1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <[email protected]> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 */ 37 DEFINE_MUTEX(klp_mutex); 38 39 /* 40 * Actively used patches: enabled or in transition. Note that replaced 41 * or disabled patches are not listed even though the related kernel 42 * module still can be loaded. 43 */ 44 LIST_HEAD(klp_patches); 45 46 static struct kobject *klp_root_kobj; 47 48 static bool klp_is_module(struct klp_object *obj) 49 { 50 return obj->name; 51 } 52 53 /* sets obj->mod if object is not vmlinux and module is found */ 54 static void klp_find_object_module(struct klp_object *obj) 55 { 56 struct module *mod; 57 58 if (!klp_is_module(obj)) 59 return; 60 61 rcu_read_lock_sched(); 62 /* 63 * We do not want to block removal of patched modules and therefore 64 * we do not take a reference here. The patches are removed by 65 * klp_module_going() instead. 66 */ 67 mod = find_module(obj->name); 68 /* 69 * Do not mess work of klp_module_coming() and klp_module_going(). 70 * Note that the patch might still be needed before klp_module_going() 71 * is called. Module functions can be called even in the GOING state 72 * until mod->exit() finishes. This is especially important for 73 * patches that modify semantic of the functions. 74 */ 75 if (mod && mod->klp_alive) 76 obj->mod = mod; 77 78 rcu_read_unlock_sched(); 79 } 80 81 static bool klp_initialized(void) 82 { 83 return !!klp_root_kobj; 84 } 85 86 static struct klp_func *klp_find_func(struct klp_object *obj, 87 struct klp_func *old_func) 88 { 89 struct klp_func *func; 90 91 klp_for_each_func(obj, func) { 92 if ((strcmp(old_func->old_name, func->old_name) == 0) && 93 (old_func->old_sympos == func->old_sympos)) { 94 return func; 95 } 96 } 97 98 return NULL; 99 } 100 101 static struct klp_object *klp_find_object(struct klp_patch *patch, 102 struct klp_object *old_obj) 103 { 104 struct klp_object *obj; 105 106 klp_for_each_object(patch, obj) { 107 if (klp_is_module(old_obj)) { 108 if (klp_is_module(obj) && 109 strcmp(old_obj->name, obj->name) == 0) { 110 return obj; 111 } 112 } else if (!klp_is_module(obj)) { 113 return obj; 114 } 115 } 116 117 return NULL; 118 } 119 120 struct klp_find_arg { 121 const char *objname; 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_find_callback(void *data, const char *name, 129 struct module *mod, unsigned long addr) 130 { 131 struct klp_find_arg *args = data; 132 133 if ((mod && !args->objname) || (!mod && args->objname)) 134 return 0; 135 136 if (strcmp(args->name, name)) 137 return 0; 138 139 if (args->objname && strcmp(args->objname, mod->name)) 140 return 0; 141 142 args->addr = addr; 143 args->count++; 144 145 /* 146 * Finish the search when the symbol is found for the desired position 147 * or the position is not defined for a non-unique symbol. 148 */ 149 if ((args->pos && (args->count == args->pos)) || 150 (!args->pos && (args->count > 1))) 151 return 1; 152 153 return 0; 154 } 155 156 static int klp_find_object_symbol(const char *objname, const char *name, 157 unsigned long sympos, unsigned long *addr) 158 { 159 struct klp_find_arg args = { 160 .objname = objname, 161 .name = name, 162 .addr = 0, 163 .count = 0, 164 .pos = sympos, 165 }; 166 167 mutex_lock(&module_mutex); 168 if (objname) 169 module_kallsyms_on_each_symbol(klp_find_callback, &args); 170 else 171 kallsyms_on_each_symbol(klp_find_callback, &args); 172 mutex_unlock(&module_mutex); 173 174 /* 175 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 176 * otherwise ensure the symbol position count matches sympos. 177 */ 178 if (args.addr == 0) 179 pr_err("symbol '%s' not found in symbol table\n", name); 180 else if (args.count > 1 && sympos == 0) { 181 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 182 name, objname); 183 } else if (sympos != args.count && sympos > 0) { 184 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 185 sympos, name, objname ? objname : "vmlinux"); 186 } else { 187 *addr = args.addr; 188 return 0; 189 } 190 191 *addr = 0; 192 return -EINVAL; 193 } 194 195 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab, 196 unsigned int symndx, Elf_Shdr *relasec, 197 const char *sec_objname) 198 { 199 int i, cnt, ret; 200 char sym_objname[MODULE_NAME_LEN]; 201 char sym_name[KSYM_NAME_LEN]; 202 Elf_Rela *relas; 203 Elf_Sym *sym; 204 unsigned long sympos, addr; 205 bool sym_vmlinux; 206 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 207 208 /* 209 * Since the field widths for sym_objname and sym_name in the sscanf() 210 * call are hard-coded and correspond to MODULE_NAME_LEN and 211 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 212 * and KSYM_NAME_LEN have the values we expect them to have. 213 * 214 * Because the value of MODULE_NAME_LEN can differ among architectures, 215 * we use the smallest/strictest upper bound possible (56, based on 216 * the current definition of MODULE_NAME_LEN) to prevent overflows. 217 */ 218 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128); 219 220 relas = (Elf_Rela *) relasec->sh_addr; 221 /* For each rela in this klp relocation section */ 222 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 223 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 224 if (sym->st_shndx != SHN_LIVEPATCH) { 225 pr_err("symbol %s is not marked as a livepatch symbol\n", 226 strtab + sym->st_name); 227 return -EINVAL; 228 } 229 230 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 231 cnt = sscanf(strtab + sym->st_name, 232 ".klp.sym.%55[^.].%127[^,],%lu", 233 sym_objname, sym_name, &sympos); 234 if (cnt != 3) { 235 pr_err("symbol %s has an incorrectly formatted name\n", 236 strtab + sym->st_name); 237 return -EINVAL; 238 } 239 240 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 241 242 /* 243 * Prevent module-specific KLP rela sections from referencing 244 * vmlinux symbols. This helps prevent ordering issues with 245 * module special section initializations. Presumably such 246 * symbols are exported and normal relas can be used instead. 247 */ 248 if (!sec_vmlinux && sym_vmlinux) { 249 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 250 sym_name); 251 return -EINVAL; 252 } 253 254 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 255 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 256 sym_name, sympos, &addr); 257 if (ret) 258 return ret; 259 260 sym->st_value = addr; 261 } 262 263 return 0; 264 } 265 266 /* 267 * At a high-level, there are two types of klp relocation sections: those which 268 * reference symbols which live in vmlinux; and those which reference symbols 269 * which live in other modules. This function is called for both types: 270 * 271 * 1) When a klp module itself loads, the module code calls this function to 272 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 273 * These relocations are written to the klp module text to allow the patched 274 * code/data to reference unexported vmlinux symbols. They're written as 275 * early as possible to ensure that other module init code (.e.g., 276 * jump_label_apply_nops) can access any unexported vmlinux symbols which 277 * might be referenced by the klp module's special sections. 278 * 279 * 2) When a to-be-patched module loads -- or is already loaded when a 280 * corresponding klp module loads -- klp code calls this function to write 281 * module-specific klp relocations (.klp.rela.{module}.* sections). These 282 * are written to the klp module text to allow the patched code/data to 283 * reference symbols which live in the to-be-patched module or one of its 284 * module dependencies. Exported symbols are supported, in addition to 285 * unexported symbols, in order to enable late module patching, which allows 286 * the to-be-patched module to be loaded and patched sometime *after* the 287 * klp module is loaded. 288 */ 289 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 290 const char *shstrtab, const char *strtab, 291 unsigned int symndx, unsigned int secndx, 292 const char *objname) 293 { 294 int cnt, ret; 295 char sec_objname[MODULE_NAME_LEN]; 296 Elf_Shdr *sec = sechdrs + secndx; 297 298 /* 299 * Format: .klp.rela.sec_objname.section_name 300 * See comment in klp_resolve_symbols() for an explanation 301 * of the selected field width value. 302 */ 303 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 304 sec_objname); 305 if (cnt != 1) { 306 pr_err("section %s has an incorrectly formatted name\n", 307 shstrtab + sec->sh_name); 308 return -EINVAL; 309 } 310 311 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 312 return 0; 313 314 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname); 315 if (ret) 316 return ret; 317 318 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 319 } 320 321 /* 322 * Sysfs Interface 323 * 324 * /sys/kernel/livepatch 325 * /sys/kernel/livepatch/<patch> 326 * /sys/kernel/livepatch/<patch>/enabled 327 * /sys/kernel/livepatch/<patch>/transition 328 * /sys/kernel/livepatch/<patch>/force 329 * /sys/kernel/livepatch/<patch>/<object> 330 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 331 */ 332 static int __klp_disable_patch(struct klp_patch *patch); 333 334 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 335 const char *buf, size_t count) 336 { 337 struct klp_patch *patch; 338 int ret; 339 bool enabled; 340 341 ret = kstrtobool(buf, &enabled); 342 if (ret) 343 return ret; 344 345 patch = container_of(kobj, struct klp_patch, kobj); 346 347 mutex_lock(&klp_mutex); 348 349 if (patch->enabled == enabled) { 350 /* already in requested state */ 351 ret = -EINVAL; 352 goto out; 353 } 354 355 /* 356 * Allow to reverse a pending transition in both ways. It might be 357 * necessary to complete the transition without forcing and breaking 358 * the system integrity. 359 * 360 * Do not allow to re-enable a disabled patch. 361 */ 362 if (patch == klp_transition_patch) 363 klp_reverse_transition(); 364 else if (!enabled) 365 ret = __klp_disable_patch(patch); 366 else 367 ret = -EINVAL; 368 369 out: 370 mutex_unlock(&klp_mutex); 371 372 if (ret) 373 return ret; 374 return count; 375 } 376 377 static ssize_t enabled_show(struct kobject *kobj, 378 struct kobj_attribute *attr, char *buf) 379 { 380 struct klp_patch *patch; 381 382 patch = container_of(kobj, struct klp_patch, kobj); 383 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 384 } 385 386 static ssize_t transition_show(struct kobject *kobj, 387 struct kobj_attribute *attr, char *buf) 388 { 389 struct klp_patch *patch; 390 391 patch = container_of(kobj, struct klp_patch, kobj); 392 return snprintf(buf, PAGE_SIZE-1, "%d\n", 393 patch == klp_transition_patch); 394 } 395 396 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 397 const char *buf, size_t count) 398 { 399 struct klp_patch *patch; 400 int ret; 401 bool val; 402 403 ret = kstrtobool(buf, &val); 404 if (ret) 405 return ret; 406 407 if (!val) 408 return count; 409 410 mutex_lock(&klp_mutex); 411 412 patch = container_of(kobj, struct klp_patch, kobj); 413 if (patch != klp_transition_patch) { 414 mutex_unlock(&klp_mutex); 415 return -EINVAL; 416 } 417 418 klp_force_transition(); 419 420 mutex_unlock(&klp_mutex); 421 422 return count; 423 } 424 425 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 426 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 427 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 428 static struct attribute *klp_patch_attrs[] = { 429 &enabled_kobj_attr.attr, 430 &transition_kobj_attr.attr, 431 &force_kobj_attr.attr, 432 NULL 433 }; 434 ATTRIBUTE_GROUPS(klp_patch); 435 436 static void klp_free_object_dynamic(struct klp_object *obj) 437 { 438 kfree(obj->name); 439 kfree(obj); 440 } 441 442 static void klp_init_func_early(struct klp_object *obj, 443 struct klp_func *func); 444 static void klp_init_object_early(struct klp_patch *patch, 445 struct klp_object *obj); 446 447 static struct klp_object *klp_alloc_object_dynamic(const char *name, 448 struct klp_patch *patch) 449 { 450 struct klp_object *obj; 451 452 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 453 if (!obj) 454 return NULL; 455 456 if (name) { 457 obj->name = kstrdup(name, GFP_KERNEL); 458 if (!obj->name) { 459 kfree(obj); 460 return NULL; 461 } 462 } 463 464 klp_init_object_early(patch, obj); 465 obj->dynamic = true; 466 467 return obj; 468 } 469 470 static void klp_free_func_nop(struct klp_func *func) 471 { 472 kfree(func->old_name); 473 kfree(func); 474 } 475 476 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 477 struct klp_object *obj) 478 { 479 struct klp_func *func; 480 481 func = kzalloc(sizeof(*func), GFP_KERNEL); 482 if (!func) 483 return NULL; 484 485 if (old_func->old_name) { 486 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 487 if (!func->old_name) { 488 kfree(func); 489 return NULL; 490 } 491 } 492 493 klp_init_func_early(obj, func); 494 /* 495 * func->new_func is same as func->old_func. These addresses are 496 * set when the object is loaded, see klp_init_object_loaded(). 497 */ 498 func->old_sympos = old_func->old_sympos; 499 func->nop = true; 500 501 return func; 502 } 503 504 static int klp_add_object_nops(struct klp_patch *patch, 505 struct klp_object *old_obj) 506 { 507 struct klp_object *obj; 508 struct klp_func *func, *old_func; 509 510 obj = klp_find_object(patch, old_obj); 511 512 if (!obj) { 513 obj = klp_alloc_object_dynamic(old_obj->name, patch); 514 if (!obj) 515 return -ENOMEM; 516 } 517 518 klp_for_each_func(old_obj, old_func) { 519 func = klp_find_func(obj, old_func); 520 if (func) 521 continue; 522 523 func = klp_alloc_func_nop(old_func, obj); 524 if (!func) 525 return -ENOMEM; 526 } 527 528 return 0; 529 } 530 531 /* 532 * Add 'nop' functions which simply return to the caller to run 533 * the original function. The 'nop' functions are added to a 534 * patch to facilitate a 'replace' mode. 535 */ 536 static int klp_add_nops(struct klp_patch *patch) 537 { 538 struct klp_patch *old_patch; 539 struct klp_object *old_obj; 540 541 klp_for_each_patch(old_patch) { 542 klp_for_each_object(old_patch, old_obj) { 543 int err; 544 545 err = klp_add_object_nops(patch, old_obj); 546 if (err) 547 return err; 548 } 549 } 550 551 return 0; 552 } 553 554 static void klp_kobj_release_patch(struct kobject *kobj) 555 { 556 struct klp_patch *patch; 557 558 patch = container_of(kobj, struct klp_patch, kobj); 559 complete(&patch->finish); 560 } 561 562 static struct kobj_type klp_ktype_patch = { 563 .release = klp_kobj_release_patch, 564 .sysfs_ops = &kobj_sysfs_ops, 565 .default_groups = klp_patch_groups, 566 }; 567 568 static void klp_kobj_release_object(struct kobject *kobj) 569 { 570 struct klp_object *obj; 571 572 obj = container_of(kobj, struct klp_object, kobj); 573 574 if (obj->dynamic) 575 klp_free_object_dynamic(obj); 576 } 577 578 static struct kobj_type klp_ktype_object = { 579 .release = klp_kobj_release_object, 580 .sysfs_ops = &kobj_sysfs_ops, 581 }; 582 583 static void klp_kobj_release_func(struct kobject *kobj) 584 { 585 struct klp_func *func; 586 587 func = container_of(kobj, struct klp_func, kobj); 588 589 if (func->nop) 590 klp_free_func_nop(func); 591 } 592 593 static struct kobj_type klp_ktype_func = { 594 .release = klp_kobj_release_func, 595 .sysfs_ops = &kobj_sysfs_ops, 596 }; 597 598 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 599 { 600 struct klp_func *func, *tmp_func; 601 602 klp_for_each_func_safe(obj, func, tmp_func) { 603 if (nops_only && !func->nop) 604 continue; 605 606 list_del(&func->node); 607 kobject_put(&func->kobj); 608 } 609 } 610 611 /* Clean up when a patched object is unloaded */ 612 static void klp_free_object_loaded(struct klp_object *obj) 613 { 614 struct klp_func *func; 615 616 obj->mod = NULL; 617 618 klp_for_each_func(obj, func) { 619 func->old_func = NULL; 620 621 if (func->nop) 622 func->new_func = NULL; 623 } 624 } 625 626 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 627 { 628 struct klp_object *obj, *tmp_obj; 629 630 klp_for_each_object_safe(patch, obj, tmp_obj) { 631 __klp_free_funcs(obj, nops_only); 632 633 if (nops_only && !obj->dynamic) 634 continue; 635 636 list_del(&obj->node); 637 kobject_put(&obj->kobj); 638 } 639 } 640 641 static void klp_free_objects(struct klp_patch *patch) 642 { 643 __klp_free_objects(patch, false); 644 } 645 646 static void klp_free_objects_dynamic(struct klp_patch *patch) 647 { 648 __klp_free_objects(patch, true); 649 } 650 651 /* 652 * This function implements the free operations that can be called safely 653 * under klp_mutex. 654 * 655 * The operation must be completed by calling klp_free_patch_finish() 656 * outside klp_mutex. 657 */ 658 static void klp_free_patch_start(struct klp_patch *patch) 659 { 660 if (!list_empty(&patch->list)) 661 list_del(&patch->list); 662 663 klp_free_objects(patch); 664 } 665 666 /* 667 * This function implements the free part that must be called outside 668 * klp_mutex. 669 * 670 * It must be called after klp_free_patch_start(). And it has to be 671 * the last function accessing the livepatch structures when the patch 672 * gets disabled. 673 */ 674 static void klp_free_patch_finish(struct klp_patch *patch) 675 { 676 /* 677 * Avoid deadlock with enabled_store() sysfs callback by 678 * calling this outside klp_mutex. It is safe because 679 * this is called when the patch gets disabled and it 680 * cannot get enabled again. 681 */ 682 kobject_put(&patch->kobj); 683 wait_for_completion(&patch->finish); 684 685 /* Put the module after the last access to struct klp_patch. */ 686 if (!patch->forced) 687 module_put(patch->mod); 688 } 689 690 /* 691 * The livepatch might be freed from sysfs interface created by the patch. 692 * This work allows to wait until the interface is destroyed in a separate 693 * context. 694 */ 695 static void klp_free_patch_work_fn(struct work_struct *work) 696 { 697 struct klp_patch *patch = 698 container_of(work, struct klp_patch, free_work); 699 700 klp_free_patch_finish(patch); 701 } 702 703 void klp_free_patch_async(struct klp_patch *patch) 704 { 705 klp_free_patch_start(patch); 706 schedule_work(&patch->free_work); 707 } 708 709 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 710 { 711 struct klp_patch *old_patch, *tmp_patch; 712 713 klp_for_each_patch_safe(old_patch, tmp_patch) { 714 if (old_patch == new_patch) 715 return; 716 klp_free_patch_async(old_patch); 717 } 718 } 719 720 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 721 { 722 if (!func->old_name) 723 return -EINVAL; 724 725 /* 726 * NOPs get the address later. The patched module must be loaded, 727 * see klp_init_object_loaded(). 728 */ 729 if (!func->new_func && !func->nop) 730 return -EINVAL; 731 732 if (strlen(func->old_name) >= KSYM_NAME_LEN) 733 return -EINVAL; 734 735 INIT_LIST_HEAD(&func->stack_node); 736 func->patched = false; 737 func->transition = false; 738 739 /* The format for the sysfs directory is <function,sympos> where sympos 740 * is the nth occurrence of this symbol in kallsyms for the patched 741 * object. If the user selects 0 for old_sympos, then 1 will be used 742 * since a unique symbol will be the first occurrence. 743 */ 744 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 745 func->old_name, 746 func->old_sympos ? func->old_sympos : 1); 747 } 748 749 static int klp_apply_object_relocs(struct klp_patch *patch, 750 struct klp_object *obj) 751 { 752 int i, ret; 753 struct klp_modinfo *info = patch->mod->klp_info; 754 755 for (i = 1; i < info->hdr.e_shnum; i++) { 756 Elf_Shdr *sec = info->sechdrs + i; 757 758 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 759 continue; 760 761 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 762 info->secstrings, 763 patch->mod->core_kallsyms.strtab, 764 info->symndx, i, obj->name); 765 if (ret) 766 return ret; 767 } 768 769 return 0; 770 } 771 772 /* parts of the initialization that is done only when the object is loaded */ 773 static int klp_init_object_loaded(struct klp_patch *patch, 774 struct klp_object *obj) 775 { 776 struct klp_func *func; 777 int ret; 778 779 if (klp_is_module(obj)) { 780 /* 781 * Only write module-specific relocations here 782 * (.klp.rela.{module}.*). vmlinux-specific relocations were 783 * written earlier during the initialization of the klp module 784 * itself. 785 */ 786 ret = klp_apply_object_relocs(patch, obj); 787 if (ret) 788 return ret; 789 } 790 791 klp_for_each_func(obj, func) { 792 ret = klp_find_object_symbol(obj->name, func->old_name, 793 func->old_sympos, 794 (unsigned long *)&func->old_func); 795 if (ret) 796 return ret; 797 798 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 799 &func->old_size, NULL); 800 if (!ret) { 801 pr_err("kallsyms size lookup failed for '%s'\n", 802 func->old_name); 803 return -ENOENT; 804 } 805 806 if (func->nop) 807 func->new_func = func->old_func; 808 809 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 810 &func->new_size, NULL); 811 if (!ret) { 812 pr_err("kallsyms size lookup failed for '%s' replacement\n", 813 func->old_name); 814 return -ENOENT; 815 } 816 } 817 818 return 0; 819 } 820 821 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 822 { 823 struct klp_func *func; 824 int ret; 825 const char *name; 826 827 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 828 return -EINVAL; 829 830 obj->patched = false; 831 obj->mod = NULL; 832 833 klp_find_object_module(obj); 834 835 name = klp_is_module(obj) ? obj->name : "vmlinux"; 836 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 837 if (ret) 838 return ret; 839 840 klp_for_each_func(obj, func) { 841 ret = klp_init_func(obj, func); 842 if (ret) 843 return ret; 844 } 845 846 if (klp_is_object_loaded(obj)) 847 ret = klp_init_object_loaded(patch, obj); 848 849 return ret; 850 } 851 852 static void klp_init_func_early(struct klp_object *obj, 853 struct klp_func *func) 854 { 855 kobject_init(&func->kobj, &klp_ktype_func); 856 list_add_tail(&func->node, &obj->func_list); 857 } 858 859 static void klp_init_object_early(struct klp_patch *patch, 860 struct klp_object *obj) 861 { 862 INIT_LIST_HEAD(&obj->func_list); 863 kobject_init(&obj->kobj, &klp_ktype_object); 864 list_add_tail(&obj->node, &patch->obj_list); 865 } 866 867 static int klp_init_patch_early(struct klp_patch *patch) 868 { 869 struct klp_object *obj; 870 struct klp_func *func; 871 872 if (!patch->objs) 873 return -EINVAL; 874 875 INIT_LIST_HEAD(&patch->list); 876 INIT_LIST_HEAD(&patch->obj_list); 877 kobject_init(&patch->kobj, &klp_ktype_patch); 878 patch->enabled = false; 879 patch->forced = false; 880 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 881 init_completion(&patch->finish); 882 883 klp_for_each_object_static(patch, obj) { 884 if (!obj->funcs) 885 return -EINVAL; 886 887 klp_init_object_early(patch, obj); 888 889 klp_for_each_func_static(obj, func) { 890 klp_init_func_early(obj, func); 891 } 892 } 893 894 if (!try_module_get(patch->mod)) 895 return -ENODEV; 896 897 return 0; 898 } 899 900 static int klp_init_patch(struct klp_patch *patch) 901 { 902 struct klp_object *obj; 903 int ret; 904 905 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 906 if (ret) 907 return ret; 908 909 if (patch->replace) { 910 ret = klp_add_nops(patch); 911 if (ret) 912 return ret; 913 } 914 915 klp_for_each_object(patch, obj) { 916 ret = klp_init_object(patch, obj); 917 if (ret) 918 return ret; 919 } 920 921 list_add_tail(&patch->list, &klp_patches); 922 923 return 0; 924 } 925 926 static int __klp_disable_patch(struct klp_patch *patch) 927 { 928 struct klp_object *obj; 929 930 if (WARN_ON(!patch->enabled)) 931 return -EINVAL; 932 933 if (klp_transition_patch) 934 return -EBUSY; 935 936 klp_init_transition(patch, KLP_UNPATCHED); 937 938 klp_for_each_object(patch, obj) 939 if (obj->patched) 940 klp_pre_unpatch_callback(obj); 941 942 /* 943 * Enforce the order of the func->transition writes in 944 * klp_init_transition() and the TIF_PATCH_PENDING writes in 945 * klp_start_transition(). In the rare case where klp_ftrace_handler() 946 * is called shortly after klp_update_patch_state() switches the task, 947 * this ensures the handler sees that func->transition is set. 948 */ 949 smp_wmb(); 950 951 klp_start_transition(); 952 patch->enabled = false; 953 klp_try_complete_transition(); 954 955 return 0; 956 } 957 958 static int __klp_enable_patch(struct klp_patch *patch) 959 { 960 struct klp_object *obj; 961 int ret; 962 963 if (klp_transition_patch) 964 return -EBUSY; 965 966 if (WARN_ON(patch->enabled)) 967 return -EINVAL; 968 969 pr_notice("enabling patch '%s'\n", patch->mod->name); 970 971 klp_init_transition(patch, KLP_PATCHED); 972 973 /* 974 * Enforce the order of the func->transition writes in 975 * klp_init_transition() and the ops->func_stack writes in 976 * klp_patch_object(), so that klp_ftrace_handler() will see the 977 * func->transition updates before the handler is registered and the 978 * new funcs become visible to the handler. 979 */ 980 smp_wmb(); 981 982 klp_for_each_object(patch, obj) { 983 if (!klp_is_object_loaded(obj)) 984 continue; 985 986 ret = klp_pre_patch_callback(obj); 987 if (ret) { 988 pr_warn("pre-patch callback failed for object '%s'\n", 989 klp_is_module(obj) ? obj->name : "vmlinux"); 990 goto err; 991 } 992 993 ret = klp_patch_object(obj); 994 if (ret) { 995 pr_warn("failed to patch object '%s'\n", 996 klp_is_module(obj) ? obj->name : "vmlinux"); 997 goto err; 998 } 999 } 1000 1001 klp_start_transition(); 1002 patch->enabled = true; 1003 klp_try_complete_transition(); 1004 1005 return 0; 1006 err: 1007 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1008 1009 klp_cancel_transition(); 1010 return ret; 1011 } 1012 1013 /** 1014 * klp_enable_patch() - enable the livepatch 1015 * @patch: patch to be enabled 1016 * 1017 * Initializes the data structure associated with the patch, creates the sysfs 1018 * interface, performs the needed symbol lookups and code relocations, 1019 * registers the patched functions with ftrace. 1020 * 1021 * This function is supposed to be called from the livepatch module_init() 1022 * callback. 1023 * 1024 * Return: 0 on success, otherwise error 1025 */ 1026 int klp_enable_patch(struct klp_patch *patch) 1027 { 1028 int ret; 1029 1030 if (!patch || !patch->mod) 1031 return -EINVAL; 1032 1033 if (!is_livepatch_module(patch->mod)) { 1034 pr_err("module %s is not marked as a livepatch module\n", 1035 patch->mod->name); 1036 return -EINVAL; 1037 } 1038 1039 if (!klp_initialized()) 1040 return -ENODEV; 1041 1042 if (!klp_have_reliable_stack()) { 1043 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1044 pr_warn("The livepatch transition may never complete.\n"); 1045 } 1046 1047 mutex_lock(&klp_mutex); 1048 1049 if (!klp_is_patch_compatible(patch)) { 1050 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1051 patch->mod->name); 1052 mutex_unlock(&klp_mutex); 1053 return -EINVAL; 1054 } 1055 1056 ret = klp_init_patch_early(patch); 1057 if (ret) { 1058 mutex_unlock(&klp_mutex); 1059 return ret; 1060 } 1061 1062 ret = klp_init_patch(patch); 1063 if (ret) 1064 goto err; 1065 1066 ret = __klp_enable_patch(patch); 1067 if (ret) 1068 goto err; 1069 1070 mutex_unlock(&klp_mutex); 1071 1072 return 0; 1073 1074 err: 1075 klp_free_patch_start(patch); 1076 1077 mutex_unlock(&klp_mutex); 1078 1079 klp_free_patch_finish(patch); 1080 1081 return ret; 1082 } 1083 EXPORT_SYMBOL_GPL(klp_enable_patch); 1084 1085 /* 1086 * This function unpatches objects from the replaced livepatches. 1087 * 1088 * We could be pretty aggressive here. It is called in the situation where 1089 * these structures are no longer accessed from the ftrace handler. 1090 * All functions are redirected by the klp_transition_patch. They 1091 * use either a new code or they are in the original code because 1092 * of the special nop function patches. 1093 * 1094 * The only exception is when the transition was forced. In this case, 1095 * klp_ftrace_handler() might still see the replaced patch on the stack. 1096 * Fortunately, it is carefully designed to work with removed functions 1097 * thanks to RCU. We only have to keep the patches on the system. Also 1098 * this is handled transparently by patch->module_put. 1099 */ 1100 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1101 { 1102 struct klp_patch *old_patch; 1103 1104 klp_for_each_patch(old_patch) { 1105 if (old_patch == new_patch) 1106 return; 1107 1108 old_patch->enabled = false; 1109 klp_unpatch_objects(old_patch); 1110 } 1111 } 1112 1113 /* 1114 * This function removes the dynamically allocated 'nop' functions. 1115 * 1116 * We could be pretty aggressive. NOPs do not change the existing 1117 * behavior except for adding unnecessary delay by the ftrace handler. 1118 * 1119 * It is safe even when the transition was forced. The ftrace handler 1120 * will see a valid ops->func_stack entry thanks to RCU. 1121 * 1122 * We could even free the NOPs structures. They must be the last entry 1123 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1124 * It does the same as klp_synchronize_transition() to make sure that 1125 * nobody is inside the ftrace handler once the operation finishes. 1126 * 1127 * IMPORTANT: It must be called right after removing the replaced patches! 1128 */ 1129 void klp_discard_nops(struct klp_patch *new_patch) 1130 { 1131 klp_unpatch_objects_dynamic(klp_transition_patch); 1132 klp_free_objects_dynamic(klp_transition_patch); 1133 } 1134 1135 /* 1136 * Remove parts of patches that touch a given kernel module. The list of 1137 * patches processed might be limited. When limit is NULL, all patches 1138 * will be handled. 1139 */ 1140 static void klp_cleanup_module_patches_limited(struct module *mod, 1141 struct klp_patch *limit) 1142 { 1143 struct klp_patch *patch; 1144 struct klp_object *obj; 1145 1146 klp_for_each_patch(patch) { 1147 if (patch == limit) 1148 break; 1149 1150 klp_for_each_object(patch, obj) { 1151 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1152 continue; 1153 1154 if (patch != klp_transition_patch) 1155 klp_pre_unpatch_callback(obj); 1156 1157 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1158 patch->mod->name, obj->mod->name); 1159 klp_unpatch_object(obj); 1160 1161 klp_post_unpatch_callback(obj); 1162 1163 klp_free_object_loaded(obj); 1164 break; 1165 } 1166 } 1167 } 1168 1169 int klp_module_coming(struct module *mod) 1170 { 1171 int ret; 1172 struct klp_patch *patch; 1173 struct klp_object *obj; 1174 1175 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1176 return -EINVAL; 1177 1178 if (!strcmp(mod->name, "vmlinux")) { 1179 pr_err("vmlinux.ko: invalid module name"); 1180 return -EINVAL; 1181 } 1182 1183 mutex_lock(&klp_mutex); 1184 /* 1185 * Each module has to know that klp_module_coming() 1186 * has been called. We never know what module will 1187 * get patched by a new patch. 1188 */ 1189 mod->klp_alive = true; 1190 1191 klp_for_each_patch(patch) { 1192 klp_for_each_object(patch, obj) { 1193 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1194 continue; 1195 1196 obj->mod = mod; 1197 1198 ret = klp_init_object_loaded(patch, obj); 1199 if (ret) { 1200 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1201 patch->mod->name, obj->mod->name, ret); 1202 goto err; 1203 } 1204 1205 pr_notice("applying patch '%s' to loading module '%s'\n", 1206 patch->mod->name, obj->mod->name); 1207 1208 ret = klp_pre_patch_callback(obj); 1209 if (ret) { 1210 pr_warn("pre-patch callback failed for object '%s'\n", 1211 obj->name); 1212 goto err; 1213 } 1214 1215 ret = klp_patch_object(obj); 1216 if (ret) { 1217 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1218 patch->mod->name, obj->mod->name, ret); 1219 1220 klp_post_unpatch_callback(obj); 1221 goto err; 1222 } 1223 1224 if (patch != klp_transition_patch) 1225 klp_post_patch_callback(obj); 1226 1227 break; 1228 } 1229 } 1230 1231 mutex_unlock(&klp_mutex); 1232 1233 return 0; 1234 1235 err: 1236 /* 1237 * If a patch is unsuccessfully applied, return 1238 * error to the module loader. 1239 */ 1240 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1241 patch->mod->name, obj->mod->name, obj->mod->name); 1242 mod->klp_alive = false; 1243 obj->mod = NULL; 1244 klp_cleanup_module_patches_limited(mod, patch); 1245 mutex_unlock(&klp_mutex); 1246 1247 return ret; 1248 } 1249 1250 void klp_module_going(struct module *mod) 1251 { 1252 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1253 mod->state != MODULE_STATE_COMING)) 1254 return; 1255 1256 mutex_lock(&klp_mutex); 1257 /* 1258 * Each module has to know that klp_module_going() 1259 * has been called. We never know what module will 1260 * get patched by a new patch. 1261 */ 1262 mod->klp_alive = false; 1263 1264 klp_cleanup_module_patches_limited(mod, NULL); 1265 1266 mutex_unlock(&klp_mutex); 1267 } 1268 1269 static int __init klp_init(void) 1270 { 1271 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1272 if (!klp_root_kobj) 1273 return -ENOMEM; 1274 1275 return 0; 1276 } 1277 1278 module_init(klp_init); 1279