1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <[email protected]> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 */ 37 DEFINE_MUTEX(klp_mutex); 38 39 /* 40 * Actively used patches: enabled or in transition. Note that replaced 41 * or disabled patches are not listed even though the related kernel 42 * module still can be loaded. 43 */ 44 LIST_HEAD(klp_patches); 45 46 static struct kobject *klp_root_kobj; 47 48 static bool klp_is_module(struct klp_object *obj) 49 { 50 return obj->name; 51 } 52 53 /* sets obj->mod if object is not vmlinux and module is found */ 54 static void klp_find_object_module(struct klp_object *obj) 55 { 56 struct module *mod; 57 58 if (!klp_is_module(obj)) 59 return; 60 61 rcu_read_lock_sched(); 62 /* 63 * We do not want to block removal of patched modules and therefore 64 * we do not take a reference here. The patches are removed by 65 * klp_module_going() instead. 66 */ 67 mod = find_module(obj->name); 68 /* 69 * Do not mess work of klp_module_coming() and klp_module_going(). 70 * Note that the patch might still be needed before klp_module_going() 71 * is called. Module functions can be called even in the GOING state 72 * until mod->exit() finishes. This is especially important for 73 * patches that modify semantic of the functions. 74 */ 75 if (mod && mod->klp_alive) 76 obj->mod = mod; 77 78 rcu_read_unlock_sched(); 79 } 80 81 static bool klp_initialized(void) 82 { 83 return !!klp_root_kobj; 84 } 85 86 static struct klp_func *klp_find_func(struct klp_object *obj, 87 struct klp_func *old_func) 88 { 89 struct klp_func *func; 90 91 klp_for_each_func(obj, func) { 92 if ((strcmp(old_func->old_name, func->old_name) == 0) && 93 (old_func->old_sympos == func->old_sympos)) { 94 return func; 95 } 96 } 97 98 return NULL; 99 } 100 101 static struct klp_object *klp_find_object(struct klp_patch *patch, 102 struct klp_object *old_obj) 103 { 104 struct klp_object *obj; 105 106 klp_for_each_object(patch, obj) { 107 if (klp_is_module(old_obj)) { 108 if (klp_is_module(obj) && 109 strcmp(old_obj->name, obj->name) == 0) { 110 return obj; 111 } 112 } else if (!klp_is_module(obj)) { 113 return obj; 114 } 115 } 116 117 return NULL; 118 } 119 120 struct klp_find_arg { 121 const char *objname; 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_find_callback(void *data, const char *name, 129 struct module *mod, unsigned long addr) 130 { 131 struct klp_find_arg *args = data; 132 133 if ((mod && !args->objname) || (!mod && args->objname)) 134 return 0; 135 136 if (strcmp(args->name, name)) 137 return 0; 138 139 if (args->objname && strcmp(args->objname, mod->name)) 140 return 0; 141 142 args->addr = addr; 143 args->count++; 144 145 /* 146 * Finish the search when the symbol is found for the desired position 147 * or the position is not defined for a non-unique symbol. 148 */ 149 if ((args->pos && (args->count == args->pos)) || 150 (!args->pos && (args->count > 1))) 151 return 1; 152 153 return 0; 154 } 155 156 static int klp_match_callback(void *data, unsigned long addr) 157 { 158 struct klp_find_arg *args = data; 159 160 args->addr = addr; 161 args->count++; 162 163 /* 164 * Finish the search when the symbol is found for the desired position 165 * or the position is not defined for a non-unique symbol. 166 */ 167 if ((args->pos && (args->count == args->pos)) || 168 (!args->pos && (args->count > 1))) 169 return 1; 170 171 return 0; 172 } 173 174 static int klp_find_object_symbol(const char *objname, const char *name, 175 unsigned long sympos, unsigned long *addr) 176 { 177 struct klp_find_arg args = { 178 .objname = objname, 179 .name = name, 180 .addr = 0, 181 .count = 0, 182 .pos = sympos, 183 }; 184 185 if (objname) 186 module_kallsyms_on_each_symbol(klp_find_callback, &args); 187 else 188 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 189 190 /* 191 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 192 * otherwise ensure the symbol position count matches sympos. 193 */ 194 if (args.addr == 0) 195 pr_err("symbol '%s' not found in symbol table\n", name); 196 else if (args.count > 1 && sympos == 0) { 197 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 198 name, objname); 199 } else if (sympos != args.count && sympos > 0) { 200 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 201 sympos, name, objname ? objname : "vmlinux"); 202 } else { 203 *addr = args.addr; 204 return 0; 205 } 206 207 *addr = 0; 208 return -EINVAL; 209 } 210 211 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 212 unsigned int symndx, Elf_Shdr *relasec, 213 const char *sec_objname) 214 { 215 int i, cnt, ret; 216 char sym_objname[MODULE_NAME_LEN]; 217 char sym_name[KSYM_NAME_LEN]; 218 Elf_Rela *relas; 219 Elf_Sym *sym; 220 unsigned long sympos, addr; 221 bool sym_vmlinux; 222 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 223 224 /* 225 * Since the field widths for sym_objname and sym_name in the sscanf() 226 * call are hard-coded and correspond to MODULE_NAME_LEN and 227 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 228 * and KSYM_NAME_LEN have the values we expect them to have. 229 * 230 * Because the value of MODULE_NAME_LEN can differ among architectures, 231 * we use the smallest/strictest upper bound possible (56, based on 232 * the current definition of MODULE_NAME_LEN) to prevent overflows. 233 */ 234 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 235 236 relas = (Elf_Rela *) relasec->sh_addr; 237 /* For each rela in this klp relocation section */ 238 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 239 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 240 if (sym->st_shndx != SHN_LIVEPATCH) { 241 pr_err("symbol %s is not marked as a livepatch symbol\n", 242 strtab + sym->st_name); 243 return -EINVAL; 244 } 245 246 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 247 cnt = sscanf(strtab + sym->st_name, 248 ".klp.sym.%55[^.].%511[^,],%lu", 249 sym_objname, sym_name, &sympos); 250 if (cnt != 3) { 251 pr_err("symbol %s has an incorrectly formatted name\n", 252 strtab + sym->st_name); 253 return -EINVAL; 254 } 255 256 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 257 258 /* 259 * Prevent module-specific KLP rela sections from referencing 260 * vmlinux symbols. This helps prevent ordering issues with 261 * module special section initializations. Presumably such 262 * symbols are exported and normal relas can be used instead. 263 */ 264 if (!sec_vmlinux && sym_vmlinux) { 265 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 266 sym_name); 267 return -EINVAL; 268 } 269 270 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 271 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 272 sym_name, sympos, &addr); 273 if (ret) 274 return ret; 275 276 sym->st_value = addr; 277 } 278 279 return 0; 280 } 281 282 /* 283 * At a high-level, there are two types of klp relocation sections: those which 284 * reference symbols which live in vmlinux; and those which reference symbols 285 * which live in other modules. This function is called for both types: 286 * 287 * 1) When a klp module itself loads, the module code calls this function to 288 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 289 * These relocations are written to the klp module text to allow the patched 290 * code/data to reference unexported vmlinux symbols. They're written as 291 * early as possible to ensure that other module init code (.e.g., 292 * jump_label_apply_nops) can access any unexported vmlinux symbols which 293 * might be referenced by the klp module's special sections. 294 * 295 * 2) When a to-be-patched module loads -- or is already loaded when a 296 * corresponding klp module loads -- klp code calls this function to write 297 * module-specific klp relocations (.klp.rela.{module}.* sections). These 298 * are written to the klp module text to allow the patched code/data to 299 * reference symbols which live in the to-be-patched module or one of its 300 * module dependencies. Exported symbols are supported, in addition to 301 * unexported symbols, in order to enable late module patching, which allows 302 * the to-be-patched module to be loaded and patched sometime *after* the 303 * klp module is loaded. 304 */ 305 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 306 const char *shstrtab, const char *strtab, 307 unsigned int symndx, unsigned int secndx, 308 const char *objname) 309 { 310 int cnt, ret; 311 char sec_objname[MODULE_NAME_LEN]; 312 Elf_Shdr *sec = sechdrs + secndx; 313 314 /* 315 * Format: .klp.rela.sec_objname.section_name 316 * See comment in klp_resolve_symbols() for an explanation 317 * of the selected field width value. 318 */ 319 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 320 sec_objname); 321 if (cnt != 1) { 322 pr_err("section %s has an incorrectly formatted name\n", 323 shstrtab + sec->sh_name); 324 return -EINVAL; 325 } 326 327 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 328 return 0; 329 330 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname); 331 if (ret) 332 return ret; 333 334 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 335 } 336 337 /* 338 * Sysfs Interface 339 * 340 * /sys/kernel/livepatch 341 * /sys/kernel/livepatch/<patch> 342 * /sys/kernel/livepatch/<patch>/enabled 343 * /sys/kernel/livepatch/<patch>/transition 344 * /sys/kernel/livepatch/<patch>/force 345 * /sys/kernel/livepatch/<patch>/<object> 346 * /sys/kernel/livepatch/<patch>/<object>/patched 347 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 348 */ 349 static int __klp_disable_patch(struct klp_patch *patch); 350 351 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 352 const char *buf, size_t count) 353 { 354 struct klp_patch *patch; 355 int ret; 356 bool enabled; 357 358 ret = kstrtobool(buf, &enabled); 359 if (ret) 360 return ret; 361 362 patch = container_of(kobj, struct klp_patch, kobj); 363 364 mutex_lock(&klp_mutex); 365 366 if (patch->enabled == enabled) { 367 /* already in requested state */ 368 ret = -EINVAL; 369 goto out; 370 } 371 372 /* 373 * Allow to reverse a pending transition in both ways. It might be 374 * necessary to complete the transition without forcing and breaking 375 * the system integrity. 376 * 377 * Do not allow to re-enable a disabled patch. 378 */ 379 if (patch == klp_transition_patch) 380 klp_reverse_transition(); 381 else if (!enabled) 382 ret = __klp_disable_patch(patch); 383 else 384 ret = -EINVAL; 385 386 out: 387 mutex_unlock(&klp_mutex); 388 389 if (ret) 390 return ret; 391 return count; 392 } 393 394 static ssize_t enabled_show(struct kobject *kobj, 395 struct kobj_attribute *attr, char *buf) 396 { 397 struct klp_patch *patch; 398 399 patch = container_of(kobj, struct klp_patch, kobj); 400 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 401 } 402 403 static ssize_t transition_show(struct kobject *kobj, 404 struct kobj_attribute *attr, char *buf) 405 { 406 struct klp_patch *patch; 407 408 patch = container_of(kobj, struct klp_patch, kobj); 409 return snprintf(buf, PAGE_SIZE-1, "%d\n", 410 patch == klp_transition_patch); 411 } 412 413 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 414 const char *buf, size_t count) 415 { 416 struct klp_patch *patch; 417 int ret; 418 bool val; 419 420 ret = kstrtobool(buf, &val); 421 if (ret) 422 return ret; 423 424 if (!val) 425 return count; 426 427 mutex_lock(&klp_mutex); 428 429 patch = container_of(kobj, struct klp_patch, kobj); 430 if (patch != klp_transition_patch) { 431 mutex_unlock(&klp_mutex); 432 return -EINVAL; 433 } 434 435 klp_force_transition(); 436 437 mutex_unlock(&klp_mutex); 438 439 return count; 440 } 441 442 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 443 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 444 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 445 static struct attribute *klp_patch_attrs[] = { 446 &enabled_kobj_attr.attr, 447 &transition_kobj_attr.attr, 448 &force_kobj_attr.attr, 449 NULL 450 }; 451 ATTRIBUTE_GROUPS(klp_patch); 452 453 static ssize_t patched_show(struct kobject *kobj, 454 struct kobj_attribute *attr, char *buf) 455 { 456 struct klp_object *obj; 457 458 obj = container_of(kobj, struct klp_object, kobj); 459 return sysfs_emit(buf, "%d\n", obj->patched); 460 } 461 462 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 463 static struct attribute *klp_object_attrs[] = { 464 &patched_kobj_attr.attr, 465 NULL, 466 }; 467 ATTRIBUTE_GROUPS(klp_object); 468 469 static void klp_free_object_dynamic(struct klp_object *obj) 470 { 471 kfree(obj->name); 472 kfree(obj); 473 } 474 475 static void klp_init_func_early(struct klp_object *obj, 476 struct klp_func *func); 477 static void klp_init_object_early(struct klp_patch *patch, 478 struct klp_object *obj); 479 480 static struct klp_object *klp_alloc_object_dynamic(const char *name, 481 struct klp_patch *patch) 482 { 483 struct klp_object *obj; 484 485 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 486 if (!obj) 487 return NULL; 488 489 if (name) { 490 obj->name = kstrdup(name, GFP_KERNEL); 491 if (!obj->name) { 492 kfree(obj); 493 return NULL; 494 } 495 } 496 497 klp_init_object_early(patch, obj); 498 obj->dynamic = true; 499 500 return obj; 501 } 502 503 static void klp_free_func_nop(struct klp_func *func) 504 { 505 kfree(func->old_name); 506 kfree(func); 507 } 508 509 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 510 struct klp_object *obj) 511 { 512 struct klp_func *func; 513 514 func = kzalloc(sizeof(*func), GFP_KERNEL); 515 if (!func) 516 return NULL; 517 518 if (old_func->old_name) { 519 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 520 if (!func->old_name) { 521 kfree(func); 522 return NULL; 523 } 524 } 525 526 klp_init_func_early(obj, func); 527 /* 528 * func->new_func is same as func->old_func. These addresses are 529 * set when the object is loaded, see klp_init_object_loaded(). 530 */ 531 func->old_sympos = old_func->old_sympos; 532 func->nop = true; 533 534 return func; 535 } 536 537 static int klp_add_object_nops(struct klp_patch *patch, 538 struct klp_object *old_obj) 539 { 540 struct klp_object *obj; 541 struct klp_func *func, *old_func; 542 543 obj = klp_find_object(patch, old_obj); 544 545 if (!obj) { 546 obj = klp_alloc_object_dynamic(old_obj->name, patch); 547 if (!obj) 548 return -ENOMEM; 549 } 550 551 klp_for_each_func(old_obj, old_func) { 552 func = klp_find_func(obj, old_func); 553 if (func) 554 continue; 555 556 func = klp_alloc_func_nop(old_func, obj); 557 if (!func) 558 return -ENOMEM; 559 } 560 561 return 0; 562 } 563 564 /* 565 * Add 'nop' functions which simply return to the caller to run 566 * the original function. The 'nop' functions are added to a 567 * patch to facilitate a 'replace' mode. 568 */ 569 static int klp_add_nops(struct klp_patch *patch) 570 { 571 struct klp_patch *old_patch; 572 struct klp_object *old_obj; 573 574 klp_for_each_patch(old_patch) { 575 klp_for_each_object(old_patch, old_obj) { 576 int err; 577 578 err = klp_add_object_nops(patch, old_obj); 579 if (err) 580 return err; 581 } 582 } 583 584 return 0; 585 } 586 587 static void klp_kobj_release_patch(struct kobject *kobj) 588 { 589 struct klp_patch *patch; 590 591 patch = container_of(kobj, struct klp_patch, kobj); 592 complete(&patch->finish); 593 } 594 595 static struct kobj_type klp_ktype_patch = { 596 .release = klp_kobj_release_patch, 597 .sysfs_ops = &kobj_sysfs_ops, 598 .default_groups = klp_patch_groups, 599 }; 600 601 static void klp_kobj_release_object(struct kobject *kobj) 602 { 603 struct klp_object *obj; 604 605 obj = container_of(kobj, struct klp_object, kobj); 606 607 if (obj->dynamic) 608 klp_free_object_dynamic(obj); 609 } 610 611 static struct kobj_type klp_ktype_object = { 612 .release = klp_kobj_release_object, 613 .sysfs_ops = &kobj_sysfs_ops, 614 .default_groups = klp_object_groups, 615 }; 616 617 static void klp_kobj_release_func(struct kobject *kobj) 618 { 619 struct klp_func *func; 620 621 func = container_of(kobj, struct klp_func, kobj); 622 623 if (func->nop) 624 klp_free_func_nop(func); 625 } 626 627 static struct kobj_type klp_ktype_func = { 628 .release = klp_kobj_release_func, 629 .sysfs_ops = &kobj_sysfs_ops, 630 }; 631 632 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 633 { 634 struct klp_func *func, *tmp_func; 635 636 klp_for_each_func_safe(obj, func, tmp_func) { 637 if (nops_only && !func->nop) 638 continue; 639 640 list_del(&func->node); 641 kobject_put(&func->kobj); 642 } 643 } 644 645 /* Clean up when a patched object is unloaded */ 646 static void klp_free_object_loaded(struct klp_object *obj) 647 { 648 struct klp_func *func; 649 650 obj->mod = NULL; 651 652 klp_for_each_func(obj, func) { 653 func->old_func = NULL; 654 655 if (func->nop) 656 func->new_func = NULL; 657 } 658 } 659 660 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 661 { 662 struct klp_object *obj, *tmp_obj; 663 664 klp_for_each_object_safe(patch, obj, tmp_obj) { 665 __klp_free_funcs(obj, nops_only); 666 667 if (nops_only && !obj->dynamic) 668 continue; 669 670 list_del(&obj->node); 671 kobject_put(&obj->kobj); 672 } 673 } 674 675 static void klp_free_objects(struct klp_patch *patch) 676 { 677 __klp_free_objects(patch, false); 678 } 679 680 static void klp_free_objects_dynamic(struct klp_patch *patch) 681 { 682 __klp_free_objects(patch, true); 683 } 684 685 /* 686 * This function implements the free operations that can be called safely 687 * under klp_mutex. 688 * 689 * The operation must be completed by calling klp_free_patch_finish() 690 * outside klp_mutex. 691 */ 692 static void klp_free_patch_start(struct klp_patch *patch) 693 { 694 if (!list_empty(&patch->list)) 695 list_del(&patch->list); 696 697 klp_free_objects(patch); 698 } 699 700 /* 701 * This function implements the free part that must be called outside 702 * klp_mutex. 703 * 704 * It must be called after klp_free_patch_start(). And it has to be 705 * the last function accessing the livepatch structures when the patch 706 * gets disabled. 707 */ 708 static void klp_free_patch_finish(struct klp_patch *patch) 709 { 710 /* 711 * Avoid deadlock with enabled_store() sysfs callback by 712 * calling this outside klp_mutex. It is safe because 713 * this is called when the patch gets disabled and it 714 * cannot get enabled again. 715 */ 716 kobject_put(&patch->kobj); 717 wait_for_completion(&patch->finish); 718 719 /* Put the module after the last access to struct klp_patch. */ 720 if (!patch->forced) 721 module_put(patch->mod); 722 } 723 724 /* 725 * The livepatch might be freed from sysfs interface created by the patch. 726 * This work allows to wait until the interface is destroyed in a separate 727 * context. 728 */ 729 static void klp_free_patch_work_fn(struct work_struct *work) 730 { 731 struct klp_patch *patch = 732 container_of(work, struct klp_patch, free_work); 733 734 klp_free_patch_finish(patch); 735 } 736 737 void klp_free_patch_async(struct klp_patch *patch) 738 { 739 klp_free_patch_start(patch); 740 schedule_work(&patch->free_work); 741 } 742 743 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 744 { 745 struct klp_patch *old_patch, *tmp_patch; 746 747 klp_for_each_patch_safe(old_patch, tmp_patch) { 748 if (old_patch == new_patch) 749 return; 750 klp_free_patch_async(old_patch); 751 } 752 } 753 754 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 755 { 756 if (!func->old_name) 757 return -EINVAL; 758 759 /* 760 * NOPs get the address later. The patched module must be loaded, 761 * see klp_init_object_loaded(). 762 */ 763 if (!func->new_func && !func->nop) 764 return -EINVAL; 765 766 if (strlen(func->old_name) >= KSYM_NAME_LEN) 767 return -EINVAL; 768 769 INIT_LIST_HEAD(&func->stack_node); 770 func->patched = false; 771 func->transition = false; 772 773 /* The format for the sysfs directory is <function,sympos> where sympos 774 * is the nth occurrence of this symbol in kallsyms for the patched 775 * object. If the user selects 0 for old_sympos, then 1 will be used 776 * since a unique symbol will be the first occurrence. 777 */ 778 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 779 func->old_name, 780 func->old_sympos ? func->old_sympos : 1); 781 } 782 783 static int klp_apply_object_relocs(struct klp_patch *patch, 784 struct klp_object *obj) 785 { 786 int i, ret; 787 struct klp_modinfo *info = patch->mod->klp_info; 788 789 for (i = 1; i < info->hdr.e_shnum; i++) { 790 Elf_Shdr *sec = info->sechdrs + i; 791 792 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 793 continue; 794 795 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 796 info->secstrings, 797 patch->mod->core_kallsyms.strtab, 798 info->symndx, i, obj->name); 799 if (ret) 800 return ret; 801 } 802 803 return 0; 804 } 805 806 /* parts of the initialization that is done only when the object is loaded */ 807 static int klp_init_object_loaded(struct klp_patch *patch, 808 struct klp_object *obj) 809 { 810 struct klp_func *func; 811 int ret; 812 813 if (klp_is_module(obj)) { 814 /* 815 * Only write module-specific relocations here 816 * (.klp.rela.{module}.*). vmlinux-specific relocations were 817 * written earlier during the initialization of the klp module 818 * itself. 819 */ 820 ret = klp_apply_object_relocs(patch, obj); 821 if (ret) 822 return ret; 823 } 824 825 klp_for_each_func(obj, func) { 826 ret = klp_find_object_symbol(obj->name, func->old_name, 827 func->old_sympos, 828 (unsigned long *)&func->old_func); 829 if (ret) 830 return ret; 831 832 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 833 &func->old_size, NULL); 834 if (!ret) { 835 pr_err("kallsyms size lookup failed for '%s'\n", 836 func->old_name); 837 return -ENOENT; 838 } 839 840 if (func->nop) 841 func->new_func = func->old_func; 842 843 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 844 &func->new_size, NULL); 845 if (!ret) { 846 pr_err("kallsyms size lookup failed for '%s' replacement\n", 847 func->old_name); 848 return -ENOENT; 849 } 850 } 851 852 return 0; 853 } 854 855 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 856 { 857 struct klp_func *func; 858 int ret; 859 const char *name; 860 861 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 862 return -EINVAL; 863 864 obj->patched = false; 865 obj->mod = NULL; 866 867 klp_find_object_module(obj); 868 869 name = klp_is_module(obj) ? obj->name : "vmlinux"; 870 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 871 if (ret) 872 return ret; 873 874 klp_for_each_func(obj, func) { 875 ret = klp_init_func(obj, func); 876 if (ret) 877 return ret; 878 } 879 880 if (klp_is_object_loaded(obj)) 881 ret = klp_init_object_loaded(patch, obj); 882 883 return ret; 884 } 885 886 static void klp_init_func_early(struct klp_object *obj, 887 struct klp_func *func) 888 { 889 kobject_init(&func->kobj, &klp_ktype_func); 890 list_add_tail(&func->node, &obj->func_list); 891 } 892 893 static void klp_init_object_early(struct klp_patch *patch, 894 struct klp_object *obj) 895 { 896 INIT_LIST_HEAD(&obj->func_list); 897 kobject_init(&obj->kobj, &klp_ktype_object); 898 list_add_tail(&obj->node, &patch->obj_list); 899 } 900 901 static void klp_init_patch_early(struct klp_patch *patch) 902 { 903 struct klp_object *obj; 904 struct klp_func *func; 905 906 INIT_LIST_HEAD(&patch->list); 907 INIT_LIST_HEAD(&patch->obj_list); 908 kobject_init(&patch->kobj, &klp_ktype_patch); 909 patch->enabled = false; 910 patch->forced = false; 911 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 912 init_completion(&patch->finish); 913 914 klp_for_each_object_static(patch, obj) { 915 klp_init_object_early(patch, obj); 916 917 klp_for_each_func_static(obj, func) { 918 klp_init_func_early(obj, func); 919 } 920 } 921 } 922 923 static int klp_init_patch(struct klp_patch *patch) 924 { 925 struct klp_object *obj; 926 int ret; 927 928 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 929 if (ret) 930 return ret; 931 932 if (patch->replace) { 933 ret = klp_add_nops(patch); 934 if (ret) 935 return ret; 936 } 937 938 klp_for_each_object(patch, obj) { 939 ret = klp_init_object(patch, obj); 940 if (ret) 941 return ret; 942 } 943 944 list_add_tail(&patch->list, &klp_patches); 945 946 return 0; 947 } 948 949 static int __klp_disable_patch(struct klp_patch *patch) 950 { 951 struct klp_object *obj; 952 953 if (WARN_ON(!patch->enabled)) 954 return -EINVAL; 955 956 if (klp_transition_patch) 957 return -EBUSY; 958 959 klp_init_transition(patch, KLP_UNPATCHED); 960 961 klp_for_each_object(patch, obj) 962 if (obj->patched) 963 klp_pre_unpatch_callback(obj); 964 965 /* 966 * Enforce the order of the func->transition writes in 967 * klp_init_transition() and the TIF_PATCH_PENDING writes in 968 * klp_start_transition(). In the rare case where klp_ftrace_handler() 969 * is called shortly after klp_update_patch_state() switches the task, 970 * this ensures the handler sees that func->transition is set. 971 */ 972 smp_wmb(); 973 974 klp_start_transition(); 975 patch->enabled = false; 976 klp_try_complete_transition(); 977 978 return 0; 979 } 980 981 static int __klp_enable_patch(struct klp_patch *patch) 982 { 983 struct klp_object *obj; 984 int ret; 985 986 if (klp_transition_patch) 987 return -EBUSY; 988 989 if (WARN_ON(patch->enabled)) 990 return -EINVAL; 991 992 pr_notice("enabling patch '%s'\n", patch->mod->name); 993 994 klp_init_transition(patch, KLP_PATCHED); 995 996 /* 997 * Enforce the order of the func->transition writes in 998 * klp_init_transition() and the ops->func_stack writes in 999 * klp_patch_object(), so that klp_ftrace_handler() will see the 1000 * func->transition updates before the handler is registered and the 1001 * new funcs become visible to the handler. 1002 */ 1003 smp_wmb(); 1004 1005 klp_for_each_object(patch, obj) { 1006 if (!klp_is_object_loaded(obj)) 1007 continue; 1008 1009 ret = klp_pre_patch_callback(obj); 1010 if (ret) { 1011 pr_warn("pre-patch callback failed for object '%s'\n", 1012 klp_is_module(obj) ? obj->name : "vmlinux"); 1013 goto err; 1014 } 1015 1016 ret = klp_patch_object(obj); 1017 if (ret) { 1018 pr_warn("failed to patch object '%s'\n", 1019 klp_is_module(obj) ? obj->name : "vmlinux"); 1020 goto err; 1021 } 1022 } 1023 1024 klp_start_transition(); 1025 patch->enabled = true; 1026 klp_try_complete_transition(); 1027 1028 return 0; 1029 err: 1030 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1031 1032 klp_cancel_transition(); 1033 return ret; 1034 } 1035 1036 /** 1037 * klp_enable_patch() - enable the livepatch 1038 * @patch: patch to be enabled 1039 * 1040 * Initializes the data structure associated with the patch, creates the sysfs 1041 * interface, performs the needed symbol lookups and code relocations, 1042 * registers the patched functions with ftrace. 1043 * 1044 * This function is supposed to be called from the livepatch module_init() 1045 * callback. 1046 * 1047 * Return: 0 on success, otherwise error 1048 */ 1049 int klp_enable_patch(struct klp_patch *patch) 1050 { 1051 int ret; 1052 struct klp_object *obj; 1053 1054 if (!patch || !patch->mod || !patch->objs) 1055 return -EINVAL; 1056 1057 klp_for_each_object_static(patch, obj) { 1058 if (!obj->funcs) 1059 return -EINVAL; 1060 } 1061 1062 1063 if (!is_livepatch_module(patch->mod)) { 1064 pr_err("module %s is not marked as a livepatch module\n", 1065 patch->mod->name); 1066 return -EINVAL; 1067 } 1068 1069 if (!klp_initialized()) 1070 return -ENODEV; 1071 1072 if (!klp_have_reliable_stack()) { 1073 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1074 pr_warn("The livepatch transition may never complete.\n"); 1075 } 1076 1077 mutex_lock(&klp_mutex); 1078 1079 if (!klp_is_patch_compatible(patch)) { 1080 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1081 patch->mod->name); 1082 mutex_unlock(&klp_mutex); 1083 return -EINVAL; 1084 } 1085 1086 if (!try_module_get(patch->mod)) { 1087 mutex_unlock(&klp_mutex); 1088 return -ENODEV; 1089 } 1090 1091 klp_init_patch_early(patch); 1092 1093 ret = klp_init_patch(patch); 1094 if (ret) 1095 goto err; 1096 1097 ret = __klp_enable_patch(patch); 1098 if (ret) 1099 goto err; 1100 1101 mutex_unlock(&klp_mutex); 1102 1103 return 0; 1104 1105 err: 1106 klp_free_patch_start(patch); 1107 1108 mutex_unlock(&klp_mutex); 1109 1110 klp_free_patch_finish(patch); 1111 1112 return ret; 1113 } 1114 EXPORT_SYMBOL_GPL(klp_enable_patch); 1115 1116 /* 1117 * This function unpatches objects from the replaced livepatches. 1118 * 1119 * We could be pretty aggressive here. It is called in the situation where 1120 * these structures are no longer accessed from the ftrace handler. 1121 * All functions are redirected by the klp_transition_patch. They 1122 * use either a new code or they are in the original code because 1123 * of the special nop function patches. 1124 * 1125 * The only exception is when the transition was forced. In this case, 1126 * klp_ftrace_handler() might still see the replaced patch on the stack. 1127 * Fortunately, it is carefully designed to work with removed functions 1128 * thanks to RCU. We only have to keep the patches on the system. Also 1129 * this is handled transparently by patch->module_put. 1130 */ 1131 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1132 { 1133 struct klp_patch *old_patch; 1134 1135 klp_for_each_patch(old_patch) { 1136 if (old_patch == new_patch) 1137 return; 1138 1139 old_patch->enabled = false; 1140 klp_unpatch_objects(old_patch); 1141 } 1142 } 1143 1144 /* 1145 * This function removes the dynamically allocated 'nop' functions. 1146 * 1147 * We could be pretty aggressive. NOPs do not change the existing 1148 * behavior except for adding unnecessary delay by the ftrace handler. 1149 * 1150 * It is safe even when the transition was forced. The ftrace handler 1151 * will see a valid ops->func_stack entry thanks to RCU. 1152 * 1153 * We could even free the NOPs structures. They must be the last entry 1154 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1155 * It does the same as klp_synchronize_transition() to make sure that 1156 * nobody is inside the ftrace handler once the operation finishes. 1157 * 1158 * IMPORTANT: It must be called right after removing the replaced patches! 1159 */ 1160 void klp_discard_nops(struct klp_patch *new_patch) 1161 { 1162 klp_unpatch_objects_dynamic(klp_transition_patch); 1163 klp_free_objects_dynamic(klp_transition_patch); 1164 } 1165 1166 /* 1167 * Remove parts of patches that touch a given kernel module. The list of 1168 * patches processed might be limited. When limit is NULL, all patches 1169 * will be handled. 1170 */ 1171 static void klp_cleanup_module_patches_limited(struct module *mod, 1172 struct klp_patch *limit) 1173 { 1174 struct klp_patch *patch; 1175 struct klp_object *obj; 1176 1177 klp_for_each_patch(patch) { 1178 if (patch == limit) 1179 break; 1180 1181 klp_for_each_object(patch, obj) { 1182 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1183 continue; 1184 1185 if (patch != klp_transition_patch) 1186 klp_pre_unpatch_callback(obj); 1187 1188 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1189 patch->mod->name, obj->mod->name); 1190 klp_unpatch_object(obj); 1191 1192 klp_post_unpatch_callback(obj); 1193 1194 klp_free_object_loaded(obj); 1195 break; 1196 } 1197 } 1198 } 1199 1200 int klp_module_coming(struct module *mod) 1201 { 1202 int ret; 1203 struct klp_patch *patch; 1204 struct klp_object *obj; 1205 1206 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1207 return -EINVAL; 1208 1209 if (!strcmp(mod->name, "vmlinux")) { 1210 pr_err("vmlinux.ko: invalid module name\n"); 1211 return -EINVAL; 1212 } 1213 1214 mutex_lock(&klp_mutex); 1215 /* 1216 * Each module has to know that klp_module_coming() 1217 * has been called. We never know what module will 1218 * get patched by a new patch. 1219 */ 1220 mod->klp_alive = true; 1221 1222 klp_for_each_patch(patch) { 1223 klp_for_each_object(patch, obj) { 1224 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1225 continue; 1226 1227 obj->mod = mod; 1228 1229 ret = klp_init_object_loaded(patch, obj); 1230 if (ret) { 1231 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1232 patch->mod->name, obj->mod->name, ret); 1233 goto err; 1234 } 1235 1236 pr_notice("applying patch '%s' to loading module '%s'\n", 1237 patch->mod->name, obj->mod->name); 1238 1239 ret = klp_pre_patch_callback(obj); 1240 if (ret) { 1241 pr_warn("pre-patch callback failed for object '%s'\n", 1242 obj->name); 1243 goto err; 1244 } 1245 1246 ret = klp_patch_object(obj); 1247 if (ret) { 1248 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1249 patch->mod->name, obj->mod->name, ret); 1250 1251 klp_post_unpatch_callback(obj); 1252 goto err; 1253 } 1254 1255 if (patch != klp_transition_patch) 1256 klp_post_patch_callback(obj); 1257 1258 break; 1259 } 1260 } 1261 1262 mutex_unlock(&klp_mutex); 1263 1264 return 0; 1265 1266 err: 1267 /* 1268 * If a patch is unsuccessfully applied, return 1269 * error to the module loader. 1270 */ 1271 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1272 patch->mod->name, obj->mod->name, obj->mod->name); 1273 mod->klp_alive = false; 1274 obj->mod = NULL; 1275 klp_cleanup_module_patches_limited(mod, patch); 1276 mutex_unlock(&klp_mutex); 1277 1278 return ret; 1279 } 1280 1281 void klp_module_going(struct module *mod) 1282 { 1283 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1284 mod->state != MODULE_STATE_COMING)) 1285 return; 1286 1287 mutex_lock(&klp_mutex); 1288 /* 1289 * Each module has to know that klp_module_going() 1290 * has been called. We never know what module will 1291 * get patched by a new patch. 1292 */ 1293 mod->klp_alive = false; 1294 1295 klp_cleanup_module_patches_limited(mod, NULL); 1296 1297 mutex_unlock(&klp_mutex); 1298 } 1299 1300 static int __init klp_init(void) 1301 { 1302 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1303 if (!klp_root_kobj) 1304 return -ENOMEM; 1305 1306 return 0; 1307 } 1308 1309 module_init(klp_init); 1310