1 /* 2 * transition.c - Kernel Live Patching transition functions 3 * 4 * Copyright (C) 2015-2016 Josh Poimboeuf <[email protected]> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/cpu.h> 23 #include <linux/stacktrace.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "transition.h" 27 #include "../sched/sched.h" 28 29 #define MAX_STACK_ENTRIES 100 30 #define STACK_ERR_BUF_SIZE 128 31 32 #define SIGNALS_TIMEOUT 15 33 34 struct klp_patch *klp_transition_patch; 35 36 static int klp_target_state = KLP_UNDEFINED; 37 38 static unsigned int klp_signals_cnt; 39 40 /* 41 * This work can be performed periodically to finish patching or unpatching any 42 * "straggler" tasks which failed to transition in the first attempt. 43 */ 44 static void klp_transition_work_fn(struct work_struct *work) 45 { 46 mutex_lock(&klp_mutex); 47 48 if (klp_transition_patch) 49 klp_try_complete_transition(); 50 51 mutex_unlock(&klp_mutex); 52 } 53 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); 54 55 /* 56 * This function is just a stub to implement a hard force 57 * of synchronize_rcu(). This requires synchronizing 58 * tasks even in userspace and idle. 59 */ 60 static void klp_sync(struct work_struct *work) 61 { 62 } 63 64 /* 65 * We allow to patch also functions where RCU is not watching, 66 * e.g. before user_exit(). We can not rely on the RCU infrastructure 67 * to do the synchronization. Instead hard force the sched synchronization. 68 * 69 * This approach allows to use RCU functions for manipulating func_stack 70 * safely. 71 */ 72 static void klp_synchronize_transition(void) 73 { 74 schedule_on_each_cpu(klp_sync); 75 } 76 77 /* 78 * The transition to the target patch state is complete. Clean up the data 79 * structures. 80 */ 81 static void klp_complete_transition(void) 82 { 83 struct klp_object *obj; 84 struct klp_func *func; 85 struct task_struct *g, *task; 86 unsigned int cpu; 87 88 pr_debug("'%s': completing %s transition\n", 89 klp_transition_patch->mod->name, 90 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 91 92 if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) { 93 klp_discard_replaced_patches(klp_transition_patch); 94 klp_discard_nops(klp_transition_patch); 95 } 96 97 if (klp_target_state == KLP_UNPATCHED) { 98 /* 99 * All tasks have transitioned to KLP_UNPATCHED so we can now 100 * remove the new functions from the func_stack. 101 */ 102 klp_unpatch_objects(klp_transition_patch); 103 104 /* 105 * Make sure klp_ftrace_handler() can no longer see functions 106 * from this patch on the ops->func_stack. Otherwise, after 107 * func->transition gets cleared, the handler may choose a 108 * removed function. 109 */ 110 klp_synchronize_transition(); 111 } 112 113 klp_for_each_object(klp_transition_patch, obj) 114 klp_for_each_func(obj, func) 115 func->transition = false; 116 117 /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */ 118 if (klp_target_state == KLP_PATCHED) 119 klp_synchronize_transition(); 120 121 read_lock(&tasklist_lock); 122 for_each_process_thread(g, task) { 123 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 124 task->patch_state = KLP_UNDEFINED; 125 } 126 read_unlock(&tasklist_lock); 127 128 for_each_possible_cpu(cpu) { 129 task = idle_task(cpu); 130 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 131 task->patch_state = KLP_UNDEFINED; 132 } 133 134 klp_for_each_object(klp_transition_patch, obj) { 135 if (!klp_is_object_loaded(obj)) 136 continue; 137 if (klp_target_state == KLP_PATCHED) 138 klp_post_patch_callback(obj); 139 else if (klp_target_state == KLP_UNPATCHED) 140 klp_post_unpatch_callback(obj); 141 } 142 143 pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, 144 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 145 146 klp_target_state = KLP_UNDEFINED; 147 klp_transition_patch = NULL; 148 } 149 150 /* 151 * This is called in the error path, to cancel a transition before it has 152 * started, i.e. klp_init_transition() has been called but 153 * klp_start_transition() hasn't. If the transition *has* been started, 154 * klp_reverse_transition() should be used instead. 155 */ 156 void klp_cancel_transition(void) 157 { 158 if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED)) 159 return; 160 161 pr_debug("'%s': canceling patching transition, going to unpatch\n", 162 klp_transition_patch->mod->name); 163 164 klp_target_state = KLP_UNPATCHED; 165 klp_complete_transition(); 166 } 167 168 /* 169 * Switch the patched state of the task to the set of functions in the target 170 * patch state. 171 * 172 * NOTE: If task is not 'current', the caller must ensure the task is inactive. 173 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. 174 */ 175 void klp_update_patch_state(struct task_struct *task) 176 { 177 /* 178 * A variant of synchronize_rcu() is used to allow patching functions 179 * where RCU is not watching, see klp_synchronize_transition(). 180 */ 181 preempt_disable_notrace(); 182 183 /* 184 * This test_and_clear_tsk_thread_flag() call also serves as a read 185 * barrier (smp_rmb) for two cases: 186 * 187 * 1) Enforce the order of the TIF_PATCH_PENDING read and the 188 * klp_target_state read. The corresponding write barrier is in 189 * klp_init_transition(). 190 * 191 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read 192 * of func->transition, if klp_ftrace_handler() is called later on 193 * the same CPU. See __klp_disable_patch(). 194 */ 195 if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) 196 task->patch_state = READ_ONCE(klp_target_state); 197 198 preempt_enable_notrace(); 199 } 200 201 /* 202 * Determine whether the given stack trace includes any references to a 203 * to-be-patched or to-be-unpatched function. 204 */ 205 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries, 206 unsigned int nr_entries) 207 { 208 unsigned long func_addr, func_size, address; 209 struct klp_ops *ops; 210 int i; 211 212 for (i = 0; i < nr_entries; i++) { 213 address = entries[i]; 214 215 if (klp_target_state == KLP_UNPATCHED) { 216 /* 217 * Check for the to-be-unpatched function 218 * (the func itself). 219 */ 220 func_addr = (unsigned long)func->new_func; 221 func_size = func->new_size; 222 } else { 223 /* 224 * Check for the to-be-patched function 225 * (the previous func). 226 */ 227 ops = klp_find_ops(func->old_func); 228 229 if (list_is_singular(&ops->func_stack)) { 230 /* original function */ 231 func_addr = (unsigned long)func->old_func; 232 func_size = func->old_size; 233 } else { 234 /* previously patched function */ 235 struct klp_func *prev; 236 237 prev = list_next_entry(func, stack_node); 238 func_addr = (unsigned long)prev->new_func; 239 func_size = prev->new_size; 240 } 241 } 242 243 if (address >= func_addr && address < func_addr + func_size) 244 return -EAGAIN; 245 } 246 247 return 0; 248 } 249 250 /* 251 * Determine whether it's safe to transition the task to the target patch state 252 * by looking for any to-be-patched or to-be-unpatched functions on its stack. 253 */ 254 static int klp_check_stack(struct task_struct *task, char *err_buf) 255 { 256 static unsigned long entries[MAX_STACK_ENTRIES]; 257 struct klp_object *obj; 258 struct klp_func *func; 259 int ret, nr_entries; 260 261 ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries)); 262 WARN_ON_ONCE(ret == -ENOSYS); 263 if (ret < 0) { 264 snprintf(err_buf, STACK_ERR_BUF_SIZE, 265 "%s: %s:%d has an unreliable stack\n", 266 __func__, task->comm, task->pid); 267 return ret; 268 } 269 nr_entries = ret; 270 271 klp_for_each_object(klp_transition_patch, obj) { 272 if (!obj->patched) 273 continue; 274 klp_for_each_func(obj, func) { 275 ret = klp_check_stack_func(func, entries, nr_entries); 276 if (ret) { 277 snprintf(err_buf, STACK_ERR_BUF_SIZE, 278 "%s: %s:%d is sleeping on function %s\n", 279 __func__, task->comm, task->pid, 280 func->old_name); 281 return ret; 282 } 283 } 284 } 285 286 return 0; 287 } 288 289 /* 290 * Try to safely switch a task to the target patch state. If it's currently 291 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or 292 * if the stack is unreliable, return false. 293 */ 294 static bool klp_try_switch_task(struct task_struct *task) 295 { 296 static char err_buf[STACK_ERR_BUF_SIZE]; 297 struct rq *rq; 298 struct rq_flags flags; 299 int ret; 300 bool success = false; 301 302 err_buf[0] = '\0'; 303 304 /* check if this task has already switched over */ 305 if (task->patch_state == klp_target_state) 306 return true; 307 308 /* 309 * For arches which don't have reliable stack traces, we have to rely 310 * on other methods (e.g., switching tasks at kernel exit). 311 */ 312 if (!klp_have_reliable_stack()) 313 return false; 314 315 /* 316 * Now try to check the stack for any to-be-patched or to-be-unpatched 317 * functions. If all goes well, switch the task to the target patch 318 * state. 319 */ 320 rq = task_rq_lock(task, &flags); 321 322 if (task_running(rq, task) && task != current) { 323 snprintf(err_buf, STACK_ERR_BUF_SIZE, 324 "%s: %s:%d is running\n", __func__, task->comm, 325 task->pid); 326 goto done; 327 } 328 329 ret = klp_check_stack(task, err_buf); 330 if (ret) 331 goto done; 332 333 success = true; 334 335 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 336 task->patch_state = klp_target_state; 337 338 done: 339 task_rq_unlock(rq, task, &flags); 340 341 /* 342 * Due to console deadlock issues, pr_debug() can't be used while 343 * holding the task rq lock. Instead we have to use a temporary buffer 344 * and print the debug message after releasing the lock. 345 */ 346 if (err_buf[0] != '\0') 347 pr_debug("%s", err_buf); 348 349 return success; 350 } 351 352 /* 353 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set. 354 * Kthreads with TIF_PATCH_PENDING set are woken up. 355 */ 356 static void klp_send_signals(void) 357 { 358 struct task_struct *g, *task; 359 360 if (klp_signals_cnt == SIGNALS_TIMEOUT) 361 pr_notice("signaling remaining tasks\n"); 362 363 read_lock(&tasklist_lock); 364 for_each_process_thread(g, task) { 365 if (!klp_patch_pending(task)) 366 continue; 367 368 /* 369 * There is a small race here. We could see TIF_PATCH_PENDING 370 * set and decide to wake up a kthread or send a fake signal. 371 * Meanwhile the task could migrate itself and the action 372 * would be meaningless. It is not serious though. 373 */ 374 if (task->flags & PF_KTHREAD) { 375 /* 376 * Wake up a kthread which sleeps interruptedly and 377 * still has not been migrated. 378 */ 379 wake_up_state(task, TASK_INTERRUPTIBLE); 380 } else { 381 /* 382 * Send fake signal to all non-kthread tasks which are 383 * still not migrated. 384 */ 385 spin_lock_irq(&task->sighand->siglock); 386 signal_wake_up(task, 0); 387 spin_unlock_irq(&task->sighand->siglock); 388 } 389 } 390 read_unlock(&tasklist_lock); 391 } 392 393 /* 394 * Try to switch all remaining tasks to the target patch state by walking the 395 * stacks of sleeping tasks and looking for any to-be-patched or 396 * to-be-unpatched functions. If such functions are found, the task can't be 397 * switched yet. 398 * 399 * If any tasks are still stuck in the initial patch state, schedule a retry. 400 */ 401 void klp_try_complete_transition(void) 402 { 403 unsigned int cpu; 404 struct task_struct *g, *task; 405 struct klp_patch *patch; 406 bool complete = true; 407 408 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 409 410 /* 411 * Try to switch the tasks to the target patch state by walking their 412 * stacks and looking for any to-be-patched or to-be-unpatched 413 * functions. If such functions are found on a stack, or if the stack 414 * is deemed unreliable, the task can't be switched yet. 415 * 416 * Usually this will transition most (or all) of the tasks on a system 417 * unless the patch includes changes to a very common function. 418 */ 419 read_lock(&tasklist_lock); 420 for_each_process_thread(g, task) 421 if (!klp_try_switch_task(task)) 422 complete = false; 423 read_unlock(&tasklist_lock); 424 425 /* 426 * Ditto for the idle "swapper" tasks. 427 */ 428 get_online_cpus(); 429 for_each_possible_cpu(cpu) { 430 task = idle_task(cpu); 431 if (cpu_online(cpu)) { 432 if (!klp_try_switch_task(task)) 433 complete = false; 434 } else if (task->patch_state != klp_target_state) { 435 /* offline idle tasks can be switched immediately */ 436 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 437 task->patch_state = klp_target_state; 438 } 439 } 440 put_online_cpus(); 441 442 if (!complete) { 443 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT)) 444 klp_send_signals(); 445 klp_signals_cnt++; 446 447 /* 448 * Some tasks weren't able to be switched over. Try again 449 * later and/or wait for other methods like kernel exit 450 * switching. 451 */ 452 schedule_delayed_work(&klp_transition_work, 453 round_jiffies_relative(HZ)); 454 return; 455 } 456 457 /* we're done, now cleanup the data structures */ 458 patch = klp_transition_patch; 459 klp_complete_transition(); 460 461 /* 462 * It would make more sense to free the patch in 463 * klp_complete_transition() but it is called also 464 * from klp_cancel_transition(). 465 */ 466 if (!patch->enabled) { 467 klp_free_patch_start(patch); 468 schedule_work(&patch->free_work); 469 } 470 } 471 472 /* 473 * Start the transition to the specified target patch state so tasks can begin 474 * switching to it. 475 */ 476 void klp_start_transition(void) 477 { 478 struct task_struct *g, *task; 479 unsigned int cpu; 480 481 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 482 483 pr_notice("'%s': starting %s transition\n", 484 klp_transition_patch->mod->name, 485 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 486 487 /* 488 * Mark all normal tasks as needing a patch state update. They'll 489 * switch either in klp_try_complete_transition() or as they exit the 490 * kernel. 491 */ 492 read_lock(&tasklist_lock); 493 for_each_process_thread(g, task) 494 if (task->patch_state != klp_target_state) 495 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 496 read_unlock(&tasklist_lock); 497 498 /* 499 * Mark all idle tasks as needing a patch state update. They'll switch 500 * either in klp_try_complete_transition() or at the idle loop switch 501 * point. 502 */ 503 for_each_possible_cpu(cpu) { 504 task = idle_task(cpu); 505 if (task->patch_state != klp_target_state) 506 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 507 } 508 509 klp_signals_cnt = 0; 510 } 511 512 /* 513 * Initialize the global target patch state and all tasks to the initial patch 514 * state, and initialize all function transition states to true in preparation 515 * for patching or unpatching. 516 */ 517 void klp_init_transition(struct klp_patch *patch, int state) 518 { 519 struct task_struct *g, *task; 520 unsigned int cpu; 521 struct klp_object *obj; 522 struct klp_func *func; 523 int initial_state = !state; 524 525 WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED); 526 527 klp_transition_patch = patch; 528 529 /* 530 * Set the global target patch state which tasks will switch to. This 531 * has no effect until the TIF_PATCH_PENDING flags get set later. 532 */ 533 klp_target_state = state; 534 535 pr_debug("'%s': initializing %s transition\n", patch->mod->name, 536 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 537 538 /* 539 * Initialize all tasks to the initial patch state to prepare them for 540 * switching to the target state. 541 */ 542 read_lock(&tasklist_lock); 543 for_each_process_thread(g, task) { 544 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 545 task->patch_state = initial_state; 546 } 547 read_unlock(&tasklist_lock); 548 549 /* 550 * Ditto for the idle "swapper" tasks. 551 */ 552 for_each_possible_cpu(cpu) { 553 task = idle_task(cpu); 554 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 555 task->patch_state = initial_state; 556 } 557 558 /* 559 * Enforce the order of the task->patch_state initializations and the 560 * func->transition updates to ensure that klp_ftrace_handler() doesn't 561 * see a func in transition with a task->patch_state of KLP_UNDEFINED. 562 * 563 * Also enforce the order of the klp_target_state write and future 564 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't 565 * set a task->patch_state to KLP_UNDEFINED. 566 */ 567 smp_wmb(); 568 569 /* 570 * Set the func transition states so klp_ftrace_handler() will know to 571 * switch to the transition logic. 572 * 573 * When patching, the funcs aren't yet in the func_stack and will be 574 * made visible to the ftrace handler shortly by the calls to 575 * klp_patch_object(). 576 * 577 * When unpatching, the funcs are already in the func_stack and so are 578 * already visible to the ftrace handler. 579 */ 580 klp_for_each_object(patch, obj) 581 klp_for_each_func(obj, func) 582 func->transition = true; 583 } 584 585 /* 586 * This function can be called in the middle of an existing transition to 587 * reverse the direction of the target patch state. This can be done to 588 * effectively cancel an existing enable or disable operation if there are any 589 * tasks which are stuck in the initial patch state. 590 */ 591 void klp_reverse_transition(void) 592 { 593 unsigned int cpu; 594 struct task_struct *g, *task; 595 596 pr_debug("'%s': reversing transition from %s\n", 597 klp_transition_patch->mod->name, 598 klp_target_state == KLP_PATCHED ? "patching to unpatching" : 599 "unpatching to patching"); 600 601 klp_transition_patch->enabled = !klp_transition_patch->enabled; 602 603 klp_target_state = !klp_target_state; 604 605 /* 606 * Clear all TIF_PATCH_PENDING flags to prevent races caused by 607 * klp_update_patch_state() running in parallel with 608 * klp_start_transition(). 609 */ 610 read_lock(&tasklist_lock); 611 for_each_process_thread(g, task) 612 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 613 read_unlock(&tasklist_lock); 614 615 for_each_possible_cpu(cpu) 616 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); 617 618 /* Let any remaining calls to klp_update_patch_state() complete */ 619 klp_synchronize_transition(); 620 621 klp_start_transition(); 622 } 623 624 /* Called from copy_process() during fork */ 625 void klp_copy_process(struct task_struct *child) 626 { 627 child->patch_state = current->patch_state; 628 629 /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */ 630 } 631 632 /* 633 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an 634 * existing transition to finish. 635 * 636 * NOTE: klp_update_patch_state(task) requires the task to be inactive or 637 * 'current'. This is not the case here and the consistency model could be 638 * broken. Administrator, who is the only one to execute the 639 * klp_force_transitions(), has to be aware of this. 640 */ 641 void klp_force_transition(void) 642 { 643 struct klp_patch *patch; 644 struct task_struct *g, *task; 645 unsigned int cpu; 646 647 pr_warn("forcing remaining tasks to the patched state\n"); 648 649 read_lock(&tasklist_lock); 650 for_each_process_thread(g, task) 651 klp_update_patch_state(task); 652 read_unlock(&tasklist_lock); 653 654 for_each_possible_cpu(cpu) 655 klp_update_patch_state(idle_task(cpu)); 656 657 klp_for_each_patch(patch) 658 patch->forced = true; 659 } 660