /* check if this task has already switched over */ 304 if (task->patch_state == klp_target_state) 305 return true; 306 307 /* 308 * For arches which don't have reliable stack traces, we have to rely 309 * on other methods (e.g., switching tasks at kernel exit). 310 */ 311 if (!klp_have_reliable_stack()) 312 return false; 313 314 /* 315 * Now try to check the stack for any to-be-patched or to-be-unpatched 316 * functions. If all goes well, switch the task to the target patch 317 * state. 318 */ 319 rq = task_rq_lock(task, &flags); 320 321 if (task_running(rq, task) && task != current) { 322 snprintf(err_buf, STACK_ERR_BUF_SIZE, 323 "%s: %s:%d is running\n", __func__, task->comm, 324 task->pid); 325 goto done; 326 } 327 328 ret = klp_check_stack(task, err_buf); 329 if (ret) 330 goto done; 331 332 success = true; 333 334 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 335 task->patch_state = klp_target_state; 336 337 done: 338 task_rq_unlock(rq, task, &flags); 339 340 /* 341 * Due to console deadlock issues, pr_debug() can't be used while 342 * holding the task rq lock. Instead we have to use a temporary buffer 343 * and print the debug message after releasing the lock. 344 */ 345 if (err_buf[0] != '\0') 346 pr_debug("%s", err_buf); 347 348 return success; 349 } 350 351 /* 352 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set. 353 * Kthreads with TIF_PATCH_PENDING set are woken up. 354 */ 355 static void klp_send_signals(void) 356 { 357 struct task_struct *g, *task; 358 359 if (klp_signals_cnt == SIGNALS_TIMEOUT) 360 pr_notice("signaling remaining tasks\n"); 361 362 read_lock(&tasklist_lock); 363 for_each_process_thread(g, task) { 364 if (!klp_patch_pending(task)) 365 continue; 366 367 /* 368 * There is a small race here. We could see TIF_PATCH_PENDING 369 * set and decide to wake up a kthread or send a fake signal. 370 * Meanwhile the task could migrate itself and the action 371 * would be meaningless. It is not serious though. 372 */ 373 if (task->flags & PF_KTHREAD) { 374 /* 375 * Wake up a kthread which sleeps interruptedly and 376 * still has not been migrated. 377 */ 378 wake_up_state(task, TASK_INTERRUPTIBLE); 379 } else { 380 /* 381 * Send fake signal to all non-kthread tasks which are 382 * still not migrated. 383 */ 384 spin_lock_irq(&task->sighand->siglock); 385 signal_wake_up(task, 0); 386 spin_unlock_irq(&task->sighand->siglock); 387 } 388 } 389 read_unlock(&tasklist_lock); 390 } 391 392 /* 393 * Try to switch all remaining tasks to the target patch state by walking the 394 * stacks of sleeping tasks and looking for any to-be-patched or 395 * to-be-unpatched functions. If such functions are found, the task can't be 396 * switched yet. 397 * 398 * If any tasks are still stuck in the initial patch state, schedule a retry. 399 */ 400 void klp_try_complete_transition(void) 401 { 402 unsigned int cpu; 403 struct task_struct *g, *task; 404 struct klp_patch *patch; 405 bool complete = true; 406 407 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 408 409 /* 410 * Try to switch the tasks to the target patch state by walking their 411 * stacks and looking for any to-be-patched or to-be-unpatched 412 * functions. If such functions are found on a stack, or if the stack 413 * is deemed unreliable, the task can't be switched yet. 414 * 415 * Usually this will transition most (or all) of the tasks on a system 416 * unless the patch includes changes to a very common function. 417 */ 418 read_lock(&tasklist_lock); 419 for_each_process_thread(g, task) 420 if (!klp_try_switch_task(task)) 421 complete = false; 422 read_unlock(&tasklist_lock); 423 424 /* 425 * Ditto for the idle "swapper" tasks. 426 */ 427 get_online_cpus(); 428 for_each_possible_cpu(cpu) { 429 task = idle_task(cpu); 430 if (cpu_online(cpu)) { 431 if (!klp_try_switch_task(task)) 432 complete = false; 433 } else if (task->patch_state != klp_target_state) { 434 /* offline idle tasks can be switched immediately */ 435 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 436 task->patch_state = klp_target_state; 437 } 438 } 439 put_online_cpus(); 440 441 if (!complete) { 442 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT)) 443 klp_send_signals(); 444 klp_signals_cnt++; 445 446 /* 447 * Some tasks weren't able to be switched over. Try again 448 * later and/or wait for other methods like kernel exit 449 * switching. 450 */ 451 schedule_delayed_work(&klp_transition_work, 452 round_jiffies_relative(HZ)); 453 return; 454 } 455 456 /* we're done, now cleanup the data structures */ 457 patch = klp_transition_patch; 458 klp_complete_transition(); 459 460 /* 461 * It would make more sense to free the patch in 462 * klp_complete_transition() but it is called also 463 * from klp_cancel_transition(). 464 */ 465 if (!patch->enabled) { 466 klp_free_patch_start(patch); 467 schedule_work(&patch->free_work); 468 } 469 } 470 471 /* 472 * Start the transition to the specified target patch state so tasks can begin 473 * switching to it. 474 */ 475 void klp_start_transition(void) 476 { 477 struct task_struct *g, *task; 478 unsigned int cpu; 479 480 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 481 482 pr_notice("'%s': starting %s transition\n", 483 klp_transition_patch->mod->name, 484 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 485 486 /* 487 * Mark all normal tasks as needing a patch state update. They'll 488 * switch either in klp_try_complete_transition() or as they exit the 489 * kernel. 490 */ 491 read_lock(&tasklist_lock); 492 for_each_process_thread(g, task) 493 if (task->patch_state != klp_target_state) 494 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 495 read_unlock(&tasklist_lock); 496 497 /* 498 * Mark all idle tasks as needing a patch state update. They'll switch 499 * either in klp_try_complete_transition() or at the idle loop switch 500 * point. 501 */ 502 for_each_possible_cpu(cpu) { 503 task = idle_task(cpu); 504 if (task->patch_state != klp_target_state) 505 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 506 } 507 508 klp_signals_cnt = 0; 509 } 510 511 /* 512 * Initialize the global target patch state and all tasks to the initial patch 513 * state, and initialize all function transition states to true in preparation 514 * for patching or unpatching. 515 */ 516 void klp_init_transition(struct klp_patch *patch, int state) 517 { 518 struct task_struct *g, *task; 519 unsigned int cpu; 520 struct klp_object *obj; 521 struct klp_func *func; 522 int initial_state = !state; 523 524 WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED); 525 526 klp_transition_patch = patch; 527 528 /* 529 * Set the global target patch state which tasks will switch to. This 530 * has no effect until the TIF_PATCH_PENDING flags get set later. 531 */ 532 klp_target_state = state; 533 534 pr_debug("'%s': initializing %s transition\n", patch->mod->name, 535 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 536 537 /* 538 * Initialize all tasks to the initial patch state to prepare them for 539 * switching to the target state. 540 */ 541 read_lock(&tasklist_lock); 542 for_each_process_thread(g, task) { 543 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 544 task->patch_state = initial_state; 545 } 546 read_unlock(&tasklist_lock); 547 548 /* 549 * Ditto for the idle "swapper" tasks. 550 */ 551 for_each_possible_cpu(cpu) { 552 task = idle_task(cpu); 553 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 554 task->patch_state = initial_state; 555 } 556 557 /* 558 * Enforce the order of the task->patch_state initializations and the 559 * func->transition updates to ensure that klp_ftrace_handler() doesn't 560 * see a func in transition with a task->patch_state of KLP_UNDEFINED. 561 * 562 * Also enforce the order of the klp_target_state write and future 563 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't 564 * set a task->patch_state to KLP_UNDEFINED. 565 */ 566 smp_wmb(); 567 568 /* 569 * Set the func transition states so klp_ftrace_handler() will know to 570 * switch to the transition logic. 571 * 572 * When patching, the funcs aren't yet in the func_stack and will be 573 * made visible to the ftrace handler shortly by the calls to 574 * klp_patch_object(). 575 * 576 * When unpatching, the funcs are already in the func_stack and so are 577 * already visible to the ftrace handler. 578 */ 579 klp_for_each_object(patch, obj) 580 klp_for_each_func(obj, func) 581 func->transition = true; 582 } 583 584 /* 585 * This function can be called in the middle of an existing transition to 586 * reverse the direction of the target patch state. This can be done to 587 * effectively cancel an existing enable or disable operation if there are any 588 * tasks which are stuck in the initial patch state. 589 */ 590 void klp_reverse_transition(void) 591 { 592 unsigned int cpu; 593 struct task_struct *g, *task; 594 595 pr_debug("'%s': reversing transition from %s\n", 596 klp_transition_patch->mod->name, 597 klp_target_state == KLP_PATCHED ? "patching to unpatching" : 598 "unpatching to patching"); 599 600 klp_transition_patch->enabled = !klp_transition_patch->enabled; 601 602 klp_target_state = !klp_target_state; 603 604 /* 605 * Clear all TIF_PATCH_PENDING flags to prevent races caused by 606 * klp_update_patch_state() running in parallel with 607 * klp_start_transition(). 608 */ 609 read_lock(&tasklist_lock); 610 for_each_process_thread(g, task) 611 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 612 read_unlock(&tasklist_lock); 613 614 for_each_possible_cpu(cpu) 615 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); 616 617 /* Let any remaining calls to klp_update_patch_state() complete */ 618 klp_synchronize_transition(); 619 620 klp_start_transition(); 621 } 622 623 /* Called from copy_process() during fork */ 624 void klp_copy_process(struct task_struct *child) 625 { 626 child->patch_state = current->patch_state; 627 628 /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */ 629 } 630 631 /* 632 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an 633 * existing transition to finish. 634 * 635 * NOTE: klp_update_patch_state(task) requires the task to be inactive or 636 * 'current'. This is not the case here and the consistency model could be 637 * broken. Administrator, who is the only one to execute the 638 * klp_force_transitions(), has to be aware of this. 639 */ 640 void klp_force_transition(void) 641 { 642 struct klp_patch *patch; 643 struct task_struct *g, *task; 644 unsigned int cpu; 645 646 pr_warn("forcing remaining tasks to the patched state\n"); 647 648 read_lock(&tasklist_lock); 649 for_each_process_thread(g, task) 650 klp_update_patch_state(task); 651 read_unlock(&tasklist_lock); 652 653 for_each_possible_cpu(cpu) 654 klp_update_patch_state(idle_task(cpu)); 655 656 klp_for_each_patch(patch) 657 patch->forced = true; 658 } 659