1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <[email protected]> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <asm/cacheflush.h> 23 #include "core.h" 24 #include "patch.h" 25 #include "state.h" 26 #include "transition.h" 27 28 /* 29 * klp_mutex is a coarse lock which serializes access to klp data. All 30 * accesses to klp-related variables and structures must have mutex protection, 31 * except within the following functions which carefully avoid the need for it: 32 * 33 * - klp_ftrace_handler() 34 * - klp_update_patch_state() 35 */ 36 DEFINE_MUTEX(klp_mutex); 37 38 /* 39 * Actively used patches: enabled or in transition. Note that replaced 40 * or disabled patches are not listed even though the related kernel 41 * module still can be loaded. 42 */ 43 LIST_HEAD(klp_patches); 44 45 static struct kobject *klp_root_kobj; 46 47 static bool klp_is_module(struct klp_object *obj) 48 { 49 return obj->name; 50 } 51 52 /* sets obj->mod if object is not vmlinux and module is found */ 53 static void klp_find_object_module(struct klp_object *obj) 54 { 55 struct module *mod; 56 57 if (!klp_is_module(obj)) 58 return; 59 60 mutex_lock(&module_mutex); 61 /* 62 * We do not want to block removal of patched modules and therefore 63 * we do not take a reference here. The patches are removed by 64 * klp_module_going() instead. 65 */ 66 mod = find_module(obj->name); 67 /* 68 * Do not mess work of klp_module_coming() and klp_module_going(). 69 * Note that the patch might still be needed before klp_module_going() 70 * is called. Module functions can be called even in the GOING state 71 * until mod->exit() finishes. This is especially important for 72 * patches that modify semantic of the functions. 73 */ 74 if (mod && mod->klp_alive) 75 obj->mod = mod; 76 77 mutex_unlock(&module_mutex); 78 } 79 80 static bool klp_initialized(void) 81 { 82 return !!klp_root_kobj; 83 } 84 85 static struct klp_func *klp_find_func(struct klp_object *obj, 86 struct klp_func *old_func) 87 { 88 struct klp_func *func; 89 90 klp_for_each_func(obj, func) { 91 if ((strcmp(old_func->old_name, func->old_name) == 0) && 92 (old_func->old_sympos == func->old_sympos)) { 93 return func; 94 } 95 } 96 97 return NULL; 98 } 99 100 static struct klp_object *klp_find_object(struct klp_patch *patch, 101 struct klp_object *old_obj) 102 { 103 struct klp_object *obj; 104 105 klp_for_each_object(patch, obj) { 106 if (klp_is_module(old_obj)) { 107 if (klp_is_module(obj) && 108 strcmp(old_obj->name, obj->name) == 0) { 109 return obj; 110 } 111 } else if (!klp_is_module(obj)) { 112 return obj; 113 } 114 } 115 116 return NULL; 117 } 118 119 struct klp_find_arg { 120 const char *objname; 121 const char *name; 122 unsigned long addr; 123 unsigned long count; 124 unsigned long pos; 125 }; 126 127 static int klp_find_callback(void *data, const char *name, 128 struct module *mod, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 if ((mod && !args->objname) || (!mod && args->objname)) 133 return 0; 134 135 if (strcmp(args->name, name)) 136 return 0; 137 138 if (args->objname && strcmp(args->objname, mod->name)) 139 return 0; 140 141 args->addr = addr; 142 args->count++; 143 144 /* 145 * Finish the search when the symbol is found for the desired position 146 * or the position is not defined for a non-unique symbol. 147 */ 148 if ((args->pos && (args->count == args->pos)) || 149 (!args->pos && (args->count > 1))) 150 return 1; 151 152 return 0; 153 } 154 155 static int klp_find_object_symbol(const char *objname, const char *name, 156 unsigned long sympos, unsigned long *addr) 157 { 158 struct klp_find_arg args = { 159 .objname = objname, 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 mutex_lock(&module_mutex); 167 if (objname) 168 module_kallsyms_on_each_symbol(klp_find_callback, &args); 169 else 170 kallsyms_on_each_symbol(klp_find_callback, &args); 171 mutex_unlock(&module_mutex); 172 173 /* 174 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 175 * otherwise ensure the symbol position count matches sympos. 176 */ 177 if (args.addr == 0) 178 pr_err("symbol '%s' not found in symbol table\n", name); 179 else if (args.count > 1 && sympos == 0) { 180 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 181 name, objname); 182 } else if (sympos != args.count && sympos > 0) { 183 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 184 sympos, name, objname ? objname : "vmlinux"); 185 } else { 186 *addr = args.addr; 187 return 0; 188 } 189 190 *addr = 0; 191 return -EINVAL; 192 } 193 194 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab, 195 unsigned int symndx, Elf_Shdr *relasec) 196 { 197 int i, cnt, vmlinux, ret; 198 char objname[MODULE_NAME_LEN]; 199 char symname[KSYM_NAME_LEN]; 200 Elf_Rela *relas; 201 Elf_Sym *sym; 202 unsigned long sympos, addr; 203 204 /* 205 * Since the field widths for objname and symname in the sscanf() 206 * call are hard-coded and correspond to MODULE_NAME_LEN and 207 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 208 * and KSYM_NAME_LEN have the values we expect them to have. 209 * 210 * Because the value of MODULE_NAME_LEN can differ among architectures, 211 * we use the smallest/strictest upper bound possible (56, based on 212 * the current definition of MODULE_NAME_LEN) to prevent overflows. 213 */ 214 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128); 215 216 relas = (Elf_Rela *) relasec->sh_addr; 217 /* For each rela in this klp relocation section */ 218 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 219 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 220 if (sym->st_shndx != SHN_LIVEPATCH) { 221 pr_err("symbol %s is not marked as a livepatch symbol\n", 222 strtab + sym->st_name); 223 return -EINVAL; 224 } 225 226 /* Format: .klp.sym.objname.symname,sympos */ 227 cnt = sscanf(strtab + sym->st_name, 228 ".klp.sym.%55[^.].%127[^,],%lu", 229 objname, symname, &sympos); 230 if (cnt != 3) { 231 pr_err("symbol %s has an incorrectly formatted name\n", 232 strtab + sym->st_name); 233 return -EINVAL; 234 } 235 236 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 237 vmlinux = !strcmp(objname, "vmlinux"); 238 ret = klp_find_object_symbol(vmlinux ? NULL : objname, 239 symname, sympos, &addr); 240 if (ret) 241 return ret; 242 243 sym->st_value = addr; 244 } 245 246 return 0; 247 } 248 249 /* 250 * At a high-level, there are two types of klp relocation sections: those which 251 * reference symbols which live in vmlinux; and those which reference symbols 252 * which live in other modules. This function is called for both types: 253 * 254 * 1) When a klp module itself loads, the module code calls this function to 255 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 256 * These relocations are written to the klp module text to allow the patched 257 * code/data to reference unexported vmlinux symbols. They're written as 258 * early as possible to ensure that other module init code (.e.g., 259 * jump_label_apply_nops) can access any unexported vmlinux symbols which 260 * might be referenced by the klp module's special sections. 261 * 262 * 2) When a to-be-patched module loads -- or is already loaded when a 263 * corresponding klp module loads -- klp code calls this function to write 264 * module-specific klp relocations (.klp.rela.{module}.* sections). These 265 * are written to the klp module text to allow the patched code/data to 266 * reference symbols which live in the to-be-patched module or one of its 267 * module dependencies. Exported symbols are supported, in addition to 268 * unexported symbols, in order to enable late module patching, which allows 269 * the to-be-patched module to be loaded and patched sometime *after* the 270 * klp module is loaded. 271 */ 272 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 273 const char *shstrtab, const char *strtab, 274 unsigned int symndx, unsigned int secndx, 275 const char *objname) 276 { 277 int cnt, ret; 278 char sec_objname[MODULE_NAME_LEN]; 279 Elf_Shdr *sec = sechdrs + secndx; 280 281 /* 282 * Format: .klp.rela.sec_objname.section_name 283 * See comment in klp_resolve_symbols() for an explanation 284 * of the selected field width value. 285 */ 286 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 287 sec_objname); 288 if (cnt != 1) { 289 pr_err("section %s has an incorrectly formatted name\n", 290 shstrtab + sec->sh_name); 291 return -EINVAL; 292 } 293 294 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 295 return 0; 296 297 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec); 298 if (ret) 299 return ret; 300 301 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 302 } 303 304 /* 305 * Sysfs Interface 306 * 307 * /sys/kernel/livepatch 308 * /sys/kernel/livepatch/<patch> 309 * /sys/kernel/livepatch/<patch>/enabled 310 * /sys/kernel/livepatch/<patch>/transition 311 * /sys/kernel/livepatch/<patch>/force 312 * /sys/kernel/livepatch/<patch>/<object> 313 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 314 */ 315 static int __klp_disable_patch(struct klp_patch *patch); 316 317 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 318 const char *buf, size_t count) 319 { 320 struct klp_patch *patch; 321 int ret; 322 bool enabled; 323 324 ret = kstrtobool(buf, &enabled); 325 if (ret) 326 return ret; 327 328 patch = container_of(kobj, struct klp_patch, kobj); 329 330 mutex_lock(&klp_mutex); 331 332 if (patch->enabled == enabled) { 333 /* already in requested state */ 334 ret = -EINVAL; 335 goto out; 336 } 337 338 /* 339 * Allow to reverse a pending transition in both ways. It might be 340 * necessary to complete the transition without forcing and breaking 341 * the system integrity. 342 * 343 * Do not allow to re-enable a disabled patch. 344 */ 345 if (patch == klp_transition_patch) 346 klp_reverse_transition(); 347 else if (!enabled) 348 ret = __klp_disable_patch(patch); 349 else 350 ret = -EINVAL; 351 352 out: 353 mutex_unlock(&klp_mutex); 354 355 if (ret) 356 return ret; 357 return count; 358 } 359 360 static ssize_t enabled_show(struct kobject *kobj, 361 struct kobj_attribute *attr, char *buf) 362 { 363 struct klp_patch *patch; 364 365 patch = container_of(kobj, struct klp_patch, kobj); 366 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 367 } 368 369 static ssize_t transition_show(struct kobject *kobj, 370 struct kobj_attribute *attr, char *buf) 371 { 372 struct klp_patch *patch; 373 374 patch = container_of(kobj, struct klp_patch, kobj); 375 return snprintf(buf, PAGE_SIZE-1, "%d\n", 376 patch == klp_transition_patch); 377 } 378 379 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 380 const char *buf, size_t count) 381 { 382 struct klp_patch *patch; 383 int ret; 384 bool val; 385 386 ret = kstrtobool(buf, &val); 387 if (ret) 388 return ret; 389 390 if (!val) 391 return count; 392 393 mutex_lock(&klp_mutex); 394 395 patch = container_of(kobj, struct klp_patch, kobj); 396 if (patch != klp_transition_patch) { 397 mutex_unlock(&klp_mutex); 398 return -EINVAL; 399 } 400 401 klp_force_transition(); 402 403 mutex_unlock(&klp_mutex); 404 405 return count; 406 } 407 408 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 409 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 410 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 411 static struct attribute *klp_patch_attrs[] = { 412 &enabled_kobj_attr.attr, 413 &transition_kobj_attr.attr, 414 &force_kobj_attr.attr, 415 NULL 416 }; 417 ATTRIBUTE_GROUPS(klp_patch); 418 419 static void klp_free_object_dynamic(struct klp_object *obj) 420 { 421 kfree(obj->name); 422 kfree(obj); 423 } 424 425 static void klp_init_func_early(struct klp_object *obj, 426 struct klp_func *func); 427 static void klp_init_object_early(struct klp_patch *patch, 428 struct klp_object *obj); 429 430 static struct klp_object *klp_alloc_object_dynamic(const char *name, 431 struct klp_patch *patch) 432 { 433 struct klp_object *obj; 434 435 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 436 if (!obj) 437 return NULL; 438 439 if (name) { 440 obj->name = kstrdup(name, GFP_KERNEL); 441 if (!obj->name) { 442 kfree(obj); 443 return NULL; 444 } 445 } 446 447 klp_init_object_early(patch, obj); 448 obj->dynamic = true; 449 450 return obj; 451 } 452 453 static void klp_free_func_nop(struct klp_func *func) 454 { 455 kfree(func->old_name); 456 kfree(func); 457 } 458 459 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 460 struct klp_object *obj) 461 { 462 struct klp_func *func; 463 464 func = kzalloc(sizeof(*func), GFP_KERNEL); 465 if (!func) 466 return NULL; 467 468 if (old_func->old_name) { 469 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 470 if (!func->old_name) { 471 kfree(func); 472 return NULL; 473 } 474 } 475 476 klp_init_func_early(obj, func); 477 /* 478 * func->new_func is same as func->old_func. These addresses are 479 * set when the object is loaded, see klp_init_object_loaded(). 480 */ 481 func->old_sympos = old_func->old_sympos; 482 func->nop = true; 483 484 return func; 485 } 486 487 static int klp_add_object_nops(struct klp_patch *patch, 488 struct klp_object *old_obj) 489 { 490 struct klp_object *obj; 491 struct klp_func *func, *old_func; 492 493 obj = klp_find_object(patch, old_obj); 494 495 if (!obj) { 496 obj = klp_alloc_object_dynamic(old_obj->name, patch); 497 if (!obj) 498 return -ENOMEM; 499 } 500 501 klp_for_each_func(old_obj, old_func) { 502 func = klp_find_func(obj, old_func); 503 if (func) 504 continue; 505 506 func = klp_alloc_func_nop(old_func, obj); 507 if (!func) 508 return -ENOMEM; 509 } 510 511 return 0; 512 } 513 514 /* 515 * Add 'nop' functions which simply return to the caller to run 516 * the original function. The 'nop' functions are added to a 517 * patch to facilitate a 'replace' mode. 518 */ 519 static int klp_add_nops(struct klp_patch *patch) 520 { 521 struct klp_patch *old_patch; 522 struct klp_object *old_obj; 523 524 klp_for_each_patch(old_patch) { 525 klp_for_each_object(old_patch, old_obj) { 526 int err; 527 528 err = klp_add_object_nops(patch, old_obj); 529 if (err) 530 return err; 531 } 532 } 533 534 return 0; 535 } 536 537 static void klp_kobj_release_patch(struct kobject *kobj) 538 { 539 struct klp_patch *patch; 540 541 patch = container_of(kobj, struct klp_patch, kobj); 542 complete(&patch->finish); 543 } 544 545 static struct kobj_type klp_ktype_patch = { 546 .release = klp_kobj_release_patch, 547 .sysfs_ops = &kobj_sysfs_ops, 548 .default_groups = klp_patch_groups, 549 }; 550 551 static void klp_kobj_release_object(struct kobject *kobj) 552 { 553 struct klp_object *obj; 554 555 obj = container_of(kobj, struct klp_object, kobj); 556 557 if (obj->dynamic) 558 klp_free_object_dynamic(obj); 559 } 560 561 static struct kobj_type klp_ktype_object = { 562 .release = klp_kobj_release_object, 563 .sysfs_ops = &kobj_sysfs_ops, 564 }; 565 566 static void klp_kobj_release_func(struct kobject *kobj) 567 { 568 struct klp_func *func; 569 570 func = container_of(kobj, struct klp_func, kobj); 571 572 if (func->nop) 573 klp_free_func_nop(func); 574 } 575 576 static struct kobj_type klp_ktype_func = { 577 .release = klp_kobj_release_func, 578 .sysfs_ops = &kobj_sysfs_ops, 579 }; 580 581 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 582 { 583 struct klp_func *func, *tmp_func; 584 585 klp_for_each_func_safe(obj, func, tmp_func) { 586 if (nops_only && !func->nop) 587 continue; 588 589 list_del(&func->node); 590 kobject_put(&func->kobj); 591 } 592 } 593 594 /* Clean up when a patched object is unloaded */ 595 static void klp_free_object_loaded(struct klp_object *obj) 596 { 597 struct klp_func *func; 598 599 obj->mod = NULL; 600 601 klp_for_each_func(obj, func) { 602 func->old_func = NULL; 603 604 if (func->nop) 605 func->new_func = NULL; 606 } 607 } 608 609 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 610 { 611 struct klp_object *obj, *tmp_obj; 612 613 klp_for_each_object_safe(patch, obj, tmp_obj) { 614 __klp_free_funcs(obj, nops_only); 615 616 if (nops_only && !obj->dynamic) 617 continue; 618 619 list_del(&obj->node); 620 kobject_put(&obj->kobj); 621 } 622 } 623 624 static void klp_free_objects(struct klp_patch *patch) 625 { 626 __klp_free_objects(patch, false); 627 } 628 629 static void klp_free_objects_dynamic(struct klp_patch *patch) 630 { 631 __klp_free_objects(patch, true); 632 } 633 634 /* 635 * This function implements the free operations that can be called safely 636 * under klp_mutex. 637 * 638 * The operation must be completed by calling klp_free_patch_finish() 639 * outside klp_mutex. 640 */ 641 static void klp_free_patch_start(struct klp_patch *patch) 642 { 643 if (!list_empty(&patch->list)) 644 list_del(&patch->list); 645 646 klp_free_objects(patch); 647 } 648 649 /* 650 * This function implements the free part that must be called outside 651 * klp_mutex. 652 * 653 * It must be called after klp_free_patch_start(). And it has to be 654 * the last function accessing the livepatch structures when the patch 655 * gets disabled. 656 */ 657 static void klp_free_patch_finish(struct klp_patch *patch) 658 { 659 /* 660 * Avoid deadlock with enabled_store() sysfs callback by 661 * calling this outside klp_mutex. It is safe because 662 * this is called when the patch gets disabled and it 663 * cannot get enabled again. 664 */ 665 kobject_put(&patch->kobj); 666 wait_for_completion(&patch->finish); 667 668 /* Put the module after the last access to struct klp_patch. */ 669 if (!patch->forced) 670 module_put(patch->mod); 671 } 672 673 /* 674 * The livepatch might be freed from sysfs interface created by the patch. 675 * This work allows to wait until the interface is destroyed in a separate 676 * context. 677 */ 678 static void klp_free_patch_work_fn(struct work_struct *work) 679 { 680 struct klp_patch *patch = 681 container_of(work, struct klp_patch, free_work); 682 683 klp_free_patch_finish(patch); 684 } 685 686 void klp_free_patch_async(struct klp_patch *patch) 687 { 688 klp_free_patch_start(patch); 689 schedule_work(&patch->free_work); 690 } 691 692 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 693 { 694 struct klp_patch *old_patch, *tmp_patch; 695 696 klp_for_each_patch_safe(old_patch, tmp_patch) { 697 if (old_patch == new_patch) 698 return; 699 klp_free_patch_async(old_patch); 700 } 701 } 702 703 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 704 { 705 if (!func->old_name) 706 return -EINVAL; 707 708 /* 709 * NOPs get the address later. The patched module must be loaded, 710 * see klp_init_object_loaded(). 711 */ 712 if (!func->new_func && !func->nop) 713 return -EINVAL; 714 715 if (strlen(func->old_name) >= KSYM_NAME_LEN) 716 return -EINVAL; 717 718 INIT_LIST_HEAD(&func->stack_node); 719 func->patched = false; 720 func->transition = false; 721 722 /* The format for the sysfs directory is <function,sympos> where sympos 723 * is the nth occurrence of this symbol in kallsyms for the patched 724 * object. If the user selects 0 for old_sympos, then 1 will be used 725 * since a unique symbol will be the first occurrence. 726 */ 727 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 728 func->old_name, 729 func->old_sympos ? func->old_sympos : 1); 730 } 731 732 int klp_apply_object_relocs(struct klp_patch *patch, struct klp_object *obj) 733 { 734 int i, ret; 735 struct klp_modinfo *info = patch->mod->klp_info; 736 737 for (i = 1; i < info->hdr.e_shnum; i++) { 738 Elf_Shdr *sec = info->sechdrs + i; 739 740 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 741 continue; 742 743 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 744 info->secstrings, 745 patch->mod->core_kallsyms.strtab, 746 info->symndx, i, obj->name); 747 if (ret) 748 return ret; 749 } 750 751 return 0; 752 } 753 754 /* parts of the initialization that is done only when the object is loaded */ 755 static int klp_init_object_loaded(struct klp_patch *patch, 756 struct klp_object *obj) 757 { 758 struct klp_func *func; 759 int ret; 760 761 if (klp_is_module(obj)) { 762 763 mutex_lock(&text_mutex); 764 module_disable_ro(patch->mod); 765 766 /* 767 * Only write module-specific relocations here 768 * (.klp.rela.{module}.*). vmlinux-specific relocations were 769 * written earlier during the initialization of the klp module 770 * itself. 771 */ 772 ret = klp_apply_object_relocs(patch, obj); 773 774 module_enable_ro(patch->mod, true); 775 mutex_unlock(&text_mutex); 776 777 if (ret) 778 return ret; 779 } 780 781 klp_for_each_func(obj, func) { 782 ret = klp_find_object_symbol(obj->name, func->old_name, 783 func->old_sympos, 784 (unsigned long *)&func->old_func); 785 if (ret) 786 return ret; 787 788 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 789 &func->old_size, NULL); 790 if (!ret) { 791 pr_err("kallsyms size lookup failed for '%s'\n", 792 func->old_name); 793 return -ENOENT; 794 } 795 796 if (func->nop) 797 func->new_func = func->old_func; 798 799 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 800 &func->new_size, NULL); 801 if (!ret) { 802 pr_err("kallsyms size lookup failed for '%s' replacement\n", 803 func->old_name); 804 return -ENOENT; 805 } 806 } 807 808 return 0; 809 } 810 811 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 812 { 813 struct klp_func *func; 814 int ret; 815 const char *name; 816 817 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 818 return -EINVAL; 819 820 obj->patched = false; 821 obj->mod = NULL; 822 823 klp_find_object_module(obj); 824 825 name = klp_is_module(obj) ? obj->name : "vmlinux"; 826 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 827 if (ret) 828 return ret; 829 830 klp_for_each_func(obj, func) { 831 ret = klp_init_func(obj, func); 832 if (ret) 833 return ret; 834 } 835 836 if (klp_is_object_loaded(obj)) 837 ret = klp_init_object_loaded(patch, obj); 838 839 return ret; 840 } 841 842 static void klp_init_func_early(struct klp_object *obj, 843 struct klp_func *func) 844 { 845 kobject_init(&func->kobj, &klp_ktype_func); 846 list_add_tail(&func->node, &obj->func_list); 847 } 848 849 static void klp_init_object_early(struct klp_patch *patch, 850 struct klp_object *obj) 851 { 852 INIT_LIST_HEAD(&obj->func_list); 853 kobject_init(&obj->kobj, &klp_ktype_object); 854 list_add_tail(&obj->node, &patch->obj_list); 855 } 856 857 static int klp_init_patch_early(struct klp_patch *patch) 858 { 859 struct klp_object *obj; 860 struct klp_func *func; 861 862 if (!patch->objs) 863 return -EINVAL; 864 865 INIT_LIST_HEAD(&patch->list); 866 INIT_LIST_HEAD(&patch->obj_list); 867 kobject_init(&patch->kobj, &klp_ktype_patch); 868 patch->enabled = false; 869 patch->forced = false; 870 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 871 init_completion(&patch->finish); 872 873 klp_for_each_object_static(patch, obj) { 874 if (!obj->funcs) 875 return -EINVAL; 876 877 klp_init_object_early(patch, obj); 878 879 klp_for_each_func_static(obj, func) { 880 klp_init_func_early(obj, func); 881 } 882 } 883 884 if (!try_module_get(patch->mod)) 885 return -ENODEV; 886 887 return 0; 888 } 889 890 static int klp_init_patch(struct klp_patch *patch) 891 { 892 struct klp_object *obj; 893 int ret; 894 895 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 896 if (ret) 897 return ret; 898 899 if (patch->replace) { 900 ret = klp_add_nops(patch); 901 if (ret) 902 return ret; 903 } 904 905 klp_for_each_object(patch, obj) { 906 ret = klp_init_object(patch, obj); 907 if (ret) 908 return ret; 909 } 910 911 list_add_tail(&patch->list, &klp_patches); 912 913 return 0; 914 } 915 916 static int __klp_disable_patch(struct klp_patch *patch) 917 { 918 struct klp_object *obj; 919 920 if (WARN_ON(!patch->enabled)) 921 return -EINVAL; 922 923 if (klp_transition_patch) 924 return -EBUSY; 925 926 klp_init_transition(patch, KLP_UNPATCHED); 927 928 klp_for_each_object(patch, obj) 929 if (obj->patched) 930 klp_pre_unpatch_callback(obj); 931 932 /* 933 * Enforce the order of the func->transition writes in 934 * klp_init_transition() and the TIF_PATCH_PENDING writes in 935 * klp_start_transition(). In the rare case where klp_ftrace_handler() 936 * is called shortly after klp_update_patch_state() switches the task, 937 * this ensures the handler sees that func->transition is set. 938 */ 939 smp_wmb(); 940 941 klp_start_transition(); 942 patch->enabled = false; 943 klp_try_complete_transition(); 944 945 return 0; 946 } 947 948 static int __klp_enable_patch(struct klp_patch *patch) 949 { 950 struct klp_object *obj; 951 int ret; 952 953 if (klp_transition_patch) 954 return -EBUSY; 955 956 if (WARN_ON(patch->enabled)) 957 return -EINVAL; 958 959 pr_notice("enabling patch '%s'\n", patch->mod->name); 960 961 klp_init_transition(patch, KLP_PATCHED); 962 963 /* 964 * Enforce the order of the func->transition writes in 965 * klp_init_transition() and the ops->func_stack writes in 966 * klp_patch_object(), so that klp_ftrace_handler() will see the 967 * func->transition updates before the handler is registered and the 968 * new funcs become visible to the handler. 969 */ 970 smp_wmb(); 971 972 klp_for_each_object(patch, obj) { 973 if (!klp_is_object_loaded(obj)) 974 continue; 975 976 ret = klp_pre_patch_callback(obj); 977 if (ret) { 978 pr_warn("pre-patch callback failed for object '%s'\n", 979 klp_is_module(obj) ? obj->name : "vmlinux"); 980 goto err; 981 } 982 983 ret = klp_patch_object(obj); 984 if (ret) { 985 pr_warn("failed to patch object '%s'\n", 986 klp_is_module(obj) ? obj->name : "vmlinux"); 987 goto err; 988 } 989 } 990 991 klp_start_transition(); 992 patch->enabled = true; 993 klp_try_complete_transition(); 994 995 return 0; 996 err: 997 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 998 999 klp_cancel_transition(); 1000 return ret; 1001 } 1002 1003 /** 1004 * klp_enable_patch() - enable the livepatch 1005 * @patch: patch to be enabled 1006 * 1007 * Initializes the data structure associated with the patch, creates the sysfs 1008 * interface, performs the needed symbol lookups and code relocations, 1009 * registers the patched functions with ftrace. 1010 * 1011 * This function is supposed to be called from the livepatch module_init() 1012 * callback. 1013 * 1014 * Return: 0 on success, otherwise error 1015 */ 1016 int klp_enable_patch(struct klp_patch *patch) 1017 { 1018 int ret; 1019 1020 if (!patch || !patch->mod) 1021 return -EINVAL; 1022 1023 if (!is_livepatch_module(patch->mod)) { 1024 pr_err("module %s is not marked as a livepatch module\n", 1025 patch->mod->name); 1026 return -EINVAL; 1027 } 1028 1029 if (!klp_initialized()) 1030 return -ENODEV; 1031 1032 if (!klp_have_reliable_stack()) { 1033 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1034 pr_warn("The livepatch transition may never complete.\n"); 1035 } 1036 1037 mutex_lock(&klp_mutex); 1038 1039 if (!klp_is_patch_compatible(patch)) { 1040 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1041 patch->mod->name); 1042 mutex_unlock(&klp_mutex); 1043 return -EINVAL; 1044 } 1045 1046 ret = klp_init_patch_early(patch); 1047 if (ret) { 1048 mutex_unlock(&klp_mutex); 1049 return ret; 1050 } 1051 1052 ret = klp_init_patch(patch); 1053 if (ret) 1054 goto err; 1055 1056 ret = __klp_enable_patch(patch); 1057 if (ret) 1058 goto err; 1059 1060 mutex_unlock(&klp_mutex); 1061 1062 return 0; 1063 1064 err: 1065 klp_free_patch_start(patch); 1066 1067 mutex_unlock(&klp_mutex); 1068 1069 klp_free_patch_finish(patch); 1070 1071 return ret; 1072 } 1073 EXPORT_SYMBOL_GPL(klp_enable_patch); 1074 1075 /* 1076 * This function unpatches objects from the replaced livepatches. 1077 * 1078 * We could be pretty aggressive here. It is called in the situation where 1079 * these structures are no longer accessed from the ftrace handler. 1080 * All functions are redirected by the klp_transition_patch. They 1081 * use either a new code or they are in the original code because 1082 * of the special nop function patches. 1083 * 1084 * The only exception is when the transition was forced. In this case, 1085 * klp_ftrace_handler() might still see the replaced patch on the stack. 1086 * Fortunately, it is carefully designed to work with removed functions 1087 * thanks to RCU. We only have to keep the patches on the system. Also 1088 * this is handled transparently by patch->module_put. 1089 */ 1090 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1091 { 1092 struct klp_patch *old_patch; 1093 1094 klp_for_each_patch(old_patch) { 1095 if (old_patch == new_patch) 1096 return; 1097 1098 old_patch->enabled = false; 1099 klp_unpatch_objects(old_patch); 1100 } 1101 } 1102 1103 /* 1104 * This function removes the dynamically allocated 'nop' functions. 1105 * 1106 * We could be pretty aggressive. NOPs do not change the existing 1107 * behavior except for adding unnecessary delay by the ftrace handler. 1108 * 1109 * It is safe even when the transition was forced. The ftrace handler 1110 * will see a valid ops->func_stack entry thanks to RCU. 1111 * 1112 * We could even free the NOPs structures. They must be the last entry 1113 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1114 * It does the same as klp_synchronize_transition() to make sure that 1115 * nobody is inside the ftrace handler once the operation finishes. 1116 * 1117 * IMPORTANT: It must be called right after removing the replaced patches! 1118 */ 1119 void klp_discard_nops(struct klp_patch *new_patch) 1120 { 1121 klp_unpatch_objects_dynamic(klp_transition_patch); 1122 klp_free_objects_dynamic(klp_transition_patch); 1123 } 1124 1125 /* 1126 * Remove parts of patches that touch a given kernel module. The list of 1127 * patches processed might be limited. When limit is NULL, all patches 1128 * will be handled. 1129 */ 1130 static void klp_cleanup_module_patches_limited(struct module *mod, 1131 struct klp_patch *limit) 1132 { 1133 struct klp_patch *patch; 1134 struct klp_object *obj; 1135 1136 klp_for_each_patch(patch) { 1137 if (patch == limit) 1138 break; 1139 1140 klp_for_each_object(patch, obj) { 1141 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1142 continue; 1143 1144 if (patch != klp_transition_patch) 1145 klp_pre_unpatch_callback(obj); 1146 1147 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1148 patch->mod->name, obj->mod->name); 1149 klp_unpatch_object(obj); 1150 1151 klp_post_unpatch_callback(obj); 1152 1153 klp_free_object_loaded(obj); 1154 break; 1155 } 1156 } 1157 } 1158 1159 int klp_module_coming(struct module *mod) 1160 { 1161 int ret; 1162 struct klp_patch *patch; 1163 struct klp_object *obj; 1164 1165 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1166 return -EINVAL; 1167 1168 if (!strcmp(mod->name, "vmlinux")) { 1169 pr_err("vmlinux.ko: invalid module name"); 1170 return -EINVAL; 1171 } 1172 1173 mutex_lock(&klp_mutex); 1174 /* 1175 * Each module has to know that klp_module_coming() 1176 * has been called. We never know what module will 1177 * get patched by a new patch. 1178 */ 1179 mod->klp_alive = true; 1180 1181 klp_for_each_patch(patch) { 1182 klp_for_each_object(patch, obj) { 1183 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1184 continue; 1185 1186 obj->mod = mod; 1187 1188 ret = klp_init_object_loaded(patch, obj); 1189 if (ret) { 1190 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1191 patch->mod->name, obj->mod->name, ret); 1192 goto err; 1193 } 1194 1195 pr_notice("applying patch '%s' to loading module '%s'\n", 1196 patch->mod->name, obj->mod->name); 1197 1198 ret = klp_pre_patch_callback(obj); 1199 if (ret) { 1200 pr_warn("pre-patch callback failed for object '%s'\n", 1201 obj->name); 1202 goto err; 1203 } 1204 1205 ret = klp_patch_object(obj); 1206 if (ret) { 1207 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1208 patch->mod->name, obj->mod->name, ret); 1209 1210 klp_post_unpatch_callback(obj); 1211 goto err; 1212 } 1213 1214 if (patch != klp_transition_patch) 1215 klp_post_patch_callback(obj); 1216 1217 break; 1218 } 1219 } 1220 1221 mutex_unlock(&klp_mutex); 1222 1223 return 0; 1224 1225 err: 1226 /* 1227 * If a patch is unsuccessfully applied, return 1228 * error to the module loader. 1229 */ 1230 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1231 patch->mod->name, obj->mod->name, obj->mod->name); 1232 mod->klp_alive = false; 1233 obj->mod = NULL; 1234 klp_cleanup_module_patches_limited(mod, patch); 1235 mutex_unlock(&klp_mutex); 1236 1237 return ret; 1238 } 1239 1240 void klp_module_going(struct module *mod) 1241 { 1242 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1243 mod->state != MODULE_STATE_COMING)) 1244 return; 1245 1246 mutex_lock(&klp_mutex); 1247 /* 1248 * Each module has to know that klp_module_going() 1249 * has been called. We never know what module will 1250 * get patched by a new patch. 1251 */ 1252 mod->klp_alive = false; 1253 1254 klp_cleanup_module_patches_limited(mod, NULL); 1255 1256 mutex_unlock(&klp_mutex); 1257 } 1258 1259 static int __init klp_init(void) 1260 { 1261 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1262 if (!klp_root_kobj) 1263 return -ENOMEM; 1264 1265 return 0; 1266 } 1267 1268 module_init(klp_init); 1269