1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 static LIST_HEAD(kthreads_hotplug); 39 static DEFINE_MUTEX(kthreads_hotplug_lock); 40 41 struct kthread_create_info 42 { 43 /* Information passed to kthread() from kthreadd. */ 44 char *full_name; 45 int (*threadfn)(void *data); 46 void *data; 47 int node; 48 49 /* Result passed back to kthread_create() from kthreadd. */ 50 struct task_struct *result; 51 struct completion *done; 52 53 struct list_head list; 54 }; 55 56 struct kthread { 57 unsigned long flags; 58 unsigned int cpu; 59 unsigned int node; 60 int started; 61 int result; 62 int (*threadfn)(void *); 63 void *data; 64 struct completion parked; 65 struct completion exited; 66 #ifdef CONFIG_BLK_CGROUP 67 struct cgroup_subsys_state *blkcg_css; 68 #endif 69 /* To store the full name if task comm is truncated. */ 70 char *full_name; 71 struct task_struct *task; 72 struct list_head hotplug_node; 73 struct cpumask *preferred_affinity; 74 }; 75 76 enum KTHREAD_BITS { 77 KTHREAD_IS_PER_CPU = 0, 78 KTHREAD_SHOULD_STOP, 79 KTHREAD_SHOULD_PARK, 80 }; 81 82 static inline struct kthread *to_kthread(struct task_struct *k) 83 { 84 WARN_ON(!(k->flags & PF_KTHREAD)); 85 return k->worker_private; 86 } 87 88 /* 89 * Variant of to_kthread() that doesn't assume @p is a kthread. 90 * 91 * Per construction; when: 92 * 93 * (p->flags & PF_KTHREAD) && p->worker_private 94 * 95 * the task is both a kthread and struct kthread is persistent. However 96 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 97 * begin_new_exec()). 98 */ 99 static inline struct kthread *__to_kthread(struct task_struct *p) 100 { 101 void *kthread = p->worker_private; 102 if (kthread && !(p->flags & PF_KTHREAD)) 103 kthread = NULL; 104 return kthread; 105 } 106 107 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 108 { 109 struct kthread *kthread = to_kthread(tsk); 110 111 if (!kthread || !kthread->full_name) { 112 strscpy(buf, tsk->comm, buf_size); 113 return; 114 } 115 116 strscpy_pad(buf, kthread->full_name, buf_size); 117 } 118 119 bool set_kthread_struct(struct task_struct *p) 120 { 121 struct kthread *kthread; 122 123 if (WARN_ON_ONCE(to_kthread(p))) 124 return false; 125 126 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 127 if (!kthread) 128 return false; 129 130 init_completion(&kthread->exited); 131 init_completion(&kthread->parked); 132 INIT_LIST_HEAD(&kthread->hotplug_node); 133 p->vfork_done = &kthread->exited; 134 135 kthread->task = p; 136 kthread->node = tsk_fork_get_node(current); 137 p->worker_private = kthread; 138 return true; 139 } 140 141 void free_kthread_struct(struct task_struct *k) 142 { 143 struct kthread *kthread; 144 145 /* 146 * Can be NULL if kmalloc() in set_kthread_struct() failed. 147 */ 148 kthread = to_kthread(k); 149 if (!kthread) 150 return; 151 152 #ifdef CONFIG_BLK_CGROUP 153 WARN_ON_ONCE(kthread->blkcg_css); 154 #endif 155 k->worker_private = NULL; 156 kfree(kthread->full_name); 157 kfree(kthread); 158 } 159 160 /** 161 * kthread_should_stop - should this kthread return now? 162 * 163 * When someone calls kthread_stop() on your kthread, it will be woken 164 * and this will return true. You should then return, and your return 165 * value will be passed through to kthread_stop(). 166 */ 167 bool kthread_should_stop(void) 168 { 169 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 170 } 171 EXPORT_SYMBOL(kthread_should_stop); 172 173 static bool __kthread_should_park(struct task_struct *k) 174 { 175 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 176 } 177 178 /** 179 * kthread_should_park - should this kthread park now? 180 * 181 * When someone calls kthread_park() on your kthread, it will be woken 182 * and this will return true. You should then do the necessary 183 * cleanup and call kthread_parkme() 184 * 185 * Similar to kthread_should_stop(), but this keeps the thread alive 186 * and in a park position. kthread_unpark() "restarts" the thread and 187 * calls the thread function again. 188 */ 189 bool kthread_should_park(void) 190 { 191 return __kthread_should_park(current); 192 } 193 EXPORT_SYMBOL_GPL(kthread_should_park); 194 195 bool kthread_should_stop_or_park(void) 196 { 197 struct kthread *kthread = __to_kthread(current); 198 199 if (!kthread) 200 return false; 201 202 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 203 } 204 205 /** 206 * kthread_freezable_should_stop - should this freezable kthread return now? 207 * @was_frozen: optional out parameter, indicates whether %current was frozen 208 * 209 * kthread_should_stop() for freezable kthreads, which will enter 210 * refrigerator if necessary. This function is safe from kthread_stop() / 211 * freezer deadlock and freezable kthreads should use this function instead 212 * of calling try_to_freeze() directly. 213 */ 214 bool kthread_freezable_should_stop(bool *was_frozen) 215 { 216 bool frozen = false; 217 218 might_sleep(); 219 220 if (unlikely(freezing(current))) 221 frozen = __refrigerator(true); 222 223 if (was_frozen) 224 *was_frozen = frozen; 225 226 return kthread_should_stop(); 227 } 228 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 229 230 /** 231 * kthread_func - return the function specified on kthread creation 232 * @task: kthread task in question 233 * 234 * Returns NULL if the task is not a kthread. 235 */ 236 void *kthread_func(struct task_struct *task) 237 { 238 struct kthread *kthread = __to_kthread(task); 239 if (kthread) 240 return kthread->threadfn; 241 return NULL; 242 } 243 EXPORT_SYMBOL_GPL(kthread_func); 244 245 /** 246 * kthread_data - return data value specified on kthread creation 247 * @task: kthread task in question 248 * 249 * Return the data value specified when kthread @task was created. 250 * The caller is responsible for ensuring the validity of @task when 251 * calling this function. 252 */ 253 void *kthread_data(struct task_struct *task) 254 { 255 return to_kthread(task)->data; 256 } 257 EXPORT_SYMBOL_GPL(kthread_data); 258 259 /** 260 * kthread_probe_data - speculative version of kthread_data() 261 * @task: possible kthread task in question 262 * 263 * @task could be a kthread task. Return the data value specified when it 264 * was created if accessible. If @task isn't a kthread task or its data is 265 * inaccessible for any reason, %NULL is returned. This function requires 266 * that @task itself is safe to dereference. 267 */ 268 void *kthread_probe_data(struct task_struct *task) 269 { 270 struct kthread *kthread = __to_kthread(task); 271 void *data = NULL; 272 273 if (kthread) 274 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 275 return data; 276 } 277 278 static void __kthread_parkme(struct kthread *self) 279 { 280 for (;;) { 281 /* 282 * TASK_PARKED is a special state; we must serialize against 283 * possible pending wakeups to avoid store-store collisions on 284 * task->state. 285 * 286 * Such a collision might possibly result in the task state 287 * changin from TASK_PARKED and us failing the 288 * wait_task_inactive() in kthread_park(). 289 */ 290 set_special_state(TASK_PARKED); 291 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 292 break; 293 294 /* 295 * Thread is going to call schedule(), do not preempt it, 296 * or the caller of kthread_park() may spend more time in 297 * wait_task_inactive(). 298 */ 299 preempt_disable(); 300 complete(&self->parked); 301 schedule_preempt_disabled(); 302 preempt_enable(); 303 } 304 __set_current_state(TASK_RUNNING); 305 } 306 307 void kthread_parkme(void) 308 { 309 __kthread_parkme(to_kthread(current)); 310 } 311 EXPORT_SYMBOL_GPL(kthread_parkme); 312 313 /** 314 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 315 * @result: The integer value to return to kthread_stop(). 316 * 317 * While kthread_exit can be called directly, it exists so that 318 * functions which do some additional work in non-modular code such as 319 * module_put_and_kthread_exit can be implemented. 320 * 321 * Does not return. 322 */ 323 void __noreturn kthread_exit(long result) 324 { 325 struct kthread *kthread = to_kthread(current); 326 kthread->result = result; 327 if (!list_empty(&kthread->hotplug_node)) { 328 mutex_lock(&kthreads_hotplug_lock); 329 list_del(&kthread->hotplug_node); 330 mutex_unlock(&kthreads_hotplug_lock); 331 332 if (kthread->preferred_affinity) { 333 kfree(kthread->preferred_affinity); 334 kthread->preferred_affinity = NULL; 335 } 336 } 337 do_exit(0); 338 } 339 EXPORT_SYMBOL(kthread_exit); 340 341 /** 342 * kthread_complete_and_exit - Exit the current kthread. 343 * @comp: Completion to complete 344 * @code: The integer value to return to kthread_stop(). 345 * 346 * If present, complete @comp and then return code to kthread_stop(). 347 * 348 * A kernel thread whose module may be removed after the completion of 349 * @comp can use this function to exit safely. 350 * 351 * Does not return. 352 */ 353 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 354 { 355 if (comp) 356 complete(comp); 357 358 kthread_exit(code); 359 } 360 EXPORT_SYMBOL(kthread_complete_and_exit); 361 362 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask) 363 { 364 const struct cpumask *pref; 365 366 if (kthread->preferred_affinity) { 367 pref = kthread->preferred_affinity; 368 } else { 369 if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE)) 370 return; 371 pref = cpumask_of_node(kthread->node); 372 } 373 374 cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD)); 375 if (cpumask_empty(cpumask)) 376 cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD)); 377 } 378 379 static void kthread_affine_node(void) 380 { 381 struct kthread *kthread = to_kthread(current); 382 cpumask_var_t affinity; 383 384 WARN_ON_ONCE(kthread_is_per_cpu(current)); 385 386 if (kthread->node == NUMA_NO_NODE) { 387 housekeeping_affine(current, HK_TYPE_KTHREAD); 388 } else { 389 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) { 390 WARN_ON_ONCE(1); 391 return; 392 } 393 394 mutex_lock(&kthreads_hotplug_lock); 395 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 396 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 397 /* 398 * The node cpumask is racy when read from kthread() but: 399 * - a racing CPU going down will either fail on the subsequent 400 * call to set_cpus_allowed_ptr() or be migrated to housekeepers 401 * afterwards by the scheduler. 402 * - a racing CPU going up will be handled by kthreads_online_cpu() 403 */ 404 kthread_fetch_affinity(kthread, affinity); 405 set_cpus_allowed_ptr(current, affinity); 406 mutex_unlock(&kthreads_hotplug_lock); 407 408 free_cpumask_var(affinity); 409 } 410 } 411 412 static int kthread(void *_create) 413 { 414 static const struct sched_param param = { .sched_priority = 0 }; 415 /* Copy data: it's on kthread's stack */ 416 struct kthread_create_info *create = _create; 417 int (*threadfn)(void *data) = create->threadfn; 418 void *data = create->data; 419 struct completion *done; 420 struct kthread *self; 421 int ret; 422 423 self = to_kthread(current); 424 425 /* Release the structure when caller killed by a fatal signal. */ 426 done = xchg(&create->done, NULL); 427 if (!done) { 428 kfree(create->full_name); 429 kfree(create); 430 kthread_exit(-EINTR); 431 } 432 433 self->full_name = create->full_name; 434 self->threadfn = threadfn; 435 self->data = data; 436 437 /* 438 * The new thread inherited kthreadd's priority and CPU mask. Reset 439 * back to default in case they have been changed. 440 */ 441 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 442 443 /* OK, tell user we're spawned, wait for stop or wakeup */ 444 __set_current_state(TASK_UNINTERRUPTIBLE); 445 create->result = current; 446 /* 447 * Thread is going to call schedule(), do not preempt it, 448 * or the creator may spend more time in wait_task_inactive(). 449 */ 450 preempt_disable(); 451 complete(done); 452 schedule_preempt_disabled(); 453 preempt_enable(); 454 455 self->started = 1; 456 457 if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity) 458 kthread_affine_node(); 459 460 ret = -EINTR; 461 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 462 cgroup_kthread_ready(); 463 __kthread_parkme(self); 464 ret = threadfn(data); 465 } 466 kthread_exit(ret); 467 } 468 469 /* called from kernel_clone() to get node information for about to be created task */ 470 int tsk_fork_get_node(struct task_struct *tsk) 471 { 472 #ifdef CONFIG_NUMA 473 if (tsk == kthreadd_task) 474 return tsk->pref_node_fork; 475 #endif 476 return NUMA_NO_NODE; 477 } 478 479 static void create_kthread(struct kthread_create_info *create) 480 { 481 int pid; 482 483 #ifdef CONFIG_NUMA 484 current->pref_node_fork = create->node; 485 #endif 486 /* We want our own signal handler (we take no signals by default). */ 487 pid = kernel_thread(kthread, create, create->full_name, 488 CLONE_FS | CLONE_FILES | SIGCHLD); 489 if (pid < 0) { 490 /* Release the structure when caller killed by a fatal signal. */ 491 struct completion *done = xchg(&create->done, NULL); 492 493 kfree(create->full_name); 494 if (!done) { 495 kfree(create); 496 return; 497 } 498 create->result = ERR_PTR(pid); 499 complete(done); 500 } 501 } 502 503 static __printf(4, 0) 504 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 505 void *data, int node, 506 const char namefmt[], 507 va_list args) 508 { 509 DECLARE_COMPLETION_ONSTACK(done); 510 struct task_struct *task; 511 struct kthread_create_info *create = kmalloc(sizeof(*create), 512 GFP_KERNEL); 513 514 if (!create) 515 return ERR_PTR(-ENOMEM); 516 create->threadfn = threadfn; 517 create->data = data; 518 create->node = node; 519 create->done = &done; 520 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 521 if (!create->full_name) { 522 task = ERR_PTR(-ENOMEM); 523 goto free_create; 524 } 525 526 spin_lock(&kthread_create_lock); 527 list_add_tail(&create->list, &kthread_create_list); 528 spin_unlock(&kthread_create_lock); 529 530 wake_up_process(kthreadd_task); 531 /* 532 * Wait for completion in killable state, for I might be chosen by 533 * the OOM killer while kthreadd is trying to allocate memory for 534 * new kernel thread. 535 */ 536 if (unlikely(wait_for_completion_killable(&done))) { 537 /* 538 * If I was killed by a fatal signal before kthreadd (or new 539 * kernel thread) calls complete(), leave the cleanup of this 540 * structure to that thread. 541 */ 542 if (xchg(&create->done, NULL)) 543 return ERR_PTR(-EINTR); 544 /* 545 * kthreadd (or new kernel thread) will call complete() 546 * shortly. 547 */ 548 wait_for_completion(&done); 549 } 550 task = create->result; 551 free_create: 552 kfree(create); 553 return task; 554 } 555 556 /** 557 * kthread_create_on_node - create a kthread. 558 * @threadfn: the function to run until signal_pending(current). 559 * @data: data ptr for @threadfn. 560 * @node: task and thread structures for the thread are allocated on this node 561 * @namefmt: printf-style name for the thread. 562 * 563 * Description: This helper function creates and names a kernel 564 * thread. The thread will be stopped: use wake_up_process() to start 565 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 566 * is affine to all CPUs. 567 * 568 * If thread is going to be bound on a particular cpu, give its node 569 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 570 * When woken, the thread will run @threadfn() with @data as its 571 * argument. @threadfn() can either return directly if it is a 572 * standalone thread for which no one will call kthread_stop(), or 573 * return when 'kthread_should_stop()' is true (which means 574 * kthread_stop() has been called). The return value should be zero 575 * or a negative error number; it will be passed to kthread_stop(). 576 * 577 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 578 */ 579 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 580 void *data, int node, 581 const char namefmt[], 582 ...) 583 { 584 struct task_struct *task; 585 va_list args; 586 587 va_start(args, namefmt); 588 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 589 va_end(args); 590 591 return task; 592 } 593 EXPORT_SYMBOL(kthread_create_on_node); 594 595 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 596 { 597 unsigned long flags; 598 599 if (!wait_task_inactive(p, state)) { 600 WARN_ON(1); 601 return; 602 } 603 604 /* It's safe because the task is inactive. */ 605 raw_spin_lock_irqsave(&p->pi_lock, flags); 606 do_set_cpus_allowed(p, mask); 607 p->flags |= PF_NO_SETAFFINITY; 608 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 609 } 610 611 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 612 { 613 __kthread_bind_mask(p, cpumask_of(cpu), state); 614 } 615 616 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 617 { 618 struct kthread *kthread = to_kthread(p); 619 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 620 WARN_ON_ONCE(kthread->started); 621 } 622 623 /** 624 * kthread_bind - bind a just-created kthread to a cpu. 625 * @p: thread created by kthread_create(). 626 * @cpu: cpu (might not be online, must be possible) for @k to run on. 627 * 628 * Description: This function is equivalent to set_cpus_allowed(), 629 * except that @cpu doesn't need to be online, and the thread must be 630 * stopped (i.e., just returned from kthread_create()). 631 */ 632 void kthread_bind(struct task_struct *p, unsigned int cpu) 633 { 634 struct kthread *kthread = to_kthread(p); 635 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 636 WARN_ON_ONCE(kthread->started); 637 } 638 EXPORT_SYMBOL(kthread_bind); 639 640 /** 641 * kthread_create_on_cpu - Create a cpu bound kthread 642 * @threadfn: the function to run until signal_pending(current). 643 * @data: data ptr for @threadfn. 644 * @cpu: The cpu on which the thread should be bound, 645 * @namefmt: printf-style name for the thread. Format is restricted 646 * to "name.*%u". Code fills in cpu number. 647 * 648 * Description: This helper function creates and names a kernel thread 649 */ 650 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 651 void *data, unsigned int cpu, 652 const char *namefmt) 653 { 654 struct task_struct *p; 655 656 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 657 cpu); 658 if (IS_ERR(p)) 659 return p; 660 kthread_bind(p, cpu); 661 /* CPU hotplug need to bind once again when unparking the thread. */ 662 to_kthread(p)->cpu = cpu; 663 return p; 664 } 665 EXPORT_SYMBOL(kthread_create_on_cpu); 666 667 void kthread_set_per_cpu(struct task_struct *k, int cpu) 668 { 669 struct kthread *kthread = to_kthread(k); 670 if (!kthread) 671 return; 672 673 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 674 675 if (cpu < 0) { 676 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 677 return; 678 } 679 680 kthread->cpu = cpu; 681 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 682 } 683 684 bool kthread_is_per_cpu(struct task_struct *p) 685 { 686 struct kthread *kthread = __to_kthread(p); 687 if (!kthread) 688 return false; 689 690 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 691 } 692 693 /** 694 * kthread_unpark - unpark a thread created by kthread_create(). 695 * @k: thread created by kthread_create(). 696 * 697 * Sets kthread_should_park() for @k to return false, wakes it, and 698 * waits for it to return. If the thread is marked percpu then its 699 * bound to the cpu again. 700 */ 701 void kthread_unpark(struct task_struct *k) 702 { 703 struct kthread *kthread = to_kthread(k); 704 705 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 706 return; 707 /* 708 * Newly created kthread was parked when the CPU was offline. 709 * The binding was lost and we need to set it again. 710 */ 711 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 712 __kthread_bind(k, kthread->cpu, TASK_PARKED); 713 714 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 715 /* 716 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 717 */ 718 wake_up_state(k, TASK_PARKED); 719 } 720 EXPORT_SYMBOL_GPL(kthread_unpark); 721 722 /** 723 * kthread_park - park a thread created by kthread_create(). 724 * @k: thread created by kthread_create(). 725 * 726 * Sets kthread_should_park() for @k to return true, wakes it, and 727 * waits for it to return. This can also be called after kthread_create() 728 * instead of calling wake_up_process(): the thread will park without 729 * calling threadfn(). 730 * 731 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 732 * If called by the kthread itself just the park bit is set. 733 */ 734 int kthread_park(struct task_struct *k) 735 { 736 struct kthread *kthread = to_kthread(k); 737 738 if (WARN_ON(k->flags & PF_EXITING)) 739 return -ENOSYS; 740 741 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 742 return -EBUSY; 743 744 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 745 if (k != current) { 746 wake_up_process(k); 747 /* 748 * Wait for __kthread_parkme() to complete(), this means we 749 * _will_ have TASK_PARKED and are about to call schedule(). 750 */ 751 wait_for_completion(&kthread->parked); 752 /* 753 * Now wait for that schedule() to complete and the task to 754 * get scheduled out. 755 */ 756 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 757 } 758 759 return 0; 760 } 761 EXPORT_SYMBOL_GPL(kthread_park); 762 763 /** 764 * kthread_stop - stop a thread created by kthread_create(). 765 * @k: thread created by kthread_create(). 766 * 767 * Sets kthread_should_stop() for @k to return true, wakes it, and 768 * waits for it to exit. This can also be called after kthread_create() 769 * instead of calling wake_up_process(): the thread will exit without 770 * calling threadfn(). 771 * 772 * If threadfn() may call kthread_exit() itself, the caller must ensure 773 * task_struct can't go away. 774 * 775 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 776 * was never called. 777 */ 778 int kthread_stop(struct task_struct *k) 779 { 780 struct kthread *kthread; 781 int ret; 782 783 trace_sched_kthread_stop(k); 784 785 get_task_struct(k); 786 kthread = to_kthread(k); 787 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 788 kthread_unpark(k); 789 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 790 wake_up_process(k); 791 wait_for_completion(&kthread->exited); 792 ret = kthread->result; 793 put_task_struct(k); 794 795 trace_sched_kthread_stop_ret(ret); 796 return ret; 797 } 798 EXPORT_SYMBOL(kthread_stop); 799 800 /** 801 * kthread_stop_put - stop a thread and put its task struct 802 * @k: thread created by kthread_create(). 803 * 804 * Stops a thread created by kthread_create() and put its task_struct. 805 * Only use when holding an extra task struct reference obtained by 806 * calling get_task_struct(). 807 */ 808 int kthread_stop_put(struct task_struct *k) 809 { 810 int ret; 811 812 ret = kthread_stop(k); 813 put_task_struct(k); 814 return ret; 815 } 816 EXPORT_SYMBOL(kthread_stop_put); 817 818 int kthreadd(void *unused) 819 { 820 struct task_struct *tsk = current; 821 822 /* Setup a clean context for our children to inherit. */ 823 set_task_comm(tsk, "kthreadd"); 824 ignore_signals(tsk); 825 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 826 set_mems_allowed(node_states[N_MEMORY]); 827 828 current->flags |= PF_NOFREEZE; 829 cgroup_init_kthreadd(); 830 831 for (;;) { 832 set_current_state(TASK_INTERRUPTIBLE); 833 if (list_empty(&kthread_create_list)) 834 schedule(); 835 __set_current_state(TASK_RUNNING); 836 837 spin_lock(&kthread_create_lock); 838 while (!list_empty(&kthread_create_list)) { 839 struct kthread_create_info *create; 840 841 create = list_entry(kthread_create_list.next, 842 struct kthread_create_info, list); 843 list_del_init(&create->list); 844 spin_unlock(&kthread_create_lock); 845 846 create_kthread(create); 847 848 spin_lock(&kthread_create_lock); 849 } 850 spin_unlock(&kthread_create_lock); 851 } 852 853 return 0; 854 } 855 856 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask) 857 { 858 struct kthread *kthread = to_kthread(p); 859 cpumask_var_t affinity; 860 unsigned long flags; 861 int ret; 862 863 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) { 864 WARN_ON(1); 865 return -EINVAL; 866 } 867 868 WARN_ON_ONCE(kthread->preferred_affinity); 869 870 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 871 return -ENOMEM; 872 873 kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL); 874 if (!kthread->preferred_affinity) { 875 ret = -ENOMEM; 876 goto out; 877 } 878 879 mutex_lock(&kthreads_hotplug_lock); 880 cpumask_copy(kthread->preferred_affinity, mask); 881 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node)); 882 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug); 883 kthread_fetch_affinity(kthread, affinity); 884 885 /* It's safe because the task is inactive. */ 886 raw_spin_lock_irqsave(&p->pi_lock, flags); 887 do_set_cpus_allowed(p, affinity); 888 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 889 890 mutex_unlock(&kthreads_hotplug_lock); 891 out: 892 free_cpumask_var(affinity); 893 894 return 0; 895 } 896 897 /* 898 * Re-affine kthreads according to their preferences 899 * and the newly online CPU. The CPU down part is handled 900 * by select_fallback_rq() which default re-affines to 901 * housekeepers from other nodes in case the preferred 902 * affinity doesn't apply anymore. 903 */ 904 static int kthreads_online_cpu(unsigned int cpu) 905 { 906 cpumask_var_t affinity; 907 struct kthread *k; 908 int ret; 909 910 guard(mutex)(&kthreads_hotplug_lock); 911 912 if (list_empty(&kthreads_hotplug)) 913 return 0; 914 915 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 916 return -ENOMEM; 917 918 ret = 0; 919 920 list_for_each_entry(k, &kthreads_hotplug, hotplug_node) { 921 if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) || 922 kthread_is_per_cpu(k->task))) { 923 ret = -EINVAL; 924 continue; 925 } 926 kthread_fetch_affinity(k, affinity); 927 set_cpus_allowed_ptr(k->task, affinity); 928 } 929 930 free_cpumask_var(affinity); 931 932 return ret; 933 } 934 935 static int kthreads_init(void) 936 { 937 return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online", 938 kthreads_online_cpu, NULL); 939 } 940 early_initcall(kthreads_init); 941 942 void __kthread_init_worker(struct kthread_worker *worker, 943 const char *name, 944 struct lock_class_key *key) 945 { 946 memset(worker, 0, sizeof(struct kthread_worker)); 947 raw_spin_lock_init(&worker->lock); 948 lockdep_set_class_and_name(&worker->lock, key, name); 949 INIT_LIST_HEAD(&worker->work_list); 950 INIT_LIST_HEAD(&worker->delayed_work_list); 951 } 952 EXPORT_SYMBOL_GPL(__kthread_init_worker); 953 954 /** 955 * kthread_worker_fn - kthread function to process kthread_worker 956 * @worker_ptr: pointer to initialized kthread_worker 957 * 958 * This function implements the main cycle of kthread worker. It processes 959 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 960 * is empty. 961 * 962 * The works are not allowed to keep any locks, disable preemption or interrupts 963 * when they finish. There is defined a safe point for freezing when one work 964 * finishes and before a new one is started. 965 * 966 * Also the works must not be handled by more than one worker at the same time, 967 * see also kthread_queue_work(). 968 */ 969 int kthread_worker_fn(void *worker_ptr) 970 { 971 struct kthread_worker *worker = worker_ptr; 972 struct kthread_work *work; 973 974 /* 975 * FIXME: Update the check and remove the assignment when all kthread 976 * worker users are created using kthread_create_worker*() functions. 977 */ 978 WARN_ON(worker->task && worker->task != current); 979 worker->task = current; 980 981 if (worker->flags & KTW_FREEZABLE) 982 set_freezable(); 983 984 repeat: 985 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 986 987 if (kthread_should_stop()) { 988 __set_current_state(TASK_RUNNING); 989 raw_spin_lock_irq(&worker->lock); 990 worker->task = NULL; 991 raw_spin_unlock_irq(&worker->lock); 992 return 0; 993 } 994 995 work = NULL; 996 raw_spin_lock_irq(&worker->lock); 997 if (!list_empty(&worker->work_list)) { 998 work = list_first_entry(&worker->work_list, 999 struct kthread_work, node); 1000 list_del_init(&work->node); 1001 } 1002 worker->current_work = work; 1003 raw_spin_unlock_irq(&worker->lock); 1004 1005 if (work) { 1006 kthread_work_func_t func = work->func; 1007 __set_current_state(TASK_RUNNING); 1008 trace_sched_kthread_work_execute_start(work); 1009 work->func(work); 1010 /* 1011 * Avoid dereferencing work after this point. The trace 1012 * event only cares about the address. 1013 */ 1014 trace_sched_kthread_work_execute_end(work, func); 1015 } else if (!freezing(current)) { 1016 schedule(); 1017 } else { 1018 /* 1019 * Handle the case where the current remains 1020 * TASK_INTERRUPTIBLE. try_to_freeze() expects 1021 * the current to be TASK_RUNNING. 1022 */ 1023 __set_current_state(TASK_RUNNING); 1024 } 1025 1026 try_to_freeze(); 1027 cond_resched(); 1028 goto repeat; 1029 } 1030 EXPORT_SYMBOL_GPL(kthread_worker_fn); 1031 1032 static __printf(3, 0) struct kthread_worker * 1033 __kthread_create_worker_on_node(unsigned int flags, int node, 1034 const char namefmt[], va_list args) 1035 { 1036 struct kthread_worker *worker; 1037 struct task_struct *task; 1038 1039 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1040 if (!worker) 1041 return ERR_PTR(-ENOMEM); 1042 1043 kthread_init_worker(worker); 1044 1045 task = __kthread_create_on_node(kthread_worker_fn, worker, 1046 node, namefmt, args); 1047 if (IS_ERR(task)) 1048 goto fail_task; 1049 1050 worker->flags = flags; 1051 worker->task = task; 1052 1053 return worker; 1054 1055 fail_task: 1056 kfree(worker); 1057 return ERR_CAST(task); 1058 } 1059 1060 /** 1061 * kthread_create_worker_on_node - create a kthread worker 1062 * @flags: flags modifying the default behavior of the worker 1063 * @node: task structure for the thread is allocated on this node 1064 * @namefmt: printf-style name for the kthread worker (task). 1065 * 1066 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1067 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1068 * when the caller was killed by a fatal signal. 1069 */ 1070 struct kthread_worker * 1071 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...) 1072 { 1073 struct kthread_worker *worker; 1074 va_list args; 1075 1076 va_start(args, namefmt); 1077 worker = __kthread_create_worker_on_node(flags, node, namefmt, args); 1078 va_end(args); 1079 1080 return worker; 1081 } 1082 EXPORT_SYMBOL(kthread_create_worker_on_node); 1083 1084 /** 1085 * kthread_create_worker_on_cpu - create a kthread worker and bind it 1086 * to a given CPU and the associated NUMA node. 1087 * @cpu: CPU number 1088 * @flags: flags modifying the default behavior of the worker 1089 * @namefmt: printf-style name for the thread. Format is restricted 1090 * to "name.*%u". Code fills in cpu number. 1091 * 1092 * Use a valid CPU number if you want to bind the kthread worker 1093 * to the given CPU and the associated NUMA node. 1094 * 1095 * A good practice is to add the cpu number also into the worker name. 1096 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 1097 * 1098 * CPU hotplug: 1099 * The kthread worker API is simple and generic. It just provides a way 1100 * to create, use, and destroy workers. 1101 * 1102 * It is up to the API user how to handle CPU hotplug. They have to decide 1103 * how to handle pending work items, prevent queuing new ones, and 1104 * restore the functionality when the CPU goes off and on. There are a 1105 * few catches: 1106 * 1107 * - CPU affinity gets lost when it is scheduled on an offline CPU. 1108 * 1109 * - The worker might not exist when the CPU was off when the user 1110 * created the workers. 1111 * 1112 * Good practice is to implement two CPU hotplug callbacks and to 1113 * destroy/create the worker when the CPU goes down/up. 1114 * 1115 * Return: 1116 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 1117 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 1118 * when the caller was killed by a fatal signal. 1119 */ 1120 struct kthread_worker * 1121 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 1122 const char namefmt[]) 1123 { 1124 struct kthread_worker *worker; 1125 1126 worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu); 1127 if (!IS_ERR(worker)) 1128 kthread_bind(worker->task, cpu); 1129 1130 return worker; 1131 } 1132 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 1133 1134 /* 1135 * Returns true when the work could not be queued at the moment. 1136 * It happens when it is already pending in a worker list 1137 * or when it is being cancelled. 1138 */ 1139 static inline bool queuing_blocked(struct kthread_worker *worker, 1140 struct kthread_work *work) 1141 { 1142 lockdep_assert_held(&worker->lock); 1143 1144 return !list_empty(&work->node) || work->canceling; 1145 } 1146 1147 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 1148 struct kthread_work *work) 1149 { 1150 lockdep_assert_held(&worker->lock); 1151 WARN_ON_ONCE(!list_empty(&work->node)); 1152 /* Do not use a work with >1 worker, see kthread_queue_work() */ 1153 WARN_ON_ONCE(work->worker && work->worker != worker); 1154 } 1155 1156 /* insert @work before @pos in @worker */ 1157 static void kthread_insert_work(struct kthread_worker *worker, 1158 struct kthread_work *work, 1159 struct list_head *pos) 1160 { 1161 kthread_insert_work_sanity_check(worker, work); 1162 1163 trace_sched_kthread_work_queue_work(worker, work); 1164 1165 list_add_tail(&work->node, pos); 1166 work->worker = worker; 1167 if (!worker->current_work && likely(worker->task)) 1168 wake_up_process(worker->task); 1169 } 1170 1171 /** 1172 * kthread_queue_work - queue a kthread_work 1173 * @worker: target kthread_worker 1174 * @work: kthread_work to queue 1175 * 1176 * Queue @work to work processor @task for async execution. @task 1177 * must have been created with kthread_worker_create(). Returns %true 1178 * if @work was successfully queued, %false if it was already pending. 1179 * 1180 * Reinitialize the work if it needs to be used by another worker. 1181 * For example, when the worker was stopped and started again. 1182 */ 1183 bool kthread_queue_work(struct kthread_worker *worker, 1184 struct kthread_work *work) 1185 { 1186 bool ret = false; 1187 unsigned long flags; 1188 1189 raw_spin_lock_irqsave(&worker->lock, flags); 1190 if (!queuing_blocked(worker, work)) { 1191 kthread_insert_work(worker, work, &worker->work_list); 1192 ret = true; 1193 } 1194 raw_spin_unlock_irqrestore(&worker->lock, flags); 1195 return ret; 1196 } 1197 EXPORT_SYMBOL_GPL(kthread_queue_work); 1198 1199 /** 1200 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1201 * delayed work when the timer expires. 1202 * @t: pointer to the expired timer 1203 * 1204 * The format of the function is defined by struct timer_list. 1205 * It should have been called from irqsafe timer with irq already off. 1206 */ 1207 void kthread_delayed_work_timer_fn(struct timer_list *t) 1208 { 1209 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 1210 struct kthread_work *work = &dwork->work; 1211 struct kthread_worker *worker = work->worker; 1212 unsigned long flags; 1213 1214 /* 1215 * This might happen when a pending work is reinitialized. 1216 * It means that it is used a wrong way. 1217 */ 1218 if (WARN_ON_ONCE(!worker)) 1219 return; 1220 1221 raw_spin_lock_irqsave(&worker->lock, flags); 1222 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1223 WARN_ON_ONCE(work->worker != worker); 1224 1225 /* Move the work from worker->delayed_work_list. */ 1226 WARN_ON_ONCE(list_empty(&work->node)); 1227 list_del_init(&work->node); 1228 if (!work->canceling) 1229 kthread_insert_work(worker, work, &worker->work_list); 1230 1231 raw_spin_unlock_irqrestore(&worker->lock, flags); 1232 } 1233 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1234 1235 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1236 struct kthread_delayed_work *dwork, 1237 unsigned long delay) 1238 { 1239 struct timer_list *timer = &dwork->timer; 1240 struct kthread_work *work = &dwork->work; 1241 1242 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1243 1244 /* 1245 * If @delay is 0, queue @dwork->work immediately. This is for 1246 * both optimization and correctness. The earliest @timer can 1247 * expire is on the closest next tick and delayed_work users depend 1248 * on that there's no such delay when @delay is 0. 1249 */ 1250 if (!delay) { 1251 kthread_insert_work(worker, work, &worker->work_list); 1252 return; 1253 } 1254 1255 /* Be paranoid and try to detect possible races already now. */ 1256 kthread_insert_work_sanity_check(worker, work); 1257 1258 list_add(&work->node, &worker->delayed_work_list); 1259 work->worker = worker; 1260 timer->expires = jiffies + delay; 1261 add_timer(timer); 1262 } 1263 1264 /** 1265 * kthread_queue_delayed_work - queue the associated kthread work 1266 * after a delay. 1267 * @worker: target kthread_worker 1268 * @dwork: kthread_delayed_work to queue 1269 * @delay: number of jiffies to wait before queuing 1270 * 1271 * If the work has not been pending it starts a timer that will queue 1272 * the work after the given @delay. If @delay is zero, it queues the 1273 * work immediately. 1274 * 1275 * Return: %false if the @work has already been pending. It means that 1276 * either the timer was running or the work was queued. It returns %true 1277 * otherwise. 1278 */ 1279 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1280 struct kthread_delayed_work *dwork, 1281 unsigned long delay) 1282 { 1283 struct kthread_work *work = &dwork->work; 1284 unsigned long flags; 1285 bool ret = false; 1286 1287 raw_spin_lock_irqsave(&worker->lock, flags); 1288 1289 if (!queuing_blocked(worker, work)) { 1290 __kthread_queue_delayed_work(worker, dwork, delay); 1291 ret = true; 1292 } 1293 1294 raw_spin_unlock_irqrestore(&worker->lock, flags); 1295 return ret; 1296 } 1297 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1298 1299 struct kthread_flush_work { 1300 struct kthread_work work; 1301 struct completion done; 1302 }; 1303 1304 static void kthread_flush_work_fn(struct kthread_work *work) 1305 { 1306 struct kthread_flush_work *fwork = 1307 container_of(work, struct kthread_flush_work, work); 1308 complete(&fwork->done); 1309 } 1310 1311 /** 1312 * kthread_flush_work - flush a kthread_work 1313 * @work: work to flush 1314 * 1315 * If @work is queued or executing, wait for it to finish execution. 1316 */ 1317 void kthread_flush_work(struct kthread_work *work) 1318 { 1319 struct kthread_flush_work fwork = { 1320 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1321 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1322 }; 1323 struct kthread_worker *worker; 1324 bool noop = false; 1325 1326 worker = work->worker; 1327 if (!worker) 1328 return; 1329 1330 raw_spin_lock_irq(&worker->lock); 1331 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1332 WARN_ON_ONCE(work->worker != worker); 1333 1334 if (!list_empty(&work->node)) 1335 kthread_insert_work(worker, &fwork.work, work->node.next); 1336 else if (worker->current_work == work) 1337 kthread_insert_work(worker, &fwork.work, 1338 worker->work_list.next); 1339 else 1340 noop = true; 1341 1342 raw_spin_unlock_irq(&worker->lock); 1343 1344 if (!noop) 1345 wait_for_completion(&fwork.done); 1346 } 1347 EXPORT_SYMBOL_GPL(kthread_flush_work); 1348 1349 /* 1350 * Make sure that the timer is neither set nor running and could 1351 * not manipulate the work list_head any longer. 1352 * 1353 * The function is called under worker->lock. The lock is temporary 1354 * released but the timer can't be set again in the meantime. 1355 */ 1356 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1357 unsigned long *flags) 1358 { 1359 struct kthread_delayed_work *dwork = 1360 container_of(work, struct kthread_delayed_work, work); 1361 struct kthread_worker *worker = work->worker; 1362 1363 /* 1364 * del_timer_sync() must be called to make sure that the timer 1365 * callback is not running. The lock must be temporary released 1366 * to avoid a deadlock with the callback. In the meantime, 1367 * any queuing is blocked by setting the canceling counter. 1368 */ 1369 work->canceling++; 1370 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1371 del_timer_sync(&dwork->timer); 1372 raw_spin_lock_irqsave(&worker->lock, *flags); 1373 work->canceling--; 1374 } 1375 1376 /* 1377 * This function removes the work from the worker queue. 1378 * 1379 * It is called under worker->lock. The caller must make sure that 1380 * the timer used by delayed work is not running, e.g. by calling 1381 * kthread_cancel_delayed_work_timer(). 1382 * 1383 * The work might still be in use when this function finishes. See the 1384 * current_work proceed by the worker. 1385 * 1386 * Return: %true if @work was pending and successfully canceled, 1387 * %false if @work was not pending 1388 */ 1389 static bool __kthread_cancel_work(struct kthread_work *work) 1390 { 1391 /* 1392 * Try to remove the work from a worker list. It might either 1393 * be from worker->work_list or from worker->delayed_work_list. 1394 */ 1395 if (!list_empty(&work->node)) { 1396 list_del_init(&work->node); 1397 return true; 1398 } 1399 1400 return false; 1401 } 1402 1403 /** 1404 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1405 * @worker: kthread worker to use 1406 * @dwork: kthread delayed work to queue 1407 * @delay: number of jiffies to wait before queuing 1408 * 1409 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1410 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1411 * @work is guaranteed to be queued immediately. 1412 * 1413 * Return: %false if @dwork was idle and queued, %true otherwise. 1414 * 1415 * A special case is when the work is being canceled in parallel. 1416 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1417 * or yet another kthread_mod_delayed_work() call. We let the other command 1418 * win and return %true here. The return value can be used for reference 1419 * counting and the number of queued works stays the same. Anyway, the caller 1420 * is supposed to synchronize these operations a reasonable way. 1421 * 1422 * This function is safe to call from any context including IRQ handler. 1423 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1424 * for details. 1425 */ 1426 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1427 struct kthread_delayed_work *dwork, 1428 unsigned long delay) 1429 { 1430 struct kthread_work *work = &dwork->work; 1431 unsigned long flags; 1432 int ret; 1433 1434 raw_spin_lock_irqsave(&worker->lock, flags); 1435 1436 /* Do not bother with canceling when never queued. */ 1437 if (!work->worker) { 1438 ret = false; 1439 goto fast_queue; 1440 } 1441 1442 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1443 WARN_ON_ONCE(work->worker != worker); 1444 1445 /* 1446 * Temporary cancel the work but do not fight with another command 1447 * that is canceling the work as well. 1448 * 1449 * It is a bit tricky because of possible races with another 1450 * mod_delayed_work() and cancel_delayed_work() callers. 1451 * 1452 * The timer must be canceled first because worker->lock is released 1453 * when doing so. But the work can be removed from the queue (list) 1454 * only when it can be queued again so that the return value can 1455 * be used for reference counting. 1456 */ 1457 kthread_cancel_delayed_work_timer(work, &flags); 1458 if (work->canceling) { 1459 /* The number of works in the queue does not change. */ 1460 ret = true; 1461 goto out; 1462 } 1463 ret = __kthread_cancel_work(work); 1464 1465 fast_queue: 1466 __kthread_queue_delayed_work(worker, dwork, delay); 1467 out: 1468 raw_spin_unlock_irqrestore(&worker->lock, flags); 1469 return ret; 1470 } 1471 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1472 1473 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1474 { 1475 struct kthread_worker *worker = work->worker; 1476 unsigned long flags; 1477 int ret = false; 1478 1479 if (!worker) 1480 goto out; 1481 1482 raw_spin_lock_irqsave(&worker->lock, flags); 1483 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1484 WARN_ON_ONCE(work->worker != worker); 1485 1486 if (is_dwork) 1487 kthread_cancel_delayed_work_timer(work, &flags); 1488 1489 ret = __kthread_cancel_work(work); 1490 1491 if (worker->current_work != work) 1492 goto out_fast; 1493 1494 /* 1495 * The work is in progress and we need to wait with the lock released. 1496 * In the meantime, block any queuing by setting the canceling counter. 1497 */ 1498 work->canceling++; 1499 raw_spin_unlock_irqrestore(&worker->lock, flags); 1500 kthread_flush_work(work); 1501 raw_spin_lock_irqsave(&worker->lock, flags); 1502 work->canceling--; 1503 1504 out_fast: 1505 raw_spin_unlock_irqrestore(&worker->lock, flags); 1506 out: 1507 return ret; 1508 } 1509 1510 /** 1511 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1512 * @work: the kthread work to cancel 1513 * 1514 * Cancel @work and wait for its execution to finish. This function 1515 * can be used even if the work re-queues itself. On return from this 1516 * function, @work is guaranteed to be not pending or executing on any CPU. 1517 * 1518 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1519 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1520 * 1521 * The caller must ensure that the worker on which @work was last 1522 * queued can't be destroyed before this function returns. 1523 * 1524 * Return: %true if @work was pending, %false otherwise. 1525 */ 1526 bool kthread_cancel_work_sync(struct kthread_work *work) 1527 { 1528 return __kthread_cancel_work_sync(work, false); 1529 } 1530 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1531 1532 /** 1533 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1534 * wait for it to finish. 1535 * @dwork: the kthread delayed work to cancel 1536 * 1537 * This is kthread_cancel_work_sync() for delayed works. 1538 * 1539 * Return: %true if @dwork was pending, %false otherwise. 1540 */ 1541 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1542 { 1543 return __kthread_cancel_work_sync(&dwork->work, true); 1544 } 1545 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1546 1547 /** 1548 * kthread_flush_worker - flush all current works on a kthread_worker 1549 * @worker: worker to flush 1550 * 1551 * Wait until all currently executing or pending works on @worker are 1552 * finished. 1553 */ 1554 void kthread_flush_worker(struct kthread_worker *worker) 1555 { 1556 struct kthread_flush_work fwork = { 1557 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1558 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1559 }; 1560 1561 kthread_queue_work(worker, &fwork.work); 1562 wait_for_completion(&fwork.done); 1563 } 1564 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1565 1566 /** 1567 * kthread_destroy_worker - destroy a kthread worker 1568 * @worker: worker to be destroyed 1569 * 1570 * Flush and destroy @worker. The simple flush is enough because the kthread 1571 * worker API is used only in trivial scenarios. There are no multi-step state 1572 * machines needed. 1573 * 1574 * Note that this function is not responsible for handling delayed work, so 1575 * caller should be responsible for queuing or canceling all delayed work items 1576 * before invoke this function. 1577 */ 1578 void kthread_destroy_worker(struct kthread_worker *worker) 1579 { 1580 struct task_struct *task; 1581 1582 task = worker->task; 1583 if (WARN_ON(!task)) 1584 return; 1585 1586 kthread_flush_worker(worker); 1587 kthread_stop(task); 1588 WARN_ON(!list_empty(&worker->delayed_work_list)); 1589 WARN_ON(!list_empty(&worker->work_list)); 1590 kfree(worker); 1591 } 1592 EXPORT_SYMBOL(kthread_destroy_worker); 1593 1594 /** 1595 * kthread_use_mm - make the calling kthread operate on an address space 1596 * @mm: address space to operate on 1597 */ 1598 void kthread_use_mm(struct mm_struct *mm) 1599 { 1600 struct mm_struct *active_mm; 1601 struct task_struct *tsk = current; 1602 1603 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1604 WARN_ON_ONCE(tsk->mm); 1605 1606 /* 1607 * It is possible for mm to be the same as tsk->active_mm, but 1608 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1609 * because these references are not equivalent. 1610 */ 1611 mmgrab(mm); 1612 1613 task_lock(tsk); 1614 /* Hold off tlb flush IPIs while switching mm's */ 1615 local_irq_disable(); 1616 active_mm = tsk->active_mm; 1617 tsk->active_mm = mm; 1618 tsk->mm = mm; 1619 membarrier_update_current_mm(mm); 1620 switch_mm_irqs_off(active_mm, mm, tsk); 1621 local_irq_enable(); 1622 task_unlock(tsk); 1623 #ifdef finish_arch_post_lock_switch 1624 finish_arch_post_lock_switch(); 1625 #endif 1626 1627 /* 1628 * When a kthread starts operating on an address space, the loop 1629 * in membarrier_{private,global}_expedited() may not observe 1630 * that tsk->mm, and not issue an IPI. Membarrier requires a 1631 * memory barrier after storing to tsk->mm, before accessing 1632 * user-space memory. A full memory barrier for membarrier 1633 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1634 * mmdrop_lazy_tlb(). 1635 */ 1636 mmdrop_lazy_tlb(active_mm); 1637 } 1638 EXPORT_SYMBOL_GPL(kthread_use_mm); 1639 1640 /** 1641 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1642 * @mm: address space to operate on 1643 */ 1644 void kthread_unuse_mm(struct mm_struct *mm) 1645 { 1646 struct task_struct *tsk = current; 1647 1648 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1649 WARN_ON_ONCE(!tsk->mm); 1650 1651 task_lock(tsk); 1652 /* 1653 * When a kthread stops operating on an address space, the loop 1654 * in membarrier_{private,global}_expedited() may not observe 1655 * that tsk->mm, and not issue an IPI. Membarrier requires a 1656 * memory barrier after accessing user-space memory, before 1657 * clearing tsk->mm. 1658 */ 1659 smp_mb__after_spinlock(); 1660 local_irq_disable(); 1661 tsk->mm = NULL; 1662 membarrier_update_current_mm(NULL); 1663 mmgrab_lazy_tlb(mm); 1664 /* active_mm is still 'mm' */ 1665 enter_lazy_tlb(mm, tsk); 1666 local_irq_enable(); 1667 task_unlock(tsk); 1668 1669 mmdrop(mm); 1670 } 1671 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1672 1673 #ifdef CONFIG_BLK_CGROUP 1674 /** 1675 * kthread_associate_blkcg - associate blkcg to current kthread 1676 * @css: the cgroup info 1677 * 1678 * Current thread must be a kthread. The thread is running jobs on behalf of 1679 * other threads. In some cases, we expect the jobs attach cgroup info of 1680 * original threads instead of that of current thread. This function stores 1681 * original thread's cgroup info in current kthread context for later 1682 * retrieval. 1683 */ 1684 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1685 { 1686 struct kthread *kthread; 1687 1688 if (!(current->flags & PF_KTHREAD)) 1689 return; 1690 kthread = to_kthread(current); 1691 if (!kthread) 1692 return; 1693 1694 if (kthread->blkcg_css) { 1695 css_put(kthread->blkcg_css); 1696 kthread->blkcg_css = NULL; 1697 } 1698 if (css) { 1699 css_get(css); 1700 kthread->blkcg_css = css; 1701 } 1702 } 1703 EXPORT_SYMBOL(kthread_associate_blkcg); 1704 1705 /** 1706 * kthread_blkcg - get associated blkcg css of current kthread 1707 * 1708 * Current thread must be a kthread. 1709 */ 1710 struct cgroup_subsys_state *kthread_blkcg(void) 1711 { 1712 struct kthread *kthread; 1713 1714 if (current->flags & PF_KTHREAD) { 1715 kthread = to_kthread(current); 1716 if (kthread) 1717 return kthread->blkcg_css; 1718 } 1719 return NULL; 1720 } 1721 #endif 1722