1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <[email protected]> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <asm/cacheflush.h> 23 #include "core.h" 24 #include "patch.h" 25 #include "state.h" 26 #include "transition.h" 27 28 /* 29 * klp_mutex is a coarse lock which serializes access to klp data. All 30 * accesses to klp-related variables and structures must have mutex protection, 31 * except within the following functions which carefully avoid the need for it: 32 * 33 * - klp_ftrace_handler() 34 * - klp_update_patch_state() 35 */ 36 DEFINE_MUTEX(klp_mutex); 37 38 /* 39 * Actively used patches: enabled or in transition. Note that replaced 40 * or disabled patches are not listed even though the related kernel 41 * module still can be loaded. 42 */ 43 LIST_HEAD(klp_patches); 44 45 static struct kobject *klp_root_kobj; 46 47 static bool klp_is_module(struct klp_object *obj) 48 { 49 return obj->name; 50 } 51 52 /* sets obj->mod if object is not vmlinux and module is found */ 53 static void klp_find_object_module(struct klp_object *obj) 54 { 55 struct module *mod; 56 57 if (!klp_is_module(obj)) 58 return; 59 60 mutex_lock(&module_mutex); 61 /* 62 * We do not want to block removal of patched modules and therefore 63 * we do not take a reference here. The patches are removed by 64 * klp_module_going() instead. 65 */ 66 mod = find_module(obj->name); 67 /* 68 * Do not mess work of klp_module_coming() and klp_module_going(). 69 * Note that the patch might still be needed before klp_module_going() 70 * is called. Module functions can be called even in the GOING state 71 * until mod->exit() finishes. This is especially important for 72 * patches that modify semantic of the functions. 73 */ 74 if (mod && mod->klp_alive) 75 obj->mod = mod; 76 77 mutex_unlock(&module_mutex); 78 } 79 80 static bool klp_initialized(void) 81 { 82 return !!klp_root_kobj; 83 } 84 85 static struct klp_func *klp_find_func(struct klp_object *obj, 86 struct klp_func *old_func) 87 { 88 struct klp_func *func; 89 90 klp_for_each_func(obj, func) { 91 if ((strcmp(old_func->old_name, func->old_name) == 0) && 92 (old_func->old_sympos == func->old_sympos)) { 93 return func; 94 } 95 } 96 97 return NULL; 98 } 99 100 static struct klp_object *klp_find_object(struct klp_patch *patch, 101 struct klp_object *old_obj) 102 { 103 struct klp_object *obj; 104 105 klp_for_each_object(patch, obj) { 106 if (klp_is_module(old_obj)) { 107 if (klp_is_module(obj) && 108 strcmp(old_obj->name, obj->name) == 0) { 109 return obj; 110 } 111 } else if (!klp_is_module(obj)) { 112 return obj; 113 } 114 } 115 116 return NULL; 117 } 118 119 struct klp_find_arg { 120 const char *objname; 121 const char *name; 122 unsigned long addr; 123 unsigned long count; 124 unsigned long pos; 125 }; 126 127 static int klp_find_callback(void *data, const char *name, 128 struct module *mod, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 if ((mod && !args->objname) || (!mod && args->objname)) 133 return 0; 134 135 if (strcmp(args->name, name)) 136 return 0; 137 138 if (args->objname && strcmp(args->objname, mod->name)) 139 return 0; 140 141 args->addr = addr; 142 args->count++; 143 144 /* 145 * Finish the search when the symbol is found for the desired position 146 * or the position is not defined for a non-unique symbol. 147 */ 148 if ((args->pos && (args->count == args->pos)) || 149 (!args->pos && (args->count > 1))) 150 return 1; 151 152 return 0; 153 } 154 155 static int klp_find_object_symbol(const char *objname, const char *name, 156 unsigned long sympos, unsigned long *addr) 157 { 158 struct klp_find_arg args = { 159 .objname = objname, 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 mutex_lock(&module_mutex); 167 if (objname) 168 module_kallsyms_on_each_symbol(klp_find_callback, &args); 169 else 170 kallsyms_on_each_symbol(klp_find_callback, &args); 171 mutex_unlock(&module_mutex); 172 173 /* 174 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 175 * otherwise ensure the symbol position count matches sympos. 176 */ 177 if (args.addr == 0) 178 pr_err("symbol '%s' not found in symbol table\n", name); 179 else if (args.count > 1 && sympos == 0) { 180 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 181 name, objname); 182 } else if (sympos != args.count && sympos > 0) { 183 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 184 sympos, name, objname ? objname : "vmlinux"); 185 } else { 186 *addr = args.addr; 187 return 0; 188 } 189 190 *addr = 0; 191 return -EINVAL; 192 } 193 194 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab, 195 unsigned int symndx, Elf_Shdr *relasec, 196 const char *sec_objname) 197 { 198 int i, cnt, ret; 199 char sym_objname[MODULE_NAME_LEN]; 200 char sym_name[KSYM_NAME_LEN]; 201 Elf_Rela *relas; 202 Elf_Sym *sym; 203 unsigned long sympos, addr; 204 bool sym_vmlinux; 205 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 206 207 /* 208 * Since the field widths for sym_objname and sym_name in the sscanf() 209 * call are hard-coded and correspond to MODULE_NAME_LEN and 210 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 211 * and KSYM_NAME_LEN have the values we expect them to have. 212 * 213 * Because the value of MODULE_NAME_LEN can differ among architectures, 214 * we use the smallest/strictest upper bound possible (56, based on 215 * the current definition of MODULE_NAME_LEN) to prevent overflows. 216 */ 217 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128); 218 219 relas = (Elf_Rela *) relasec->sh_addr; 220 /* For each rela in this klp relocation section */ 221 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 222 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 223 if (sym->st_shndx != SHN_LIVEPATCH) { 224 pr_err("symbol %s is not marked as a livepatch symbol\n", 225 strtab + sym->st_name); 226 return -EINVAL; 227 } 228 229 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 230 cnt = sscanf(strtab + sym->st_name, 231 ".klp.sym.%55[^.].%127[^,],%lu", 232 sym_objname, sym_name, &sympos); 233 if (cnt != 3) { 234 pr_err("symbol %s has an incorrectly formatted name\n", 235 strtab + sym->st_name); 236 return -EINVAL; 237 } 238 239 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 240 241 /* 242 * Prevent module-specific KLP rela sections from referencing 243 * vmlinux symbols. This helps prevent ordering issues with 244 * module special section initializations. Presumably such 245 * symbols are exported and normal relas can be used instead. 246 */ 247 if (!sec_vmlinux && sym_vmlinux) { 248 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 249 sym_name); 250 return -EINVAL; 251 } 252 253 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 254 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 255 sym_name, sympos, &addr); 256 if (ret) 257 return ret; 258 259 sym->st_value = addr; 260 } 261 262 return 0; 263 } 264 265 /* 266 * At a high-level, there are two types of klp relocation sections: those which 267 * reference symbols which live in vmlinux; and those which reference symbols 268 * which live in other modules. This function is called for both types: 269 * 270 * 1) When a klp module itself loads, the module code calls this function to 271 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 272 * These relocations are written to the klp module text to allow the patched 273 * code/data to reference unexported vmlinux symbols. They're written as 274 * early as possible to ensure that other module init code (.e.g., 275 * jump_label_apply_nops) can access any unexported vmlinux symbols which 276 * might be referenced by the klp module's special sections. 277 * 278 * 2) When a to-be-patched module loads -- or is already loaded when a 279 * corresponding klp module loads -- klp code calls this function to write 280 * module-specific klp relocations (.klp.rela.{module}.* sections). These 281 * are written to the klp module text to allow the patched code/data to 282 * reference symbols which live in the to-be-patched module or one of its 283 * module dependencies. Exported symbols are supported, in addition to 284 * unexported symbols, in order to enable late module patching, which allows 285 * the to-be-patched module to be loaded and patched sometime *after* the 286 * klp module is loaded. 287 */ 288 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 289 const char *shstrtab, const char *strtab, 290 unsigned int symndx, unsigned int secndx, 291 const char *objname) 292 { 293 int cnt, ret; 294 char sec_objname[MODULE_NAME_LEN]; 295 Elf_Shdr *sec = sechdrs + secndx; 296 297 /* 298 * Format: .klp.rela.sec_objname.section_name 299 * See comment in klp_resolve_symbols() for an explanation 300 * of the selected field width value. 301 */ 302 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 303 sec_objname); 304 if (cnt != 1) { 305 pr_err("section %s has an incorrectly formatted name\n", 306 shstrtab + sec->sh_name); 307 return -EINVAL; 308 } 309 310 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 311 return 0; 312 313 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname); 314 if (ret) 315 return ret; 316 317 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 318 } 319 320 /* 321 * Sysfs Interface 322 * 323 * /sys/kernel/livepatch 324 * /sys/kernel/livepatch/<patch> 325 * /sys/kernel/livepatch/<patch>/enabled 326 * /sys/kernel/livepatch/<patch>/transition 327 * /sys/kernel/livepatch/<patch>/force 328 * /sys/kernel/livepatch/<patch>/<object> 329 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 330 */ 331 static int __klp_disable_patch(struct klp_patch *patch); 332 333 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 334 const char *buf, size_t count) 335 { 336 struct klp_patch *patch; 337 int ret; 338 bool enabled; 339 340 ret = kstrtobool(buf, &enabled); 341 if (ret) 342 return ret; 343 344 patch = container_of(kobj, struct klp_patch, kobj); 345 346 mutex_lock(&klp_mutex); 347 348 if (patch->enabled == enabled) { 349 /* already in requested state */ 350 ret = -EINVAL; 351 goto out; 352 } 353 354 /* 355 * Allow to reverse a pending transition in both ways. It might be 356 * necessary to complete the transition without forcing and breaking 357 * the system integrity. 358 * 359 * Do not allow to re-enable a disabled patch. 360 */ 361 if (patch == klp_transition_patch) 362 klp_reverse_transition(); 363 else if (!enabled) 364 ret = __klp_disable_patch(patch); 365 else 366 ret = -EINVAL; 367 368 out: 369 mutex_unlock(&klp_mutex); 370 371 if (ret) 372 return ret; 373 return count; 374 } 375 376 static ssize_t enabled_show(struct kobject *kobj, 377 struct kobj_attribute *attr, char *buf) 378 { 379 struct klp_patch *patch; 380 381 patch = container_of(kobj, struct klp_patch, kobj); 382 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 383 } 384 385 static ssize_t transition_show(struct kobject *kobj, 386 struct kobj_attribute *attr, char *buf) 387 { 388 struct klp_patch *patch; 389 390 patch = container_of(kobj, struct klp_patch, kobj); 391 return snprintf(buf, PAGE_SIZE-1, "%d\n", 392 patch == klp_transition_patch); 393 } 394 395 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 396 const char *buf, size_t count) 397 { 398 struct klp_patch *patch; 399 int ret; 400 bool val; 401 402 ret = kstrtobool(buf, &val); 403 if (ret) 404 return ret; 405 406 if (!val) 407 return count; 408 409 mutex_lock(&klp_mutex); 410 411 patch = container_of(kobj, struct klp_patch, kobj); 412 if (patch != klp_transition_patch) { 413 mutex_unlock(&klp_mutex); 414 return -EINVAL; 415 } 416 417 klp_force_transition(); 418 419 mutex_unlock(&klp_mutex); 420 421 return count; 422 } 423 424 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 425 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 426 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 427 static struct attribute *klp_patch_attrs[] = { 428 &enabled_kobj_attr.attr, 429 &transition_kobj_attr.attr, 430 &force_kobj_attr.attr, 431 NULL 432 }; 433 ATTRIBUTE_GROUPS(klp_patch); 434 435 static void klp_free_object_dynamic(struct klp_object *obj) 436 { 437 kfree(obj->name); 438 kfree(obj); 439 } 440 441 static void klp_init_func_early(struct klp_object *obj, 442 struct klp_func *func); 443 static void klp_init_object_early(struct klp_patch *patch, 444 struct klp_object *obj); 445 446 static struct klp_object *klp_alloc_object_dynamic(const char *name, 447 struct klp_patch *patch) 448 { 449 struct klp_object *obj; 450 451 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 452 if (!obj) 453 return NULL; 454 455 if (name) { 456 obj->name = kstrdup(name, GFP_KERNEL); 457 if (!obj->name) { 458 kfree(obj); 459 return NULL; 460 } 461 } 462 463 klp_init_object_early(patch, obj); 464 obj->dynamic = true; 465 466 return obj; 467 } 468 469 static void klp_free_func_nop(struct klp_func *func) 470 { 471 kfree(func->old_name); 472 kfree(func); 473 } 474 475 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 476 struct klp_object *obj) 477 { 478 struct klp_func *func; 479 480 func = kzalloc(sizeof(*func), GFP_KERNEL); 481 if (!func) 482 return NULL; 483 484 if (old_func->old_name) { 485 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 486 if (!func->old_name) { 487 kfree(func); 488 return NULL; 489 } 490 } 491 492 klp_init_func_early(obj, func); 493 /* 494 * func->new_func is same as func->old_func. These addresses are 495 * set when the object is loaded, see klp_init_object_loaded(). 496 */ 497 func->old_sympos = old_func->old_sympos; 498 func->nop = true; 499 500 return func; 501 } 502 503 static int klp_add_object_nops(struct klp_patch *patch, 504 struct klp_object *old_obj) 505 { 506 struct klp_object *obj; 507 struct klp_func *func, *old_func; 508 509 obj = klp_find_object(patch, old_obj); 510 511 if (!obj) { 512 obj = klp_alloc_object_dynamic(old_obj->name, patch); 513 if (!obj) 514 return -ENOMEM; 515 } 516 517 klp_for_each_func(old_obj, old_func) { 518 func = klp_find_func(obj, old_func); 519 if (func) 520 continue; 521 522 func = klp_alloc_func_nop(old_func, obj); 523 if (!func) 524 return -ENOMEM; 525 } 526 527 return 0; 528 } 529 530 /* 531 * Add 'nop' functions which simply return to the caller to run 532 * the original function. The 'nop' functions are added to a 533 * patch to facilitate a 'replace' mode. 534 */ 535 static int klp_add_nops(struct klp_patch *patch) 536 { 537 struct klp_patch *old_patch; 538 struct klp_object *old_obj; 539 540 klp_for_each_patch(old_patch) { 541 klp_for_each_object(old_patch, old_obj) { 542 int err; 543 544 err = klp_add_object_nops(patch, old_obj); 545 if (err) 546 return err; 547 } 548 } 549 550 return 0; 551 } 552 553 static void klp_kobj_release_patch(struct kobject *kobj) 554 { 555 struct klp_patch *patch; 556 557 patch = container_of(kobj, struct klp_patch, kobj); 558 complete(&patch->finish); 559 } 560 561 static struct kobj_type klp_ktype_patch = { 562 .release = klp_kobj_release_patch, 563 .sysfs_ops = &kobj_sysfs_ops, 564 .default_groups = klp_patch_groups, 565 }; 566 567 static void klp_kobj_release_object(struct kobject *kobj) 568 { 569 struct klp_object *obj; 570 571 obj = container_of(kobj, struct klp_object, kobj); 572 573 if (obj->dynamic) 574 klp_free_object_dynamic(obj); 575 } 576 577 static struct kobj_type klp_ktype_object = { 578 .release = klp_kobj_release_object, 579 .sysfs_ops = &kobj_sysfs_ops, 580 }; 581 582 static void klp_kobj_release_func(struct kobject *kobj) 583 { 584 struct klp_func *func; 585 586 func = container_of(kobj, struct klp_func, kobj); 587 588 if (func->nop) 589 klp_free_func_nop(func); 590 } 591 592 static struct kobj_type klp_ktype_func = { 593 .release = klp_kobj_release_func, 594 .sysfs_ops = &kobj_sysfs_ops, 595 }; 596 597 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 598 { 599 struct klp_func *func, *tmp_func; 600 601 klp_for_each_func_safe(obj, func, tmp_func) { 602 if (nops_only && !func->nop) 603 continue; 604 605 list_del(&func->node); 606 kobject_put(&func->kobj); 607 } 608 } 609 610 /* Clean up when a patched object is unloaded */ 611 static void klp_free_object_loaded(struct klp_object *obj) 612 { 613 struct klp_func *func; 614 615 obj->mod = NULL; 616 617 klp_for_each_func(obj, func) { 618 func->old_func = NULL; 619 620 if (func->nop) 621 func->new_func = NULL; 622 } 623 } 624 625 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 626 { 627 struct klp_object *obj, *tmp_obj; 628 629 klp_for_each_object_safe(patch, obj, tmp_obj) { 630 __klp_free_funcs(obj, nops_only); 631 632 if (nops_only && !obj->dynamic) 633 continue; 634 635 list_del(&obj->node); 636 kobject_put(&obj->kobj); 637 } 638 } 639 640 static void klp_free_objects(struct klp_patch *patch) 641 { 642 __klp_free_objects(patch, false); 643 } 644 645 static void klp_free_objects_dynamic(struct klp_patch *patch) 646 { 647 __klp_free_objects(patch, true); 648 } 649 650 /* 651 * This function implements the free operations that can be called safely 652 * under klp_mutex. 653 * 654 * The operation must be completed by calling klp_free_patch_finish() 655 * outside klp_mutex. 656 */ 657 static void klp_free_patch_start(struct klp_patch *patch) 658 { 659 if (!list_empty(&patch->list)) 660 list_del(&patch->list); 661 662 klp_free_objects(patch); 663 } 664 665 /* 666 * This function implements the free part that must be called outside 667 * klp_mutex. 668 * 669 * It must be called after klp_free_patch_start(). And it has to be 670 * the last function accessing the livepatch structures when the patch 671 * gets disabled. 672 */ 673 static void klp_free_patch_finish(struct klp_patch *patch) 674 { 675 /* 676 * Avoid deadlock with enabled_store() sysfs callback by 677 * calling this outside klp_mutex. It is safe because 678 * this is called when the patch gets disabled and it 679 * cannot get enabled again. 680 */ 681 kobject_put(&patch->kobj); 682 wait_for_completion(&patch->finish); 683 684 /* Put the module after the last access to struct klp_patch. */ 685 if (!patch->forced) 686 module_put(patch->mod); 687 } 688 689 /* 690 * The livepatch might be freed from sysfs interface created by the patch. 691 * This work allows to wait until the interface is destroyed in a separate 692 * context. 693 */ 694 static void klp_free_patch_work_fn(struct work_struct *work) 695 { 696 struct klp_patch *patch = 697 container_of(work, struct klp_patch, free_work); 698 699 klp_free_patch_finish(patch); 700 } 701 702 void klp_free_patch_async(struct klp_patch *patch) 703 { 704 klp_free_patch_start(patch); 705 schedule_work(&patch->free_work); 706 } 707 708 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 709 { 710 struct klp_patch *old_patch, *tmp_patch; 711 712 klp_for_each_patch_safe(old_patch, tmp_patch) { 713 if (old_patch == new_patch) 714 return; 715 klp_free_patch_async(old_patch); 716 } 717 } 718 719 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 720 { 721 if (!func->old_name) 722 return -EINVAL; 723 724 /* 725 * NOPs get the address later. The patched module must be loaded, 726 * see klp_init_object_loaded(). 727 */ 728 if (!func->new_func && !func->nop) 729 return -EINVAL; 730 731 if (strlen(func->old_name) >= KSYM_NAME_LEN) 732 return -EINVAL; 733 734 INIT_LIST_HEAD(&func->stack_node); 735 func->patched = false; 736 func->transition = false; 737 738 /* The format for the sysfs directory is <function,sympos> where sympos 739 * is the nth occurrence of this symbol in kallsyms for the patched 740 * object. If the user selects 0 for old_sympos, then 1 will be used 741 * since a unique symbol will be the first occurrence. 742 */ 743 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 744 func->old_name, 745 func->old_sympos ? func->old_sympos : 1); 746 } 747 748 int klp_apply_object_relocs(struct klp_patch *patch, struct klp_object *obj) 749 { 750 int i, ret; 751 struct klp_modinfo *info = patch->mod->klp_info; 752 753 for (i = 1; i < info->hdr.e_shnum; i++) { 754 Elf_Shdr *sec = info->sechdrs + i; 755 756 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 757 continue; 758 759 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 760 info->secstrings, 761 patch->mod->core_kallsyms.strtab, 762 info->symndx, i, obj->name); 763 if (ret) 764 return ret; 765 } 766 767 return 0; 768 } 769 770 /* parts of the initialization that is done only when the object is loaded */ 771 static int klp_init_object_loaded(struct klp_patch *patch, 772 struct klp_object *obj) 773 { 774 struct klp_func *func; 775 int ret; 776 777 if (klp_is_module(obj)) { 778 779 mutex_lock(&text_mutex); 780 781 /* 782 * Only write module-specific relocations here 783 * (.klp.rela.{module}.*). vmlinux-specific relocations were 784 * written earlier during the initialization of the klp module 785 * itself. 786 */ 787 ret = klp_apply_object_relocs(patch, obj); 788 789 mutex_unlock(&text_mutex); 790 791 if (ret) 792 return ret; 793 } 794 795 klp_for_each_func(obj, func) { 796 ret = klp_find_object_symbol(obj->name, func->old_name, 797 func->old_sympos, 798 (unsigned long *)&func->old_func); 799 if (ret) 800 return ret; 801 802 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 803 &func->old_size, NULL); 804 if (!ret) { 805 pr_err("kallsyms size lookup failed for '%s'\n", 806 func->old_name); 807 return -ENOENT; 808 } 809 810 if (func->nop) 811 func->new_func = func->old_func; 812 813 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 814 &func->new_size, NULL); 815 if (!ret) { 816 pr_err("kallsyms size lookup failed for '%s' replacement\n", 817 func->old_name); 818 return -ENOENT; 819 } 820 } 821 822 return 0; 823 } 824 825 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 826 { 827 struct klp_func *func; 828 int ret; 829 const char *name; 830 831 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 832 return -EINVAL; 833 834 obj->patched = false; 835 obj->mod = NULL; 836 837 klp_find_object_module(obj); 838 839 name = klp_is_module(obj) ? obj->name : "vmlinux"; 840 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 841 if (ret) 842 return ret; 843 844 klp_for_each_func(obj, func) { 845 ret = klp_init_func(obj, func); 846 if (ret) 847 return ret; 848 } 849 850 if (klp_is_object_loaded(obj)) 851 ret = klp_init_object_loaded(patch, obj); 852 853 return ret; 854 } 855 856 static void klp_init_func_early(struct klp_object *obj, 857 struct klp_func *func) 858 { 859 kobject_init(&func->kobj, &klp_ktype_func); 860 list_add_tail(&func->node, &obj->func_list); 861 } 862 863 static void klp_init_object_early(struct klp_patch *patch, 864 struct klp_object *obj) 865 { 866 INIT_LIST_HEAD(&obj->func_list); 867 kobject_init(&obj->kobj, &klp_ktype_object); 868 list_add_tail(&obj->node, &patch->obj_list); 869 } 870 871 static int klp_init_patch_early(struct klp_patch *patch) 872 { 873 struct klp_object *obj; 874 struct klp_func *func; 875 876 if (!patch->objs) 877 return -EINVAL; 878 879 INIT_LIST_HEAD(&patch->list); 880 INIT_LIST_HEAD(&patch->obj_list); 881 kobject_init(&patch->kobj, &klp_ktype_patch); 882 patch->enabled = false; 883 patch->forced = false; 884 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 885 init_completion(&patch->finish); 886 887 klp_for_each_object_static(patch, obj) { 888 if (!obj->funcs) 889 return -EINVAL; 890 891 klp_init_object_early(patch, obj); 892 893 klp_for_each_func_static(obj, func) { 894 klp_init_func_early(obj, func); 895 } 896 } 897 898 if (!try_module_get(patch->mod)) 899 return -ENODEV; 900 901 return 0; 902 } 903 904 static int klp_init_patch(struct klp_patch *patch) 905 { 906 struct klp_object *obj; 907 int ret; 908 909 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 910 if (ret) 911 return ret; 912 913 if (patch->replace) { 914 ret = klp_add_nops(patch); 915 if (ret) 916 return ret; 917 } 918 919 klp_for_each_object(patch, obj) { 920 ret = klp_init_object(patch, obj); 921 if (ret) 922 return ret; 923 } 924 925 list_add_tail(&patch->list, &klp_patches); 926 927 return 0; 928 } 929 930 static int __klp_disable_patch(struct klp_patch *patch) 931 { 932 struct klp_object *obj; 933 934 if (WARN_ON(!patch->enabled)) 935 return -EINVAL; 936 937 if (klp_transition_patch) 938 return -EBUSY; 939 940 klp_init_transition(patch, KLP_UNPATCHED); 941 942 klp_for_each_object(patch, obj) 943 if (obj->patched) 944 klp_pre_unpatch_callback(obj); 945 946 /* 947 * Enforce the order of the func->transition writes in 948 * klp_init_transition() and the TIF_PATCH_PENDING writes in 949 * klp_start_transition(). In the rare case where klp_ftrace_handler() 950 * is called shortly after klp_update_patch_state() switches the task, 951 * this ensures the handler sees that func->transition is set. 952 */ 953 smp_wmb(); 954 955 klp_start_transition(); 956 patch->enabled = false; 957 klp_try_complete_transition(); 958 959 return 0; 960 } 961 962 static int __klp_enable_patch(struct klp_patch *patch) 963 { 964 struct klp_object *obj; 965 int ret; 966 967 if (klp_transition_patch) 968 return -EBUSY; 969 970 if (WARN_ON(patch->enabled)) 971 return -EINVAL; 972 973 pr_notice("enabling patch '%s'\n", patch->mod->name); 974 975 klp_init_transition(patch, KLP_PATCHED); 976 977 /* 978 * Enforce the order of the func->transition writes in 979 * klp_init_transition() and the ops->func_stack writes in 980 * klp_patch_object(), so that klp_ftrace_handler() will see the 981 * func->transition updates before the handler is registered and the 982 * new funcs become visible to the handler. 983 */ 984 smp_wmb(); 985 986 klp_for_each_object(patch, obj) { 987 if (!klp_is_object_loaded(obj)) 988 continue; 989 990 ret = klp_pre_patch_callback(obj); 991 if (ret) { 992 pr_warn("pre-patch callback failed for object '%s'\n", 993 klp_is_module(obj) ? obj->name : "vmlinux"); 994 goto err; 995 } 996 997 ret = klp_patch_object(obj); 998 if (ret) { 999 pr_warn("failed to patch object '%s'\n", 1000 klp_is_module(obj) ? obj->name : "vmlinux"); 1001 goto err; 1002 } 1003 } 1004 1005 klp_start_transition(); 1006 patch->enabled = true; 1007 klp_try_complete_transition(); 1008 1009 return 0; 1010 err: 1011 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1012 1013 klp_cancel_transition(); 1014 return ret; 1015 } 1016 1017 /** 1018 * klp_enable_patch() - enable the livepatch 1019 * @patch: patch to be enabled 1020 * 1021 * Initializes the data structure associated with the patch, creates the sysfs 1022 * interface, performs the needed symbol lookups and code relocations, 1023 * registers the patched functions with ftrace. 1024 * 1025 * This function is supposed to be called from the livepatch module_init() 1026 * callback. 1027 * 1028 * Return: 0 on success, otherwise error 1029 */ 1030 int klp_enable_patch(struct klp_patch *patch) 1031 { 1032 int ret; 1033 1034 if (!patch || !patch->mod) 1035 return -EINVAL; 1036 1037 if (!is_livepatch_module(patch->mod)) { 1038 pr_err("module %s is not marked as a livepatch module\n", 1039 patch->mod->name); 1040 return -EINVAL; 1041 } 1042 1043 if (!klp_initialized()) 1044 return -ENODEV; 1045 1046 if (!klp_have_reliable_stack()) { 1047 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1048 pr_warn("The livepatch transition may never complete.\n"); 1049 } 1050 1051 mutex_lock(&klp_mutex); 1052 1053 if (!klp_is_patch_compatible(patch)) { 1054 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1055 patch->mod->name); 1056 mutex_unlock(&klp_mutex); 1057 return -EINVAL; 1058 } 1059 1060 ret = klp_init_patch_early(patch); 1061 if (ret) { 1062 mutex_unlock(&klp_mutex); 1063 return ret; 1064 } 1065 1066 ret = klp_init_patch(patch); 1067 if (ret) 1068 goto err; 1069 1070 ret = __klp_enable_patch(patch); 1071 if (ret) 1072 goto err; 1073 1074 mutex_unlock(&klp_mutex); 1075 1076 return 0; 1077 1078 err: 1079 klp_free_patch_start(patch); 1080 1081 mutex_unlock(&klp_mutex); 1082 1083 klp_free_patch_finish(patch); 1084 1085 return ret; 1086 } 1087 EXPORT_SYMBOL_GPL(klp_enable_patch); 1088 1089 /* 1090 * This function unpatches objects from the replaced livepatches. 1091 * 1092 * We could be pretty aggressive here. It is called in the situation where 1093 * these structures are no longer accessed from the ftrace handler. 1094 * All functions are redirected by the klp_transition_patch. They 1095 * use either a new code or they are in the original code because 1096 * of the special nop function patches. 1097 * 1098 * The only exception is when the transition was forced. In this case, 1099 * klp_ftrace_handler() might still see the replaced patch on the stack. 1100 * Fortunately, it is carefully designed to work with removed functions 1101 * thanks to RCU. We only have to keep the patches on the system. Also 1102 * this is handled transparently by patch->module_put. 1103 */ 1104 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1105 { 1106 struct klp_patch *old_patch; 1107 1108 klp_for_each_patch(old_patch) { 1109 if (old_patch == new_patch) 1110 return; 1111 1112 old_patch->enabled = false; 1113 klp_unpatch_objects(old_patch); 1114 } 1115 } 1116 1117 /* 1118 * This function removes the dynamically allocated 'nop' functions. 1119 * 1120 * We could be pretty aggressive. NOPs do not change the existing 1121 * behavior except for adding unnecessary delay by the ftrace handler. 1122 * 1123 * It is safe even when the transition was forced. The ftrace handler 1124 * will see a valid ops->func_stack entry thanks to RCU. 1125 * 1126 * We could even free the NOPs structures. They must be the last entry 1127 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1128 * It does the same as klp_synchronize_transition() to make sure that 1129 * nobody is inside the ftrace handler once the operation finishes. 1130 * 1131 * IMPORTANT: It must be called right after removing the replaced patches! 1132 */ 1133 void klp_discard_nops(struct klp_patch *new_patch) 1134 { 1135 klp_unpatch_objects_dynamic(klp_transition_patch); 1136 klp_free_objects_dynamic(klp_transition_patch); 1137 } 1138 1139 /* 1140 * Remove parts of patches that touch a given kernel module. The list of 1141 * patches processed might be limited. When limit is NULL, all patches 1142 * will be handled. 1143 */ 1144 static void klp_cleanup_module_patches_limited(struct module *mod, 1145 struct klp_patch *limit) 1146 { 1147 struct klp_patch *patch; 1148 struct klp_object *obj; 1149 1150 klp_for_each_patch(patch) { 1151 if (patch == limit) 1152 break; 1153 1154 klp_for_each_object(patch, obj) { 1155 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1156 continue; 1157 1158 if (patch != klp_transition_patch) 1159 klp_pre_unpatch_callback(obj); 1160 1161 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1162 patch->mod->name, obj->mod->name); 1163 klp_unpatch_object(obj); 1164 1165 klp_post_unpatch_callback(obj); 1166 1167 klp_free_object_loaded(obj); 1168 break; 1169 } 1170 } 1171 } 1172 1173 int klp_module_coming(struct module *mod) 1174 { 1175 int ret; 1176 struct klp_patch *patch; 1177 struct klp_object *obj; 1178 1179 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1180 return -EINVAL; 1181 1182 if (!strcmp(mod->name, "vmlinux")) { 1183 pr_err("vmlinux.ko: invalid module name"); 1184 return -EINVAL; 1185 } 1186 1187 mutex_lock(&klp_mutex); 1188 /* 1189 * Each module has to know that klp_module_coming() 1190 * has been called. We never know what module will 1191 * get patched by a new patch. 1192 */ 1193 mod->klp_alive = true; 1194 1195 klp_for_each_patch(patch) { 1196 klp_for_each_object(patch, obj) { 1197 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1198 continue; 1199 1200 obj->mod = mod; 1201 1202 ret = klp_init_object_loaded(patch, obj); 1203 if (ret) { 1204 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1205 patch->mod->name, obj->mod->name, ret); 1206 goto err; 1207 } 1208 1209 pr_notice("applying patch '%s' to loading module '%s'\n", 1210 patch->mod->name, obj->mod->name); 1211 1212 ret = klp_pre_patch_callback(obj); 1213 if (ret) { 1214 pr_warn("pre-patch callback failed for object '%s'\n", 1215 obj->name); 1216 goto err; 1217 } 1218 1219 ret = klp_patch_object(obj); 1220 if (ret) { 1221 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1222 patch->mod->name, obj->mod->name, ret); 1223 1224 klp_post_unpatch_callback(obj); 1225 goto err; 1226 } 1227 1228 if (patch != klp_transition_patch) 1229 klp_post_patch_callback(obj); 1230 1231 break; 1232 } 1233 } 1234 1235 mutex_unlock(&klp_mutex); 1236 1237 return 0; 1238 1239 err: 1240 /* 1241 * If a patch is unsuccessfully applied, return 1242 * error to the module loader. 1243 */ 1244 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1245 patch->mod->name, obj->mod->name, obj->mod->name); 1246 mod->klp_alive = false; 1247 obj->mod = NULL; 1248 klp_cleanup_module_patches_limited(mod, patch); 1249 mutex_unlock(&klp_mutex); 1250 1251 return ret; 1252 } 1253 1254 void klp_module_going(struct module *mod) 1255 { 1256 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1257 mod->state != MODULE_STATE_COMING)) 1258 return; 1259 1260 mutex_lock(&klp_mutex); 1261 /* 1262 * Each module has to know that klp_module_going() 1263 * has been called. We never know what module will 1264 * get patched by a new patch. 1265 */ 1266 mod->klp_alive = false; 1267 1268 klp_cleanup_module_patches_limited(mod, NULL); 1269 1270 mutex_unlock(&klp_mutex); 1271 } 1272 1273 static int __init klp_init(void) 1274 { 1275 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1276 if (!klp_root_kobj) 1277 return -ENOMEM; 1278 1279 return 0; 1280 } 1281 1282 module_init(klp_init); 1283