1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <[email protected]> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 * - __klp_sched_try_switch() 37 */ 38 DEFINE_MUTEX(klp_mutex); 39 40 /* 41 * Actively used patches: enabled or in transition. Note that replaced 42 * or disabled patches are not listed even though the related kernel 43 * module still can be loaded. 44 */ 45 LIST_HEAD(klp_patches); 46 47 static struct kobject *klp_root_kobj; 48 49 static bool klp_is_module(struct klp_object *obj) 50 { 51 return obj->name; 52 } 53 54 /* sets obj->mod if object is not vmlinux and module is found */ 55 static void klp_find_object_module(struct klp_object *obj) 56 { 57 struct module *mod; 58 59 if (!klp_is_module(obj)) 60 return; 61 62 rcu_read_lock_sched(); 63 /* 64 * We do not want to block removal of patched modules and therefore 65 * we do not take a reference here. The patches are removed by 66 * klp_module_going() instead. 67 */ 68 mod = find_module(obj->name); 69 /* 70 * Do not mess work of klp_module_coming() and klp_module_going(). 71 * Note that the patch might still be needed before klp_module_going() 72 * is called. Module functions can be called even in the GOING state 73 * until mod->exit() finishes. This is especially important for 74 * patches that modify semantic of the functions. 75 */ 76 if (mod && mod->klp_alive) 77 obj->mod = mod; 78 79 rcu_read_unlock_sched(); 80 } 81 82 static bool klp_initialized(void) 83 { 84 return !!klp_root_kobj; 85 } 86 87 static struct klp_func *klp_find_func(struct klp_object *obj, 88 struct klp_func *old_func) 89 { 90 struct klp_func *func; 91 92 klp_for_each_func(obj, func) { 93 if ((strcmp(old_func->old_name, func->old_name) == 0) && 94 (old_func->old_sympos == func->old_sympos)) { 95 return func; 96 } 97 } 98 99 return NULL; 100 } 101 102 static struct klp_object *klp_find_object(struct klp_patch *patch, 103 struct klp_object *old_obj) 104 { 105 struct klp_object *obj; 106 107 klp_for_each_object(patch, obj) { 108 if (klp_is_module(old_obj)) { 109 if (klp_is_module(obj) && 110 strcmp(old_obj->name, obj->name) == 0) { 111 return obj; 112 } 113 } else if (!klp_is_module(obj)) { 114 return obj; 115 } 116 } 117 118 return NULL; 119 } 120 121 struct klp_find_arg { 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_match_callback(void *data, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 args->addr = addr; 133 args->count++; 134 135 /* 136 * Finish the search when the symbol is found for the desired position 137 * or the position is not defined for a non-unique symbol. 138 */ 139 if ((args->pos && (args->count == args->pos)) || 140 (!args->pos && (args->count > 1))) 141 return 1; 142 143 return 0; 144 } 145 146 static int klp_find_callback(void *data, const char *name, unsigned long addr) 147 { 148 struct klp_find_arg *args = data; 149 150 if (strcmp(args->name, name)) 151 return 0; 152 153 return klp_match_callback(data, addr); 154 } 155 156 static int klp_find_object_symbol(const char *objname, const char *name, 157 unsigned long sympos, unsigned long *addr) 158 { 159 struct klp_find_arg args = { 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 if (objname) 167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args); 168 else 169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 170 171 /* 172 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 173 * otherwise ensure the symbol position count matches sympos. 174 */ 175 if (args.addr == 0) 176 pr_err("symbol '%s' not found in symbol table\n", name); 177 else if (args.count > 1 && sympos == 0) { 178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 179 name, objname); 180 } else if (sympos != args.count && sympos > 0) { 181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 182 sympos, name, objname ? objname : "vmlinux"); 183 } else { 184 *addr = args.addr; 185 return 0; 186 } 187 188 *addr = 0; 189 return -EINVAL; 190 } 191 192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 193 unsigned int symndx, Elf_Shdr *relasec, 194 const char *sec_objname) 195 { 196 int i, cnt, ret; 197 char sym_objname[MODULE_NAME_LEN]; 198 char sym_name[KSYM_NAME_LEN]; 199 Elf_Rela *relas; 200 Elf_Sym *sym; 201 unsigned long sympos, addr; 202 bool sym_vmlinux; 203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 204 205 /* 206 * Since the field widths for sym_objname and sym_name in the sscanf() 207 * call are hard-coded and correspond to MODULE_NAME_LEN and 208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 209 * and KSYM_NAME_LEN have the values we expect them to have. 210 * 211 * Because the value of MODULE_NAME_LEN can differ among architectures, 212 * we use the smallest/strictest upper bound possible (56, based on 213 * the current definition of MODULE_NAME_LEN) to prevent overflows. 214 */ 215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 216 217 relas = (Elf_Rela *) relasec->sh_addr; 218 /* For each rela in this klp relocation section */ 219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 221 if (sym->st_shndx != SHN_LIVEPATCH) { 222 pr_err("symbol %s is not marked as a livepatch symbol\n", 223 strtab + sym->st_name); 224 return -EINVAL; 225 } 226 227 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 228 cnt = sscanf(strtab + sym->st_name, 229 ".klp.sym.%55[^.].%511[^,],%lu", 230 sym_objname, sym_name, &sympos); 231 if (cnt != 3) { 232 pr_err("symbol %s has an incorrectly formatted name\n", 233 strtab + sym->st_name); 234 return -EINVAL; 235 } 236 237 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 238 239 /* 240 * Prevent module-specific KLP rela sections from referencing 241 * vmlinux symbols. This helps prevent ordering issues with 242 * module special section initializations. Presumably such 243 * symbols are exported and normal relas can be used instead. 244 */ 245 if (!sec_vmlinux && sym_vmlinux) { 246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n", 247 sym_name); 248 return -EINVAL; 249 } 250 251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 253 sym_name, sympos, &addr); 254 if (ret) 255 return ret; 256 257 sym->st_value = addr; 258 } 259 260 return 0; 261 } 262 263 void __weak clear_relocate_add(Elf_Shdr *sechdrs, 264 const char *strtab, 265 unsigned int symindex, 266 unsigned int relsec, 267 struct module *me) 268 { 269 } 270 271 /* 272 * At a high-level, there are two types of klp relocation sections: those which 273 * reference symbols which live in vmlinux; and those which reference symbols 274 * which live in other modules. This function is called for both types: 275 * 276 * 1) When a klp module itself loads, the module code calls this function to 277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 278 * These relocations are written to the klp module text to allow the patched 279 * code/data to reference unexported vmlinux symbols. They're written as 280 * early as possible to ensure that other module init code (.e.g., 281 * jump_label_apply_nops) can access any unexported vmlinux symbols which 282 * might be referenced by the klp module's special sections. 283 * 284 * 2) When a to-be-patched module loads -- or is already loaded when a 285 * corresponding klp module loads -- klp code calls this function to write 286 * module-specific klp relocations (.klp.rela.{module}.* sections). These 287 * are written to the klp module text to allow the patched code/data to 288 * reference symbols which live in the to-be-patched module or one of its 289 * module dependencies. Exported symbols are supported, in addition to 290 * unexported symbols, in order to enable late module patching, which allows 291 * the to-be-patched module to be loaded and patched sometime *after* the 292 * klp module is loaded. 293 */ 294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 295 const char *shstrtab, const char *strtab, 296 unsigned int symndx, unsigned int secndx, 297 const char *objname, bool apply) 298 { 299 int cnt, ret; 300 char sec_objname[MODULE_NAME_LEN]; 301 Elf_Shdr *sec = sechdrs + secndx; 302 303 /* 304 * Format: .klp.rela.sec_objname.section_name 305 * See comment in klp_resolve_symbols() for an explanation 306 * of the selected field width value. 307 */ 308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 309 sec_objname); 310 if (cnt != 1) { 311 pr_err("section %s has an incorrectly formatted name\n", 312 shstrtab + sec->sh_name); 313 return -EINVAL; 314 } 315 316 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 317 return 0; 318 319 if (apply) { 320 ret = klp_resolve_symbols(sechdrs, strtab, symndx, 321 sec, sec_objname); 322 if (ret) 323 return ret; 324 325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 326 } 327 328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 329 return 0; 330 } 331 332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 333 const char *shstrtab, const char *strtab, 334 unsigned int symndx, unsigned int secndx, 335 const char *objname) 336 { 337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx, 338 secndx, objname, true); 339 } 340 341 /* 342 * Sysfs Interface 343 * 344 * /sys/kernel/livepatch 345 * /sys/kernel/livepatch/<patch> 346 * /sys/kernel/livepatch/<patch>/enabled 347 * /sys/kernel/livepatch/<patch>/transition 348 * /sys/kernel/livepatch/<patch>/force 349 * /sys/kernel/livepatch/<patch>/replace 350 * /sys/kernel/livepatch/<patch>/<object> 351 * /sys/kernel/livepatch/<patch>/<object>/patched 352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 353 */ 354 static int __klp_disable_patch(struct klp_patch *patch); 355 356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 357 const char *buf, size_t count) 358 { 359 struct klp_patch *patch; 360 int ret; 361 bool enabled; 362 363 ret = kstrtobool(buf, &enabled); 364 if (ret) 365 return ret; 366 367 patch = container_of(kobj, struct klp_patch, kobj); 368 369 mutex_lock(&klp_mutex); 370 371 if (patch->enabled == enabled) { 372 /* already in requested state */ 373 ret = -EINVAL; 374 goto out; 375 } 376 377 /* 378 * Allow to reverse a pending transition in both ways. It might be 379 * necessary to complete the transition without forcing and breaking 380 * the system integrity. 381 * 382 * Do not allow to re-enable a disabled patch. 383 */ 384 if (patch == klp_transition_patch) 385 klp_reverse_transition(); 386 else if (!enabled) 387 ret = __klp_disable_patch(patch); 388 else 389 ret = -EINVAL; 390 391 out: 392 mutex_unlock(&klp_mutex); 393 394 if (ret) 395 return ret; 396 return count; 397 } 398 399 static ssize_t enabled_show(struct kobject *kobj, 400 struct kobj_attribute *attr, char *buf) 401 { 402 struct klp_patch *patch; 403 404 patch = container_of(kobj, struct klp_patch, kobj); 405 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 406 } 407 408 static ssize_t transition_show(struct kobject *kobj, 409 struct kobj_attribute *attr, char *buf) 410 { 411 struct klp_patch *patch; 412 413 patch = container_of(kobj, struct klp_patch, kobj); 414 return snprintf(buf, PAGE_SIZE-1, "%d\n", 415 patch == klp_transition_patch); 416 } 417 418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 419 const char *buf, size_t count) 420 { 421 struct klp_patch *patch; 422 int ret; 423 bool val; 424 425 ret = kstrtobool(buf, &val); 426 if (ret) 427 return ret; 428 429 if (!val) 430 return count; 431 432 mutex_lock(&klp_mutex); 433 434 patch = container_of(kobj, struct klp_patch, kobj); 435 if (patch != klp_transition_patch) { 436 mutex_unlock(&klp_mutex); 437 return -EINVAL; 438 } 439 440 klp_force_transition(); 441 442 mutex_unlock(&klp_mutex); 443 444 return count; 445 } 446 447 static ssize_t replace_show(struct kobject *kobj, 448 struct kobj_attribute *attr, char *buf) 449 { 450 struct klp_patch *patch; 451 452 patch = container_of(kobj, struct klp_patch, kobj); 453 return sysfs_emit(buf, "%d\n", patch->replace); 454 } 455 456 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 457 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 458 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 459 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace); 460 static struct attribute *klp_patch_attrs[] = { 461 &enabled_kobj_attr.attr, 462 &transition_kobj_attr.attr, 463 &force_kobj_attr.attr, 464 &replace_kobj_attr.attr, 465 NULL 466 }; 467 ATTRIBUTE_GROUPS(klp_patch); 468 469 static ssize_t patched_show(struct kobject *kobj, 470 struct kobj_attribute *attr, char *buf) 471 { 472 struct klp_object *obj; 473 474 obj = container_of(kobj, struct klp_object, kobj); 475 return sysfs_emit(buf, "%d\n", obj->patched); 476 } 477 478 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 479 static struct attribute *klp_object_attrs[] = { 480 &patched_kobj_attr.attr, 481 NULL, 482 }; 483 ATTRIBUTE_GROUPS(klp_object); 484 485 static void klp_free_object_dynamic(struct klp_object *obj) 486 { 487 kfree(obj->name); 488 kfree(obj); 489 } 490 491 static void klp_init_func_early(struct klp_object *obj, 492 struct klp_func *func); 493 static void klp_init_object_early(struct klp_patch *patch, 494 struct klp_object *obj); 495 496 static struct klp_object *klp_alloc_object_dynamic(const char *name, 497 struct klp_patch *patch) 498 { 499 struct klp_object *obj; 500 501 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 502 if (!obj) 503 return NULL; 504 505 if (name) { 506 obj->name = kstrdup(name, GFP_KERNEL); 507 if (!obj->name) { 508 kfree(obj); 509 return NULL; 510 } 511 } 512 513 klp_init_object_early(patch, obj); 514 obj->dynamic = true; 515 516 return obj; 517 } 518 519 static void klp_free_func_nop(struct klp_func *func) 520 { 521 kfree(func->old_name); 522 kfree(func); 523 } 524 525 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 526 struct klp_object *obj) 527 { 528 struct klp_func *func; 529 530 func = kzalloc(sizeof(*func), GFP_KERNEL); 531 if (!func) 532 return NULL; 533 534 if (old_func->old_name) { 535 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 536 if (!func->old_name) { 537 kfree(func); 538 return NULL; 539 } 540 } 541 542 klp_init_func_early(obj, func); 543 /* 544 * func->new_func is same as func->old_func. These addresses are 545 * set when the object is loaded, see klp_init_object_loaded(). 546 */ 547 func->old_sympos = old_func->old_sympos; 548 func->nop = true; 549 550 return func; 551 } 552 553 static int klp_add_object_nops(struct klp_patch *patch, 554 struct klp_object *old_obj) 555 { 556 struct klp_object *obj; 557 struct klp_func *func, *old_func; 558 559 obj = klp_find_object(patch, old_obj); 560 561 if (!obj) { 562 obj = klp_alloc_object_dynamic(old_obj->name, patch); 563 if (!obj) 564 return -ENOMEM; 565 } 566 567 klp_for_each_func(old_obj, old_func) { 568 func = klp_find_func(obj, old_func); 569 if (func) 570 continue; 571 572 func = klp_alloc_func_nop(old_func, obj); 573 if (!func) 574 return -ENOMEM; 575 } 576 577 return 0; 578 } 579 580 /* 581 * Add 'nop' functions which simply return to the caller to run 582 * the original function. The 'nop' functions are added to a 583 * patch to facilitate a 'replace' mode. 584 */ 585 static int klp_add_nops(struct klp_patch *patch) 586 { 587 struct klp_patch *old_patch; 588 struct klp_object *old_obj; 589 590 klp_for_each_patch(old_patch) { 591 klp_for_each_object(old_patch, old_obj) { 592 int err; 593 594 err = klp_add_object_nops(patch, old_obj); 595 if (err) 596 return err; 597 } 598 } 599 600 return 0; 601 } 602 603 static void klp_kobj_release_patch(struct kobject *kobj) 604 { 605 struct klp_patch *patch; 606 607 patch = container_of(kobj, struct klp_patch, kobj); 608 complete(&patch->finish); 609 } 610 611 static const struct kobj_type klp_ktype_patch = { 612 .release = klp_kobj_release_patch, 613 .sysfs_ops = &kobj_sysfs_ops, 614 .default_groups = klp_patch_groups, 615 }; 616 617 static void klp_kobj_release_object(struct kobject *kobj) 618 { 619 struct klp_object *obj; 620 621 obj = container_of(kobj, struct klp_object, kobj); 622 623 if (obj->dynamic) 624 klp_free_object_dynamic(obj); 625 } 626 627 static const struct kobj_type klp_ktype_object = { 628 .release = klp_kobj_release_object, 629 .sysfs_ops = &kobj_sysfs_ops, 630 .default_groups = klp_object_groups, 631 }; 632 633 static void klp_kobj_release_func(struct kobject *kobj) 634 { 635 struct klp_func *func; 636 637 func = container_of(kobj, struct klp_func, kobj); 638 639 if (func->nop) 640 klp_free_func_nop(func); 641 } 642 643 static const struct kobj_type klp_ktype_func = { 644 .release = klp_kobj_release_func, 645 .sysfs_ops = &kobj_sysfs_ops, 646 }; 647 648 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 649 { 650 struct klp_func *func, *tmp_func; 651 652 klp_for_each_func_safe(obj, func, tmp_func) { 653 if (nops_only && !func->nop) 654 continue; 655 656 list_del(&func->node); 657 kobject_put(&func->kobj); 658 } 659 } 660 661 /* Clean up when a patched object is unloaded */ 662 static void klp_free_object_loaded(struct klp_object *obj) 663 { 664 struct klp_func *func; 665 666 obj->mod = NULL; 667 668 klp_for_each_func(obj, func) { 669 func->old_func = NULL; 670 671 if (func->nop) 672 func->new_func = NULL; 673 } 674 } 675 676 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 677 { 678 struct klp_object *obj, *tmp_obj; 679 680 klp_for_each_object_safe(patch, obj, tmp_obj) { 681 __klp_free_funcs(obj, nops_only); 682 683 if (nops_only && !obj->dynamic) 684 continue; 685 686 list_del(&obj->node); 687 kobject_put(&obj->kobj); 688 } 689 } 690 691 static void klp_free_objects(struct klp_patch *patch) 692 { 693 __klp_free_objects(patch, false); 694 } 695 696 static void klp_free_objects_dynamic(struct klp_patch *patch) 697 { 698 __klp_free_objects(patch, true); 699 } 700 701 /* 702 * This function implements the free operations that can be called safely 703 * under klp_mutex. 704 * 705 * The operation must be completed by calling klp_free_patch_finish() 706 * outside klp_mutex. 707 */ 708 static void klp_free_patch_start(struct klp_patch *patch) 709 { 710 if (!list_empty(&patch->list)) 711 list_del(&patch->list); 712 713 klp_free_objects(patch); 714 } 715 716 /* 717 * This function implements the free part that must be called outside 718 * klp_mutex. 719 * 720 * It must be called after klp_free_patch_start(). And it has to be 721 * the last function accessing the livepatch structures when the patch 722 * gets disabled. 723 */ 724 static void klp_free_patch_finish(struct klp_patch *patch) 725 { 726 /* 727 * Avoid deadlock with enabled_store() sysfs callback by 728 * calling this outside klp_mutex. It is safe because 729 * this is called when the patch gets disabled and it 730 * cannot get enabled again. 731 */ 732 kobject_put(&patch->kobj); 733 wait_for_completion(&patch->finish); 734 735 /* Put the module after the last access to struct klp_patch. */ 736 if (!patch->forced) 737 module_put(patch->mod); 738 } 739 740 /* 741 * The livepatch might be freed from sysfs interface created by the patch. 742 * This work allows to wait until the interface is destroyed in a separate 743 * context. 744 */ 745 static void klp_free_patch_work_fn(struct work_struct *work) 746 { 747 struct klp_patch *patch = 748 container_of(work, struct klp_patch, free_work); 749 750 klp_free_patch_finish(patch); 751 } 752 753 void klp_free_patch_async(struct klp_patch *patch) 754 { 755 klp_free_patch_start(patch); 756 schedule_work(&patch->free_work); 757 } 758 759 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 760 { 761 struct klp_patch *old_patch, *tmp_patch; 762 763 klp_for_each_patch_safe(old_patch, tmp_patch) { 764 if (old_patch == new_patch) 765 return; 766 klp_free_patch_async(old_patch); 767 } 768 } 769 770 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 771 { 772 if (!func->old_name) 773 return -EINVAL; 774 775 /* 776 * NOPs get the address later. The patched module must be loaded, 777 * see klp_init_object_loaded(). 778 */ 779 if (!func->new_func && !func->nop) 780 return -EINVAL; 781 782 if (strlen(func->old_name) >= KSYM_NAME_LEN) 783 return -EINVAL; 784 785 INIT_LIST_HEAD(&func->stack_node); 786 func->patched = false; 787 func->transition = false; 788 789 /* The format for the sysfs directory is <function,sympos> where sympos 790 * is the nth occurrence of this symbol in kallsyms for the patched 791 * object. If the user selects 0 for old_sympos, then 1 will be used 792 * since a unique symbol will be the first occurrence. 793 */ 794 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 795 func->old_name, 796 func->old_sympos ? func->old_sympos : 1); 797 } 798 799 static int klp_write_object_relocs(struct klp_patch *patch, 800 struct klp_object *obj, 801 bool apply) 802 { 803 int i, ret; 804 struct klp_modinfo *info = patch->mod->klp_info; 805 806 for (i = 1; i < info->hdr.e_shnum; i++) { 807 Elf_Shdr *sec = info->sechdrs + i; 808 809 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 810 continue; 811 812 ret = klp_write_section_relocs(patch->mod, info->sechdrs, 813 info->secstrings, 814 patch->mod->core_kallsyms.strtab, 815 info->symndx, i, obj->name, apply); 816 if (ret) 817 return ret; 818 } 819 820 return 0; 821 } 822 823 static int klp_apply_object_relocs(struct klp_patch *patch, 824 struct klp_object *obj) 825 { 826 return klp_write_object_relocs(patch, obj, true); 827 } 828 829 static void klp_clear_object_relocs(struct klp_patch *patch, 830 struct klp_object *obj) 831 { 832 klp_write_object_relocs(patch, obj, false); 833 } 834 835 /* parts of the initialization that is done only when the object is loaded */ 836 static int klp_init_object_loaded(struct klp_patch *patch, 837 struct klp_object *obj) 838 { 839 struct klp_func *func; 840 int ret; 841 842 if (klp_is_module(obj)) { 843 /* 844 * Only write module-specific relocations here 845 * (.klp.rela.{module}.*). vmlinux-specific relocations were 846 * written earlier during the initialization of the klp module 847 * itself. 848 */ 849 ret = klp_apply_object_relocs(patch, obj); 850 if (ret) 851 return ret; 852 } 853 854 klp_for_each_func(obj, func) { 855 ret = klp_find_object_symbol(obj->name, func->old_name, 856 func->old_sympos, 857 (unsigned long *)&func->old_func); 858 if (ret) 859 return ret; 860 861 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 862 &func->old_size, NULL); 863 if (!ret) { 864 pr_err("kallsyms size lookup failed for '%s'\n", 865 func->old_name); 866 return -ENOENT; 867 } 868 869 if (func->nop) 870 func->new_func = func->old_func; 871 872 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 873 &func->new_size, NULL); 874 if (!ret) { 875 pr_err("kallsyms size lookup failed for '%s' replacement\n", 876 func->old_name); 877 return -ENOENT; 878 } 879 } 880 881 return 0; 882 } 883 884 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 885 { 886 struct klp_func *func; 887 int ret; 888 const char *name; 889 890 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 891 return -EINVAL; 892 893 obj->patched = false; 894 obj->mod = NULL; 895 896 klp_find_object_module(obj); 897 898 name = klp_is_module(obj) ? obj->name : "vmlinux"; 899 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 900 if (ret) 901 return ret; 902 903 klp_for_each_func(obj, func) { 904 ret = klp_init_func(obj, func); 905 if (ret) 906 return ret; 907 } 908 909 if (klp_is_object_loaded(obj)) 910 ret = klp_init_object_loaded(patch, obj); 911 912 return ret; 913 } 914 915 static void klp_init_func_early(struct klp_object *obj, 916 struct klp_func *func) 917 { 918 kobject_init(&func->kobj, &klp_ktype_func); 919 list_add_tail(&func->node, &obj->func_list); 920 } 921 922 static void klp_init_object_early(struct klp_patch *patch, 923 struct klp_object *obj) 924 { 925 INIT_LIST_HEAD(&obj->func_list); 926 kobject_init(&obj->kobj, &klp_ktype_object); 927 list_add_tail(&obj->node, &patch->obj_list); 928 } 929 930 static void klp_init_patch_early(struct klp_patch *patch) 931 { 932 struct klp_object *obj; 933 struct klp_func *func; 934 935 INIT_LIST_HEAD(&patch->list); 936 INIT_LIST_HEAD(&patch->obj_list); 937 kobject_init(&patch->kobj, &klp_ktype_patch); 938 patch->enabled = false; 939 patch->forced = false; 940 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 941 init_completion(&patch->finish); 942 943 klp_for_each_object_static(patch, obj) { 944 klp_init_object_early(patch, obj); 945 946 klp_for_each_func_static(obj, func) { 947 klp_init_func_early(obj, func); 948 } 949 } 950 } 951 952 static int klp_init_patch(struct klp_patch *patch) 953 { 954 struct klp_object *obj; 955 int ret; 956 957 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 958 if (ret) 959 return ret; 960 961 if (patch->replace) { 962 ret = klp_add_nops(patch); 963 if (ret) 964 return ret; 965 } 966 967 klp_for_each_object(patch, obj) { 968 ret = klp_init_object(patch, obj); 969 if (ret) 970 return ret; 971 } 972 973 list_add_tail(&patch->list, &klp_patches); 974 975 return 0; 976 } 977 978 static int __klp_disable_patch(struct klp_patch *patch) 979 { 980 struct klp_object *obj; 981 982 if (WARN_ON(!patch->enabled)) 983 return -EINVAL; 984 985 if (klp_transition_patch) 986 return -EBUSY; 987 988 klp_init_transition(patch, KLP_TRANSITION_UNPATCHED); 989 990 klp_for_each_object(patch, obj) 991 if (obj->patched) 992 klp_pre_unpatch_callback(obj); 993 994 /* 995 * Enforce the order of the func->transition writes in 996 * klp_init_transition() and the TIF_PATCH_PENDING writes in 997 * klp_start_transition(). In the rare case where klp_ftrace_handler() 998 * is called shortly after klp_update_patch_state() switches the task, 999 * this ensures the handler sees that func->transition is set. 1000 */ 1001 smp_wmb(); 1002 1003 klp_start_transition(); 1004 patch->enabled = false; 1005 klp_try_complete_transition(); 1006 1007 return 0; 1008 } 1009 1010 static int __klp_enable_patch(struct klp_patch *patch) 1011 { 1012 struct klp_object *obj; 1013 int ret; 1014 1015 if (klp_transition_patch) 1016 return -EBUSY; 1017 1018 if (WARN_ON(patch->enabled)) 1019 return -EINVAL; 1020 1021 pr_notice("enabling patch '%s'\n", patch->mod->name); 1022 1023 klp_init_transition(patch, KLP_TRANSITION_PATCHED); 1024 1025 /* 1026 * Enforce the order of the func->transition writes in 1027 * klp_init_transition() and the ops->func_stack writes in 1028 * klp_patch_object(), so that klp_ftrace_handler() will see the 1029 * func->transition updates before the handler is registered and the 1030 * new funcs become visible to the handler. 1031 */ 1032 smp_wmb(); 1033 1034 klp_for_each_object(patch, obj) { 1035 if (!klp_is_object_loaded(obj)) 1036 continue; 1037 1038 ret = klp_pre_patch_callback(obj); 1039 if (ret) { 1040 pr_warn("pre-patch callback failed for object '%s'\n", 1041 klp_is_module(obj) ? obj->name : "vmlinux"); 1042 goto err; 1043 } 1044 1045 ret = klp_patch_object(obj); 1046 if (ret) { 1047 pr_warn("failed to patch object '%s'\n", 1048 klp_is_module(obj) ? obj->name : "vmlinux"); 1049 goto err; 1050 } 1051 } 1052 1053 klp_start_transition(); 1054 patch->enabled = true; 1055 klp_try_complete_transition(); 1056 1057 return 0; 1058 err: 1059 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1060 1061 klp_cancel_transition(); 1062 return ret; 1063 } 1064 1065 /** 1066 * klp_enable_patch() - enable the livepatch 1067 * @patch: patch to be enabled 1068 * 1069 * Initializes the data structure associated with the patch, creates the sysfs 1070 * interface, performs the needed symbol lookups and code relocations, 1071 * registers the patched functions with ftrace. 1072 * 1073 * This function is supposed to be called from the livepatch module_init() 1074 * callback. 1075 * 1076 * Return: 0 on success, otherwise error 1077 */ 1078 int klp_enable_patch(struct klp_patch *patch) 1079 { 1080 int ret; 1081 struct klp_object *obj; 1082 1083 if (!patch || !patch->mod || !patch->objs) 1084 return -EINVAL; 1085 1086 klp_for_each_object_static(patch, obj) { 1087 if (!obj->funcs) 1088 return -EINVAL; 1089 } 1090 1091 1092 if (!is_livepatch_module(patch->mod)) { 1093 pr_err("module %s is not marked as a livepatch module\n", 1094 patch->mod->name); 1095 return -EINVAL; 1096 } 1097 1098 if (!klp_initialized()) 1099 return -ENODEV; 1100 1101 if (!klp_have_reliable_stack()) { 1102 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1103 pr_warn("The livepatch transition may never complete.\n"); 1104 } 1105 1106 mutex_lock(&klp_mutex); 1107 1108 if (!klp_is_patch_compatible(patch)) { 1109 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1110 patch->mod->name); 1111 mutex_unlock(&klp_mutex); 1112 return -EINVAL; 1113 } 1114 1115 if (!try_module_get(patch->mod)) { 1116 mutex_unlock(&klp_mutex); 1117 return -ENODEV; 1118 } 1119 1120 klp_init_patch_early(patch); 1121 1122 ret = klp_init_patch(patch); 1123 if (ret) 1124 goto err; 1125 1126 ret = __klp_enable_patch(patch); 1127 if (ret) 1128 goto err; 1129 1130 mutex_unlock(&klp_mutex); 1131 1132 return 0; 1133 1134 err: 1135 klp_free_patch_start(patch); 1136 1137 mutex_unlock(&klp_mutex); 1138 1139 klp_free_patch_finish(patch); 1140 1141 return ret; 1142 } 1143 EXPORT_SYMBOL_GPL(klp_enable_patch); 1144 1145 /* 1146 * This function unpatches objects from the replaced livepatches. 1147 * 1148 * We could be pretty aggressive here. It is called in the situation where 1149 * these structures are no longer accessed from the ftrace handler. 1150 * All functions are redirected by the klp_transition_patch. They 1151 * use either a new code or they are in the original code because 1152 * of the special nop function patches. 1153 * 1154 * The only exception is when the transition was forced. In this case, 1155 * klp_ftrace_handler() might still see the replaced patch on the stack. 1156 * Fortunately, it is carefully designed to work with removed functions 1157 * thanks to RCU. We only have to keep the patches on the system. Also 1158 * this is handled transparently by patch->module_put. 1159 */ 1160 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1161 { 1162 struct klp_patch *old_patch; 1163 1164 klp_for_each_patch(old_patch) { 1165 if (old_patch == new_patch) 1166 return; 1167 1168 old_patch->enabled = false; 1169 klp_unpatch_objects(old_patch); 1170 } 1171 } 1172 1173 /* 1174 * This function removes the dynamically allocated 'nop' functions. 1175 * 1176 * We could be pretty aggressive. NOPs do not change the existing 1177 * behavior except for adding unnecessary delay by the ftrace handler. 1178 * 1179 * It is safe even when the transition was forced. The ftrace handler 1180 * will see a valid ops->func_stack entry thanks to RCU. 1181 * 1182 * We could even free the NOPs structures. They must be the last entry 1183 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1184 * It does the same as klp_synchronize_transition() to make sure that 1185 * nobody is inside the ftrace handler once the operation finishes. 1186 * 1187 * IMPORTANT: It must be called right after removing the replaced patches! 1188 */ 1189 void klp_discard_nops(struct klp_patch *new_patch) 1190 { 1191 klp_unpatch_objects_dynamic(klp_transition_patch); 1192 klp_free_objects_dynamic(klp_transition_patch); 1193 } 1194 1195 /* 1196 * Remove parts of patches that touch a given kernel module. The list of 1197 * patches processed might be limited. When limit is NULL, all patches 1198 * will be handled. 1199 */ 1200 static void klp_cleanup_module_patches_limited(struct module *mod, 1201 struct klp_patch *limit) 1202 { 1203 struct klp_patch *patch; 1204 struct klp_object *obj; 1205 1206 klp_for_each_patch(patch) { 1207 if (patch == limit) 1208 break; 1209 1210 klp_for_each_object(patch, obj) { 1211 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1212 continue; 1213 1214 if (patch != klp_transition_patch) 1215 klp_pre_unpatch_callback(obj); 1216 1217 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1218 patch->mod->name, obj->mod->name); 1219 klp_unpatch_object(obj); 1220 1221 klp_post_unpatch_callback(obj); 1222 klp_clear_object_relocs(patch, obj); 1223 klp_free_object_loaded(obj); 1224 break; 1225 } 1226 } 1227 } 1228 1229 int klp_module_coming(struct module *mod) 1230 { 1231 int ret; 1232 struct klp_patch *patch; 1233 struct klp_object *obj; 1234 1235 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1236 return -EINVAL; 1237 1238 if (!strcmp(mod->name, "vmlinux")) { 1239 pr_err("vmlinux.ko: invalid module name\n"); 1240 return -EINVAL; 1241 } 1242 1243 mutex_lock(&klp_mutex); 1244 /* 1245 * Each module has to know that klp_module_coming() 1246 * has been called. We never know what module will 1247 * get patched by a new patch. 1248 */ 1249 mod->klp_alive = true; 1250 1251 klp_for_each_patch(patch) { 1252 klp_for_each_object(patch, obj) { 1253 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1254 continue; 1255 1256 obj->mod = mod; 1257 1258 ret = klp_init_object_loaded(patch, obj); 1259 if (ret) { 1260 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1261 patch->mod->name, obj->mod->name, ret); 1262 goto err; 1263 } 1264 1265 pr_notice("applying patch '%s' to loading module '%s'\n", 1266 patch->mod->name, obj->mod->name); 1267 1268 ret = klp_pre_patch_callback(obj); 1269 if (ret) { 1270 pr_warn("pre-patch callback failed for object '%s'\n", 1271 obj->name); 1272 goto err; 1273 } 1274 1275 ret = klp_patch_object(obj); 1276 if (ret) { 1277 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1278 patch->mod->name, obj->mod->name, ret); 1279 1280 klp_post_unpatch_callback(obj); 1281 goto err; 1282 } 1283 1284 if (patch != klp_transition_patch) 1285 klp_post_patch_callback(obj); 1286 1287 break; 1288 } 1289 } 1290 1291 mutex_unlock(&klp_mutex); 1292 1293 return 0; 1294 1295 err: 1296 /* 1297 * If a patch is unsuccessfully applied, return 1298 * error to the module loader. 1299 */ 1300 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1301 patch->mod->name, obj->mod->name, obj->mod->name); 1302 mod->klp_alive = false; 1303 obj->mod = NULL; 1304 klp_cleanup_module_patches_limited(mod, patch); 1305 mutex_unlock(&klp_mutex); 1306 1307 return ret; 1308 } 1309 1310 void klp_module_going(struct module *mod) 1311 { 1312 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1313 mod->state != MODULE_STATE_COMING)) 1314 return; 1315 1316 mutex_lock(&klp_mutex); 1317 /* 1318 * Each module has to know that klp_module_going() 1319 * has been called. We never know what module will 1320 * get patched by a new patch. 1321 */ 1322 mod->klp_alive = false; 1323 1324 klp_cleanup_module_patches_limited(mod, NULL); 1325 1326 mutex_unlock(&klp_mutex); 1327 } 1328 1329 static int __init klp_init(void) 1330 { 1331 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1332 if (!klp_root_kobj) 1333 return -ENOMEM; 1334 1335 return 0; 1336 } 1337 1338 module_init(klp_init); 1339