xref: /linux-6.15/kernel/livepatch/core.c (revision adb68ed2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <[email protected]>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28 
29 /*
30  * klp_mutex is a coarse lock which serializes access to klp data.  All
31  * accesses to klp-related variables and structures must have mutex protection,
32  * except within the following functions which carefully avoid the need for it:
33  *
34  * - klp_ftrace_handler()
35  * - klp_update_patch_state()
36  * - __klp_sched_try_switch()
37  */
38 DEFINE_MUTEX(klp_mutex);
39 
40 /*
41  * Actively used patches: enabled or in transition. Note that replaced
42  * or disabled patches are not listed even though the related kernel
43  * module still can be loaded.
44  */
45 LIST_HEAD(klp_patches);
46 
47 static struct kobject *klp_root_kobj;
48 
49 static bool klp_is_module(struct klp_object *obj)
50 {
51 	return obj->name;
52 }
53 
54 /* sets obj->mod if object is not vmlinux and module is found */
55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 	struct module *mod;
58 
59 	if (!klp_is_module(obj))
60 		return;
61 
62 	rcu_read_lock_sched();
63 	/*
64 	 * We do not want to block removal of patched modules and therefore
65 	 * we do not take a reference here. The patches are removed by
66 	 * klp_module_going() instead.
67 	 */
68 	mod = find_module(obj->name);
69 	/*
70 	 * Do not mess work of klp_module_coming() and klp_module_going().
71 	 * Note that the patch might still be needed before klp_module_going()
72 	 * is called. Module functions can be called even in the GOING state
73 	 * until mod->exit() finishes. This is especially important for
74 	 * patches that modify semantic of the functions.
75 	 */
76 	if (mod && mod->klp_alive)
77 		obj->mod = mod;
78 
79 	rcu_read_unlock_sched();
80 }
81 
82 static bool klp_initialized(void)
83 {
84 	return !!klp_root_kobj;
85 }
86 
87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 				      struct klp_func *old_func)
89 {
90 	struct klp_func *func;
91 
92 	klp_for_each_func(obj, func) {
93 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 		    (old_func->old_sympos == func->old_sympos)) {
95 			return func;
96 		}
97 	}
98 
99 	return NULL;
100 }
101 
102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 					  struct klp_object *old_obj)
104 {
105 	struct klp_object *obj;
106 
107 	klp_for_each_object(patch, obj) {
108 		if (klp_is_module(old_obj)) {
109 			if (klp_is_module(obj) &&
110 			    strcmp(old_obj->name, obj->name) == 0) {
111 				return obj;
112 			}
113 		} else if (!klp_is_module(obj)) {
114 			return obj;
115 		}
116 	}
117 
118 	return NULL;
119 }
120 
121 struct klp_find_arg {
122 	const char *name;
123 	unsigned long addr;
124 	unsigned long count;
125 	unsigned long pos;
126 };
127 
128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 	struct klp_find_arg *args = data;
131 
132 	args->addr = addr;
133 	args->count++;
134 
135 	/*
136 	 * Finish the search when the symbol is found for the desired position
137 	 * or the position is not defined for a non-unique symbol.
138 	 */
139 	if ((args->pos && (args->count == args->pos)) ||
140 	    (!args->pos && (args->count > 1)))
141 		return 1;
142 
143 	return 0;
144 }
145 
146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
147 {
148 	struct klp_find_arg *args = data;
149 
150 	if (strcmp(args->name, name))
151 		return 0;
152 
153 	return klp_match_callback(data, addr);
154 }
155 
156 static int klp_find_object_symbol(const char *objname, const char *name,
157 				  unsigned long sympos, unsigned long *addr)
158 {
159 	struct klp_find_arg args = {
160 		.name = name,
161 		.addr = 0,
162 		.count = 0,
163 		.pos = sympos,
164 	};
165 
166 	if (objname)
167 		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 	else
169 		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170 
171 	/*
172 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 	 * otherwise ensure the symbol position count matches sympos.
174 	 */
175 	if (args.addr == 0)
176 		pr_err("symbol '%s' not found in symbol table\n", name);
177 	else if (args.count > 1 && sympos == 0) {
178 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 		       name, objname);
180 	} else if (sympos != args.count && sympos > 0) {
181 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 		       sympos, name, objname ? objname : "vmlinux");
183 	} else {
184 		*addr = args.addr;
185 		return 0;
186 	}
187 
188 	*addr = 0;
189 	return -EINVAL;
190 }
191 
192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 			       unsigned int symndx, Elf_Shdr *relasec,
194 			       const char *sec_objname)
195 {
196 	int i, cnt, ret;
197 	char sym_objname[MODULE_NAME_LEN];
198 	char sym_name[KSYM_NAME_LEN];
199 	Elf_Rela *relas;
200 	Elf_Sym *sym;
201 	unsigned long sympos, addr;
202 	bool sym_vmlinux;
203 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204 
205 	/*
206 	 * Since the field widths for sym_objname and sym_name in the sscanf()
207 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 	 * and KSYM_NAME_LEN have the values we expect them to have.
210 	 *
211 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 	 * we use the smallest/strictest upper bound possible (56, based on
213 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 	 */
215 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216 
217 	relas = (Elf_Rela *) relasec->sh_addr;
218 	/* For each rela in this klp relocation section */
219 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 		if (sym->st_shndx != SHN_LIVEPATCH) {
222 			pr_err("symbol %s is not marked as a livepatch symbol\n",
223 			       strtab + sym->st_name);
224 			return -EINVAL;
225 		}
226 
227 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
228 		cnt = sscanf(strtab + sym->st_name,
229 			     ".klp.sym.%55[^.].%511[^,],%lu",
230 			     sym_objname, sym_name, &sympos);
231 		if (cnt != 3) {
232 			pr_err("symbol %s has an incorrectly formatted name\n",
233 			       strtab + sym->st_name);
234 			return -EINVAL;
235 		}
236 
237 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238 
239 		/*
240 		 * Prevent module-specific KLP rela sections from referencing
241 		 * vmlinux symbols.  This helps prevent ordering issues with
242 		 * module special section initializations.  Presumably such
243 		 * symbols are exported and normal relas can be used instead.
244 		 */
245 		if (!sec_vmlinux && sym_vmlinux) {
246 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 			       sym_name);
248 			return -EINVAL;
249 		}
250 
251 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 					     sym_name, sympos, &addr);
254 		if (ret)
255 			return ret;
256 
257 		sym->st_value = addr;
258 	}
259 
260 	return 0;
261 }
262 
263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 		   const char *strtab,
265 		   unsigned int symindex,
266 		   unsigned int relsec,
267 		   struct module *me)
268 {
269 }
270 
271 /*
272  * At a high-level, there are two types of klp relocation sections: those which
273  * reference symbols which live in vmlinux; and those which reference symbols
274  * which live in other modules.  This function is called for both types:
275  *
276  * 1) When a klp module itself loads, the module code calls this function to
277  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278  *    These relocations are written to the klp module text to allow the patched
279  *    code/data to reference unexported vmlinux symbols.  They're written as
280  *    early as possible to ensure that other module init code (.e.g.,
281  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
282  *    might be referenced by the klp module's special sections.
283  *
284  * 2) When a to-be-patched module loads -- or is already loaded when a
285  *    corresponding klp module loads -- klp code calls this function to write
286  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
287  *    are written to the klp module text to allow the patched code/data to
288  *    reference symbols which live in the to-be-patched module or one of its
289  *    module dependencies.  Exported symbols are supported, in addition to
290  *    unexported symbols, in order to enable late module patching, which allows
291  *    the to-be-patched module to be loaded and patched sometime *after* the
292  *    klp module is loaded.
293  */
294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 				    const char *shstrtab, const char *strtab,
296 				    unsigned int symndx, unsigned int secndx,
297 				    const char *objname, bool apply)
298 {
299 	int cnt, ret;
300 	char sec_objname[MODULE_NAME_LEN];
301 	Elf_Shdr *sec = sechdrs + secndx;
302 
303 	/*
304 	 * Format: .klp.rela.sec_objname.section_name
305 	 * See comment in klp_resolve_symbols() for an explanation
306 	 * of the selected field width value.
307 	 */
308 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 		     sec_objname);
310 	if (cnt != 1) {
311 		pr_err("section %s has an incorrectly formatted name\n",
312 		       shstrtab + sec->sh_name);
313 		return -EINVAL;
314 	}
315 
316 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 		return 0;
318 
319 	if (apply) {
320 		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 					  sec, sec_objname);
322 		if (ret)
323 			return ret;
324 
325 		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 	}
327 
328 	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 	return 0;
330 }
331 
332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 			     const char *shstrtab, const char *strtab,
334 			     unsigned int symndx, unsigned int secndx,
335 			     const char *objname)
336 {
337 	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 					secndx, objname, true);
339 }
340 
341 /*
342  * Sysfs Interface
343  *
344  * /sys/kernel/livepatch
345  * /sys/kernel/livepatch/<patch>
346  * /sys/kernel/livepatch/<patch>/enabled
347  * /sys/kernel/livepatch/<patch>/transition
348  * /sys/kernel/livepatch/<patch>/force
349  * /sys/kernel/livepatch/<patch>/replace
350  * /sys/kernel/livepatch/<patch>/<object>
351  * /sys/kernel/livepatch/<patch>/<object>/patched
352  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
353  */
354 static int __klp_disable_patch(struct klp_patch *patch);
355 
356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
357 			     const char *buf, size_t count)
358 {
359 	struct klp_patch *patch;
360 	int ret;
361 	bool enabled;
362 
363 	ret = kstrtobool(buf, &enabled);
364 	if (ret)
365 		return ret;
366 
367 	patch = container_of(kobj, struct klp_patch, kobj);
368 
369 	mutex_lock(&klp_mutex);
370 
371 	if (patch->enabled == enabled) {
372 		/* already in requested state */
373 		ret = -EINVAL;
374 		goto out;
375 	}
376 
377 	/*
378 	 * Allow to reverse a pending transition in both ways. It might be
379 	 * necessary to complete the transition without forcing and breaking
380 	 * the system integrity.
381 	 *
382 	 * Do not allow to re-enable a disabled patch.
383 	 */
384 	if (patch == klp_transition_patch)
385 		klp_reverse_transition();
386 	else if (!enabled)
387 		ret = __klp_disable_patch(patch);
388 	else
389 		ret = -EINVAL;
390 
391 out:
392 	mutex_unlock(&klp_mutex);
393 
394 	if (ret)
395 		return ret;
396 	return count;
397 }
398 
399 static ssize_t enabled_show(struct kobject *kobj,
400 			    struct kobj_attribute *attr, char *buf)
401 {
402 	struct klp_patch *patch;
403 
404 	patch = container_of(kobj, struct klp_patch, kobj);
405 	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
406 }
407 
408 static ssize_t transition_show(struct kobject *kobj,
409 			       struct kobj_attribute *attr, char *buf)
410 {
411 	struct klp_patch *patch;
412 
413 	patch = container_of(kobj, struct klp_patch, kobj);
414 	return snprintf(buf, PAGE_SIZE-1, "%d\n",
415 			patch == klp_transition_patch);
416 }
417 
418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
419 			   const char *buf, size_t count)
420 {
421 	struct klp_patch *patch;
422 	int ret;
423 	bool val;
424 
425 	ret = kstrtobool(buf, &val);
426 	if (ret)
427 		return ret;
428 
429 	if (!val)
430 		return count;
431 
432 	mutex_lock(&klp_mutex);
433 
434 	patch = container_of(kobj, struct klp_patch, kobj);
435 	if (patch != klp_transition_patch) {
436 		mutex_unlock(&klp_mutex);
437 		return -EINVAL;
438 	}
439 
440 	klp_force_transition();
441 
442 	mutex_unlock(&klp_mutex);
443 
444 	return count;
445 }
446 
447 static ssize_t replace_show(struct kobject *kobj,
448 			    struct kobj_attribute *attr, char *buf)
449 {
450 	struct klp_patch *patch;
451 
452 	patch = container_of(kobj, struct klp_patch, kobj);
453 	return sysfs_emit(buf, "%d\n", patch->replace);
454 }
455 
456 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
457 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
458 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
459 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
460 static struct attribute *klp_patch_attrs[] = {
461 	&enabled_kobj_attr.attr,
462 	&transition_kobj_attr.attr,
463 	&force_kobj_attr.attr,
464 	&replace_kobj_attr.attr,
465 	NULL
466 };
467 ATTRIBUTE_GROUPS(klp_patch);
468 
469 static ssize_t patched_show(struct kobject *kobj,
470 			    struct kobj_attribute *attr, char *buf)
471 {
472 	struct klp_object *obj;
473 
474 	obj = container_of(kobj, struct klp_object, kobj);
475 	return sysfs_emit(buf, "%d\n", obj->patched);
476 }
477 
478 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
479 static struct attribute *klp_object_attrs[] = {
480 	&patched_kobj_attr.attr,
481 	NULL,
482 };
483 ATTRIBUTE_GROUPS(klp_object);
484 
485 static void klp_free_object_dynamic(struct klp_object *obj)
486 {
487 	kfree(obj->name);
488 	kfree(obj);
489 }
490 
491 static void klp_init_func_early(struct klp_object *obj,
492 				struct klp_func *func);
493 static void klp_init_object_early(struct klp_patch *patch,
494 				  struct klp_object *obj);
495 
496 static struct klp_object *klp_alloc_object_dynamic(const char *name,
497 						   struct klp_patch *patch)
498 {
499 	struct klp_object *obj;
500 
501 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
502 	if (!obj)
503 		return NULL;
504 
505 	if (name) {
506 		obj->name = kstrdup(name, GFP_KERNEL);
507 		if (!obj->name) {
508 			kfree(obj);
509 			return NULL;
510 		}
511 	}
512 
513 	klp_init_object_early(patch, obj);
514 	obj->dynamic = true;
515 
516 	return obj;
517 }
518 
519 static void klp_free_func_nop(struct klp_func *func)
520 {
521 	kfree(func->old_name);
522 	kfree(func);
523 }
524 
525 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
526 					   struct klp_object *obj)
527 {
528 	struct klp_func *func;
529 
530 	func = kzalloc(sizeof(*func), GFP_KERNEL);
531 	if (!func)
532 		return NULL;
533 
534 	if (old_func->old_name) {
535 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
536 		if (!func->old_name) {
537 			kfree(func);
538 			return NULL;
539 		}
540 	}
541 
542 	klp_init_func_early(obj, func);
543 	/*
544 	 * func->new_func is same as func->old_func. These addresses are
545 	 * set when the object is loaded, see klp_init_object_loaded().
546 	 */
547 	func->old_sympos = old_func->old_sympos;
548 	func->nop = true;
549 
550 	return func;
551 }
552 
553 static int klp_add_object_nops(struct klp_patch *patch,
554 			       struct klp_object *old_obj)
555 {
556 	struct klp_object *obj;
557 	struct klp_func *func, *old_func;
558 
559 	obj = klp_find_object(patch, old_obj);
560 
561 	if (!obj) {
562 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
563 		if (!obj)
564 			return -ENOMEM;
565 	}
566 
567 	klp_for_each_func(old_obj, old_func) {
568 		func = klp_find_func(obj, old_func);
569 		if (func)
570 			continue;
571 
572 		func = klp_alloc_func_nop(old_func, obj);
573 		if (!func)
574 			return -ENOMEM;
575 	}
576 
577 	return 0;
578 }
579 
580 /*
581  * Add 'nop' functions which simply return to the caller to run
582  * the original function. The 'nop' functions are added to a
583  * patch to facilitate a 'replace' mode.
584  */
585 static int klp_add_nops(struct klp_patch *patch)
586 {
587 	struct klp_patch *old_patch;
588 	struct klp_object *old_obj;
589 
590 	klp_for_each_patch(old_patch) {
591 		klp_for_each_object(old_patch, old_obj) {
592 			int err;
593 
594 			err = klp_add_object_nops(patch, old_obj);
595 			if (err)
596 				return err;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 static void klp_kobj_release_patch(struct kobject *kobj)
604 {
605 	struct klp_patch *patch;
606 
607 	patch = container_of(kobj, struct klp_patch, kobj);
608 	complete(&patch->finish);
609 }
610 
611 static const struct kobj_type klp_ktype_patch = {
612 	.release = klp_kobj_release_patch,
613 	.sysfs_ops = &kobj_sysfs_ops,
614 	.default_groups = klp_patch_groups,
615 };
616 
617 static void klp_kobj_release_object(struct kobject *kobj)
618 {
619 	struct klp_object *obj;
620 
621 	obj = container_of(kobj, struct klp_object, kobj);
622 
623 	if (obj->dynamic)
624 		klp_free_object_dynamic(obj);
625 }
626 
627 static const struct kobj_type klp_ktype_object = {
628 	.release = klp_kobj_release_object,
629 	.sysfs_ops = &kobj_sysfs_ops,
630 	.default_groups = klp_object_groups,
631 };
632 
633 static void klp_kobj_release_func(struct kobject *kobj)
634 {
635 	struct klp_func *func;
636 
637 	func = container_of(kobj, struct klp_func, kobj);
638 
639 	if (func->nop)
640 		klp_free_func_nop(func);
641 }
642 
643 static const struct kobj_type klp_ktype_func = {
644 	.release = klp_kobj_release_func,
645 	.sysfs_ops = &kobj_sysfs_ops,
646 };
647 
648 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
649 {
650 	struct klp_func *func, *tmp_func;
651 
652 	klp_for_each_func_safe(obj, func, tmp_func) {
653 		if (nops_only && !func->nop)
654 			continue;
655 
656 		list_del(&func->node);
657 		kobject_put(&func->kobj);
658 	}
659 }
660 
661 /* Clean up when a patched object is unloaded */
662 static void klp_free_object_loaded(struct klp_object *obj)
663 {
664 	struct klp_func *func;
665 
666 	obj->mod = NULL;
667 
668 	klp_for_each_func(obj, func) {
669 		func->old_func = NULL;
670 
671 		if (func->nop)
672 			func->new_func = NULL;
673 	}
674 }
675 
676 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
677 {
678 	struct klp_object *obj, *tmp_obj;
679 
680 	klp_for_each_object_safe(patch, obj, tmp_obj) {
681 		__klp_free_funcs(obj, nops_only);
682 
683 		if (nops_only && !obj->dynamic)
684 			continue;
685 
686 		list_del(&obj->node);
687 		kobject_put(&obj->kobj);
688 	}
689 }
690 
691 static void klp_free_objects(struct klp_patch *patch)
692 {
693 	__klp_free_objects(patch, false);
694 }
695 
696 static void klp_free_objects_dynamic(struct klp_patch *patch)
697 {
698 	__klp_free_objects(patch, true);
699 }
700 
701 /*
702  * This function implements the free operations that can be called safely
703  * under klp_mutex.
704  *
705  * The operation must be completed by calling klp_free_patch_finish()
706  * outside klp_mutex.
707  */
708 static void klp_free_patch_start(struct klp_patch *patch)
709 {
710 	if (!list_empty(&patch->list))
711 		list_del(&patch->list);
712 
713 	klp_free_objects(patch);
714 }
715 
716 /*
717  * This function implements the free part that must be called outside
718  * klp_mutex.
719  *
720  * It must be called after klp_free_patch_start(). And it has to be
721  * the last function accessing the livepatch structures when the patch
722  * gets disabled.
723  */
724 static void klp_free_patch_finish(struct klp_patch *patch)
725 {
726 	/*
727 	 * Avoid deadlock with enabled_store() sysfs callback by
728 	 * calling this outside klp_mutex. It is safe because
729 	 * this is called when the patch gets disabled and it
730 	 * cannot get enabled again.
731 	 */
732 	kobject_put(&patch->kobj);
733 	wait_for_completion(&patch->finish);
734 
735 	/* Put the module after the last access to struct klp_patch. */
736 	if (!patch->forced)
737 		module_put(patch->mod);
738 }
739 
740 /*
741  * The livepatch might be freed from sysfs interface created by the patch.
742  * This work allows to wait until the interface is destroyed in a separate
743  * context.
744  */
745 static void klp_free_patch_work_fn(struct work_struct *work)
746 {
747 	struct klp_patch *patch =
748 		container_of(work, struct klp_patch, free_work);
749 
750 	klp_free_patch_finish(patch);
751 }
752 
753 void klp_free_patch_async(struct klp_patch *patch)
754 {
755 	klp_free_patch_start(patch);
756 	schedule_work(&patch->free_work);
757 }
758 
759 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
760 {
761 	struct klp_patch *old_patch, *tmp_patch;
762 
763 	klp_for_each_patch_safe(old_patch, tmp_patch) {
764 		if (old_patch == new_patch)
765 			return;
766 		klp_free_patch_async(old_patch);
767 	}
768 }
769 
770 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
771 {
772 	if (!func->old_name)
773 		return -EINVAL;
774 
775 	/*
776 	 * NOPs get the address later. The patched module must be loaded,
777 	 * see klp_init_object_loaded().
778 	 */
779 	if (!func->new_func && !func->nop)
780 		return -EINVAL;
781 
782 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
783 		return -EINVAL;
784 
785 	INIT_LIST_HEAD(&func->stack_node);
786 	func->patched = false;
787 	func->transition = false;
788 
789 	/* The format for the sysfs directory is <function,sympos> where sympos
790 	 * is the nth occurrence of this symbol in kallsyms for the patched
791 	 * object. If the user selects 0 for old_sympos, then 1 will be used
792 	 * since a unique symbol will be the first occurrence.
793 	 */
794 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
795 			   func->old_name,
796 			   func->old_sympos ? func->old_sympos : 1);
797 }
798 
799 static int klp_write_object_relocs(struct klp_patch *patch,
800 				   struct klp_object *obj,
801 				   bool apply)
802 {
803 	int i, ret;
804 	struct klp_modinfo *info = patch->mod->klp_info;
805 
806 	for (i = 1; i < info->hdr.e_shnum; i++) {
807 		Elf_Shdr *sec = info->sechdrs + i;
808 
809 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
810 			continue;
811 
812 		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
813 					       info->secstrings,
814 					       patch->mod->core_kallsyms.strtab,
815 					       info->symndx, i, obj->name, apply);
816 		if (ret)
817 			return ret;
818 	}
819 
820 	return 0;
821 }
822 
823 static int klp_apply_object_relocs(struct klp_patch *patch,
824 				   struct klp_object *obj)
825 {
826 	return klp_write_object_relocs(patch, obj, true);
827 }
828 
829 static void klp_clear_object_relocs(struct klp_patch *patch,
830 				    struct klp_object *obj)
831 {
832 	klp_write_object_relocs(patch, obj, false);
833 }
834 
835 /* parts of the initialization that is done only when the object is loaded */
836 static int klp_init_object_loaded(struct klp_patch *patch,
837 				  struct klp_object *obj)
838 {
839 	struct klp_func *func;
840 	int ret;
841 
842 	if (klp_is_module(obj)) {
843 		/*
844 		 * Only write module-specific relocations here
845 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
846 		 * written earlier during the initialization of the klp module
847 		 * itself.
848 		 */
849 		ret = klp_apply_object_relocs(patch, obj);
850 		if (ret)
851 			return ret;
852 	}
853 
854 	klp_for_each_func(obj, func) {
855 		ret = klp_find_object_symbol(obj->name, func->old_name,
856 					     func->old_sympos,
857 					     (unsigned long *)&func->old_func);
858 		if (ret)
859 			return ret;
860 
861 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
862 						  &func->old_size, NULL);
863 		if (!ret) {
864 			pr_err("kallsyms size lookup failed for '%s'\n",
865 			       func->old_name);
866 			return -ENOENT;
867 		}
868 
869 		if (func->nop)
870 			func->new_func = func->old_func;
871 
872 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
873 						  &func->new_size, NULL);
874 		if (!ret) {
875 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
876 			       func->old_name);
877 			return -ENOENT;
878 		}
879 	}
880 
881 	return 0;
882 }
883 
884 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
885 {
886 	struct klp_func *func;
887 	int ret;
888 	const char *name;
889 
890 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
891 		return -EINVAL;
892 
893 	obj->patched = false;
894 	obj->mod = NULL;
895 
896 	klp_find_object_module(obj);
897 
898 	name = klp_is_module(obj) ? obj->name : "vmlinux";
899 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
900 	if (ret)
901 		return ret;
902 
903 	klp_for_each_func(obj, func) {
904 		ret = klp_init_func(obj, func);
905 		if (ret)
906 			return ret;
907 	}
908 
909 	if (klp_is_object_loaded(obj))
910 		ret = klp_init_object_loaded(patch, obj);
911 
912 	return ret;
913 }
914 
915 static void klp_init_func_early(struct klp_object *obj,
916 				struct klp_func *func)
917 {
918 	kobject_init(&func->kobj, &klp_ktype_func);
919 	list_add_tail(&func->node, &obj->func_list);
920 }
921 
922 static void klp_init_object_early(struct klp_patch *patch,
923 				  struct klp_object *obj)
924 {
925 	INIT_LIST_HEAD(&obj->func_list);
926 	kobject_init(&obj->kobj, &klp_ktype_object);
927 	list_add_tail(&obj->node, &patch->obj_list);
928 }
929 
930 static void klp_init_patch_early(struct klp_patch *patch)
931 {
932 	struct klp_object *obj;
933 	struct klp_func *func;
934 
935 	INIT_LIST_HEAD(&patch->list);
936 	INIT_LIST_HEAD(&patch->obj_list);
937 	kobject_init(&patch->kobj, &klp_ktype_patch);
938 	patch->enabled = false;
939 	patch->forced = false;
940 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
941 	init_completion(&patch->finish);
942 
943 	klp_for_each_object_static(patch, obj) {
944 		klp_init_object_early(patch, obj);
945 
946 		klp_for_each_func_static(obj, func) {
947 			klp_init_func_early(obj, func);
948 		}
949 	}
950 }
951 
952 static int klp_init_patch(struct klp_patch *patch)
953 {
954 	struct klp_object *obj;
955 	int ret;
956 
957 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
958 	if (ret)
959 		return ret;
960 
961 	if (patch->replace) {
962 		ret = klp_add_nops(patch);
963 		if (ret)
964 			return ret;
965 	}
966 
967 	klp_for_each_object(patch, obj) {
968 		ret = klp_init_object(patch, obj);
969 		if (ret)
970 			return ret;
971 	}
972 
973 	list_add_tail(&patch->list, &klp_patches);
974 
975 	return 0;
976 }
977 
978 static int __klp_disable_patch(struct klp_patch *patch)
979 {
980 	struct klp_object *obj;
981 
982 	if (WARN_ON(!patch->enabled))
983 		return -EINVAL;
984 
985 	if (klp_transition_patch)
986 		return -EBUSY;
987 
988 	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
989 
990 	klp_for_each_object(patch, obj)
991 		if (obj->patched)
992 			klp_pre_unpatch_callback(obj);
993 
994 	/*
995 	 * Enforce the order of the func->transition writes in
996 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
997 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
998 	 * is called shortly after klp_update_patch_state() switches the task,
999 	 * this ensures the handler sees that func->transition is set.
1000 	 */
1001 	smp_wmb();
1002 
1003 	klp_start_transition();
1004 	patch->enabled = false;
1005 	klp_try_complete_transition();
1006 
1007 	return 0;
1008 }
1009 
1010 static int __klp_enable_patch(struct klp_patch *patch)
1011 {
1012 	struct klp_object *obj;
1013 	int ret;
1014 
1015 	if (klp_transition_patch)
1016 		return -EBUSY;
1017 
1018 	if (WARN_ON(patch->enabled))
1019 		return -EINVAL;
1020 
1021 	pr_notice("enabling patch '%s'\n", patch->mod->name);
1022 
1023 	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1024 
1025 	/*
1026 	 * Enforce the order of the func->transition writes in
1027 	 * klp_init_transition() and the ops->func_stack writes in
1028 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1029 	 * func->transition updates before the handler is registered and the
1030 	 * new funcs become visible to the handler.
1031 	 */
1032 	smp_wmb();
1033 
1034 	klp_for_each_object(patch, obj) {
1035 		if (!klp_is_object_loaded(obj))
1036 			continue;
1037 
1038 		ret = klp_pre_patch_callback(obj);
1039 		if (ret) {
1040 			pr_warn("pre-patch callback failed for object '%s'\n",
1041 				klp_is_module(obj) ? obj->name : "vmlinux");
1042 			goto err;
1043 		}
1044 
1045 		ret = klp_patch_object(obj);
1046 		if (ret) {
1047 			pr_warn("failed to patch object '%s'\n",
1048 				klp_is_module(obj) ? obj->name : "vmlinux");
1049 			goto err;
1050 		}
1051 	}
1052 
1053 	klp_start_transition();
1054 	patch->enabled = true;
1055 	klp_try_complete_transition();
1056 
1057 	return 0;
1058 err:
1059 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1060 
1061 	klp_cancel_transition();
1062 	return ret;
1063 }
1064 
1065 /**
1066  * klp_enable_patch() - enable the livepatch
1067  * @patch:	patch to be enabled
1068  *
1069  * Initializes the data structure associated with the patch, creates the sysfs
1070  * interface, performs the needed symbol lookups and code relocations,
1071  * registers the patched functions with ftrace.
1072  *
1073  * This function is supposed to be called from the livepatch module_init()
1074  * callback.
1075  *
1076  * Return: 0 on success, otherwise error
1077  */
1078 int klp_enable_patch(struct klp_patch *patch)
1079 {
1080 	int ret;
1081 	struct klp_object *obj;
1082 
1083 	if (!patch || !patch->mod || !patch->objs)
1084 		return -EINVAL;
1085 
1086 	klp_for_each_object_static(patch, obj) {
1087 		if (!obj->funcs)
1088 			return -EINVAL;
1089 	}
1090 
1091 
1092 	if (!is_livepatch_module(patch->mod)) {
1093 		pr_err("module %s is not marked as a livepatch module\n",
1094 		       patch->mod->name);
1095 		return -EINVAL;
1096 	}
1097 
1098 	if (!klp_initialized())
1099 		return -ENODEV;
1100 
1101 	if (!klp_have_reliable_stack()) {
1102 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1103 		pr_warn("The livepatch transition may never complete.\n");
1104 	}
1105 
1106 	mutex_lock(&klp_mutex);
1107 
1108 	if (!klp_is_patch_compatible(patch)) {
1109 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1110 			patch->mod->name);
1111 		mutex_unlock(&klp_mutex);
1112 		return -EINVAL;
1113 	}
1114 
1115 	if (!try_module_get(patch->mod)) {
1116 		mutex_unlock(&klp_mutex);
1117 		return -ENODEV;
1118 	}
1119 
1120 	klp_init_patch_early(patch);
1121 
1122 	ret = klp_init_patch(patch);
1123 	if (ret)
1124 		goto err;
1125 
1126 	ret = __klp_enable_patch(patch);
1127 	if (ret)
1128 		goto err;
1129 
1130 	mutex_unlock(&klp_mutex);
1131 
1132 	return 0;
1133 
1134 err:
1135 	klp_free_patch_start(patch);
1136 
1137 	mutex_unlock(&klp_mutex);
1138 
1139 	klp_free_patch_finish(patch);
1140 
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(klp_enable_patch);
1144 
1145 /*
1146  * This function unpatches objects from the replaced livepatches.
1147  *
1148  * We could be pretty aggressive here. It is called in the situation where
1149  * these structures are no longer accessed from the ftrace handler.
1150  * All functions are redirected by the klp_transition_patch. They
1151  * use either a new code or they are in the original code because
1152  * of the special nop function patches.
1153  *
1154  * The only exception is when the transition was forced. In this case,
1155  * klp_ftrace_handler() might still see the replaced patch on the stack.
1156  * Fortunately, it is carefully designed to work with removed functions
1157  * thanks to RCU. We only have to keep the patches on the system. Also
1158  * this is handled transparently by patch->module_put.
1159  */
1160 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1161 {
1162 	struct klp_patch *old_patch;
1163 
1164 	klp_for_each_patch(old_patch) {
1165 		if (old_patch == new_patch)
1166 			return;
1167 
1168 		old_patch->enabled = false;
1169 		klp_unpatch_objects(old_patch);
1170 	}
1171 }
1172 
1173 /*
1174  * This function removes the dynamically allocated 'nop' functions.
1175  *
1176  * We could be pretty aggressive. NOPs do not change the existing
1177  * behavior except for adding unnecessary delay by the ftrace handler.
1178  *
1179  * It is safe even when the transition was forced. The ftrace handler
1180  * will see a valid ops->func_stack entry thanks to RCU.
1181  *
1182  * We could even free the NOPs structures. They must be the last entry
1183  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1184  * It does the same as klp_synchronize_transition() to make sure that
1185  * nobody is inside the ftrace handler once the operation finishes.
1186  *
1187  * IMPORTANT: It must be called right after removing the replaced patches!
1188  */
1189 void klp_discard_nops(struct klp_patch *new_patch)
1190 {
1191 	klp_unpatch_objects_dynamic(klp_transition_patch);
1192 	klp_free_objects_dynamic(klp_transition_patch);
1193 }
1194 
1195 /*
1196  * Remove parts of patches that touch a given kernel module. The list of
1197  * patches processed might be limited. When limit is NULL, all patches
1198  * will be handled.
1199  */
1200 static void klp_cleanup_module_patches_limited(struct module *mod,
1201 					       struct klp_patch *limit)
1202 {
1203 	struct klp_patch *patch;
1204 	struct klp_object *obj;
1205 
1206 	klp_for_each_patch(patch) {
1207 		if (patch == limit)
1208 			break;
1209 
1210 		klp_for_each_object(patch, obj) {
1211 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1212 				continue;
1213 
1214 			if (patch != klp_transition_patch)
1215 				klp_pre_unpatch_callback(obj);
1216 
1217 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1218 				  patch->mod->name, obj->mod->name);
1219 			klp_unpatch_object(obj);
1220 
1221 			klp_post_unpatch_callback(obj);
1222 			klp_clear_object_relocs(patch, obj);
1223 			klp_free_object_loaded(obj);
1224 			break;
1225 		}
1226 	}
1227 }
1228 
1229 int klp_module_coming(struct module *mod)
1230 {
1231 	int ret;
1232 	struct klp_patch *patch;
1233 	struct klp_object *obj;
1234 
1235 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1236 		return -EINVAL;
1237 
1238 	if (!strcmp(mod->name, "vmlinux")) {
1239 		pr_err("vmlinux.ko: invalid module name\n");
1240 		return -EINVAL;
1241 	}
1242 
1243 	mutex_lock(&klp_mutex);
1244 	/*
1245 	 * Each module has to know that klp_module_coming()
1246 	 * has been called. We never know what module will
1247 	 * get patched by a new patch.
1248 	 */
1249 	mod->klp_alive = true;
1250 
1251 	klp_for_each_patch(patch) {
1252 		klp_for_each_object(patch, obj) {
1253 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1254 				continue;
1255 
1256 			obj->mod = mod;
1257 
1258 			ret = klp_init_object_loaded(patch, obj);
1259 			if (ret) {
1260 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1261 					patch->mod->name, obj->mod->name, ret);
1262 				goto err;
1263 			}
1264 
1265 			pr_notice("applying patch '%s' to loading module '%s'\n",
1266 				  patch->mod->name, obj->mod->name);
1267 
1268 			ret = klp_pre_patch_callback(obj);
1269 			if (ret) {
1270 				pr_warn("pre-patch callback failed for object '%s'\n",
1271 					obj->name);
1272 				goto err;
1273 			}
1274 
1275 			ret = klp_patch_object(obj);
1276 			if (ret) {
1277 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1278 					patch->mod->name, obj->mod->name, ret);
1279 
1280 				klp_post_unpatch_callback(obj);
1281 				goto err;
1282 			}
1283 
1284 			if (patch != klp_transition_patch)
1285 				klp_post_patch_callback(obj);
1286 
1287 			break;
1288 		}
1289 	}
1290 
1291 	mutex_unlock(&klp_mutex);
1292 
1293 	return 0;
1294 
1295 err:
1296 	/*
1297 	 * If a patch is unsuccessfully applied, return
1298 	 * error to the module loader.
1299 	 */
1300 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1301 		patch->mod->name, obj->mod->name, obj->mod->name);
1302 	mod->klp_alive = false;
1303 	obj->mod = NULL;
1304 	klp_cleanup_module_patches_limited(mod, patch);
1305 	mutex_unlock(&klp_mutex);
1306 
1307 	return ret;
1308 }
1309 
1310 void klp_module_going(struct module *mod)
1311 {
1312 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1313 		    mod->state != MODULE_STATE_COMING))
1314 		return;
1315 
1316 	mutex_lock(&klp_mutex);
1317 	/*
1318 	 * Each module has to know that klp_module_going()
1319 	 * has been called. We never know what module will
1320 	 * get patched by a new patch.
1321 	 */
1322 	mod->klp_alive = false;
1323 
1324 	klp_cleanup_module_patches_limited(mod, NULL);
1325 
1326 	mutex_unlock(&klp_mutex);
1327 }
1328 
1329 static int __init klp_init(void)
1330 {
1331 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1332 	if (!klp_root_kobj)
1333 		return -ENOMEM;
1334 
1335 	return 0;
1336 }
1337 
1338 module_init(klp_init);
1339