xref: /linux-6.15/kernel/livepatch/core.c (revision a0060505)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <[email protected]>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28 
29 /*
30  * klp_mutex is a coarse lock which serializes access to klp data.  All
31  * accesses to klp-related variables and structures must have mutex protection,
32  * except within the following functions which carefully avoid the need for it:
33  *
34  * - klp_ftrace_handler()
35  * - klp_update_patch_state()
36  */
37 DEFINE_MUTEX(klp_mutex);
38 
39 /*
40  * Actively used patches: enabled or in transition. Note that replaced
41  * or disabled patches are not listed even though the related kernel
42  * module still can be loaded.
43  */
44 LIST_HEAD(klp_patches);
45 
46 static struct kobject *klp_root_kobj;
47 
48 static bool klp_is_module(struct klp_object *obj)
49 {
50 	return obj->name;
51 }
52 
53 /* sets obj->mod if object is not vmlinux and module is found */
54 static void klp_find_object_module(struct klp_object *obj)
55 {
56 	struct module *mod;
57 
58 	if (!klp_is_module(obj))
59 		return;
60 
61 	rcu_read_lock_sched();
62 	/*
63 	 * We do not want to block removal of patched modules and therefore
64 	 * we do not take a reference here. The patches are removed by
65 	 * klp_module_going() instead.
66 	 */
67 	mod = find_module(obj->name);
68 	/*
69 	 * Do not mess work of klp_module_coming() and klp_module_going().
70 	 * Note that the patch might still be needed before klp_module_going()
71 	 * is called. Module functions can be called even in the GOING state
72 	 * until mod->exit() finishes. This is especially important for
73 	 * patches that modify semantic of the functions.
74 	 */
75 	if (mod && mod->klp_alive)
76 		obj->mod = mod;
77 
78 	rcu_read_unlock_sched();
79 }
80 
81 static bool klp_initialized(void)
82 {
83 	return !!klp_root_kobj;
84 }
85 
86 static struct klp_func *klp_find_func(struct klp_object *obj,
87 				      struct klp_func *old_func)
88 {
89 	struct klp_func *func;
90 
91 	klp_for_each_func(obj, func) {
92 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
93 		    (old_func->old_sympos == func->old_sympos)) {
94 			return func;
95 		}
96 	}
97 
98 	return NULL;
99 }
100 
101 static struct klp_object *klp_find_object(struct klp_patch *patch,
102 					  struct klp_object *old_obj)
103 {
104 	struct klp_object *obj;
105 
106 	klp_for_each_object(patch, obj) {
107 		if (klp_is_module(old_obj)) {
108 			if (klp_is_module(obj) &&
109 			    strcmp(old_obj->name, obj->name) == 0) {
110 				return obj;
111 			}
112 		} else if (!klp_is_module(obj)) {
113 			return obj;
114 		}
115 	}
116 
117 	return NULL;
118 }
119 
120 struct klp_find_arg {
121 	const char *objname;
122 	const char *name;
123 	unsigned long addr;
124 	unsigned long count;
125 	unsigned long pos;
126 };
127 
128 static int klp_find_callback(void *data, const char *name,
129 			     struct module *mod, unsigned long addr)
130 {
131 	struct klp_find_arg *args = data;
132 
133 	if ((mod && !args->objname) || (!mod && args->objname))
134 		return 0;
135 
136 	if (strcmp(args->name, name))
137 		return 0;
138 
139 	if (args->objname && strcmp(args->objname, mod->name))
140 		return 0;
141 
142 	args->addr = addr;
143 	args->count++;
144 
145 	/*
146 	 * Finish the search when the symbol is found for the desired position
147 	 * or the position is not defined for a non-unique symbol.
148 	 */
149 	if ((args->pos && (args->count == args->pos)) ||
150 	    (!args->pos && (args->count > 1)))
151 		return 1;
152 
153 	return 0;
154 }
155 
156 static int klp_find_object_symbol(const char *objname, const char *name,
157 				  unsigned long sympos, unsigned long *addr)
158 {
159 	struct klp_find_arg args = {
160 		.objname = objname,
161 		.name = name,
162 		.addr = 0,
163 		.count = 0,
164 		.pos = sympos,
165 	};
166 
167 	mutex_lock(&module_mutex);
168 	if (objname)
169 		module_kallsyms_on_each_symbol(klp_find_callback, &args);
170 	else
171 		kallsyms_on_each_symbol(klp_find_callback, &args);
172 	mutex_unlock(&module_mutex);
173 
174 	/*
175 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
176 	 * otherwise ensure the symbol position count matches sympos.
177 	 */
178 	if (args.addr == 0)
179 		pr_err("symbol '%s' not found in symbol table\n", name);
180 	else if (args.count > 1 && sympos == 0) {
181 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
182 		       name, objname);
183 	} else if (sympos != args.count && sympos > 0) {
184 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
185 		       sympos, name, objname ? objname : "vmlinux");
186 	} else {
187 		*addr = args.addr;
188 		return 0;
189 	}
190 
191 	*addr = 0;
192 	return -EINVAL;
193 }
194 
195 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
196 			       unsigned int symndx, Elf_Shdr *relasec,
197 			       const char *sec_objname)
198 {
199 	int i, cnt, ret;
200 	char sym_objname[MODULE_NAME_LEN];
201 	char sym_name[KSYM_NAME_LEN];
202 	Elf_Rela *relas;
203 	Elf_Sym *sym;
204 	unsigned long sympos, addr;
205 	bool sym_vmlinux;
206 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
207 
208 	/*
209 	 * Since the field widths for sym_objname and sym_name in the sscanf()
210 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
211 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
212 	 * and KSYM_NAME_LEN have the values we expect them to have.
213 	 *
214 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
215 	 * we use the smallest/strictest upper bound possible (56, based on
216 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
217 	 */
218 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
219 
220 	relas = (Elf_Rela *) relasec->sh_addr;
221 	/* For each rela in this klp relocation section */
222 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
223 		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
224 		if (sym->st_shndx != SHN_LIVEPATCH) {
225 			pr_err("symbol %s is not marked as a livepatch symbol\n",
226 			       strtab + sym->st_name);
227 			return -EINVAL;
228 		}
229 
230 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
231 		cnt = sscanf(strtab + sym->st_name,
232 			     ".klp.sym.%55[^.].%127[^,],%lu",
233 			     sym_objname, sym_name, &sympos);
234 		if (cnt != 3) {
235 			pr_err("symbol %s has an incorrectly formatted name\n",
236 			       strtab + sym->st_name);
237 			return -EINVAL;
238 		}
239 
240 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
241 
242 		/*
243 		 * Prevent module-specific KLP rela sections from referencing
244 		 * vmlinux symbols.  This helps prevent ordering issues with
245 		 * module special section initializations.  Presumably such
246 		 * symbols are exported and normal relas can be used instead.
247 		 */
248 		if (!sec_vmlinux && sym_vmlinux) {
249 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
250 			       sym_name);
251 			return -EINVAL;
252 		}
253 
254 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
255 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
256 					     sym_name, sympos, &addr);
257 		if (ret)
258 			return ret;
259 
260 		sym->st_value = addr;
261 	}
262 
263 	return 0;
264 }
265 
266 /*
267  * At a high-level, there are two types of klp relocation sections: those which
268  * reference symbols which live in vmlinux; and those which reference symbols
269  * which live in other modules.  This function is called for both types:
270  *
271  * 1) When a klp module itself loads, the module code calls this function to
272  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
273  *    These relocations are written to the klp module text to allow the patched
274  *    code/data to reference unexported vmlinux symbols.  They're written as
275  *    early as possible to ensure that other module init code (.e.g.,
276  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
277  *    might be referenced by the klp module's special sections.
278  *
279  * 2) When a to-be-patched module loads -- or is already loaded when a
280  *    corresponding klp module loads -- klp code calls this function to write
281  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
282  *    are written to the klp module text to allow the patched code/data to
283  *    reference symbols which live in the to-be-patched module or one of its
284  *    module dependencies.  Exported symbols are supported, in addition to
285  *    unexported symbols, in order to enable late module patching, which allows
286  *    the to-be-patched module to be loaded and patched sometime *after* the
287  *    klp module is loaded.
288  */
289 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
290 			     const char *shstrtab, const char *strtab,
291 			     unsigned int symndx, unsigned int secndx,
292 			     const char *objname)
293 {
294 	int cnt, ret;
295 	char sec_objname[MODULE_NAME_LEN];
296 	Elf_Shdr *sec = sechdrs + secndx;
297 
298 	/*
299 	 * Format: .klp.rela.sec_objname.section_name
300 	 * See comment in klp_resolve_symbols() for an explanation
301 	 * of the selected field width value.
302 	 */
303 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
304 		     sec_objname);
305 	if (cnt != 1) {
306 		pr_err("section %s has an incorrectly formatted name\n",
307 		       shstrtab + sec->sh_name);
308 		return -EINVAL;
309 	}
310 
311 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
312 		return 0;
313 
314 	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
315 	if (ret)
316 		return ret;
317 
318 	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
319 }
320 
321 /*
322  * Sysfs Interface
323  *
324  * /sys/kernel/livepatch
325  * /sys/kernel/livepatch/<patch>
326  * /sys/kernel/livepatch/<patch>/enabled
327  * /sys/kernel/livepatch/<patch>/transition
328  * /sys/kernel/livepatch/<patch>/force
329  * /sys/kernel/livepatch/<patch>/<object>
330  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
331  */
332 static int __klp_disable_patch(struct klp_patch *patch);
333 
334 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
335 			     const char *buf, size_t count)
336 {
337 	struct klp_patch *patch;
338 	int ret;
339 	bool enabled;
340 
341 	ret = kstrtobool(buf, &enabled);
342 	if (ret)
343 		return ret;
344 
345 	patch = container_of(kobj, struct klp_patch, kobj);
346 
347 	mutex_lock(&klp_mutex);
348 
349 	if (patch->enabled == enabled) {
350 		/* already in requested state */
351 		ret = -EINVAL;
352 		goto out;
353 	}
354 
355 	/*
356 	 * Allow to reverse a pending transition in both ways. It might be
357 	 * necessary to complete the transition without forcing and breaking
358 	 * the system integrity.
359 	 *
360 	 * Do not allow to re-enable a disabled patch.
361 	 */
362 	if (patch == klp_transition_patch)
363 		klp_reverse_transition();
364 	else if (!enabled)
365 		ret = __klp_disable_patch(patch);
366 	else
367 		ret = -EINVAL;
368 
369 out:
370 	mutex_unlock(&klp_mutex);
371 
372 	if (ret)
373 		return ret;
374 	return count;
375 }
376 
377 static ssize_t enabled_show(struct kobject *kobj,
378 			    struct kobj_attribute *attr, char *buf)
379 {
380 	struct klp_patch *patch;
381 
382 	patch = container_of(kobj, struct klp_patch, kobj);
383 	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
384 }
385 
386 static ssize_t transition_show(struct kobject *kobj,
387 			       struct kobj_attribute *attr, char *buf)
388 {
389 	struct klp_patch *patch;
390 
391 	patch = container_of(kobj, struct klp_patch, kobj);
392 	return snprintf(buf, PAGE_SIZE-1, "%d\n",
393 			patch == klp_transition_patch);
394 }
395 
396 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
397 			   const char *buf, size_t count)
398 {
399 	struct klp_patch *patch;
400 	int ret;
401 	bool val;
402 
403 	ret = kstrtobool(buf, &val);
404 	if (ret)
405 		return ret;
406 
407 	if (!val)
408 		return count;
409 
410 	mutex_lock(&klp_mutex);
411 
412 	patch = container_of(kobj, struct klp_patch, kobj);
413 	if (patch != klp_transition_patch) {
414 		mutex_unlock(&klp_mutex);
415 		return -EINVAL;
416 	}
417 
418 	klp_force_transition();
419 
420 	mutex_unlock(&klp_mutex);
421 
422 	return count;
423 }
424 
425 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
426 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
427 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
428 static struct attribute *klp_patch_attrs[] = {
429 	&enabled_kobj_attr.attr,
430 	&transition_kobj_attr.attr,
431 	&force_kobj_attr.attr,
432 	NULL
433 };
434 ATTRIBUTE_GROUPS(klp_patch);
435 
436 static void klp_free_object_dynamic(struct klp_object *obj)
437 {
438 	kfree(obj->name);
439 	kfree(obj);
440 }
441 
442 static void klp_init_func_early(struct klp_object *obj,
443 				struct klp_func *func);
444 static void klp_init_object_early(struct klp_patch *patch,
445 				  struct klp_object *obj);
446 
447 static struct klp_object *klp_alloc_object_dynamic(const char *name,
448 						   struct klp_patch *patch)
449 {
450 	struct klp_object *obj;
451 
452 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
453 	if (!obj)
454 		return NULL;
455 
456 	if (name) {
457 		obj->name = kstrdup(name, GFP_KERNEL);
458 		if (!obj->name) {
459 			kfree(obj);
460 			return NULL;
461 		}
462 	}
463 
464 	klp_init_object_early(patch, obj);
465 	obj->dynamic = true;
466 
467 	return obj;
468 }
469 
470 static void klp_free_func_nop(struct klp_func *func)
471 {
472 	kfree(func->old_name);
473 	kfree(func);
474 }
475 
476 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
477 					   struct klp_object *obj)
478 {
479 	struct klp_func *func;
480 
481 	func = kzalloc(sizeof(*func), GFP_KERNEL);
482 	if (!func)
483 		return NULL;
484 
485 	if (old_func->old_name) {
486 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
487 		if (!func->old_name) {
488 			kfree(func);
489 			return NULL;
490 		}
491 	}
492 
493 	klp_init_func_early(obj, func);
494 	/*
495 	 * func->new_func is same as func->old_func. These addresses are
496 	 * set when the object is loaded, see klp_init_object_loaded().
497 	 */
498 	func->old_sympos = old_func->old_sympos;
499 	func->nop = true;
500 
501 	return func;
502 }
503 
504 static int klp_add_object_nops(struct klp_patch *patch,
505 			       struct klp_object *old_obj)
506 {
507 	struct klp_object *obj;
508 	struct klp_func *func, *old_func;
509 
510 	obj = klp_find_object(patch, old_obj);
511 
512 	if (!obj) {
513 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
514 		if (!obj)
515 			return -ENOMEM;
516 	}
517 
518 	klp_for_each_func(old_obj, old_func) {
519 		func = klp_find_func(obj, old_func);
520 		if (func)
521 			continue;
522 
523 		func = klp_alloc_func_nop(old_func, obj);
524 		if (!func)
525 			return -ENOMEM;
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * Add 'nop' functions which simply return to the caller to run
533  * the original function. The 'nop' functions are added to a
534  * patch to facilitate a 'replace' mode.
535  */
536 static int klp_add_nops(struct klp_patch *patch)
537 {
538 	struct klp_patch *old_patch;
539 	struct klp_object *old_obj;
540 
541 	klp_for_each_patch(old_patch) {
542 		klp_for_each_object(old_patch, old_obj) {
543 			int err;
544 
545 			err = klp_add_object_nops(patch, old_obj);
546 			if (err)
547 				return err;
548 		}
549 	}
550 
551 	return 0;
552 }
553 
554 static void klp_kobj_release_patch(struct kobject *kobj)
555 {
556 	struct klp_patch *patch;
557 
558 	patch = container_of(kobj, struct klp_patch, kobj);
559 	complete(&patch->finish);
560 }
561 
562 static struct kobj_type klp_ktype_patch = {
563 	.release = klp_kobj_release_patch,
564 	.sysfs_ops = &kobj_sysfs_ops,
565 	.default_groups = klp_patch_groups,
566 };
567 
568 static void klp_kobj_release_object(struct kobject *kobj)
569 {
570 	struct klp_object *obj;
571 
572 	obj = container_of(kobj, struct klp_object, kobj);
573 
574 	if (obj->dynamic)
575 		klp_free_object_dynamic(obj);
576 }
577 
578 static struct kobj_type klp_ktype_object = {
579 	.release = klp_kobj_release_object,
580 	.sysfs_ops = &kobj_sysfs_ops,
581 };
582 
583 static void klp_kobj_release_func(struct kobject *kobj)
584 {
585 	struct klp_func *func;
586 
587 	func = container_of(kobj, struct klp_func, kobj);
588 
589 	if (func->nop)
590 		klp_free_func_nop(func);
591 }
592 
593 static struct kobj_type klp_ktype_func = {
594 	.release = klp_kobj_release_func,
595 	.sysfs_ops = &kobj_sysfs_ops,
596 };
597 
598 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
599 {
600 	struct klp_func *func, *tmp_func;
601 
602 	klp_for_each_func_safe(obj, func, tmp_func) {
603 		if (nops_only && !func->nop)
604 			continue;
605 
606 		list_del(&func->node);
607 		kobject_put(&func->kobj);
608 	}
609 }
610 
611 /* Clean up when a patched object is unloaded */
612 static void klp_free_object_loaded(struct klp_object *obj)
613 {
614 	struct klp_func *func;
615 
616 	obj->mod = NULL;
617 
618 	klp_for_each_func(obj, func) {
619 		func->old_func = NULL;
620 
621 		if (func->nop)
622 			func->new_func = NULL;
623 	}
624 }
625 
626 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
627 {
628 	struct klp_object *obj, *tmp_obj;
629 
630 	klp_for_each_object_safe(patch, obj, tmp_obj) {
631 		__klp_free_funcs(obj, nops_only);
632 
633 		if (nops_only && !obj->dynamic)
634 			continue;
635 
636 		list_del(&obj->node);
637 		kobject_put(&obj->kobj);
638 	}
639 }
640 
641 static void klp_free_objects(struct klp_patch *patch)
642 {
643 	__klp_free_objects(patch, false);
644 }
645 
646 static void klp_free_objects_dynamic(struct klp_patch *patch)
647 {
648 	__klp_free_objects(patch, true);
649 }
650 
651 /*
652  * This function implements the free operations that can be called safely
653  * under klp_mutex.
654  *
655  * The operation must be completed by calling klp_free_patch_finish()
656  * outside klp_mutex.
657  */
658 static void klp_free_patch_start(struct klp_patch *patch)
659 {
660 	if (!list_empty(&patch->list))
661 		list_del(&patch->list);
662 
663 	klp_free_objects(patch);
664 }
665 
666 /*
667  * This function implements the free part that must be called outside
668  * klp_mutex.
669  *
670  * It must be called after klp_free_patch_start(). And it has to be
671  * the last function accessing the livepatch structures when the patch
672  * gets disabled.
673  */
674 static void klp_free_patch_finish(struct klp_patch *patch)
675 {
676 	/*
677 	 * Avoid deadlock with enabled_store() sysfs callback by
678 	 * calling this outside klp_mutex. It is safe because
679 	 * this is called when the patch gets disabled and it
680 	 * cannot get enabled again.
681 	 */
682 	kobject_put(&patch->kobj);
683 	wait_for_completion(&patch->finish);
684 
685 	/* Put the module after the last access to struct klp_patch. */
686 	if (!patch->forced)
687 		module_put(patch->mod);
688 }
689 
690 /*
691  * The livepatch might be freed from sysfs interface created by the patch.
692  * This work allows to wait until the interface is destroyed in a separate
693  * context.
694  */
695 static void klp_free_patch_work_fn(struct work_struct *work)
696 {
697 	struct klp_patch *patch =
698 		container_of(work, struct klp_patch, free_work);
699 
700 	klp_free_patch_finish(patch);
701 }
702 
703 void klp_free_patch_async(struct klp_patch *patch)
704 {
705 	klp_free_patch_start(patch);
706 	schedule_work(&patch->free_work);
707 }
708 
709 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
710 {
711 	struct klp_patch *old_patch, *tmp_patch;
712 
713 	klp_for_each_patch_safe(old_patch, tmp_patch) {
714 		if (old_patch == new_patch)
715 			return;
716 		klp_free_patch_async(old_patch);
717 	}
718 }
719 
720 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
721 {
722 	if (!func->old_name)
723 		return -EINVAL;
724 
725 	/*
726 	 * NOPs get the address later. The patched module must be loaded,
727 	 * see klp_init_object_loaded().
728 	 */
729 	if (!func->new_func && !func->nop)
730 		return -EINVAL;
731 
732 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
733 		return -EINVAL;
734 
735 	INIT_LIST_HEAD(&func->stack_node);
736 	func->patched = false;
737 	func->transition = false;
738 
739 	/* The format for the sysfs directory is <function,sympos> where sympos
740 	 * is the nth occurrence of this symbol in kallsyms for the patched
741 	 * object. If the user selects 0 for old_sympos, then 1 will be used
742 	 * since a unique symbol will be the first occurrence.
743 	 */
744 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
745 			   func->old_name,
746 			   func->old_sympos ? func->old_sympos : 1);
747 }
748 
749 static int klp_apply_object_relocs(struct klp_patch *patch,
750 				   struct klp_object *obj)
751 {
752 	int i, ret;
753 	struct klp_modinfo *info = patch->mod->klp_info;
754 
755 	for (i = 1; i < info->hdr.e_shnum; i++) {
756 		Elf_Shdr *sec = info->sechdrs + i;
757 
758 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
759 			continue;
760 
761 		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
762 					       info->secstrings,
763 					       patch->mod->core_kallsyms.strtab,
764 					       info->symndx, i, obj->name);
765 		if (ret)
766 			return ret;
767 	}
768 
769 	return 0;
770 }
771 
772 /* parts of the initialization that is done only when the object is loaded */
773 static int klp_init_object_loaded(struct klp_patch *patch,
774 				  struct klp_object *obj)
775 {
776 	struct klp_func *func;
777 	int ret;
778 
779 	if (klp_is_module(obj)) {
780 		/*
781 		 * Only write module-specific relocations here
782 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
783 		 * written earlier during the initialization of the klp module
784 		 * itself.
785 		 */
786 		ret = klp_apply_object_relocs(patch, obj);
787 		if (ret)
788 			return ret;
789 	}
790 
791 	klp_for_each_func(obj, func) {
792 		ret = klp_find_object_symbol(obj->name, func->old_name,
793 					     func->old_sympos,
794 					     (unsigned long *)&func->old_func);
795 		if (ret)
796 			return ret;
797 
798 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
799 						  &func->old_size, NULL);
800 		if (!ret) {
801 			pr_err("kallsyms size lookup failed for '%s'\n",
802 			       func->old_name);
803 			return -ENOENT;
804 		}
805 
806 		if (func->nop)
807 			func->new_func = func->old_func;
808 
809 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
810 						  &func->new_size, NULL);
811 		if (!ret) {
812 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
813 			       func->old_name);
814 			return -ENOENT;
815 		}
816 	}
817 
818 	return 0;
819 }
820 
821 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
822 {
823 	struct klp_func *func;
824 	int ret;
825 	const char *name;
826 
827 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
828 		return -EINVAL;
829 
830 	obj->patched = false;
831 	obj->mod = NULL;
832 
833 	klp_find_object_module(obj);
834 
835 	name = klp_is_module(obj) ? obj->name : "vmlinux";
836 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
837 	if (ret)
838 		return ret;
839 
840 	klp_for_each_func(obj, func) {
841 		ret = klp_init_func(obj, func);
842 		if (ret)
843 			return ret;
844 	}
845 
846 	if (klp_is_object_loaded(obj))
847 		ret = klp_init_object_loaded(patch, obj);
848 
849 	return ret;
850 }
851 
852 static void klp_init_func_early(struct klp_object *obj,
853 				struct klp_func *func)
854 {
855 	kobject_init(&func->kobj, &klp_ktype_func);
856 	list_add_tail(&func->node, &obj->func_list);
857 }
858 
859 static void klp_init_object_early(struct klp_patch *patch,
860 				  struct klp_object *obj)
861 {
862 	INIT_LIST_HEAD(&obj->func_list);
863 	kobject_init(&obj->kobj, &klp_ktype_object);
864 	list_add_tail(&obj->node, &patch->obj_list);
865 }
866 
867 static int klp_init_patch_early(struct klp_patch *patch)
868 {
869 	struct klp_object *obj;
870 	struct klp_func *func;
871 
872 	if (!patch->objs)
873 		return -EINVAL;
874 
875 	INIT_LIST_HEAD(&patch->list);
876 	INIT_LIST_HEAD(&patch->obj_list);
877 	kobject_init(&patch->kobj, &klp_ktype_patch);
878 	patch->enabled = false;
879 	patch->forced = false;
880 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
881 	init_completion(&patch->finish);
882 
883 	klp_for_each_object_static(patch, obj) {
884 		if (!obj->funcs)
885 			return -EINVAL;
886 
887 		klp_init_object_early(patch, obj);
888 
889 		klp_for_each_func_static(obj, func) {
890 			klp_init_func_early(obj, func);
891 		}
892 	}
893 
894 	if (!try_module_get(patch->mod))
895 		return -ENODEV;
896 
897 	return 0;
898 }
899 
900 static int klp_init_patch(struct klp_patch *patch)
901 {
902 	struct klp_object *obj;
903 	int ret;
904 
905 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
906 	if (ret)
907 		return ret;
908 
909 	if (patch->replace) {
910 		ret = klp_add_nops(patch);
911 		if (ret)
912 			return ret;
913 	}
914 
915 	klp_for_each_object(patch, obj) {
916 		ret = klp_init_object(patch, obj);
917 		if (ret)
918 			return ret;
919 	}
920 
921 	list_add_tail(&patch->list, &klp_patches);
922 
923 	return 0;
924 }
925 
926 static int __klp_disable_patch(struct klp_patch *patch)
927 {
928 	struct klp_object *obj;
929 
930 	if (WARN_ON(!patch->enabled))
931 		return -EINVAL;
932 
933 	if (klp_transition_patch)
934 		return -EBUSY;
935 
936 	klp_init_transition(patch, KLP_UNPATCHED);
937 
938 	klp_for_each_object(patch, obj)
939 		if (obj->patched)
940 			klp_pre_unpatch_callback(obj);
941 
942 	/*
943 	 * Enforce the order of the func->transition writes in
944 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
945 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
946 	 * is called shortly after klp_update_patch_state() switches the task,
947 	 * this ensures the handler sees that func->transition is set.
948 	 */
949 	smp_wmb();
950 
951 	klp_start_transition();
952 	patch->enabled = false;
953 	klp_try_complete_transition();
954 
955 	return 0;
956 }
957 
958 static int __klp_enable_patch(struct klp_patch *patch)
959 {
960 	struct klp_object *obj;
961 	int ret;
962 
963 	if (klp_transition_patch)
964 		return -EBUSY;
965 
966 	if (WARN_ON(patch->enabled))
967 		return -EINVAL;
968 
969 	pr_notice("enabling patch '%s'\n", patch->mod->name);
970 
971 	klp_init_transition(patch, KLP_PATCHED);
972 
973 	/*
974 	 * Enforce the order of the func->transition writes in
975 	 * klp_init_transition() and the ops->func_stack writes in
976 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
977 	 * func->transition updates before the handler is registered and the
978 	 * new funcs become visible to the handler.
979 	 */
980 	smp_wmb();
981 
982 	klp_for_each_object(patch, obj) {
983 		if (!klp_is_object_loaded(obj))
984 			continue;
985 
986 		ret = klp_pre_patch_callback(obj);
987 		if (ret) {
988 			pr_warn("pre-patch callback failed for object '%s'\n",
989 				klp_is_module(obj) ? obj->name : "vmlinux");
990 			goto err;
991 		}
992 
993 		ret = klp_patch_object(obj);
994 		if (ret) {
995 			pr_warn("failed to patch object '%s'\n",
996 				klp_is_module(obj) ? obj->name : "vmlinux");
997 			goto err;
998 		}
999 	}
1000 
1001 	klp_start_transition();
1002 	patch->enabled = true;
1003 	klp_try_complete_transition();
1004 
1005 	return 0;
1006 err:
1007 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1008 
1009 	klp_cancel_transition();
1010 	return ret;
1011 }
1012 
1013 /**
1014  * klp_enable_patch() - enable the livepatch
1015  * @patch:	patch to be enabled
1016  *
1017  * Initializes the data structure associated with the patch, creates the sysfs
1018  * interface, performs the needed symbol lookups and code relocations,
1019  * registers the patched functions with ftrace.
1020  *
1021  * This function is supposed to be called from the livepatch module_init()
1022  * callback.
1023  *
1024  * Return: 0 on success, otherwise error
1025  */
1026 int klp_enable_patch(struct klp_patch *patch)
1027 {
1028 	int ret;
1029 
1030 	if (!patch || !patch->mod)
1031 		return -EINVAL;
1032 
1033 	if (!is_livepatch_module(patch->mod)) {
1034 		pr_err("module %s is not marked as a livepatch module\n",
1035 		       patch->mod->name);
1036 		return -EINVAL;
1037 	}
1038 
1039 	if (!klp_initialized())
1040 		return -ENODEV;
1041 
1042 	if (!klp_have_reliable_stack()) {
1043 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1044 		pr_warn("The livepatch transition may never complete.\n");
1045 	}
1046 
1047 	mutex_lock(&klp_mutex);
1048 
1049 	if (!klp_is_patch_compatible(patch)) {
1050 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1051 			patch->mod->name);
1052 		mutex_unlock(&klp_mutex);
1053 		return -EINVAL;
1054 	}
1055 
1056 	ret = klp_init_patch_early(patch);
1057 	if (ret) {
1058 		mutex_unlock(&klp_mutex);
1059 		return ret;
1060 	}
1061 
1062 	ret = klp_init_patch(patch);
1063 	if (ret)
1064 		goto err;
1065 
1066 	ret = __klp_enable_patch(patch);
1067 	if (ret)
1068 		goto err;
1069 
1070 	mutex_unlock(&klp_mutex);
1071 
1072 	return 0;
1073 
1074 err:
1075 	klp_free_patch_start(patch);
1076 
1077 	mutex_unlock(&klp_mutex);
1078 
1079 	klp_free_patch_finish(patch);
1080 
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(klp_enable_patch);
1084 
1085 /*
1086  * This function unpatches objects from the replaced livepatches.
1087  *
1088  * We could be pretty aggressive here. It is called in the situation where
1089  * these structures are no longer accessed from the ftrace handler.
1090  * All functions are redirected by the klp_transition_patch. They
1091  * use either a new code or they are in the original code because
1092  * of the special nop function patches.
1093  *
1094  * The only exception is when the transition was forced. In this case,
1095  * klp_ftrace_handler() might still see the replaced patch on the stack.
1096  * Fortunately, it is carefully designed to work with removed functions
1097  * thanks to RCU. We only have to keep the patches on the system. Also
1098  * this is handled transparently by patch->module_put.
1099  */
1100 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1101 {
1102 	struct klp_patch *old_patch;
1103 
1104 	klp_for_each_patch(old_patch) {
1105 		if (old_patch == new_patch)
1106 			return;
1107 
1108 		old_patch->enabled = false;
1109 		klp_unpatch_objects(old_patch);
1110 	}
1111 }
1112 
1113 /*
1114  * This function removes the dynamically allocated 'nop' functions.
1115  *
1116  * We could be pretty aggressive. NOPs do not change the existing
1117  * behavior except for adding unnecessary delay by the ftrace handler.
1118  *
1119  * It is safe even when the transition was forced. The ftrace handler
1120  * will see a valid ops->func_stack entry thanks to RCU.
1121  *
1122  * We could even free the NOPs structures. They must be the last entry
1123  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1124  * It does the same as klp_synchronize_transition() to make sure that
1125  * nobody is inside the ftrace handler once the operation finishes.
1126  *
1127  * IMPORTANT: It must be called right after removing the replaced patches!
1128  */
1129 void klp_discard_nops(struct klp_patch *new_patch)
1130 {
1131 	klp_unpatch_objects_dynamic(klp_transition_patch);
1132 	klp_free_objects_dynamic(klp_transition_patch);
1133 }
1134 
1135 /*
1136  * Remove parts of patches that touch a given kernel module. The list of
1137  * patches processed might be limited. When limit is NULL, all patches
1138  * will be handled.
1139  */
1140 static void klp_cleanup_module_patches_limited(struct module *mod,
1141 					       struct klp_patch *limit)
1142 {
1143 	struct klp_patch *patch;
1144 	struct klp_object *obj;
1145 
1146 	klp_for_each_patch(patch) {
1147 		if (patch == limit)
1148 			break;
1149 
1150 		klp_for_each_object(patch, obj) {
1151 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1152 				continue;
1153 
1154 			if (patch != klp_transition_patch)
1155 				klp_pre_unpatch_callback(obj);
1156 
1157 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1158 				  patch->mod->name, obj->mod->name);
1159 			klp_unpatch_object(obj);
1160 
1161 			klp_post_unpatch_callback(obj);
1162 
1163 			klp_free_object_loaded(obj);
1164 			break;
1165 		}
1166 	}
1167 }
1168 
1169 int klp_module_coming(struct module *mod)
1170 {
1171 	int ret;
1172 	struct klp_patch *patch;
1173 	struct klp_object *obj;
1174 
1175 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1176 		return -EINVAL;
1177 
1178 	if (!strcmp(mod->name, "vmlinux")) {
1179 		pr_err("vmlinux.ko: invalid module name");
1180 		return -EINVAL;
1181 	}
1182 
1183 	mutex_lock(&klp_mutex);
1184 	/*
1185 	 * Each module has to know that klp_module_coming()
1186 	 * has been called. We never know what module will
1187 	 * get patched by a new patch.
1188 	 */
1189 	mod->klp_alive = true;
1190 
1191 	klp_for_each_patch(patch) {
1192 		klp_for_each_object(patch, obj) {
1193 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1194 				continue;
1195 
1196 			obj->mod = mod;
1197 
1198 			ret = klp_init_object_loaded(patch, obj);
1199 			if (ret) {
1200 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1201 					patch->mod->name, obj->mod->name, ret);
1202 				goto err;
1203 			}
1204 
1205 			pr_notice("applying patch '%s' to loading module '%s'\n",
1206 				  patch->mod->name, obj->mod->name);
1207 
1208 			ret = klp_pre_patch_callback(obj);
1209 			if (ret) {
1210 				pr_warn("pre-patch callback failed for object '%s'\n",
1211 					obj->name);
1212 				goto err;
1213 			}
1214 
1215 			ret = klp_patch_object(obj);
1216 			if (ret) {
1217 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1218 					patch->mod->name, obj->mod->name, ret);
1219 
1220 				klp_post_unpatch_callback(obj);
1221 				goto err;
1222 			}
1223 
1224 			if (patch != klp_transition_patch)
1225 				klp_post_patch_callback(obj);
1226 
1227 			break;
1228 		}
1229 	}
1230 
1231 	mutex_unlock(&klp_mutex);
1232 
1233 	return 0;
1234 
1235 err:
1236 	/*
1237 	 * If a patch is unsuccessfully applied, return
1238 	 * error to the module loader.
1239 	 */
1240 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1241 		patch->mod->name, obj->mod->name, obj->mod->name);
1242 	mod->klp_alive = false;
1243 	obj->mod = NULL;
1244 	klp_cleanup_module_patches_limited(mod, patch);
1245 	mutex_unlock(&klp_mutex);
1246 
1247 	return ret;
1248 }
1249 
1250 void klp_module_going(struct module *mod)
1251 {
1252 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1253 		    mod->state != MODULE_STATE_COMING))
1254 		return;
1255 
1256 	mutex_lock(&klp_mutex);
1257 	/*
1258 	 * Each module has to know that klp_module_going()
1259 	 * has been called. We never know what module will
1260 	 * get patched by a new patch.
1261 	 */
1262 	mod->klp_alive = false;
1263 
1264 	klp_cleanup_module_patches_limited(mod, NULL);
1265 
1266 	mutex_unlock(&klp_mutex);
1267 }
1268 
1269 static int __init klp_init(void)
1270 {
1271 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1272 	if (!klp_root_kobj)
1273 		return -ENOMEM;
1274 
1275 	return 0;
1276 }
1277 
1278 module_init(klp_init);
1279