1 /* 2 * transition.c - Kernel Live Patching transition functions 3 * 4 * Copyright (C) 2015-2016 Josh Poimboeuf <[email protected]> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/cpu.h> 23 #include <linux/stacktrace.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "transition.h" 27 #include "../sched/sched.h" 28 29 #define MAX_STACK_ENTRIES 100 30 #define STACK_ERR_BUF_SIZE 128 31 32 struct klp_patch *klp_transition_patch; 33 34 static int klp_target_state = KLP_UNDEFINED; 35 36 /* 37 * This work can be performed periodically to finish patching or unpatching any 38 * "straggler" tasks which failed to transition in the first attempt. 39 */ 40 static void klp_transition_work_fn(struct work_struct *work) 41 { 42 mutex_lock(&klp_mutex); 43 44 if (klp_transition_patch) 45 klp_try_complete_transition(); 46 47 mutex_unlock(&klp_mutex); 48 } 49 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); 50 51 /* 52 * This function is just a stub to implement a hard force 53 * of synchronize_sched(). This requires synchronizing 54 * tasks even in userspace and idle. 55 */ 56 static void klp_sync(struct work_struct *work) 57 { 58 } 59 60 /* 61 * We allow to patch also functions where RCU is not watching, 62 * e.g. before user_exit(). We can not rely on the RCU infrastructure 63 * to do the synchronization. Instead hard force the sched synchronization. 64 * 65 * This approach allows to use RCU functions for manipulating func_stack 66 * safely. 67 */ 68 static void klp_synchronize_transition(void) 69 { 70 schedule_on_each_cpu(klp_sync); 71 } 72 73 /* 74 * The transition to the target patch state is complete. Clean up the data 75 * structures. 76 */ 77 static void klp_complete_transition(void) 78 { 79 struct klp_object *obj; 80 struct klp_func *func; 81 struct task_struct *g, *task; 82 unsigned int cpu; 83 bool immediate_func = false; 84 85 if (klp_target_state == KLP_UNPATCHED) { 86 /* 87 * All tasks have transitioned to KLP_UNPATCHED so we can now 88 * remove the new functions from the func_stack. 89 */ 90 klp_unpatch_objects(klp_transition_patch); 91 92 /* 93 * Make sure klp_ftrace_handler() can no longer see functions 94 * from this patch on the ops->func_stack. Otherwise, after 95 * func->transition gets cleared, the handler may choose a 96 * removed function. 97 */ 98 klp_synchronize_transition(); 99 } 100 101 if (klp_transition_patch->immediate) 102 goto done; 103 104 klp_for_each_object(klp_transition_patch, obj) { 105 klp_for_each_func(obj, func) { 106 func->transition = false; 107 if (func->immediate) 108 immediate_func = true; 109 } 110 } 111 112 /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */ 113 if (klp_target_state == KLP_PATCHED) 114 klp_synchronize_transition(); 115 116 read_lock(&tasklist_lock); 117 for_each_process_thread(g, task) { 118 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 119 task->patch_state = KLP_UNDEFINED; 120 } 121 read_unlock(&tasklist_lock); 122 123 for_each_possible_cpu(cpu) { 124 task = idle_task(cpu); 125 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 126 task->patch_state = KLP_UNDEFINED; 127 } 128 129 done: 130 klp_for_each_object(klp_transition_patch, obj) { 131 if (!klp_is_object_loaded(obj)) 132 continue; 133 if (klp_target_state == KLP_PATCHED) 134 klp_post_patch_callback(obj); 135 else if (klp_target_state == KLP_UNPATCHED) 136 klp_post_unpatch_callback(obj); 137 } 138 139 /* 140 * See complementary comment in __klp_enable_patch() for why we 141 * keep the module reference for immediate patches. 142 */ 143 if (!klp_transition_patch->immediate && !immediate_func && 144 klp_target_state == KLP_UNPATCHED) { 145 module_put(klp_transition_patch->mod); 146 } 147 148 klp_target_state = KLP_UNDEFINED; 149 klp_transition_patch = NULL; 150 } 151 152 /* 153 * This is called in the error path, to cancel a transition before it has 154 * started, i.e. klp_init_transition() has been called but 155 * klp_start_transition() hasn't. If the transition *has* been started, 156 * klp_reverse_transition() should be used instead. 157 */ 158 void klp_cancel_transition(void) 159 { 160 if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED)) 161 return; 162 163 klp_target_state = KLP_UNPATCHED; 164 klp_complete_transition(); 165 } 166 167 /* 168 * Switch the patched state of the task to the set of functions in the target 169 * patch state. 170 * 171 * NOTE: If task is not 'current', the caller must ensure the task is inactive. 172 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. 173 */ 174 void klp_update_patch_state(struct task_struct *task) 175 { 176 /* 177 * A variant of synchronize_sched() is used to allow patching functions 178 * where RCU is not watching, see klp_synchronize_transition(). 179 */ 180 preempt_disable_notrace(); 181 182 /* 183 * This test_and_clear_tsk_thread_flag() call also serves as a read 184 * barrier (smp_rmb) for two cases: 185 * 186 * 1) Enforce the order of the TIF_PATCH_PENDING read and the 187 * klp_target_state read. The corresponding write barrier is in 188 * klp_init_transition(). 189 * 190 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read 191 * of func->transition, if klp_ftrace_handler() is called later on 192 * the same CPU. See __klp_disable_patch(). 193 */ 194 if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) 195 task->patch_state = READ_ONCE(klp_target_state); 196 197 preempt_enable_notrace(); 198 } 199 200 /* 201 * Determine whether the given stack trace includes any references to a 202 * to-be-patched or to-be-unpatched function. 203 */ 204 static int klp_check_stack_func(struct klp_func *func, 205 struct stack_trace *trace) 206 { 207 unsigned long func_addr, func_size, address; 208 struct klp_ops *ops; 209 int i; 210 211 if (func->immediate) 212 return 0; 213 214 for (i = 0; i < trace->nr_entries; i++) { 215 address = trace->entries[i]; 216 217 if (klp_target_state == KLP_UNPATCHED) { 218 /* 219 * Check for the to-be-unpatched function 220 * (the func itself). 221 */ 222 func_addr = (unsigned long)func->new_func; 223 func_size = func->new_size; 224 } else { 225 /* 226 * Check for the to-be-patched function 227 * (the previous func). 228 */ 229 ops = klp_find_ops(func->old_addr); 230 231 if (list_is_singular(&ops->func_stack)) { 232 /* original function */ 233 func_addr = func->old_addr; 234 func_size = func->old_size; 235 } else { 236 /* previously patched function */ 237 struct klp_func *prev; 238 239 prev = list_next_entry(func, stack_node); 240 func_addr = (unsigned long)prev->new_func; 241 func_size = prev->new_size; 242 } 243 } 244 245 if (address >= func_addr && address < func_addr + func_size) 246 return -EAGAIN; 247 } 248 249 return 0; 250 } 251 252 /* 253 * Determine whether it's safe to transition the task to the target patch state 254 * by looking for any to-be-patched or to-be-unpatched functions on its stack. 255 */ 256 static int klp_check_stack(struct task_struct *task, char *err_buf) 257 { 258 static unsigned long entries[MAX_STACK_ENTRIES]; 259 struct stack_trace trace; 260 struct klp_object *obj; 261 struct klp_func *func; 262 int ret; 263 264 trace.skip = 0; 265 trace.nr_entries = 0; 266 trace.max_entries = MAX_STACK_ENTRIES; 267 trace.entries = entries; 268 ret = save_stack_trace_tsk_reliable(task, &trace); 269 WARN_ON_ONCE(ret == -ENOSYS); 270 if (ret) { 271 snprintf(err_buf, STACK_ERR_BUF_SIZE, 272 "%s: %s:%d has an unreliable stack\n", 273 __func__, task->comm, task->pid); 274 return ret; 275 } 276 277 klp_for_each_object(klp_transition_patch, obj) { 278 if (!obj->patched) 279 continue; 280 klp_for_each_func(obj, func) { 281 ret = klp_check_stack_func(func, &trace); 282 if (ret) { 283 snprintf(err_buf, STACK_ERR_BUF_SIZE, 284 "%s: %s:%d is sleeping on function %s\n", 285 __func__, task->comm, task->pid, 286 func->old_name); 287 return ret; 288 } 289 } 290 } 291 292 return 0; 293 } 294 295 /* 296 * Try to safely switch a task to the target patch state. If it's currently 297 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or 298 * if the stack is unreliable, return false. 299 */ 300 static bool klp_try_switch_task(struct task_struct *task) 301 { 302 struct rq *rq; 303 struct rq_flags flags; 304 int ret; 305 bool success = false; 306 char err_buf[STACK_ERR_BUF_SIZE]; 307 308 err_buf[0] = '\0'; 309 310 /* check if this task has already switched over */ 311 if (task->patch_state == klp_target_state) 312 return true; 313 314 /* 315 * For arches which don't have reliable stack traces, we have to rely 316 * on other methods (e.g., switching tasks at kernel exit). 317 */ 318 if (!klp_have_reliable_stack()) 319 return false; 320 321 /* 322 * Now try to check the stack for any to-be-patched or to-be-unpatched 323 * functions. If all goes well, switch the task to the target patch 324 * state. 325 */ 326 rq = task_rq_lock(task, &flags); 327 328 if (task_running(rq, task) && task != current) { 329 snprintf(err_buf, STACK_ERR_BUF_SIZE, 330 "%s: %s:%d is running\n", __func__, task->comm, 331 task->pid); 332 goto done; 333 } 334 335 ret = klp_check_stack(task, err_buf); 336 if (ret) 337 goto done; 338 339 success = true; 340 341 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 342 task->patch_state = klp_target_state; 343 344 done: 345 task_rq_unlock(rq, task, &flags); 346 347 /* 348 * Due to console deadlock issues, pr_debug() can't be used while 349 * holding the task rq lock. Instead we have to use a temporary buffer 350 * and print the debug message after releasing the lock. 351 */ 352 if (err_buf[0] != '\0') 353 pr_debug("%s", err_buf); 354 355 return success; 356 357 } 358 359 /* 360 * Try to switch all remaining tasks to the target patch state by walking the 361 * stacks of sleeping tasks and looking for any to-be-patched or 362 * to-be-unpatched functions. If such functions are found, the task can't be 363 * switched yet. 364 * 365 * If any tasks are still stuck in the initial patch state, schedule a retry. 366 */ 367 void klp_try_complete_transition(void) 368 { 369 unsigned int cpu; 370 struct task_struct *g, *task; 371 bool complete = true; 372 373 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 374 375 /* 376 * If the patch can be applied or reverted immediately, skip the 377 * per-task transitions. 378 */ 379 if (klp_transition_patch->immediate) 380 goto success; 381 382 /* 383 * Try to switch the tasks to the target patch state by walking their 384 * stacks and looking for any to-be-patched or to-be-unpatched 385 * functions. If such functions are found on a stack, or if the stack 386 * is deemed unreliable, the task can't be switched yet. 387 * 388 * Usually this will transition most (or all) of the tasks on a system 389 * unless the patch includes changes to a very common function. 390 */ 391 read_lock(&tasklist_lock); 392 for_each_process_thread(g, task) 393 if (!klp_try_switch_task(task)) 394 complete = false; 395 read_unlock(&tasklist_lock); 396 397 /* 398 * Ditto for the idle "swapper" tasks. 399 */ 400 get_online_cpus(); 401 for_each_possible_cpu(cpu) { 402 task = idle_task(cpu); 403 if (cpu_online(cpu)) { 404 if (!klp_try_switch_task(task)) 405 complete = false; 406 } else if (task->patch_state != klp_target_state) { 407 /* offline idle tasks can be switched immediately */ 408 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 409 task->patch_state = klp_target_state; 410 } 411 } 412 put_online_cpus(); 413 414 if (!complete) { 415 /* 416 * Some tasks weren't able to be switched over. Try again 417 * later and/or wait for other methods like kernel exit 418 * switching. 419 */ 420 schedule_delayed_work(&klp_transition_work, 421 round_jiffies_relative(HZ)); 422 return; 423 } 424 425 success: 426 pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, 427 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 428 429 /* we're done, now cleanup the data structures */ 430 klp_complete_transition(); 431 } 432 433 /* 434 * Start the transition to the specified target patch state so tasks can begin 435 * switching to it. 436 */ 437 void klp_start_transition(void) 438 { 439 struct task_struct *g, *task; 440 unsigned int cpu; 441 442 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 443 444 pr_notice("'%s': %s...\n", klp_transition_patch->mod->name, 445 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 446 447 /* 448 * If the patch can be applied or reverted immediately, skip the 449 * per-task transitions. 450 */ 451 if (klp_transition_patch->immediate) 452 return; 453 454 /* 455 * Mark all normal tasks as needing a patch state update. They'll 456 * switch either in klp_try_complete_transition() or as they exit the 457 * kernel. 458 */ 459 read_lock(&tasklist_lock); 460 for_each_process_thread(g, task) 461 if (task->patch_state != klp_target_state) 462 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 463 read_unlock(&tasklist_lock); 464 465 /* 466 * Mark all idle tasks as needing a patch state update. They'll switch 467 * either in klp_try_complete_transition() or at the idle loop switch 468 * point. 469 */ 470 for_each_possible_cpu(cpu) { 471 task = idle_task(cpu); 472 if (task->patch_state != klp_target_state) 473 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 474 } 475 } 476 477 /* 478 * Initialize the global target patch state and all tasks to the initial patch 479 * state, and initialize all function transition states to true in preparation 480 * for patching or unpatching. 481 */ 482 void klp_init_transition(struct klp_patch *patch, int state) 483 { 484 struct task_struct *g, *task; 485 unsigned int cpu; 486 struct klp_object *obj; 487 struct klp_func *func; 488 int initial_state = !state; 489 490 WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED); 491 492 klp_transition_patch = patch; 493 494 /* 495 * Set the global target patch state which tasks will switch to. This 496 * has no effect until the TIF_PATCH_PENDING flags get set later. 497 */ 498 klp_target_state = state; 499 500 /* 501 * If the patch can be applied or reverted immediately, skip the 502 * per-task transitions. 503 */ 504 if (patch->immediate) 505 return; 506 507 /* 508 * Initialize all tasks to the initial patch state to prepare them for 509 * switching to the target state. 510 */ 511 read_lock(&tasklist_lock); 512 for_each_process_thread(g, task) { 513 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 514 task->patch_state = initial_state; 515 } 516 read_unlock(&tasklist_lock); 517 518 /* 519 * Ditto for the idle "swapper" tasks. 520 */ 521 for_each_possible_cpu(cpu) { 522 task = idle_task(cpu); 523 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 524 task->patch_state = initial_state; 525 } 526 527 /* 528 * Enforce the order of the task->patch_state initializations and the 529 * func->transition updates to ensure that klp_ftrace_handler() doesn't 530 * see a func in transition with a task->patch_state of KLP_UNDEFINED. 531 * 532 * Also enforce the order of the klp_target_state write and future 533 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't 534 * set a task->patch_state to KLP_UNDEFINED. 535 */ 536 smp_wmb(); 537 538 /* 539 * Set the func transition states so klp_ftrace_handler() will know to 540 * switch to the transition logic. 541 * 542 * When patching, the funcs aren't yet in the func_stack and will be 543 * made visible to the ftrace handler shortly by the calls to 544 * klp_patch_object(). 545 * 546 * When unpatching, the funcs are already in the func_stack and so are 547 * already visible to the ftrace handler. 548 */ 549 klp_for_each_object(patch, obj) 550 klp_for_each_func(obj, func) 551 func->transition = true; 552 } 553 554 /* 555 * This function can be called in the middle of an existing transition to 556 * reverse the direction of the target patch state. This can be done to 557 * effectively cancel an existing enable or disable operation if there are any 558 * tasks which are stuck in the initial patch state. 559 */ 560 void klp_reverse_transition(void) 561 { 562 unsigned int cpu; 563 struct task_struct *g, *task; 564 565 klp_transition_patch->enabled = !klp_transition_patch->enabled; 566 567 klp_target_state = !klp_target_state; 568 569 /* 570 * Clear all TIF_PATCH_PENDING flags to prevent races caused by 571 * klp_update_patch_state() running in parallel with 572 * klp_start_transition(). 573 */ 574 read_lock(&tasklist_lock); 575 for_each_process_thread(g, task) 576 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 577 read_unlock(&tasklist_lock); 578 579 for_each_possible_cpu(cpu) 580 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); 581 582 /* Let any remaining calls to klp_update_patch_state() complete */ 583 klp_synchronize_transition(); 584 585 klp_start_transition(); 586 } 587 588 /* Called from copy_process() during fork */ 589 void klp_copy_process(struct task_struct *child) 590 { 591 child->patch_state = current->patch_state; 592 593 /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */ 594 } 595