1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * transition.c - Kernel Live Patching transition functions 4 * 5 * Copyright (C) 2015-2016 Josh Poimboeuf <[email protected]> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/cpu.h> 11 #include <linux/stacktrace.h> 12 #include "core.h" 13 #include "patch.h" 14 #include "transition.h" 15 16 #define MAX_STACK_ENTRIES 100 17 DEFINE_PER_CPU(unsigned long[MAX_STACK_ENTRIES], klp_stack_entries); 18 19 #define STACK_ERR_BUF_SIZE 128 20 21 #define SIGNALS_TIMEOUT 15 22 23 struct klp_patch *klp_transition_patch; 24 25 static int klp_target_state = KLP_UNDEFINED; 26 27 static unsigned int klp_signals_cnt; 28 29 /* 30 * This work can be performed periodically to finish patching or unpatching any 31 * "straggler" tasks which failed to transition in the first attempt. 32 */ 33 static void klp_transition_work_fn(struct work_struct *work) 34 { 35 mutex_lock(&klp_mutex); 36 37 if (klp_transition_patch) 38 klp_try_complete_transition(); 39 40 mutex_unlock(&klp_mutex); 41 } 42 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn); 43 44 /* 45 * This function is just a stub to implement a hard force 46 * of synchronize_rcu(). This requires synchronizing 47 * tasks even in userspace and idle. 48 */ 49 static void klp_sync(struct work_struct *work) 50 { 51 } 52 53 /* 54 * We allow to patch also functions where RCU is not watching, 55 * e.g. before user_exit(). We can not rely on the RCU infrastructure 56 * to do the synchronization. Instead hard force the sched synchronization. 57 * 58 * This approach allows to use RCU functions for manipulating func_stack 59 * safely. 60 */ 61 static void klp_synchronize_transition(void) 62 { 63 schedule_on_each_cpu(klp_sync); 64 } 65 66 /* 67 * The transition to the target patch state is complete. Clean up the data 68 * structures. 69 */ 70 static void klp_complete_transition(void) 71 { 72 struct klp_object *obj; 73 struct klp_func *func; 74 struct task_struct *g, *task; 75 unsigned int cpu; 76 77 pr_debug("'%s': completing %s transition\n", 78 klp_transition_patch->mod->name, 79 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 80 81 if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) { 82 klp_unpatch_replaced_patches(klp_transition_patch); 83 klp_discard_nops(klp_transition_patch); 84 } 85 86 if (klp_target_state == KLP_UNPATCHED) { 87 /* 88 * All tasks have transitioned to KLP_UNPATCHED so we can now 89 * remove the new functions from the func_stack. 90 */ 91 klp_unpatch_objects(klp_transition_patch); 92 93 /* 94 * Make sure klp_ftrace_handler() can no longer see functions 95 * from this patch on the ops->func_stack. Otherwise, after 96 * func->transition gets cleared, the handler may choose a 97 * removed function. 98 */ 99 klp_synchronize_transition(); 100 } 101 102 klp_for_each_object(klp_transition_patch, obj) 103 klp_for_each_func(obj, func) 104 func->transition = false; 105 106 /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */ 107 if (klp_target_state == KLP_PATCHED) 108 klp_synchronize_transition(); 109 110 read_lock(&tasklist_lock); 111 for_each_process_thread(g, task) { 112 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 113 task->patch_state = KLP_UNDEFINED; 114 } 115 read_unlock(&tasklist_lock); 116 117 for_each_possible_cpu(cpu) { 118 task = idle_task(cpu); 119 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); 120 task->patch_state = KLP_UNDEFINED; 121 } 122 123 klp_for_each_object(klp_transition_patch, obj) { 124 if (!klp_is_object_loaded(obj)) 125 continue; 126 if (klp_target_state == KLP_PATCHED) 127 klp_post_patch_callback(obj); 128 else if (klp_target_state == KLP_UNPATCHED) 129 klp_post_unpatch_callback(obj); 130 } 131 132 pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, 133 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 134 135 klp_target_state = KLP_UNDEFINED; 136 klp_transition_patch = NULL; 137 } 138 139 /* 140 * This is called in the error path, to cancel a transition before it has 141 * started, i.e. klp_init_transition() has been called but 142 * klp_start_transition() hasn't. If the transition *has* been started, 143 * klp_reverse_transition() should be used instead. 144 */ 145 void klp_cancel_transition(void) 146 { 147 if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED)) 148 return; 149 150 pr_debug("'%s': canceling patching transition, going to unpatch\n", 151 klp_transition_patch->mod->name); 152 153 klp_target_state = KLP_UNPATCHED; 154 klp_complete_transition(); 155 } 156 157 /* 158 * Switch the patched state of the task to the set of functions in the target 159 * patch state. 160 * 161 * NOTE: If task is not 'current', the caller must ensure the task is inactive. 162 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value. 163 */ 164 void klp_update_patch_state(struct task_struct *task) 165 { 166 /* 167 * A variant of synchronize_rcu() is used to allow patching functions 168 * where RCU is not watching, see klp_synchronize_transition(). 169 */ 170 preempt_disable_notrace(); 171 172 /* 173 * This test_and_clear_tsk_thread_flag() call also serves as a read 174 * barrier (smp_rmb) for two cases: 175 * 176 * 1) Enforce the order of the TIF_PATCH_PENDING read and the 177 * klp_target_state read. The corresponding write barrier is in 178 * klp_init_transition(). 179 * 180 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read 181 * of func->transition, if klp_ftrace_handler() is called later on 182 * the same CPU. See __klp_disable_patch(). 183 */ 184 if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING)) 185 task->patch_state = READ_ONCE(klp_target_state); 186 187 preempt_enable_notrace(); 188 } 189 190 /* 191 * Determine whether the given stack trace includes any references to a 192 * to-be-patched or to-be-unpatched function. 193 */ 194 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries, 195 unsigned int nr_entries) 196 { 197 unsigned long func_addr, func_size, address; 198 struct klp_ops *ops; 199 int i; 200 201 if (klp_target_state == KLP_UNPATCHED) { 202 /* 203 * Check for the to-be-unpatched function 204 * (the func itself). 205 */ 206 func_addr = (unsigned long)func->new_func; 207 func_size = func->new_size; 208 } else { 209 /* 210 * Check for the to-be-patched function 211 * (the previous func). 212 */ 213 ops = klp_find_ops(func->old_func); 214 215 if (list_is_singular(&ops->func_stack)) { 216 /* original function */ 217 func_addr = (unsigned long)func->old_func; 218 func_size = func->old_size; 219 } else { 220 /* previously patched function */ 221 struct klp_func *prev; 222 223 prev = list_next_entry(func, stack_node); 224 func_addr = (unsigned long)prev->new_func; 225 func_size = prev->new_size; 226 } 227 } 228 229 for (i = 0; i < nr_entries; i++) { 230 address = entries[i]; 231 232 if (address >= func_addr && address < func_addr + func_size) 233 return -EAGAIN; 234 } 235 236 return 0; 237 } 238 239 /* 240 * Determine whether it's safe to transition the task to the target patch state 241 * by looking for any to-be-patched or to-be-unpatched functions on its stack. 242 */ 243 static int klp_check_stack(struct task_struct *task, const char **oldname) 244 { 245 unsigned long *entries = this_cpu_ptr(klp_stack_entries); 246 struct klp_object *obj; 247 struct klp_func *func; 248 int ret, nr_entries; 249 250 /* Protect 'klp_stack_entries' */ 251 lockdep_assert_preemption_disabled(); 252 253 ret = stack_trace_save_tsk_reliable(task, entries, MAX_STACK_ENTRIES); 254 if (ret < 0) 255 return -EINVAL; 256 nr_entries = ret; 257 258 klp_for_each_object(klp_transition_patch, obj) { 259 if (!obj->patched) 260 continue; 261 klp_for_each_func(obj, func) { 262 ret = klp_check_stack_func(func, entries, nr_entries); 263 if (ret) { 264 *oldname = func->old_name; 265 return -EADDRINUSE; 266 } 267 } 268 } 269 270 return 0; 271 } 272 273 static int klp_check_and_switch_task(struct task_struct *task, void *arg) 274 { 275 int ret; 276 277 if (task_curr(task) && task != current) 278 return -EBUSY; 279 280 ret = klp_check_stack(task, arg); 281 if (ret) 282 return ret; 283 284 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 285 task->patch_state = klp_target_state; 286 return 0; 287 } 288 289 /* 290 * Try to safely switch a task to the target patch state. If it's currently 291 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or 292 * if the stack is unreliable, return false. 293 */ 294 static bool klp_try_switch_task(struct task_struct *task) 295 { 296 const char *old_name; 297 int ret; 298 299 /* check if this task has already switched over */ 300 if (task->patch_state == klp_target_state) 301 return true; 302 303 /* 304 * For arches which don't have reliable stack traces, we have to rely 305 * on other methods (e.g., switching tasks at kernel exit). 306 */ 307 if (!klp_have_reliable_stack()) 308 return false; 309 310 /* 311 * Now try to check the stack for any to-be-patched or to-be-unpatched 312 * functions. If all goes well, switch the task to the target patch 313 * state. 314 */ 315 if (task == current) 316 ret = klp_check_and_switch_task(current, &old_name); 317 else 318 ret = task_call_func(task, klp_check_and_switch_task, &old_name); 319 320 switch (ret) { 321 case 0: /* success */ 322 break; 323 324 case -EBUSY: /* klp_check_and_switch_task() */ 325 pr_debug("%s: %s:%d is running\n", 326 __func__, task->comm, task->pid); 327 break; 328 case -EINVAL: /* klp_check_and_switch_task() */ 329 pr_debug("%s: %s:%d has an unreliable stack\n", 330 __func__, task->comm, task->pid); 331 break; 332 case -EADDRINUSE: /* klp_check_and_switch_task() */ 333 pr_debug("%s: %s:%d is sleeping on function %s\n", 334 __func__, task->comm, task->pid, old_name); 335 break; 336 337 default: 338 pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n", 339 __func__, ret, task->comm, task->pid); 340 break; 341 } 342 343 return !ret; 344 } 345 346 /* 347 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set. 348 * Kthreads with TIF_PATCH_PENDING set are woken up. 349 */ 350 static void klp_send_signals(void) 351 { 352 struct task_struct *g, *task; 353 354 if (klp_signals_cnt == SIGNALS_TIMEOUT) 355 pr_notice("signaling remaining tasks\n"); 356 357 read_lock(&tasklist_lock); 358 for_each_process_thread(g, task) { 359 if (!klp_patch_pending(task)) 360 continue; 361 362 /* 363 * There is a small race here. We could see TIF_PATCH_PENDING 364 * set and decide to wake up a kthread or send a fake signal. 365 * Meanwhile the task could migrate itself and the action 366 * would be meaningless. It is not serious though. 367 */ 368 if (task->flags & PF_KTHREAD) { 369 /* 370 * Wake up a kthread which sleeps interruptedly and 371 * still has not been migrated. 372 */ 373 wake_up_state(task, TASK_INTERRUPTIBLE); 374 } else { 375 /* 376 * Send fake signal to all non-kthread tasks which are 377 * still not migrated. 378 */ 379 set_notify_signal(task); 380 } 381 } 382 read_unlock(&tasklist_lock); 383 } 384 385 /* 386 * Try to switch all remaining tasks to the target patch state by walking the 387 * stacks of sleeping tasks and looking for any to-be-patched or 388 * to-be-unpatched functions. If such functions are found, the task can't be 389 * switched yet. 390 * 391 * If any tasks are still stuck in the initial patch state, schedule a retry. 392 */ 393 void klp_try_complete_transition(void) 394 { 395 unsigned int cpu; 396 struct task_struct *g, *task; 397 struct klp_patch *patch; 398 bool complete = true; 399 400 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 401 402 /* 403 * Try to switch the tasks to the target patch state by walking their 404 * stacks and looking for any to-be-patched or to-be-unpatched 405 * functions. If such functions are found on a stack, or if the stack 406 * is deemed unreliable, the task can't be switched yet. 407 * 408 * Usually this will transition most (or all) of the tasks on a system 409 * unless the patch includes changes to a very common function. 410 */ 411 read_lock(&tasklist_lock); 412 for_each_process_thread(g, task) 413 if (!klp_try_switch_task(task)) 414 complete = false; 415 read_unlock(&tasklist_lock); 416 417 /* 418 * Ditto for the idle "swapper" tasks. 419 */ 420 cpus_read_lock(); 421 for_each_possible_cpu(cpu) { 422 task = idle_task(cpu); 423 if (cpu_online(cpu)) { 424 if (!klp_try_switch_task(task)) { 425 complete = false; 426 /* Make idle task go through the main loop. */ 427 wake_up_if_idle(cpu); 428 } 429 } else if (task->patch_state != klp_target_state) { 430 /* offline idle tasks can be switched immediately */ 431 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 432 task->patch_state = klp_target_state; 433 } 434 } 435 cpus_read_unlock(); 436 437 if (!complete) { 438 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT)) 439 klp_send_signals(); 440 klp_signals_cnt++; 441 442 /* 443 * Some tasks weren't able to be switched over. Try again 444 * later and/or wait for other methods like kernel exit 445 * switching. 446 */ 447 schedule_delayed_work(&klp_transition_work, 448 round_jiffies_relative(HZ)); 449 return; 450 } 451 452 /* we're done, now cleanup the data structures */ 453 patch = klp_transition_patch; 454 klp_complete_transition(); 455 456 /* 457 * It would make more sense to free the unused patches in 458 * klp_complete_transition() but it is called also 459 * from klp_cancel_transition(). 460 */ 461 if (!patch->enabled) 462 klp_free_patch_async(patch); 463 else if (patch->replace) 464 klp_free_replaced_patches_async(patch); 465 } 466 467 /* 468 * Start the transition to the specified target patch state so tasks can begin 469 * switching to it. 470 */ 471 void klp_start_transition(void) 472 { 473 struct task_struct *g, *task; 474 unsigned int cpu; 475 476 WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); 477 478 pr_notice("'%s': starting %s transition\n", 479 klp_transition_patch->mod->name, 480 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 481 482 /* 483 * Mark all normal tasks as needing a patch state update. They'll 484 * switch either in klp_try_complete_transition() or as they exit the 485 * kernel. 486 */ 487 read_lock(&tasklist_lock); 488 for_each_process_thread(g, task) 489 if (task->patch_state != klp_target_state) 490 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 491 read_unlock(&tasklist_lock); 492 493 /* 494 * Mark all idle tasks as needing a patch state update. They'll switch 495 * either in klp_try_complete_transition() or at the idle loop switch 496 * point. 497 */ 498 for_each_possible_cpu(cpu) { 499 task = idle_task(cpu); 500 if (task->patch_state != klp_target_state) 501 set_tsk_thread_flag(task, TIF_PATCH_PENDING); 502 } 503 504 klp_signals_cnt = 0; 505 } 506 507 /* 508 * Initialize the global target patch state and all tasks to the initial patch 509 * state, and initialize all function transition states to true in preparation 510 * for patching or unpatching. 511 */ 512 void klp_init_transition(struct klp_patch *patch, int state) 513 { 514 struct task_struct *g, *task; 515 unsigned int cpu; 516 struct klp_object *obj; 517 struct klp_func *func; 518 int initial_state = !state; 519 520 WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED); 521 522 klp_transition_patch = patch; 523 524 /* 525 * Set the global target patch state which tasks will switch to. This 526 * has no effect until the TIF_PATCH_PENDING flags get set later. 527 */ 528 klp_target_state = state; 529 530 pr_debug("'%s': initializing %s transition\n", patch->mod->name, 531 klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); 532 533 /* 534 * Initialize all tasks to the initial patch state to prepare them for 535 * switching to the target state. 536 */ 537 read_lock(&tasklist_lock); 538 for_each_process_thread(g, task) { 539 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 540 task->patch_state = initial_state; 541 } 542 read_unlock(&tasklist_lock); 543 544 /* 545 * Ditto for the idle "swapper" tasks. 546 */ 547 for_each_possible_cpu(cpu) { 548 task = idle_task(cpu); 549 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED); 550 task->patch_state = initial_state; 551 } 552 553 /* 554 * Enforce the order of the task->patch_state initializations and the 555 * func->transition updates to ensure that klp_ftrace_handler() doesn't 556 * see a func in transition with a task->patch_state of KLP_UNDEFINED. 557 * 558 * Also enforce the order of the klp_target_state write and future 559 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't 560 * set a task->patch_state to KLP_UNDEFINED. 561 */ 562 smp_wmb(); 563 564 /* 565 * Set the func transition states so klp_ftrace_handler() will know to 566 * switch to the transition logic. 567 * 568 * When patching, the funcs aren't yet in the func_stack and will be 569 * made visible to the ftrace handler shortly by the calls to 570 * klp_patch_object(). 571 * 572 * When unpatching, the funcs are already in the func_stack and so are 573 * already visible to the ftrace handler. 574 */ 575 klp_for_each_object(patch, obj) 576 klp_for_each_func(obj, func) 577 func->transition = true; 578 } 579 580 /* 581 * This function can be called in the middle of an existing transition to 582 * reverse the direction of the target patch state. This can be done to 583 * effectively cancel an existing enable or disable operation if there are any 584 * tasks which are stuck in the initial patch state. 585 */ 586 void klp_reverse_transition(void) 587 { 588 unsigned int cpu; 589 struct task_struct *g, *task; 590 591 pr_debug("'%s': reversing transition from %s\n", 592 klp_transition_patch->mod->name, 593 klp_target_state == KLP_PATCHED ? "patching to unpatching" : 594 "unpatching to patching"); 595 596 klp_transition_patch->enabled = !klp_transition_patch->enabled; 597 598 klp_target_state = !klp_target_state; 599 600 /* 601 * Clear all TIF_PATCH_PENDING flags to prevent races caused by 602 * klp_update_patch_state() running in parallel with 603 * klp_start_transition(). 604 */ 605 read_lock(&tasklist_lock); 606 for_each_process_thread(g, task) 607 clear_tsk_thread_flag(task, TIF_PATCH_PENDING); 608 read_unlock(&tasklist_lock); 609 610 for_each_possible_cpu(cpu) 611 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING); 612 613 /* Let any remaining calls to klp_update_patch_state() complete */ 614 klp_synchronize_transition(); 615 616 klp_start_transition(); 617 } 618 619 /* Called from copy_process() during fork */ 620 void klp_copy_process(struct task_struct *child) 621 { 622 623 /* 624 * The parent process may have gone through a KLP transition since 625 * the thread flag was copied in setup_thread_stack earlier. Bring 626 * the task flag up to date with the parent here. 627 * 628 * The operation is serialized against all klp_*_transition() 629 * operations by the tasklist_lock. The only exception is 630 * klp_update_patch_state(current), but we cannot race with 631 * that because we are current. 632 */ 633 if (test_tsk_thread_flag(current, TIF_PATCH_PENDING)) 634 set_tsk_thread_flag(child, TIF_PATCH_PENDING); 635 else 636 clear_tsk_thread_flag(child, TIF_PATCH_PENDING); 637 638 child->patch_state = current->patch_state; 639 } 640 641 /* 642 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an 643 * existing transition to finish. 644 * 645 * NOTE: klp_update_patch_state(task) requires the task to be inactive or 646 * 'current'. This is not the case here and the consistency model could be 647 * broken. Administrator, who is the only one to execute the 648 * klp_force_transitions(), has to be aware of this. 649 */ 650 void klp_force_transition(void) 651 { 652 struct klp_patch *patch; 653 struct task_struct *g, *task; 654 unsigned int cpu; 655 656 pr_warn("forcing remaining tasks to the patched state\n"); 657 658 read_lock(&tasklist_lock); 659 for_each_process_thread(g, task) 660 klp_update_patch_state(task); 661 read_unlock(&tasklist_lock); 662 663 for_each_possible_cpu(cpu) 664 klp_update_patch_state(idle_task(cpu)); 665 666 /* Set forced flag for patches being removed. */ 667 if (klp_target_state == KLP_UNPATCHED) 668 klp_transition_patch->forced = true; 669 else if (klp_transition_patch->replace) { 670 klp_for_each_patch(patch) { 671 if (patch != klp_transition_patch) 672 patch->forced = true; 673 } 674 } 675 } 676