1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 struct kthread_create_info 39 { 40 /* Information passed to kthread() from kthreadd. */ 41 char *full_name; 42 int (*threadfn)(void *data); 43 void *data; 44 int node; 45 46 /* Result passed back to kthread_create() from kthreadd. */ 47 struct task_struct *result; 48 struct completion *done; 49 50 struct list_head list; 51 }; 52 53 struct kthread { 54 unsigned long flags; 55 unsigned int cpu; 56 int started; 57 int result; 58 int (*threadfn)(void *); 59 void *data; 60 struct completion parked; 61 struct completion exited; 62 #ifdef CONFIG_BLK_CGROUP 63 struct cgroup_subsys_state *blkcg_css; 64 #endif 65 /* To store the full name if task comm is truncated. */ 66 char *full_name; 67 }; 68 69 enum KTHREAD_BITS { 70 KTHREAD_IS_PER_CPU = 0, 71 KTHREAD_SHOULD_STOP, 72 KTHREAD_SHOULD_PARK, 73 }; 74 75 static inline struct kthread *to_kthread(struct task_struct *k) 76 { 77 WARN_ON(!(k->flags & PF_KTHREAD)); 78 return k->worker_private; 79 } 80 81 /* 82 * Variant of to_kthread() that doesn't assume @p is a kthread. 83 * 84 * Per construction; when: 85 * 86 * (p->flags & PF_KTHREAD) && p->worker_private 87 * 88 * the task is both a kthread and struct kthread is persistent. However 89 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 90 * begin_new_exec()). 91 */ 92 static inline struct kthread *__to_kthread(struct task_struct *p) 93 { 94 void *kthread = p->worker_private; 95 if (kthread && !(p->flags & PF_KTHREAD)) 96 kthread = NULL; 97 return kthread; 98 } 99 100 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 101 { 102 struct kthread *kthread = to_kthread(tsk); 103 104 if (!kthread || !kthread->full_name) { 105 strscpy(buf, tsk->comm, buf_size); 106 return; 107 } 108 109 strscpy_pad(buf, kthread->full_name, buf_size); 110 } 111 112 bool set_kthread_struct(struct task_struct *p) 113 { 114 struct kthread *kthread; 115 116 if (WARN_ON_ONCE(to_kthread(p))) 117 return false; 118 119 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 120 if (!kthread) 121 return false; 122 123 init_completion(&kthread->exited); 124 init_completion(&kthread->parked); 125 p->vfork_done = &kthread->exited; 126 127 p->worker_private = kthread; 128 return true; 129 } 130 131 void free_kthread_struct(struct task_struct *k) 132 { 133 struct kthread *kthread; 134 135 /* 136 * Can be NULL if kmalloc() in set_kthread_struct() failed. 137 */ 138 kthread = to_kthread(k); 139 if (!kthread) 140 return; 141 142 #ifdef CONFIG_BLK_CGROUP 143 WARN_ON_ONCE(kthread->blkcg_css); 144 #endif 145 k->worker_private = NULL; 146 kfree(kthread->full_name); 147 kfree(kthread); 148 } 149 150 /** 151 * kthread_should_stop - should this kthread return now? 152 * 153 * When someone calls kthread_stop() on your kthread, it will be woken 154 * and this will return true. You should then return, and your return 155 * value will be passed through to kthread_stop(). 156 */ 157 bool kthread_should_stop(void) 158 { 159 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 160 } 161 EXPORT_SYMBOL(kthread_should_stop); 162 163 static bool __kthread_should_park(struct task_struct *k) 164 { 165 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 166 } 167 168 /** 169 * kthread_should_park - should this kthread park now? 170 * 171 * When someone calls kthread_park() on your kthread, it will be woken 172 * and this will return true. You should then do the necessary 173 * cleanup and call kthread_parkme() 174 * 175 * Similar to kthread_should_stop(), but this keeps the thread alive 176 * and in a park position. kthread_unpark() "restarts" the thread and 177 * calls the thread function again. 178 */ 179 bool kthread_should_park(void) 180 { 181 return __kthread_should_park(current); 182 } 183 EXPORT_SYMBOL_GPL(kthread_should_park); 184 185 bool kthread_should_stop_or_park(void) 186 { 187 struct kthread *kthread = __to_kthread(current); 188 189 if (!kthread) 190 return false; 191 192 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 193 } 194 195 /** 196 * kthread_freezable_should_stop - should this freezable kthread return now? 197 * @was_frozen: optional out parameter, indicates whether %current was frozen 198 * 199 * kthread_should_stop() for freezable kthreads, which will enter 200 * refrigerator if necessary. This function is safe from kthread_stop() / 201 * freezer deadlock and freezable kthreads should use this function instead 202 * of calling try_to_freeze() directly. 203 */ 204 bool kthread_freezable_should_stop(bool *was_frozen) 205 { 206 bool frozen = false; 207 208 might_sleep(); 209 210 if (unlikely(freezing(current))) 211 frozen = __refrigerator(true); 212 213 if (was_frozen) 214 *was_frozen = frozen; 215 216 return kthread_should_stop(); 217 } 218 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 219 220 /** 221 * kthread_func - return the function specified on kthread creation 222 * @task: kthread task in question 223 * 224 * Returns NULL if the task is not a kthread. 225 */ 226 void *kthread_func(struct task_struct *task) 227 { 228 struct kthread *kthread = __to_kthread(task); 229 if (kthread) 230 return kthread->threadfn; 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(kthread_func); 234 235 /** 236 * kthread_data - return data value specified on kthread creation 237 * @task: kthread task in question 238 * 239 * Return the data value specified when kthread @task was created. 240 * The caller is responsible for ensuring the validity of @task when 241 * calling this function. 242 */ 243 void *kthread_data(struct task_struct *task) 244 { 245 return to_kthread(task)->data; 246 } 247 EXPORT_SYMBOL_GPL(kthread_data); 248 249 /** 250 * kthread_probe_data - speculative version of kthread_data() 251 * @task: possible kthread task in question 252 * 253 * @task could be a kthread task. Return the data value specified when it 254 * was created if accessible. If @task isn't a kthread task or its data is 255 * inaccessible for any reason, %NULL is returned. This function requires 256 * that @task itself is safe to dereference. 257 */ 258 void *kthread_probe_data(struct task_struct *task) 259 { 260 struct kthread *kthread = __to_kthread(task); 261 void *data = NULL; 262 263 if (kthread) 264 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 265 return data; 266 } 267 268 static void __kthread_parkme(struct kthread *self) 269 { 270 for (;;) { 271 /* 272 * TASK_PARKED is a special state; we must serialize against 273 * possible pending wakeups to avoid store-store collisions on 274 * task->state. 275 * 276 * Such a collision might possibly result in the task state 277 * changin from TASK_PARKED and us failing the 278 * wait_task_inactive() in kthread_park(). 279 */ 280 set_special_state(TASK_PARKED); 281 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 282 break; 283 284 /* 285 * Thread is going to call schedule(), do not preempt it, 286 * or the caller of kthread_park() may spend more time in 287 * wait_task_inactive(). 288 */ 289 preempt_disable(); 290 complete(&self->parked); 291 schedule_preempt_disabled(); 292 preempt_enable(); 293 } 294 __set_current_state(TASK_RUNNING); 295 } 296 297 void kthread_parkme(void) 298 { 299 __kthread_parkme(to_kthread(current)); 300 } 301 EXPORT_SYMBOL_GPL(kthread_parkme); 302 303 /** 304 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 305 * @result: The integer value to return to kthread_stop(). 306 * 307 * While kthread_exit can be called directly, it exists so that 308 * functions which do some additional work in non-modular code such as 309 * module_put_and_kthread_exit can be implemented. 310 * 311 * Does not return. 312 */ 313 void __noreturn kthread_exit(long result) 314 { 315 struct kthread *kthread = to_kthread(current); 316 kthread->result = result; 317 do_exit(0); 318 } 319 EXPORT_SYMBOL(kthread_exit); 320 321 /** 322 * kthread_complete_and_exit - Exit the current kthread. 323 * @comp: Completion to complete 324 * @code: The integer value to return to kthread_stop(). 325 * 326 * If present, complete @comp and then return code to kthread_stop(). 327 * 328 * A kernel thread whose module may be removed after the completion of 329 * @comp can use this function to exit safely. 330 * 331 * Does not return. 332 */ 333 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 334 { 335 if (comp) 336 complete(comp); 337 338 kthread_exit(code); 339 } 340 EXPORT_SYMBOL(kthread_complete_and_exit); 341 342 static int kthread(void *_create) 343 { 344 static const struct sched_param param = { .sched_priority = 0 }; 345 /* Copy data: it's on kthread's stack */ 346 struct kthread_create_info *create = _create; 347 int (*threadfn)(void *data) = create->threadfn; 348 void *data = create->data; 349 struct completion *done; 350 struct kthread *self; 351 int ret; 352 353 self = to_kthread(current); 354 355 /* Release the structure when caller killed by a fatal signal. */ 356 done = xchg(&create->done, NULL); 357 if (!done) { 358 kfree(create->full_name); 359 kfree(create); 360 kthread_exit(-EINTR); 361 } 362 363 self->full_name = create->full_name; 364 self->threadfn = threadfn; 365 self->data = data; 366 367 /* 368 * The new thread inherited kthreadd's priority and CPU mask. Reset 369 * back to default in case they have been changed. 370 */ 371 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 372 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD)); 373 374 /* OK, tell user we're spawned, wait for stop or wakeup */ 375 __set_current_state(TASK_UNINTERRUPTIBLE); 376 create->result = current; 377 /* 378 * Thread is going to call schedule(), do not preempt it, 379 * or the creator may spend more time in wait_task_inactive(). 380 */ 381 preempt_disable(); 382 complete(done); 383 schedule_preempt_disabled(); 384 preempt_enable(); 385 386 self->started = 1; 387 388 ret = -EINTR; 389 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 390 cgroup_kthread_ready(); 391 __kthread_parkme(self); 392 ret = threadfn(data); 393 } 394 kthread_exit(ret); 395 } 396 397 /* called from kernel_clone() to get node information for about to be created task */ 398 int tsk_fork_get_node(struct task_struct *tsk) 399 { 400 #ifdef CONFIG_NUMA 401 if (tsk == kthreadd_task) 402 return tsk->pref_node_fork; 403 #endif 404 return NUMA_NO_NODE; 405 } 406 407 static void create_kthread(struct kthread_create_info *create) 408 { 409 int pid; 410 411 #ifdef CONFIG_NUMA 412 current->pref_node_fork = create->node; 413 #endif 414 /* We want our own signal handler (we take no signals by default). */ 415 pid = kernel_thread(kthread, create, create->full_name, 416 CLONE_FS | CLONE_FILES | SIGCHLD); 417 if (pid < 0) { 418 /* Release the structure when caller killed by a fatal signal. */ 419 struct completion *done = xchg(&create->done, NULL); 420 421 kfree(create->full_name); 422 if (!done) { 423 kfree(create); 424 return; 425 } 426 create->result = ERR_PTR(pid); 427 complete(done); 428 } 429 } 430 431 static __printf(4, 0) 432 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 433 void *data, int node, 434 const char namefmt[], 435 va_list args) 436 { 437 DECLARE_COMPLETION_ONSTACK(done); 438 struct task_struct *task; 439 struct kthread_create_info *create = kmalloc(sizeof(*create), 440 GFP_KERNEL); 441 442 if (!create) 443 return ERR_PTR(-ENOMEM); 444 create->threadfn = threadfn; 445 create->data = data; 446 create->node = node; 447 create->done = &done; 448 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 449 if (!create->full_name) { 450 task = ERR_PTR(-ENOMEM); 451 goto free_create; 452 } 453 454 spin_lock(&kthread_create_lock); 455 list_add_tail(&create->list, &kthread_create_list); 456 spin_unlock(&kthread_create_lock); 457 458 wake_up_process(kthreadd_task); 459 /* 460 * Wait for completion in killable state, for I might be chosen by 461 * the OOM killer while kthreadd is trying to allocate memory for 462 * new kernel thread. 463 */ 464 if (unlikely(wait_for_completion_killable(&done))) { 465 /* 466 * If I was killed by a fatal signal before kthreadd (or new 467 * kernel thread) calls complete(), leave the cleanup of this 468 * structure to that thread. 469 */ 470 if (xchg(&create->done, NULL)) 471 return ERR_PTR(-EINTR); 472 /* 473 * kthreadd (or new kernel thread) will call complete() 474 * shortly. 475 */ 476 wait_for_completion(&done); 477 } 478 task = create->result; 479 free_create: 480 kfree(create); 481 return task; 482 } 483 484 /** 485 * kthread_create_on_node - create a kthread. 486 * @threadfn: the function to run until signal_pending(current). 487 * @data: data ptr for @threadfn. 488 * @node: task and thread structures for the thread are allocated on this node 489 * @namefmt: printf-style name for the thread. 490 * 491 * Description: This helper function creates and names a kernel 492 * thread. The thread will be stopped: use wake_up_process() to start 493 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 494 * is affine to all CPUs. 495 * 496 * If thread is going to be bound on a particular cpu, give its node 497 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 498 * When woken, the thread will run @threadfn() with @data as its 499 * argument. @threadfn() can either return directly if it is a 500 * standalone thread for which no one will call kthread_stop(), or 501 * return when 'kthread_should_stop()' is true (which means 502 * kthread_stop() has been called). The return value should be zero 503 * or a negative error number; it will be passed to kthread_stop(). 504 * 505 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 506 */ 507 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 508 void *data, int node, 509 const char namefmt[], 510 ...) 511 { 512 struct task_struct *task; 513 va_list args; 514 515 va_start(args, namefmt); 516 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 517 va_end(args); 518 519 return task; 520 } 521 EXPORT_SYMBOL(kthread_create_on_node); 522 523 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 524 { 525 unsigned long flags; 526 527 if (!wait_task_inactive(p, state)) { 528 WARN_ON(1); 529 return; 530 } 531 532 /* It's safe because the task is inactive. */ 533 raw_spin_lock_irqsave(&p->pi_lock, flags); 534 do_set_cpus_allowed(p, mask); 535 p->flags |= PF_NO_SETAFFINITY; 536 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 537 } 538 539 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 540 { 541 __kthread_bind_mask(p, cpumask_of(cpu), state); 542 } 543 544 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 545 { 546 struct kthread *kthread = to_kthread(p); 547 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 548 WARN_ON_ONCE(kthread->started); 549 } 550 551 /** 552 * kthread_bind - bind a just-created kthread to a cpu. 553 * @p: thread created by kthread_create(). 554 * @cpu: cpu (might not be online, must be possible) for @k to run on. 555 * 556 * Description: This function is equivalent to set_cpus_allowed(), 557 * except that @cpu doesn't need to be online, and the thread must be 558 * stopped (i.e., just returned from kthread_create()). 559 */ 560 void kthread_bind(struct task_struct *p, unsigned int cpu) 561 { 562 struct kthread *kthread = to_kthread(p); 563 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 564 WARN_ON_ONCE(kthread->started); 565 } 566 EXPORT_SYMBOL(kthread_bind); 567 568 /** 569 * kthread_create_on_cpu - Create a cpu bound kthread 570 * @threadfn: the function to run until signal_pending(current). 571 * @data: data ptr for @threadfn. 572 * @cpu: The cpu on which the thread should be bound, 573 * @namefmt: printf-style name for the thread. Format is restricted 574 * to "name.*%u". Code fills in cpu number. 575 * 576 * Description: This helper function creates and names a kernel thread 577 */ 578 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 579 void *data, unsigned int cpu, 580 const char *namefmt) 581 { 582 struct task_struct *p; 583 584 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 585 cpu); 586 if (IS_ERR(p)) 587 return p; 588 kthread_bind(p, cpu); 589 /* CPU hotplug need to bind once again when unparking the thread. */ 590 to_kthread(p)->cpu = cpu; 591 return p; 592 } 593 EXPORT_SYMBOL(kthread_create_on_cpu); 594 595 void kthread_set_per_cpu(struct task_struct *k, int cpu) 596 { 597 struct kthread *kthread = to_kthread(k); 598 if (!kthread) 599 return; 600 601 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 602 603 if (cpu < 0) { 604 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 605 return; 606 } 607 608 kthread->cpu = cpu; 609 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 610 } 611 612 bool kthread_is_per_cpu(struct task_struct *p) 613 { 614 struct kthread *kthread = __to_kthread(p); 615 if (!kthread) 616 return false; 617 618 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 619 } 620 621 /** 622 * kthread_unpark - unpark a thread created by kthread_create(). 623 * @k: thread created by kthread_create(). 624 * 625 * Sets kthread_should_park() for @k to return false, wakes it, and 626 * waits for it to return. If the thread is marked percpu then its 627 * bound to the cpu again. 628 */ 629 void kthread_unpark(struct task_struct *k) 630 { 631 struct kthread *kthread = to_kthread(k); 632 633 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 634 return; 635 /* 636 * Newly created kthread was parked when the CPU was offline. 637 * The binding was lost and we need to set it again. 638 */ 639 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 640 __kthread_bind(k, kthread->cpu, TASK_PARKED); 641 642 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 643 /* 644 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 645 */ 646 wake_up_state(k, TASK_PARKED); 647 } 648 EXPORT_SYMBOL_GPL(kthread_unpark); 649 650 /** 651 * kthread_park - park a thread created by kthread_create(). 652 * @k: thread created by kthread_create(). 653 * 654 * Sets kthread_should_park() for @k to return true, wakes it, and 655 * waits for it to return. This can also be called after kthread_create() 656 * instead of calling wake_up_process(): the thread will park without 657 * calling threadfn(). 658 * 659 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 660 * If called by the kthread itself just the park bit is set. 661 */ 662 int kthread_park(struct task_struct *k) 663 { 664 struct kthread *kthread = to_kthread(k); 665 666 if (WARN_ON(k->flags & PF_EXITING)) 667 return -ENOSYS; 668 669 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 670 return -EBUSY; 671 672 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 673 if (k != current) { 674 wake_up_process(k); 675 /* 676 * Wait for __kthread_parkme() to complete(), this means we 677 * _will_ have TASK_PARKED and are about to call schedule(). 678 */ 679 wait_for_completion(&kthread->parked); 680 /* 681 * Now wait for that schedule() to complete and the task to 682 * get scheduled out. 683 */ 684 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 685 } 686 687 return 0; 688 } 689 EXPORT_SYMBOL_GPL(kthread_park); 690 691 /** 692 * kthread_stop - stop a thread created by kthread_create(). 693 * @k: thread created by kthread_create(). 694 * 695 * Sets kthread_should_stop() for @k to return true, wakes it, and 696 * waits for it to exit. This can also be called after kthread_create() 697 * instead of calling wake_up_process(): the thread will exit without 698 * calling threadfn(). 699 * 700 * If threadfn() may call kthread_exit() itself, the caller must ensure 701 * task_struct can't go away. 702 * 703 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 704 * was never called. 705 */ 706 int kthread_stop(struct task_struct *k) 707 { 708 struct kthread *kthread; 709 int ret; 710 711 trace_sched_kthread_stop(k); 712 713 get_task_struct(k); 714 kthread = to_kthread(k); 715 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 716 kthread_unpark(k); 717 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 718 wake_up_process(k); 719 wait_for_completion(&kthread->exited); 720 ret = kthread->result; 721 put_task_struct(k); 722 723 trace_sched_kthread_stop_ret(ret); 724 return ret; 725 } 726 EXPORT_SYMBOL(kthread_stop); 727 728 /** 729 * kthread_stop_put - stop a thread and put its task struct 730 * @k: thread created by kthread_create(). 731 * 732 * Stops a thread created by kthread_create() and put its task_struct. 733 * Only use when holding an extra task struct reference obtained by 734 * calling get_task_struct(). 735 */ 736 int kthread_stop_put(struct task_struct *k) 737 { 738 int ret; 739 740 ret = kthread_stop(k); 741 put_task_struct(k); 742 return ret; 743 } 744 EXPORT_SYMBOL(kthread_stop_put); 745 746 int kthreadd(void *unused) 747 { 748 struct task_struct *tsk = current; 749 750 /* Setup a clean context for our children to inherit. */ 751 set_task_comm(tsk, "kthreadd"); 752 ignore_signals(tsk); 753 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 754 set_mems_allowed(node_states[N_MEMORY]); 755 756 current->flags |= PF_NOFREEZE; 757 cgroup_init_kthreadd(); 758 759 for (;;) { 760 set_current_state(TASK_INTERRUPTIBLE); 761 if (list_empty(&kthread_create_list)) 762 schedule(); 763 __set_current_state(TASK_RUNNING); 764 765 spin_lock(&kthread_create_lock); 766 while (!list_empty(&kthread_create_list)) { 767 struct kthread_create_info *create; 768 769 create = list_entry(kthread_create_list.next, 770 struct kthread_create_info, list); 771 list_del_init(&create->list); 772 spin_unlock(&kthread_create_lock); 773 774 create_kthread(create); 775 776 spin_lock(&kthread_create_lock); 777 } 778 spin_unlock(&kthread_create_lock); 779 } 780 781 return 0; 782 } 783 784 void __kthread_init_worker(struct kthread_worker *worker, 785 const char *name, 786 struct lock_class_key *key) 787 { 788 memset(worker, 0, sizeof(struct kthread_worker)); 789 raw_spin_lock_init(&worker->lock); 790 lockdep_set_class_and_name(&worker->lock, key, name); 791 INIT_LIST_HEAD(&worker->work_list); 792 INIT_LIST_HEAD(&worker->delayed_work_list); 793 } 794 EXPORT_SYMBOL_GPL(__kthread_init_worker); 795 796 /** 797 * kthread_worker_fn - kthread function to process kthread_worker 798 * @worker_ptr: pointer to initialized kthread_worker 799 * 800 * This function implements the main cycle of kthread worker. It processes 801 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 802 * is empty. 803 * 804 * The works are not allowed to keep any locks, disable preemption or interrupts 805 * when they finish. There is defined a safe point for freezing when one work 806 * finishes and before a new one is started. 807 * 808 * Also the works must not be handled by more than one worker at the same time, 809 * see also kthread_queue_work(). 810 */ 811 int kthread_worker_fn(void *worker_ptr) 812 { 813 struct kthread_worker *worker = worker_ptr; 814 struct kthread_work *work; 815 816 /* 817 * FIXME: Update the check and remove the assignment when all kthread 818 * worker users are created using kthread_create_worker*() functions. 819 */ 820 WARN_ON(worker->task && worker->task != current); 821 worker->task = current; 822 823 if (worker->flags & KTW_FREEZABLE) 824 set_freezable(); 825 826 repeat: 827 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 828 829 if (kthread_should_stop()) { 830 __set_current_state(TASK_RUNNING); 831 raw_spin_lock_irq(&worker->lock); 832 worker->task = NULL; 833 raw_spin_unlock_irq(&worker->lock); 834 return 0; 835 } 836 837 work = NULL; 838 raw_spin_lock_irq(&worker->lock); 839 if (!list_empty(&worker->work_list)) { 840 work = list_first_entry(&worker->work_list, 841 struct kthread_work, node); 842 list_del_init(&work->node); 843 } 844 worker->current_work = work; 845 raw_spin_unlock_irq(&worker->lock); 846 847 if (work) { 848 kthread_work_func_t func = work->func; 849 __set_current_state(TASK_RUNNING); 850 trace_sched_kthread_work_execute_start(work); 851 work->func(work); 852 /* 853 * Avoid dereferencing work after this point. The trace 854 * event only cares about the address. 855 */ 856 trace_sched_kthread_work_execute_end(work, func); 857 } else if (!freezing(current)) { 858 schedule(); 859 } else { 860 /* 861 * Handle the case where the current remains 862 * TASK_INTERRUPTIBLE. try_to_freeze() expects 863 * the current to be TASK_RUNNING. 864 */ 865 __set_current_state(TASK_RUNNING); 866 } 867 868 try_to_freeze(); 869 cond_resched(); 870 goto repeat; 871 } 872 EXPORT_SYMBOL_GPL(kthread_worker_fn); 873 874 static __printf(3, 0) struct kthread_worker * 875 __kthread_create_worker(int cpu, unsigned int flags, 876 const char namefmt[], va_list args) 877 { 878 struct kthread_worker *worker; 879 struct task_struct *task; 880 int node = NUMA_NO_NODE; 881 882 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 883 if (!worker) 884 return ERR_PTR(-ENOMEM); 885 886 kthread_init_worker(worker); 887 888 if (cpu >= 0) 889 node = cpu_to_node(cpu); 890 891 task = __kthread_create_on_node(kthread_worker_fn, worker, 892 node, namefmt, args); 893 if (IS_ERR(task)) 894 goto fail_task; 895 896 if (cpu >= 0) 897 kthread_bind(task, cpu); 898 899 worker->flags = flags; 900 worker->task = task; 901 wake_up_process(task); 902 return worker; 903 904 fail_task: 905 kfree(worker); 906 return ERR_CAST(task); 907 } 908 909 /** 910 * kthread_create_worker - create a kthread worker 911 * @flags: flags modifying the default behavior of the worker 912 * @namefmt: printf-style name for the kthread worker (task). 913 * 914 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 915 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 916 * when the caller was killed by a fatal signal. 917 */ 918 struct kthread_worker * 919 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 920 { 921 struct kthread_worker *worker; 922 va_list args; 923 924 va_start(args, namefmt); 925 worker = __kthread_create_worker(-1, flags, namefmt, args); 926 va_end(args); 927 928 return worker; 929 } 930 EXPORT_SYMBOL(kthread_create_worker); 931 932 /** 933 * kthread_create_worker_on_cpu - create a kthread worker and bind it 934 * to a given CPU and the associated NUMA node. 935 * @cpu: CPU number 936 * @flags: flags modifying the default behavior of the worker 937 * @namefmt: printf-style name for the kthread worker (task). 938 * 939 * Use a valid CPU number if you want to bind the kthread worker 940 * to the given CPU and the associated NUMA node. 941 * 942 * A good practice is to add the cpu number also into the worker name. 943 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 944 * 945 * CPU hotplug: 946 * The kthread worker API is simple and generic. It just provides a way 947 * to create, use, and destroy workers. 948 * 949 * It is up to the API user how to handle CPU hotplug. They have to decide 950 * how to handle pending work items, prevent queuing new ones, and 951 * restore the functionality when the CPU goes off and on. There are a 952 * few catches: 953 * 954 * - CPU affinity gets lost when it is scheduled on an offline CPU. 955 * 956 * - The worker might not exist when the CPU was off when the user 957 * created the workers. 958 * 959 * Good practice is to implement two CPU hotplug callbacks and to 960 * destroy/create the worker when the CPU goes down/up. 961 * 962 * Return: 963 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 964 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 965 * when the caller was killed by a fatal signal. 966 */ 967 struct kthread_worker * 968 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 969 const char namefmt[], ...) 970 { 971 struct kthread_worker *worker; 972 va_list args; 973 974 va_start(args, namefmt); 975 worker = __kthread_create_worker(cpu, flags, namefmt, args); 976 va_end(args); 977 978 return worker; 979 } 980 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 981 982 /* 983 * Returns true when the work could not be queued at the moment. 984 * It happens when it is already pending in a worker list 985 * or when it is being cancelled. 986 */ 987 static inline bool queuing_blocked(struct kthread_worker *worker, 988 struct kthread_work *work) 989 { 990 lockdep_assert_held(&worker->lock); 991 992 return !list_empty(&work->node) || work->canceling; 993 } 994 995 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 996 struct kthread_work *work) 997 { 998 lockdep_assert_held(&worker->lock); 999 WARN_ON_ONCE(!list_empty(&work->node)); 1000 /* Do not use a work with >1 worker, see kthread_queue_work() */ 1001 WARN_ON_ONCE(work->worker && work->worker != worker); 1002 } 1003 1004 /* insert @work before @pos in @worker */ 1005 static void kthread_insert_work(struct kthread_worker *worker, 1006 struct kthread_work *work, 1007 struct list_head *pos) 1008 { 1009 kthread_insert_work_sanity_check(worker, work); 1010 1011 trace_sched_kthread_work_queue_work(worker, work); 1012 1013 list_add_tail(&work->node, pos); 1014 work->worker = worker; 1015 if (!worker->current_work && likely(worker->task)) 1016 wake_up_process(worker->task); 1017 } 1018 1019 /** 1020 * kthread_queue_work - queue a kthread_work 1021 * @worker: target kthread_worker 1022 * @work: kthread_work to queue 1023 * 1024 * Queue @work to work processor @task for async execution. @task 1025 * must have been created with kthread_worker_create(). Returns %true 1026 * if @work was successfully queued, %false if it was already pending. 1027 * 1028 * Reinitialize the work if it needs to be used by another worker. 1029 * For example, when the worker was stopped and started again. 1030 */ 1031 bool kthread_queue_work(struct kthread_worker *worker, 1032 struct kthread_work *work) 1033 { 1034 bool ret = false; 1035 unsigned long flags; 1036 1037 raw_spin_lock_irqsave(&worker->lock, flags); 1038 if (!queuing_blocked(worker, work)) { 1039 kthread_insert_work(worker, work, &worker->work_list); 1040 ret = true; 1041 } 1042 raw_spin_unlock_irqrestore(&worker->lock, flags); 1043 return ret; 1044 } 1045 EXPORT_SYMBOL_GPL(kthread_queue_work); 1046 1047 /** 1048 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1049 * delayed work when the timer expires. 1050 * @t: pointer to the expired timer 1051 * 1052 * The format of the function is defined by struct timer_list. 1053 * It should have been called from irqsafe timer with irq already off. 1054 */ 1055 void kthread_delayed_work_timer_fn(struct timer_list *t) 1056 { 1057 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 1058 struct kthread_work *work = &dwork->work; 1059 struct kthread_worker *worker = work->worker; 1060 unsigned long flags; 1061 1062 /* 1063 * This might happen when a pending work is reinitialized. 1064 * It means that it is used a wrong way. 1065 */ 1066 if (WARN_ON_ONCE(!worker)) 1067 return; 1068 1069 raw_spin_lock_irqsave(&worker->lock, flags); 1070 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1071 WARN_ON_ONCE(work->worker != worker); 1072 1073 /* Move the work from worker->delayed_work_list. */ 1074 WARN_ON_ONCE(list_empty(&work->node)); 1075 list_del_init(&work->node); 1076 if (!work->canceling) 1077 kthread_insert_work(worker, work, &worker->work_list); 1078 1079 raw_spin_unlock_irqrestore(&worker->lock, flags); 1080 } 1081 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1082 1083 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1084 struct kthread_delayed_work *dwork, 1085 unsigned long delay) 1086 { 1087 struct timer_list *timer = &dwork->timer; 1088 struct kthread_work *work = &dwork->work; 1089 1090 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1091 1092 /* 1093 * If @delay is 0, queue @dwork->work immediately. This is for 1094 * both optimization and correctness. The earliest @timer can 1095 * expire is on the closest next tick and delayed_work users depend 1096 * on that there's no such delay when @delay is 0. 1097 */ 1098 if (!delay) { 1099 kthread_insert_work(worker, work, &worker->work_list); 1100 return; 1101 } 1102 1103 /* Be paranoid and try to detect possible races already now. */ 1104 kthread_insert_work_sanity_check(worker, work); 1105 1106 list_add(&work->node, &worker->delayed_work_list); 1107 work->worker = worker; 1108 timer->expires = jiffies + delay; 1109 add_timer(timer); 1110 } 1111 1112 /** 1113 * kthread_queue_delayed_work - queue the associated kthread work 1114 * after a delay. 1115 * @worker: target kthread_worker 1116 * @dwork: kthread_delayed_work to queue 1117 * @delay: number of jiffies to wait before queuing 1118 * 1119 * If the work has not been pending it starts a timer that will queue 1120 * the work after the given @delay. If @delay is zero, it queues the 1121 * work immediately. 1122 * 1123 * Return: %false if the @work has already been pending. It means that 1124 * either the timer was running or the work was queued. It returns %true 1125 * otherwise. 1126 */ 1127 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1128 struct kthread_delayed_work *dwork, 1129 unsigned long delay) 1130 { 1131 struct kthread_work *work = &dwork->work; 1132 unsigned long flags; 1133 bool ret = false; 1134 1135 raw_spin_lock_irqsave(&worker->lock, flags); 1136 1137 if (!queuing_blocked(worker, work)) { 1138 __kthread_queue_delayed_work(worker, dwork, delay); 1139 ret = true; 1140 } 1141 1142 raw_spin_unlock_irqrestore(&worker->lock, flags); 1143 return ret; 1144 } 1145 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1146 1147 struct kthread_flush_work { 1148 struct kthread_work work; 1149 struct completion done; 1150 }; 1151 1152 static void kthread_flush_work_fn(struct kthread_work *work) 1153 { 1154 struct kthread_flush_work *fwork = 1155 container_of(work, struct kthread_flush_work, work); 1156 complete(&fwork->done); 1157 } 1158 1159 /** 1160 * kthread_flush_work - flush a kthread_work 1161 * @work: work to flush 1162 * 1163 * If @work is queued or executing, wait for it to finish execution. 1164 */ 1165 void kthread_flush_work(struct kthread_work *work) 1166 { 1167 struct kthread_flush_work fwork = { 1168 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1169 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1170 }; 1171 struct kthread_worker *worker; 1172 bool noop = false; 1173 1174 worker = work->worker; 1175 if (!worker) 1176 return; 1177 1178 raw_spin_lock_irq(&worker->lock); 1179 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1180 WARN_ON_ONCE(work->worker != worker); 1181 1182 if (!list_empty(&work->node)) 1183 kthread_insert_work(worker, &fwork.work, work->node.next); 1184 else if (worker->current_work == work) 1185 kthread_insert_work(worker, &fwork.work, 1186 worker->work_list.next); 1187 else 1188 noop = true; 1189 1190 raw_spin_unlock_irq(&worker->lock); 1191 1192 if (!noop) 1193 wait_for_completion(&fwork.done); 1194 } 1195 EXPORT_SYMBOL_GPL(kthread_flush_work); 1196 1197 /* 1198 * Make sure that the timer is neither set nor running and could 1199 * not manipulate the work list_head any longer. 1200 * 1201 * The function is called under worker->lock. The lock is temporary 1202 * released but the timer can't be set again in the meantime. 1203 */ 1204 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1205 unsigned long *flags) 1206 { 1207 struct kthread_delayed_work *dwork = 1208 container_of(work, struct kthread_delayed_work, work); 1209 struct kthread_worker *worker = work->worker; 1210 1211 /* 1212 * del_timer_sync() must be called to make sure that the timer 1213 * callback is not running. The lock must be temporary released 1214 * to avoid a deadlock with the callback. In the meantime, 1215 * any queuing is blocked by setting the canceling counter. 1216 */ 1217 work->canceling++; 1218 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1219 del_timer_sync(&dwork->timer); 1220 raw_spin_lock_irqsave(&worker->lock, *flags); 1221 work->canceling--; 1222 } 1223 1224 /* 1225 * This function removes the work from the worker queue. 1226 * 1227 * It is called under worker->lock. The caller must make sure that 1228 * the timer used by delayed work is not running, e.g. by calling 1229 * kthread_cancel_delayed_work_timer(). 1230 * 1231 * The work might still be in use when this function finishes. See the 1232 * current_work proceed by the worker. 1233 * 1234 * Return: %true if @work was pending and successfully canceled, 1235 * %false if @work was not pending 1236 */ 1237 static bool __kthread_cancel_work(struct kthread_work *work) 1238 { 1239 /* 1240 * Try to remove the work from a worker list. It might either 1241 * be from worker->work_list or from worker->delayed_work_list. 1242 */ 1243 if (!list_empty(&work->node)) { 1244 list_del_init(&work->node); 1245 return true; 1246 } 1247 1248 return false; 1249 } 1250 1251 /** 1252 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1253 * @worker: kthread worker to use 1254 * @dwork: kthread delayed work to queue 1255 * @delay: number of jiffies to wait before queuing 1256 * 1257 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1258 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1259 * @work is guaranteed to be queued immediately. 1260 * 1261 * Return: %false if @dwork was idle and queued, %true otherwise. 1262 * 1263 * A special case is when the work is being canceled in parallel. 1264 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1265 * or yet another kthread_mod_delayed_work() call. We let the other command 1266 * win and return %true here. The return value can be used for reference 1267 * counting and the number of queued works stays the same. Anyway, the caller 1268 * is supposed to synchronize these operations a reasonable way. 1269 * 1270 * This function is safe to call from any context including IRQ handler. 1271 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1272 * for details. 1273 */ 1274 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1275 struct kthread_delayed_work *dwork, 1276 unsigned long delay) 1277 { 1278 struct kthread_work *work = &dwork->work; 1279 unsigned long flags; 1280 int ret; 1281 1282 raw_spin_lock_irqsave(&worker->lock, flags); 1283 1284 /* Do not bother with canceling when never queued. */ 1285 if (!work->worker) { 1286 ret = false; 1287 goto fast_queue; 1288 } 1289 1290 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1291 WARN_ON_ONCE(work->worker != worker); 1292 1293 /* 1294 * Temporary cancel the work but do not fight with another command 1295 * that is canceling the work as well. 1296 * 1297 * It is a bit tricky because of possible races with another 1298 * mod_delayed_work() and cancel_delayed_work() callers. 1299 * 1300 * The timer must be canceled first because worker->lock is released 1301 * when doing so. But the work can be removed from the queue (list) 1302 * only when it can be queued again so that the return value can 1303 * be used for reference counting. 1304 */ 1305 kthread_cancel_delayed_work_timer(work, &flags); 1306 if (work->canceling) { 1307 /* The number of works in the queue does not change. */ 1308 ret = true; 1309 goto out; 1310 } 1311 ret = __kthread_cancel_work(work); 1312 1313 fast_queue: 1314 __kthread_queue_delayed_work(worker, dwork, delay); 1315 out: 1316 raw_spin_unlock_irqrestore(&worker->lock, flags); 1317 return ret; 1318 } 1319 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1320 1321 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1322 { 1323 struct kthread_worker *worker = work->worker; 1324 unsigned long flags; 1325 int ret = false; 1326 1327 if (!worker) 1328 goto out; 1329 1330 raw_spin_lock_irqsave(&worker->lock, flags); 1331 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1332 WARN_ON_ONCE(work->worker != worker); 1333 1334 if (is_dwork) 1335 kthread_cancel_delayed_work_timer(work, &flags); 1336 1337 ret = __kthread_cancel_work(work); 1338 1339 if (worker->current_work != work) 1340 goto out_fast; 1341 1342 /* 1343 * The work is in progress and we need to wait with the lock released. 1344 * In the meantime, block any queuing by setting the canceling counter. 1345 */ 1346 work->canceling++; 1347 raw_spin_unlock_irqrestore(&worker->lock, flags); 1348 kthread_flush_work(work); 1349 raw_spin_lock_irqsave(&worker->lock, flags); 1350 work->canceling--; 1351 1352 out_fast: 1353 raw_spin_unlock_irqrestore(&worker->lock, flags); 1354 out: 1355 return ret; 1356 } 1357 1358 /** 1359 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1360 * @work: the kthread work to cancel 1361 * 1362 * Cancel @work and wait for its execution to finish. This function 1363 * can be used even if the work re-queues itself. On return from this 1364 * function, @work is guaranteed to be not pending or executing on any CPU. 1365 * 1366 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1367 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1368 * 1369 * The caller must ensure that the worker on which @work was last 1370 * queued can't be destroyed before this function returns. 1371 * 1372 * Return: %true if @work was pending, %false otherwise. 1373 */ 1374 bool kthread_cancel_work_sync(struct kthread_work *work) 1375 { 1376 return __kthread_cancel_work_sync(work, false); 1377 } 1378 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1379 1380 /** 1381 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1382 * wait for it to finish. 1383 * @dwork: the kthread delayed work to cancel 1384 * 1385 * This is kthread_cancel_work_sync() for delayed works. 1386 * 1387 * Return: %true if @dwork was pending, %false otherwise. 1388 */ 1389 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1390 { 1391 return __kthread_cancel_work_sync(&dwork->work, true); 1392 } 1393 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1394 1395 /** 1396 * kthread_flush_worker - flush all current works on a kthread_worker 1397 * @worker: worker to flush 1398 * 1399 * Wait until all currently executing or pending works on @worker are 1400 * finished. 1401 */ 1402 void kthread_flush_worker(struct kthread_worker *worker) 1403 { 1404 struct kthread_flush_work fwork = { 1405 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1406 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1407 }; 1408 1409 kthread_queue_work(worker, &fwork.work); 1410 wait_for_completion(&fwork.done); 1411 } 1412 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1413 1414 /** 1415 * kthread_destroy_worker - destroy a kthread worker 1416 * @worker: worker to be destroyed 1417 * 1418 * Flush and destroy @worker. The simple flush is enough because the kthread 1419 * worker API is used only in trivial scenarios. There are no multi-step state 1420 * machines needed. 1421 * 1422 * Note that this function is not responsible for handling delayed work, so 1423 * caller should be responsible for queuing or canceling all delayed work items 1424 * before invoke this function. 1425 */ 1426 void kthread_destroy_worker(struct kthread_worker *worker) 1427 { 1428 struct task_struct *task; 1429 1430 task = worker->task; 1431 if (WARN_ON(!task)) 1432 return; 1433 1434 kthread_flush_worker(worker); 1435 kthread_stop(task); 1436 WARN_ON(!list_empty(&worker->delayed_work_list)); 1437 WARN_ON(!list_empty(&worker->work_list)); 1438 kfree(worker); 1439 } 1440 EXPORT_SYMBOL(kthread_destroy_worker); 1441 1442 /** 1443 * kthread_use_mm - make the calling kthread operate on an address space 1444 * @mm: address space to operate on 1445 */ 1446 void kthread_use_mm(struct mm_struct *mm) 1447 { 1448 struct mm_struct *active_mm; 1449 struct task_struct *tsk = current; 1450 1451 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1452 WARN_ON_ONCE(tsk->mm); 1453 1454 /* 1455 * It is possible for mm to be the same as tsk->active_mm, but 1456 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1457 * because these references are not equivalent. 1458 */ 1459 mmgrab(mm); 1460 1461 task_lock(tsk); 1462 /* Hold off tlb flush IPIs while switching mm's */ 1463 local_irq_disable(); 1464 active_mm = tsk->active_mm; 1465 tsk->active_mm = mm; 1466 tsk->mm = mm; 1467 membarrier_update_current_mm(mm); 1468 switch_mm_irqs_off(active_mm, mm, tsk); 1469 local_irq_enable(); 1470 task_unlock(tsk); 1471 #ifdef finish_arch_post_lock_switch 1472 finish_arch_post_lock_switch(); 1473 #endif 1474 1475 /* 1476 * When a kthread starts operating on an address space, the loop 1477 * in membarrier_{private,global}_expedited() may not observe 1478 * that tsk->mm, and not issue an IPI. Membarrier requires a 1479 * memory barrier after storing to tsk->mm, before accessing 1480 * user-space memory. A full memory barrier for membarrier 1481 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1482 * mmdrop_lazy_tlb(). 1483 */ 1484 mmdrop_lazy_tlb(active_mm); 1485 } 1486 EXPORT_SYMBOL_GPL(kthread_use_mm); 1487 1488 /** 1489 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1490 * @mm: address space to operate on 1491 */ 1492 void kthread_unuse_mm(struct mm_struct *mm) 1493 { 1494 struct task_struct *tsk = current; 1495 1496 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1497 WARN_ON_ONCE(!tsk->mm); 1498 1499 task_lock(tsk); 1500 /* 1501 * When a kthread stops operating on an address space, the loop 1502 * in membarrier_{private,global}_expedited() may not observe 1503 * that tsk->mm, and not issue an IPI. Membarrier requires a 1504 * memory barrier after accessing user-space memory, before 1505 * clearing tsk->mm. 1506 */ 1507 smp_mb__after_spinlock(); 1508 local_irq_disable(); 1509 tsk->mm = NULL; 1510 membarrier_update_current_mm(NULL); 1511 mmgrab_lazy_tlb(mm); 1512 /* active_mm is still 'mm' */ 1513 enter_lazy_tlb(mm, tsk); 1514 local_irq_enable(); 1515 task_unlock(tsk); 1516 1517 mmdrop(mm); 1518 } 1519 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1520 1521 #ifdef CONFIG_BLK_CGROUP 1522 /** 1523 * kthread_associate_blkcg - associate blkcg to current kthread 1524 * @css: the cgroup info 1525 * 1526 * Current thread must be a kthread. The thread is running jobs on behalf of 1527 * other threads. In some cases, we expect the jobs attach cgroup info of 1528 * original threads instead of that of current thread. This function stores 1529 * original thread's cgroup info in current kthread context for later 1530 * retrieval. 1531 */ 1532 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1533 { 1534 struct kthread *kthread; 1535 1536 if (!(current->flags & PF_KTHREAD)) 1537 return; 1538 kthread = to_kthread(current); 1539 if (!kthread) 1540 return; 1541 1542 if (kthread->blkcg_css) { 1543 css_put(kthread->blkcg_css); 1544 kthread->blkcg_css = NULL; 1545 } 1546 if (css) { 1547 css_get(css); 1548 kthread->blkcg_css = css; 1549 } 1550 } 1551 EXPORT_SYMBOL(kthread_associate_blkcg); 1552 1553 /** 1554 * kthread_blkcg - get associated blkcg css of current kthread 1555 * 1556 * Current thread must be a kthread. 1557 */ 1558 struct cgroup_subsys_state *kthread_blkcg(void) 1559 { 1560 struct kthread *kthread; 1561 1562 if (current->flags & PF_KTHREAD) { 1563 kthread = to_kthread(current); 1564 if (kthread) 1565 return kthread->blkcg_css; 1566 } 1567 return NULL; 1568 } 1569 #endif 1570