1 /* 2 * transition.c - Kernel Live Patching transition functions 3 * 4 * Copyright (C) 2015-2016 Josh Poimboeuf <[email protected]> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/cpu.h> 23 #include <linux/stacktrace.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "transition.h" 27 #include "../sched/sched.h" 28 29 #define MAX_STACK_ENTRIES 100 30 #define STACK_ERR_BUF_SIZE 128 31 32 struct klp_patch *klp_transition_patch; 33 34 static int klp_target_state = KLP_UNDEFINED; 35 36 /* 37 * This work can be performed periodically to finish patching or unpatching any 38 * "straggler" tasks which failed to transition in the first attempt. 39 */ 40 static void klp_transition_work_fn(struct work_struct *work) 41 { 42 mutex_lock(&klp_mutex); 43 44 if (klp_transition_patch) 45 klp_try_complete_transition(); 46 47 mutex_unlock(&klp_mutex); 48 } 49 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); 50 51 /* 52 * This function is just a stub to implement a hard force 53 * of synchronize_rcu(). This requires synchronizing 54 * tasks even in userspace and idle. 55 */ 56 static void klp_sync(struct work_struct *work) 57 { 58 } 59 60 /* 61 * We allow to patch also functions where RCU is not watching, 62 * e.g. before user_exit(). We can not rely on the RCU infrastructure 63 * to do the synchronization. Instead hard force the sched synchronization. 64 * 65 * This approach allows to use RCU functions for manipulating func_stack 66 * safely. 67 */ 68 static void klp_synchronize_transition(void) 69 { 70 schedule_on_each_cpu(klp_sync); 71 } 72 73 /* 74 * The transition to the target patch state is complete. Clean up the data 75 * structures. 76 */ 77 static void klp_complete_transition(void) 78 { 79 struct klp_object *obj; 80 struct klp_func *func; 81 struct task_struct *g, *task; 82 unsigned int cpu; 83 84 pr_debug("'%s': completing %s transition\n", 85 klp_transition_patch->mod->name, 86 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 87 88 if (klp_target_state == KLP_UNPATCHED) { 89 /* 90 * All tasks have transitioned to KLP_UNPATCHED so we can now 91 * remove the new functions from the func_stack. 92 */ 93 klp_unpatch_objects(klp_transition_patch); 94 95 /* 96 * Make sure klp_ftrace_handler() can no longer see functions 97 * from this patch on the ops->func_stack. Otherwise, after 98 * func->transition gets cleared, the handler may choose a 99 * removed function. 100 */ 101 klp_synchronize_transition(); 102 } 103 104 klp_for_each_object(klp_transition_patch, obj) 105 klp_for_each_func(obj, func) 106 func->transition = false; 107 108 /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */ 109 if (klp_target_state == KLP_PATCHED) 110 klp_synchronize_transition(); 111 112 read_lock(&tasklist_lock); 113 for_each_process_thread(g, task) { 114 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 115 task->patch_state = KLP_UNDEFINED; 116 } 117 read_unlock(&tasklist_lock); 118 119 for_each_possible_cpu(cpu) { 120 task = idle_task(cpu); 121 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 122 task->patch_state = KLP_UNDEFINED; 123 } 124 125 klp_for_each_object(klp_transition_patch, obj) { 126 if (!klp_is_object_loaded(obj)) 127 continue; 128 if (klp_target_state == KLP_PATCHED) 129 klp_post_patch_callback(obj); 130 else if (klp_target_state == KLP_UNPATCHED) 131 klp_post_unpatch_callback(obj); 132 } 133 134 pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, 135 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 136 137 klp_target_state = KLP_UNDEFINED; 138 klp_transition_patch = NULL; 139 } 140 141 /* 142 * This is called in the error path, to cancel a transition before it has 143 * started, i.e. klp_init_transition() has been called but 144 * klp_start_transition() hasn't. If the transition *has* been started, 145 * klp_reverse_transition() should be used instead. 146 */ 147 void klp_cancel_transition(void) 148 { 149 if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED)) 150 return; 151 152 pr_debug("'%s': canceling patching transition, going to unpatch\n", 153 klp_transition_patch->mod->name); 154 155 klp_target_state = KLP_UNPATCHED; 156 klp_complete_transition(); 157 } 158 159 /* 160 * Switch the patched state of the task to the set of functions in the target 161 * patch state. 162 * 163 * NOTE: If task is not 'current', the caller must ensure the task is inactive. 164 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. 165 */ 166 void klp_update_patch_state(struct task_struct *task) 167 { 168 /* 169 * A variant of synchronize_rcu() is used to allow patching functions 170 * where RCU is not watching, see klp_synchronize_transition(). 171 */ 172 preempt_disable_notrace(); 173 174 /* 175 * This test_and_clear_tsk_thread_flag() call also serves as a read 176 * barrier (smp_rmb) for two cases: 177 * 178 * 1) Enforce the order of the TIF_PATCH_PENDING read and the 179 * klp_target_state read. The corresponding write barrier is in 180 * klp_init_transition(). 181 * 182 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read 183 * of func->transition, if klp_ftrace_handler() is called later on 184 * the same CPU. See __klp_disable_patch(). 185 */ 186 if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) 187 task->patch_state = READ_ONCE(klp_target_state); 188 189 preempt_enable_notrace(); 190 } 191 192 /* 193 * Determine whether the given stack trace includes any references to a 194 * to-be-patched or to-be-unpatched function. 195 */ 196 static int klp_check_stack_func(struct klp_func *func, 197 struct stack_trace *trace) 198 { 199 unsigned long func_addr, func_size, address; 200 struct klp_ops *ops; 201 int i; 202 203 for (i = 0; i < trace->nr_entries; i++) { 204 address = trace->entries[i]; 205 206 if (klp_target_state == KLP_UNPATCHED) { 207 /* 208 * Check for the to-be-unpatched function 209 * (the func itself). 210 */ 211 func_addr = (unsigned long)func->new_func; 212 func_size = func->new_size; 213 } else { 214 /* 215 * Check for the to-be-patched function 216 * (the previous func). 217 */ 218 ops = klp_find_ops(func->old_func); 219 220 if (list_is_singular(&ops->func_stack)) { 221 /* original function */ 222 func_addr = (unsigned long)func->old_func; 223 func_size = func->old_size; 224 } else { 225 /* previously patched function */ 226 struct klp_func *prev; 227 228 prev = list_next_entry(func, stack_node); 229 func_addr = (unsigned long)prev->new_func; 230 func_size = prev->new_size; 231 } 232 } 233 234 if (address >= func_addr && address < func_addr + func_size) 235 return -EAGAIN; 236 } 237 238 return 0; 239 } 240 241 /* 242 * Determine whether it's safe to transition the task to the target patch state 243 * by looking for any to-be-patched or to-be-unpatched functions on its stack. 244 */ 245 static int klp_check_stack(struct task_struct *task, char *err_buf) 246 { 247 static unsigned long entries[MAX_STACK_ENTRIES]; 248 struct stack_trace trace; 249 struct klp_object *obj; 250 struct klp_func *func; 251 int ret; 252 253 trace.skip = 0; 254 trace.nr_entries = 0; 255 trace.max_entries = MAX_STACK_ENTRIES; 256 trace.entries = entries; 257 ret = save_stack_trace_tsk_reliable(task, &trace); 258 WARN_ON_ONCE(ret == -ENOSYS); 259 if (ret) { 260 snprintf(err_buf, STACK_ERR_BUF_SIZE, 261 "%s: %s:%d has an unreliable stack\n", 262 __func__, task->comm, task->pid); 263 return ret; 264 } 265 266 klp_for_each_object(klp_transition_patch, obj) { 267 if (!obj->patched) 268 continue; 269 klp_for_each_func(obj, func) { 270 ret = klp_check_stack_func(func, &trace); 271 if (ret) { 272 snprintf(err_buf, STACK_ERR_BUF_SIZE, 273 "%s: %s:%d is sleeping on function %s\n", 274 __func__, task->comm, task->pid, 275 func->old_name); 276 return ret; 277 } 278 } 279 } 280 281 return 0; 282 } 283 284 /* 285 * Try to safely switch a task to the target patch state. If it's currently 286 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or 287 * if the stack is unreliable, return false. 288 */ 289 static bool klp_try_switch_task(struct task_struct *task) 290 { 291 struct rq *rq; 292 struct rq_flags flags; 293 int ret; 294 bool success = false; 295 char err_buf[STACK_ERR_BUF_SIZE]; 296 297 err_buf[0] = '\0'; 298 299 /* check if this task has already switched over */ 300 if (task->patch_state == klp_target_state) 301 return true; 302 303 /* 304 * Now try to check the stack for any to-be-patched or to-be-unpatched 305 * functions. If all goes well, switch the task to the target patch 306 * state. 307 */ 308 rq = task_rq_lock(task, &flags); 309 310 if (task_running(rq, task) && task != current) { 311 snprintf(err_buf, STACK_ERR_BUF_SIZE, 312 "%s: %s:%d is running\n", __func__, task->comm, 313 task->pid); 314 goto done; 315 } 316 317 ret = klp_check_stack(task, err_buf); 318 if (ret) 319 goto done; 320 321 success = true; 322 323 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 324 task->patch_state = klp_target_state; 325 326 done: 327 task_rq_unlock(rq, task, &flags); 328 329 /* 330 * Due to console deadlock issues, pr_debug() can't be used while 331 * holding the task rq lock. Instead we have to use a temporary buffer 332 * and print the debug message after releasing the lock. 333 */ 334 if (err_buf[0] != '\0') 335 pr_debug("%s", err_buf); 336 337 return success; 338 339 } 340 341 /* 342 * Try to switch all remaining tasks to the target patch state by walking the 343 * stacks of sleeping tasks and looking for any to-be-patched or 344 * to-be-unpatched functions. If such functions are found, the task can't be 345 * switched yet. 346 * 347 * If any tasks are still stuck in the initial patch state, schedule a retry. 348 */ 349 void klp_try_complete_transition(void) 350 { 351 unsigned int cpu; 352 struct task_struct *g, *task; 353 struct klp_patch *patch; 354 bool complete = true; 355 356 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 357 358 /* 359 * Try to switch the tasks to the target patch state by walking their 360 * stacks and looking for any to-be-patched or to-be-unpatched 361 * functions. If such functions are found on a stack, or if the stack 362 * is deemed unreliable, the task can't be switched yet. 363 * 364 * Usually this will transition most (or all) of the tasks on a system 365 * unless the patch includes changes to a very common function. 366 */ 367 read_lock(&tasklist_lock); 368 for_each_process_thread(g, task) 369 if (!klp_try_switch_task(task)) 370 complete = false; 371 read_unlock(&tasklist_lock); 372 373 /* 374 * Ditto for the idle "swapper" tasks. 375 */ 376 get_online_cpus(); 377 for_each_possible_cpu(cpu) { 378 task = idle_task(cpu); 379 if (cpu_online(cpu)) { 380 if (!klp_try_switch_task(task)) 381 complete = false; 382 } else if (task->patch_state != klp_target_state) { 383 /* offline idle tasks can be switched immediately */ 384 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 385 task->patch_state = klp_target_state; 386 } 387 } 388 put_online_cpus(); 389 390 if (!complete) { 391 /* 392 * Some tasks weren't able to be switched over. Try again 393 * later and/or wait for other methods like kernel exit 394 * switching. 395 */ 396 schedule_delayed_work(&klp_transition_work, 397 round_jiffies_relative(HZ)); 398 return; 399 } 400 401 /* we're done, now cleanup the data structures */ 402 patch = klp_transition_patch; 403 klp_complete_transition(); 404 405 /* 406 * It would make more sense to free the patch in 407 * klp_complete_transition() but it is called also 408 * from klp_cancel_transition(). 409 */ 410 if (!patch->enabled) { 411 klp_free_patch_start(patch); 412 schedule_work(&patch->free_work); 413 } 414 } 415 416 /* 417 * Start the transition to the specified target patch state so tasks can begin 418 * switching to it. 419 */ 420 void klp_start_transition(void) 421 { 422 struct task_struct *g, *task; 423 unsigned int cpu; 424 425 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 426 427 pr_notice("'%s': starting %s transition\n", 428 klp_transition_patch->mod->name, 429 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 430 431 /* 432 * Mark all normal tasks as needing a patch state update. They'll 433 * switch either in klp_try_complete_transition() or as they exit the 434 * kernel. 435 */ 436 read_lock(&tasklist_lock); 437 for_each_process_thread(g, task) 438 if (task->patch_state != klp_target_state) 439 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 440 read_unlock(&tasklist_lock); 441 442 /* 443 * Mark all idle tasks as needing a patch state update. They'll switch 444 * either in klp_try_complete_transition() or at the idle loop switch 445 * point. 446 */ 447 for_each_possible_cpu(cpu) { 448 task = idle_task(cpu); 449 if (task->patch_state != klp_target_state) 450 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 451 } 452 } 453 454 /* 455 * Initialize the global target patch state and all tasks to the initial patch 456 * state, and initialize all function transition states to true in preparation 457 * for patching or unpatching. 458 */ 459 void klp_init_transition(struct klp_patch *patch, int state) 460 { 461 struct task_struct *g, *task; 462 unsigned int cpu; 463 struct klp_object *obj; 464 struct klp_func *func; 465 int initial_state = !state; 466 467 WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED); 468 469 klp_transition_patch = patch; 470 471 /* 472 * Set the global target patch state which tasks will switch to. This 473 * has no effect until the TIF_PATCH_PENDING flags get set later. 474 */ 475 klp_target_state = state; 476 477 pr_debug("'%s': initializing %s transition\n", patch->mod->name, 478 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 479 480 /* 481 * Initialize all tasks to the initial patch state to prepare them for 482 * switching to the target state. 483 */ 484 read_lock(&tasklist_lock); 485 for_each_process_thread(g, task) { 486 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 487 task->patch_state = initial_state; 488 } 489 read_unlock(&tasklist_lock); 490 491 /* 492 * Ditto for the idle "swapper" tasks. 493 */ 494 for_each_possible_cpu(cpu) { 495 task = idle_task(cpu); 496 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 497 task->patch_state = initial_state; 498 } 499 500 /* 501 * Enforce the order of the task->patch_state initializations and the 502 * func->transition updates to ensure that klp_ftrace_handler() doesn't 503 * see a func in transition with a task->patch_state of KLP_UNDEFINED. 504 * 505 * Also enforce the order of the klp_target_state write and future 506 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't 507 * set a task->patch_state to KLP_UNDEFINED. 508 */ 509 smp_wmb(); 510 511 /* 512 * Set the func transition states so klp_ftrace_handler() will know to 513 * switch to the transition logic. 514 * 515 * When patching, the funcs aren't yet in the func_stack and will be 516 * made visible to the ftrace handler shortly by the calls to 517 * klp_patch_object(). 518 * 519 * When unpatching, the funcs are already in the func_stack and so are 520 * already visible to the ftrace handler. 521 */ 522 klp_for_each_object(patch, obj) 523 klp_for_each_func(obj, func) 524 func->transition = true; 525 } 526 527 /* 528 * This function can be called in the middle of an existing transition to 529 * reverse the direction of the target patch state. This can be done to 530 * effectively cancel an existing enable or disable operation if there are any 531 * tasks which are stuck in the initial patch state. 532 */ 533 void klp_reverse_transition(void) 534 { 535 unsigned int cpu; 536 struct task_struct *g, *task; 537 538 pr_debug("'%s': reversing transition from %s\n", 539 klp_transition_patch->mod->name, 540 klp_target_state == KLP_PATCHED ? "patching to unpatching" : 541 "unpatching to patching"); 542 543 klp_transition_patch->enabled = !klp_transition_patch->enabled; 544 545 klp_target_state = !klp_target_state; 546 547 /* 548 * Clear all TIF_PATCH_PENDING flags to prevent races caused by 549 * klp_update_patch_state() running in parallel with 550 * klp_start_transition(). 551 */ 552 read_lock(&tasklist_lock); 553 for_each_process_thread(g, task) 554 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 555 read_unlock(&tasklist_lock); 556 557 for_each_possible_cpu(cpu) 558 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); 559 560 /* Let any remaining calls to klp_update_patch_state() complete */ 561 klp_synchronize_transition(); 562 563 klp_start_transition(); 564 } 565 566 /* Called from copy_process() during fork */ 567 void klp_copy_process(struct task_struct *child) 568 { 569 child->patch_state = current->patch_state; 570 571 /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */ 572 } 573 574 /* 575 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set. 576 * Kthreads with TIF_PATCH_PENDING set are woken up. Only admin can request this 577 * action currently. 578 */ 579 void klp_send_signals(void) 580 { 581 struct task_struct *g, *task; 582 583 pr_notice("signaling remaining tasks\n"); 584 585 read_lock(&tasklist_lock); 586 for_each_process_thread(g, task) { 587 if (!klp_patch_pending(task)) 588 continue; 589 590 /* 591 * There is a small race here. We could see TIF_PATCH_PENDING 592 * set and decide to wake up a kthread or send a fake signal. 593 * Meanwhile the task could migrate itself and the action 594 * would be meaningless. It is not serious though. 595 */ 596 if (task->flags & PF_KTHREAD) { 597 /* 598 * Wake up a kthread which sleeps interruptedly and 599 * still has not been migrated. 600 */ 601 wake_up_state(task, TASK_INTERRUPTIBLE); 602 } else { 603 /* 604 * Send fake signal to all non-kthread tasks which are 605 * still not migrated. 606 */ 607 spin_lock_irq(&task->sighand->siglock); 608 signal_wake_up(task, 0); 609 spin_unlock_irq(&task->sighand->siglock); 610 } 611 } 612 read_unlock(&tasklist_lock); 613 } 614 615 /* 616 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an 617 * existing transition to finish. 618 * 619 * NOTE: klp_update_patch_state(task) requires the task to be inactive or 620 * 'current'. This is not the case here and the consistency model could be 621 * broken. Administrator, who is the only one to execute the 622 * klp_force_transitions(), has to be aware of this. 623 */ 624 void klp_force_transition(void) 625 { 626 struct klp_patch *patch; 627 struct task_struct *g, *task; 628 unsigned int cpu; 629 630 pr_warn("forcing remaining tasks to the patched state\n"); 631 632 read_lock(&tasklist_lock); 633 for_each_process_thread(g, task) 634 klp_update_patch_state(task); 635 read_unlock(&tasklist_lock); 636 637 for_each_possible_cpu(cpu) 638 klp_update_patch_state(idle_task(cpu)); 639 640 list_for_each_entry(patch, &klp_patches, list) 641 patch->forced = true; 642 } 643