xref: /linux-6.15/kernel/kexec_core.c (revision caeb8ba5)
140b0b3f8SThomas Gleixner // SPDX-License-Identifier: GPL-2.0-only
22965faa5SDave Young /*
32965faa5SDave Young  * kexec.c - kexec system call core code.
42965faa5SDave Young  * Copyright (C) 2002-2004 Eric Biederman  <[email protected]>
52965faa5SDave Young  */
62965faa5SDave Young 
7de90a6bcSMinfei Huang #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
82965faa5SDave Young 
9400031e0SDavid Vernet #include <linux/btf.h>
102965faa5SDave Young #include <linux/capability.h>
112965faa5SDave Young #include <linux/mm.h>
122965faa5SDave Young #include <linux/file.h>
132965faa5SDave Young #include <linux/slab.h>
142965faa5SDave Young #include <linux/fs.h>
152965faa5SDave Young #include <linux/kexec.h>
162965faa5SDave Young #include <linux/mutex.h>
172965faa5SDave Young #include <linux/list.h>
182965faa5SDave Young #include <linux/highmem.h>
192965faa5SDave Young #include <linux/syscalls.h>
202965faa5SDave Young #include <linux/reboot.h>
212965faa5SDave Young #include <linux/ioport.h>
222965faa5SDave Young #include <linux/hardirq.h>
232965faa5SDave Young #include <linux/elf.h>
242965faa5SDave Young #include <linux/elfcore.h>
252965faa5SDave Young #include <linux/utsname.h>
262965faa5SDave Young #include <linux/numa.h>
272965faa5SDave Young #include <linux/suspend.h>
282965faa5SDave Young #include <linux/device.h>
292965faa5SDave Young #include <linux/freezer.h>
30f39650deSAndy Shevchenko #include <linux/panic_notifier.h>
312965faa5SDave Young #include <linux/pm.h>
322965faa5SDave Young #include <linux/cpu.h>
332965faa5SDave Young #include <linux/uaccess.h>
342965faa5SDave Young #include <linux/io.h>
352965faa5SDave Young #include <linux/console.h>
362965faa5SDave Young #include <linux/vmalloc.h>
372965faa5SDave Young #include <linux/swap.h>
382965faa5SDave Young #include <linux/syscore_ops.h>
392965faa5SDave Young #include <linux/compiler.h>
402965faa5SDave Young #include <linux/hugetlb.h>
4100089c04SJulien Thierry #include <linux/objtool.h>
42b2075dbbSPavel Tatashin #include <linux/kmsg_dump.h>
432965faa5SDave Young 
442965faa5SDave Young #include <asm/page.h>
452965faa5SDave Young #include <asm/sections.h>
462965faa5SDave Young 
472965faa5SDave Young #include <crypto/hash.h>
482965faa5SDave Young #include "kexec_internal.h"
492965faa5SDave Young 
5005c62574SValentin Schneider atomic_t __kexec_lock = ATOMIC_INIT(0);
512965faa5SDave Young 
522965faa5SDave Young /* Flag to indicate we are going to kexec a new kernel */
532965faa5SDave Young bool kexec_in_progress = false;
542965faa5SDave Young 
55cbc2fe9dSBaoquan He bool kexec_file_dbg_print;
56cbc2fe9dSBaoquan He 
572965faa5SDave Young /*
582965faa5SDave Young  * When kexec transitions to the new kernel there is a one-to-one
592965faa5SDave Young  * mapping between physical and virtual addresses.  On processors
602965faa5SDave Young  * where you can disable the MMU this is trivial, and easy.  For
612965faa5SDave Young  * others it is still a simple predictable page table to setup.
622965faa5SDave Young  *
632965faa5SDave Young  * In that environment kexec copies the new kernel to its final
642965faa5SDave Young  * resting place.  This means I can only support memory whose
652965faa5SDave Young  * physical address can fit in an unsigned long.  In particular
662965faa5SDave Young  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
672965faa5SDave Young  * If the assembly stub has more restrictive requirements
682965faa5SDave Young  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
692965faa5SDave Young  * defined more restrictively in <asm/kexec.h>.
702965faa5SDave Young  *
712965faa5SDave Young  * The code for the transition from the current kernel to the
727b7b8a2cSRandy Dunlap  * new kernel is placed in the control_code_buffer, whose size
732965faa5SDave Young  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
742965faa5SDave Young  * page of memory is necessary, but some architectures require more.
752965faa5SDave Young  * Because this memory must be identity mapped in the transition from
762965faa5SDave Young  * virtual to physical addresses it must live in the range
772965faa5SDave Young  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
782965faa5SDave Young  * modifiable.
792965faa5SDave Young  *
802965faa5SDave Young  * The assembly stub in the control code buffer is passed a linked list
812965faa5SDave Young  * of descriptor pages detailing the source pages of the new kernel,
822965faa5SDave Young  * and the destination addresses of those source pages.  As this data
832965faa5SDave Young  * structure is not used in the context of the current OS, it must
842965faa5SDave Young  * be self-contained.
852965faa5SDave Young  *
862965faa5SDave Young  * The code has been made to work with highmem pages and will use a
872965faa5SDave Young  * destination page in its final resting place (if it happens
882965faa5SDave Young  * to allocate it).  The end product of this is that most of the
892965faa5SDave Young  * physical address space, and most of RAM can be used.
902965faa5SDave Young  *
912965faa5SDave Young  * Future directions include:
922965faa5SDave Young  *  - allocating a page table with the control code buffer identity
932965faa5SDave Young  *    mapped, to simplify machine_kexec and make kexec_on_panic more
942965faa5SDave Young  *    reliable.
952965faa5SDave Young  */
962965faa5SDave Young 
972965faa5SDave Young /*
982965faa5SDave Young  * KIMAGE_NO_DEST is an impossible destination address..., for
992965faa5SDave Young  * allocating pages whose destination address we do not care about.
1002965faa5SDave Young  */
1012965faa5SDave Young #define KIMAGE_NO_DEST (-1UL)
1021730f146Szhong jiang #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
1032965faa5SDave Young 
1042965faa5SDave Young static struct page *kimage_alloc_page(struct kimage *image,
1052965faa5SDave Young 				       gfp_t gfp_mask,
1062965faa5SDave Young 				       unsigned long dest);
1072965faa5SDave Young 
sanity_check_segment_list(struct kimage * image)1082965faa5SDave Young int sanity_check_segment_list(struct kimage *image)
1092965faa5SDave Young {
1104caf9615SMinfei Huang 	int i;
1112965faa5SDave Young 	unsigned long nr_segments = image->nr_segments;
1121730f146Szhong jiang 	unsigned long total_pages = 0;
113ca79b0c2SArun KS 	unsigned long nr_pages = totalram_pages();
1142965faa5SDave Young 
1152965faa5SDave Young 	/*
1162965faa5SDave Young 	 * Verify we have good destination addresses.  The caller is
1172965faa5SDave Young 	 * responsible for making certain we don't attempt to load
1182965faa5SDave Young 	 * the new image into invalid or reserved areas of RAM.  This
1192965faa5SDave Young 	 * just verifies it is an address we can use.
1202965faa5SDave Young 	 *
1212965faa5SDave Young 	 * Since the kernel does everything in page size chunks ensure
1222965faa5SDave Young 	 * the destination addresses are page aligned.  Too many
1232965faa5SDave Young 	 * special cases crop of when we don't do this.  The most
1242965faa5SDave Young 	 * insidious is getting overlapping destination addresses
1252965faa5SDave Young 	 * simply because addresses are changed to page size
1262965faa5SDave Young 	 * granularity.
1272965faa5SDave Young 	 */
1282965faa5SDave Young 	for (i = 0; i < nr_segments; i++) {
1292965faa5SDave Young 		unsigned long mstart, mend;
1302965faa5SDave Young 
1312965faa5SDave Young 		mstart = image->segment[i].mem;
1322965faa5SDave Young 		mend   = mstart + image->segment[i].memsz;
133465d3777SRussell King 		if (mstart > mend)
134465d3777SRussell King 			return -EADDRNOTAVAIL;
1352965faa5SDave Young 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
1364caf9615SMinfei Huang 			return -EADDRNOTAVAIL;
1372965faa5SDave Young 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
1384caf9615SMinfei Huang 			return -EADDRNOTAVAIL;
1392965faa5SDave Young 	}
1402965faa5SDave Young 
1412965faa5SDave Young 	/* Verify our destination addresses do not overlap.
1422965faa5SDave Young 	 * If we alloed overlapping destination addresses
1432965faa5SDave Young 	 * through very weird things can happen with no
1442965faa5SDave Young 	 * easy explanation as one segment stops on another.
1452965faa5SDave Young 	 */
1462965faa5SDave Young 	for (i = 0; i < nr_segments; i++) {
1472965faa5SDave Young 		unsigned long mstart, mend;
1482965faa5SDave Young 		unsigned long j;
1492965faa5SDave Young 
1502965faa5SDave Young 		mstart = image->segment[i].mem;
1512965faa5SDave Young 		mend   = mstart + image->segment[i].memsz;
1522965faa5SDave Young 		for (j = 0; j < i; j++) {
1532965faa5SDave Young 			unsigned long pstart, pend;
1542965faa5SDave Young 
1552965faa5SDave Young 			pstart = image->segment[j].mem;
1562965faa5SDave Young 			pend   = pstart + image->segment[j].memsz;
1572965faa5SDave Young 			/* Do the segments overlap ? */
1582965faa5SDave Young 			if ((mend > pstart) && (mstart < pend))
1594caf9615SMinfei Huang 				return -EINVAL;
1602965faa5SDave Young 		}
1612965faa5SDave Young 	}
1622965faa5SDave Young 
1632965faa5SDave Young 	/* Ensure our buffer sizes are strictly less than
1642965faa5SDave Young 	 * our memory sizes.  This should always be the case,
1652965faa5SDave Young 	 * and it is easier to check up front than to be surprised
1662965faa5SDave Young 	 * later on.
1672965faa5SDave Young 	 */
1682965faa5SDave Young 	for (i = 0; i < nr_segments; i++) {
1692965faa5SDave Young 		if (image->segment[i].bufsz > image->segment[i].memsz)
1704caf9615SMinfei Huang 			return -EINVAL;
1712965faa5SDave Young 	}
1722965faa5SDave Young 
1732965faa5SDave Young 	/*
1741730f146Szhong jiang 	 * Verify that no more than half of memory will be consumed. If the
1751730f146Szhong jiang 	 * request from userspace is too large, a large amount of time will be
1761730f146Szhong jiang 	 * wasted allocating pages, which can cause a soft lockup.
1771730f146Szhong jiang 	 */
1781730f146Szhong jiang 	for (i = 0; i < nr_segments; i++) {
1793d6357deSArun KS 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
1801730f146Szhong jiang 			return -EINVAL;
1811730f146Szhong jiang 
1821730f146Szhong jiang 		total_pages += PAGE_COUNT(image->segment[i].memsz);
1831730f146Szhong jiang 	}
1841730f146Szhong jiang 
1853d6357deSArun KS 	if (total_pages > nr_pages / 2)
1861730f146Szhong jiang 		return -EINVAL;
1871730f146Szhong jiang 
18802aff848SBaoquan He #ifdef CONFIG_CRASH_DUMP
1891730f146Szhong jiang 	/*
1902965faa5SDave Young 	 * Verify we have good destination addresses.  Normally
1912965faa5SDave Young 	 * the caller is responsible for making certain we don't
1922965faa5SDave Young 	 * attempt to load the new image into invalid or reserved
1932965faa5SDave Young 	 * areas of RAM.  But crash kernels are preloaded into a
1942965faa5SDave Young 	 * reserved area of ram.  We must ensure the addresses
1952965faa5SDave Young 	 * are in the reserved area otherwise preloading the
1962965faa5SDave Young 	 * kernel could corrupt things.
1972965faa5SDave Young 	 */
1982965faa5SDave Young 
1992965faa5SDave Young 	if (image->type == KEXEC_TYPE_CRASH) {
2002965faa5SDave Young 		for (i = 0; i < nr_segments; i++) {
2012965faa5SDave Young 			unsigned long mstart, mend;
2022965faa5SDave Young 
2032965faa5SDave Young 			mstart = image->segment[i].mem;
2042965faa5SDave Young 			mend = mstart + image->segment[i].memsz - 1;
2052965faa5SDave Young 			/* Ensure we are within the crash kernel limits */
20643546d86SRussell King 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
20743546d86SRussell King 			    (mend > phys_to_boot_phys(crashk_res.end)))
2084caf9615SMinfei Huang 				return -EADDRNOTAVAIL;
2092965faa5SDave Young 		}
2102965faa5SDave Young 	}
21102aff848SBaoquan He #endif
2122965faa5SDave Young 
213*caeb8ba5SYan Zhao 	/*
214*caeb8ba5SYan Zhao 	 * The destination addresses are searched from system RAM rather than
215*caeb8ba5SYan Zhao 	 * being allocated from the buddy allocator, so they are not guaranteed
216*caeb8ba5SYan Zhao 	 * to be accepted by the current kernel.  Accept the destination
217*caeb8ba5SYan Zhao 	 * addresses before kexec swaps their content with the segments' source
218*caeb8ba5SYan Zhao 	 * pages to avoid accessing memory before it is accepted.
219*caeb8ba5SYan Zhao 	 */
220*caeb8ba5SYan Zhao 	for (i = 0; i < nr_segments; i++)
221*caeb8ba5SYan Zhao 		accept_memory(image->segment[i].mem, image->segment[i].memsz);
222*caeb8ba5SYan Zhao 
2232965faa5SDave Young 	return 0;
2242965faa5SDave Young }
2252965faa5SDave Young 
do_kimage_alloc_init(void)2262965faa5SDave Young struct kimage *do_kimage_alloc_init(void)
2272965faa5SDave Young {
2282965faa5SDave Young 	struct kimage *image;
2292965faa5SDave Young 
2302965faa5SDave Young 	/* Allocate a controlling structure */
2312965faa5SDave Young 	image = kzalloc(sizeof(*image), GFP_KERNEL);
2322965faa5SDave Young 	if (!image)
2332965faa5SDave Young 		return NULL;
2342965faa5SDave Young 
2352965faa5SDave Young 	image->head = 0;
2362965faa5SDave Young 	image->entry = &image->head;
2372965faa5SDave Young 	image->last_entry = &image->head;
2382965faa5SDave Young 	image->control_page = ~0; /* By default this does not apply */
2392965faa5SDave Young 	image->type = KEXEC_TYPE_DEFAULT;
2402965faa5SDave Young 
2412965faa5SDave Young 	/* Initialize the list of control pages */
2422965faa5SDave Young 	INIT_LIST_HEAD(&image->control_pages);
2432965faa5SDave Young 
2442965faa5SDave Young 	/* Initialize the list of destination pages */
2452965faa5SDave Young 	INIT_LIST_HEAD(&image->dest_pages);
2462965faa5SDave Young 
2472965faa5SDave Young 	/* Initialize the list of unusable pages */
2482965faa5SDave Young 	INIT_LIST_HEAD(&image->unusable_pages);
2492965faa5SDave Young 
25024726275SEric DeVolder #ifdef CONFIG_CRASH_HOTPLUG
25124726275SEric DeVolder 	image->hp_action = KEXEC_CRASH_HP_NONE;
25224726275SEric DeVolder 	image->elfcorehdr_index = -1;
25324726275SEric DeVolder 	image->elfcorehdr_updated = false;
25424726275SEric DeVolder #endif
25524726275SEric DeVolder 
2562965faa5SDave Young 	return image;
2572965faa5SDave Young }
2582965faa5SDave Young 
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)2592965faa5SDave Young int kimage_is_destination_range(struct kimage *image,
2602965faa5SDave Young 					unsigned long start,
2612965faa5SDave Young 					unsigned long end)
2622965faa5SDave Young {
2632965faa5SDave Young 	unsigned long i;
2642965faa5SDave Young 
2652965faa5SDave Young 	for (i = 0; i < image->nr_segments; i++) {
2662965faa5SDave Young 		unsigned long mstart, mend;
2672965faa5SDave Young 
2682965faa5SDave Young 		mstart = image->segment[i].mem;
269816d334aSYuntao Wang 		mend = mstart + image->segment[i].memsz - 1;
270816d334aSYuntao Wang 		if ((end >= mstart) && (start <= mend))
2712965faa5SDave Young 			return 1;
2722965faa5SDave Young 	}
2732965faa5SDave Young 
2742965faa5SDave Young 	return 0;
2752965faa5SDave Young }
2762965faa5SDave Young 
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)2772965faa5SDave Young static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
2782965faa5SDave Young {
2792965faa5SDave Young 	struct page *pages;
2802965faa5SDave Young 
2817c3a6aedSTetsuo Handa 	if (fatal_signal_pending(current))
2827c3a6aedSTetsuo Handa 		return NULL;
283bba4ed01STom Lendacky 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
2842965faa5SDave Young 	if (pages) {
2852965faa5SDave Young 		unsigned int count, i;
2862965faa5SDave Young 
2872965faa5SDave Young 		pages->mapping = NULL;
2882965faa5SDave Young 		set_page_private(pages, order);
2892965faa5SDave Young 		count = 1 << order;
2902965faa5SDave Young 		for (i = 0; i < count; i++)
2912965faa5SDave Young 			SetPageReserved(pages + i);
292bba4ed01STom Lendacky 
293bba4ed01STom Lendacky 		arch_kexec_post_alloc_pages(page_address(pages), count,
294bba4ed01STom Lendacky 					    gfp_mask);
295bba4ed01STom Lendacky 
296bba4ed01STom Lendacky 		if (gfp_mask & __GFP_ZERO)
297bba4ed01STom Lendacky 			for (i = 0; i < count; i++)
298bba4ed01STom Lendacky 				clear_highpage(pages + i);
2992965faa5SDave Young 	}
3002965faa5SDave Young 
3012965faa5SDave Young 	return pages;
3022965faa5SDave Young }
3032965faa5SDave Young 
kimage_free_pages(struct page * page)3042965faa5SDave Young static void kimage_free_pages(struct page *page)
3052965faa5SDave Young {
3062965faa5SDave Young 	unsigned int order, count, i;
3072965faa5SDave Young 
3082965faa5SDave Young 	order = page_private(page);
3092965faa5SDave Young 	count = 1 << order;
310bba4ed01STom Lendacky 
311bba4ed01STom Lendacky 	arch_kexec_pre_free_pages(page_address(page), count);
312bba4ed01STom Lendacky 
3132965faa5SDave Young 	for (i = 0; i < count; i++)
3142965faa5SDave Young 		ClearPageReserved(page + i);
3152965faa5SDave Young 	__free_pages(page, order);
3162965faa5SDave Young }
3172965faa5SDave Young 
kimage_free_page_list(struct list_head * list)3182965faa5SDave Young void kimage_free_page_list(struct list_head *list)
3192965faa5SDave Young {
3202b24692bSGeliang Tang 	struct page *page, *next;
3212965faa5SDave Young 
3222b24692bSGeliang Tang 	list_for_each_entry_safe(page, next, list, lru) {
3232965faa5SDave Young 		list_del(&page->lru);
3242965faa5SDave Young 		kimage_free_pages(page);
3252965faa5SDave Young 	}
3262965faa5SDave Young }
3272965faa5SDave Young 
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)3282965faa5SDave Young static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
3292965faa5SDave Young 							unsigned int order)
3302965faa5SDave Young {
3312965faa5SDave Young 	/* Control pages are special, they are the intermediaries
3322965faa5SDave Young 	 * that are needed while we copy the rest of the pages
3332965faa5SDave Young 	 * to their final resting place.  As such they must
3342965faa5SDave Young 	 * not conflict with either the destination addresses
3352965faa5SDave Young 	 * or memory the kernel is already using.
3362965faa5SDave Young 	 *
3372965faa5SDave Young 	 * The only case where we really need more than one of
3382965faa5SDave Young 	 * these are for architectures where we cannot disable
3392965faa5SDave Young 	 * the MMU and must instead generate an identity mapped
3402965faa5SDave Young 	 * page table for all of the memory.
3412965faa5SDave Young 	 *
3422965faa5SDave Young 	 * At worst this runs in O(N) of the image size.
3432965faa5SDave Young 	 */
3442965faa5SDave Young 	struct list_head extra_pages;
3452965faa5SDave Young 	struct page *pages;
3462965faa5SDave Young 	unsigned int count;
3472965faa5SDave Young 
3482965faa5SDave Young 	count = 1 << order;
3492965faa5SDave Young 	INIT_LIST_HEAD(&extra_pages);
3502965faa5SDave Young 
3512965faa5SDave Young 	/* Loop while I can allocate a page and the page allocated
3522965faa5SDave Young 	 * is a destination page.
3532965faa5SDave Young 	 */
3542965faa5SDave Young 	do {
3552965faa5SDave Young 		unsigned long pfn, epfn, addr, eaddr;
3562965faa5SDave Young 
3572965faa5SDave Young 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
3582965faa5SDave Young 		if (!pages)
3592965faa5SDave Young 			break;
36043546d86SRussell King 		pfn   = page_to_boot_pfn(pages);
3612965faa5SDave Young 		epfn  = pfn + count;
3622965faa5SDave Young 		addr  = pfn << PAGE_SHIFT;
363816d334aSYuntao Wang 		eaddr = (epfn << PAGE_SHIFT) - 1;
3642965faa5SDave Young 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
3652965faa5SDave Young 			      kimage_is_destination_range(image, addr, eaddr)) {
3662965faa5SDave Young 			list_add(&pages->lru, &extra_pages);
3672965faa5SDave Young 			pages = NULL;
3682965faa5SDave Young 		}
3692965faa5SDave Young 	} while (!pages);
3702965faa5SDave Young 
3712965faa5SDave Young 	if (pages) {
3722965faa5SDave Young 		/* Remember the allocated page... */
3732965faa5SDave Young 		list_add(&pages->lru, &image->control_pages);
3742965faa5SDave Young 
3752965faa5SDave Young 		/* Because the page is already in it's destination
3762965faa5SDave Young 		 * location we will never allocate another page at
3772965faa5SDave Young 		 * that address.  Therefore kimage_alloc_pages
3782965faa5SDave Young 		 * will not return it (again) and we don't need
3792965faa5SDave Young 		 * to give it an entry in image->segment[].
3802965faa5SDave Young 		 */
3812965faa5SDave Young 	}
3822965faa5SDave Young 	/* Deal with the destination pages I have inadvertently allocated.
3832965faa5SDave Young 	 *
3842965faa5SDave Young 	 * Ideally I would convert multi-page allocations into single
3852965faa5SDave Young 	 * page allocations, and add everything to image->dest_pages.
3862965faa5SDave Young 	 *
3872965faa5SDave Young 	 * For now it is simpler to just free the pages.
3882965faa5SDave Young 	 */
3892965faa5SDave Young 	kimage_free_page_list(&extra_pages);
3902965faa5SDave Young 
3912965faa5SDave Young 	return pages;
3922965faa5SDave Young }
3932965faa5SDave Young 
39402aff848SBaoquan He #ifdef CONFIG_CRASH_DUMP
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)3952965faa5SDave Young static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
3962965faa5SDave Young 						      unsigned int order)
3972965faa5SDave Young {
3982965faa5SDave Young 	/* Control pages are special, they are the intermediaries
3992965faa5SDave Young 	 * that are needed while we copy the rest of the pages
4002965faa5SDave Young 	 * to their final resting place.  As such they must
4012965faa5SDave Young 	 * not conflict with either the destination addresses
4022965faa5SDave Young 	 * or memory the kernel is already using.
4032965faa5SDave Young 	 *
4042965faa5SDave Young 	 * Control pages are also the only pags we must allocate
4052965faa5SDave Young 	 * when loading a crash kernel.  All of the other pages
4062965faa5SDave Young 	 * are specified by the segments and we just memcpy
4072965faa5SDave Young 	 * into them directly.
4082965faa5SDave Young 	 *
4092965faa5SDave Young 	 * The only case where we really need more than one of
4102965faa5SDave Young 	 * these are for architectures where we cannot disable
4112965faa5SDave Young 	 * the MMU and must instead generate an identity mapped
4122965faa5SDave Young 	 * page table for all of the memory.
4132965faa5SDave Young 	 *
4142965faa5SDave Young 	 * Given the low demand this implements a very simple
4152965faa5SDave Young 	 * allocator that finds the first hole of the appropriate
4162965faa5SDave Young 	 * size in the reserved memory region, and allocates all
4172965faa5SDave Young 	 * of the memory up to and including the hole.
4182965faa5SDave Young 	 */
4192965faa5SDave Young 	unsigned long hole_start, hole_end, size;
4202965faa5SDave Young 	struct page *pages;
4212965faa5SDave Young 
4222965faa5SDave Young 	pages = NULL;
4232965faa5SDave Young 	size = (1 << order) << PAGE_SHIFT;
424db6b6fb7SYuntao Wang 	hole_start = ALIGN(image->control_page, size);
4252965faa5SDave Young 	hole_end   = hole_start + size - 1;
4262965faa5SDave Young 	while (hole_end <= crashk_res.end) {
4272965faa5SDave Young 		unsigned long i;
4282965faa5SDave Young 
4298e53c073Szhong jiang 		cond_resched();
4308e53c073Szhong jiang 
4312965faa5SDave Young 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
4322965faa5SDave Young 			break;
4332965faa5SDave Young 		/* See if I overlap any of the segments */
4342965faa5SDave Young 		for (i = 0; i < image->nr_segments; i++) {
4352965faa5SDave Young 			unsigned long mstart, mend;
4362965faa5SDave Young 
4372965faa5SDave Young 			mstart = image->segment[i].mem;
4382965faa5SDave Young 			mend   = mstart + image->segment[i].memsz - 1;
4392965faa5SDave Young 			if ((hole_end >= mstart) && (hole_start <= mend)) {
4402965faa5SDave Young 				/* Advance the hole to the end of the segment */
441db6b6fb7SYuntao Wang 				hole_start = ALIGN(mend, size);
4422965faa5SDave Young 				hole_end   = hole_start + size - 1;
4432965faa5SDave Young 				break;
4442965faa5SDave Young 			}
4452965faa5SDave Young 		}
4462965faa5SDave Young 		/* If I don't overlap any segments I have found my hole! */
4472965faa5SDave Young 		if (i == image->nr_segments) {
4482965faa5SDave Young 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
4492861b377SYuntao Wang 			image->control_page = hole_end + 1;
4502965faa5SDave Young 			break;
4512965faa5SDave Young 		}
4522965faa5SDave Young 	}
4532965faa5SDave Young 
4549cf38d55SLianbo Jiang 	/* Ensure that these pages are decrypted if SME is enabled. */
4559cf38d55SLianbo Jiang 	if (pages)
4569cf38d55SLianbo Jiang 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
4579cf38d55SLianbo Jiang 
4582965faa5SDave Young 	return pages;
4592965faa5SDave Young }
46002aff848SBaoquan He #endif
4612965faa5SDave Young 
4622965faa5SDave Young 
kimage_alloc_control_pages(struct kimage * image,unsigned int order)4632965faa5SDave Young struct page *kimage_alloc_control_pages(struct kimage *image,
4642965faa5SDave Young 					 unsigned int order)
4652965faa5SDave Young {
4662965faa5SDave Young 	struct page *pages = NULL;
4672965faa5SDave Young 
4682965faa5SDave Young 	switch (image->type) {
4692965faa5SDave Young 	case KEXEC_TYPE_DEFAULT:
4702965faa5SDave Young 		pages = kimage_alloc_normal_control_pages(image, order);
4712965faa5SDave Young 		break;
47202aff848SBaoquan He #ifdef CONFIG_CRASH_DUMP
4732965faa5SDave Young 	case KEXEC_TYPE_CRASH:
4742965faa5SDave Young 		pages = kimage_alloc_crash_control_pages(image, order);
4752965faa5SDave Young 		break;
47602aff848SBaoquan He #endif
4772965faa5SDave Young 	}
4782965faa5SDave Young 
4792965faa5SDave Young 	return pages;
4802965faa5SDave Young }
4812965faa5SDave Young 
kimage_add_entry(struct kimage * image,kimage_entry_t entry)4822965faa5SDave Young static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
4832965faa5SDave Young {
4842965faa5SDave Young 	if (*image->entry != 0)
4852965faa5SDave Young 		image->entry++;
4862965faa5SDave Young 
4872965faa5SDave Young 	if (image->entry == image->last_entry) {
4882965faa5SDave Young 		kimage_entry_t *ind_page;
4892965faa5SDave Young 		struct page *page;
4902965faa5SDave Young 
4912965faa5SDave Young 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
4922965faa5SDave Young 		if (!page)
4932965faa5SDave Young 			return -ENOMEM;
4942965faa5SDave Young 
4952965faa5SDave Young 		ind_page = page_address(page);
49643546d86SRussell King 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
4972965faa5SDave Young 		image->entry = ind_page;
4982965faa5SDave Young 		image->last_entry = ind_page +
4992965faa5SDave Young 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
5002965faa5SDave Young 	}
5012965faa5SDave Young 	*image->entry = entry;
5022965faa5SDave Young 	image->entry++;
5032965faa5SDave Young 	*image->entry = 0;
5042965faa5SDave Young 
5052965faa5SDave Young 	return 0;
5062965faa5SDave Young }
5072965faa5SDave Young 
kimage_set_destination(struct kimage * image,unsigned long destination)5082965faa5SDave Young static int kimage_set_destination(struct kimage *image,
5092965faa5SDave Young 				   unsigned long destination)
5102965faa5SDave Young {
5112965faa5SDave Young 	destination &= PAGE_MASK;
5122965faa5SDave Young 
51332d0c98eSye xingchen 	return kimage_add_entry(image, destination | IND_DESTINATION);
5142965faa5SDave Young }
5152965faa5SDave Young 
5162965faa5SDave Young 
kimage_add_page(struct kimage * image,unsigned long page)5172965faa5SDave Young static int kimage_add_page(struct kimage *image, unsigned long page)
5182965faa5SDave Young {
5192965faa5SDave Young 	page &= PAGE_MASK;
5202965faa5SDave Young 
52132d0c98eSye xingchen 	return kimage_add_entry(image, page | IND_SOURCE);
5222965faa5SDave Young }
5232965faa5SDave Young 
5242965faa5SDave Young 
kimage_free_extra_pages(struct kimage * image)5252965faa5SDave Young static void kimage_free_extra_pages(struct kimage *image)
5262965faa5SDave Young {
5272965faa5SDave Young 	/* Walk through and free any extra destination pages I may have */
5282965faa5SDave Young 	kimage_free_page_list(&image->dest_pages);
5292965faa5SDave Young 
5302965faa5SDave Young 	/* Walk through and free any unusable pages I have cached */
5312965faa5SDave Young 	kimage_free_page_list(&image->unusable_pages);
5322965faa5SDave Young 
5332965faa5SDave Young }
534de68e4daSPavel Tatashin 
kimage_terminate(struct kimage * image)5352965faa5SDave Young void kimage_terminate(struct kimage *image)
5362965faa5SDave Young {
5372965faa5SDave Young 	if (*image->entry != 0)
5382965faa5SDave Young 		image->entry++;
5392965faa5SDave Young 
5402965faa5SDave Young 	*image->entry = IND_DONE;
5412965faa5SDave Young }
5422965faa5SDave Young 
5432965faa5SDave Young #define for_each_kimage_entry(image, ptr, entry) \
5442965faa5SDave Young 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
5452965faa5SDave Young 		ptr = (entry & IND_INDIRECTION) ? \
54643546d86SRussell King 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
5472965faa5SDave Young 
kimage_free_entry(kimage_entry_t entry)5482965faa5SDave Young static void kimage_free_entry(kimage_entry_t entry)
5492965faa5SDave Young {
5502965faa5SDave Young 	struct page *page;
5512965faa5SDave Young 
55243546d86SRussell King 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
5532965faa5SDave Young 	kimage_free_pages(page);
5542965faa5SDave Young }
5552965faa5SDave Young 
kimage_free(struct kimage * image)5562965faa5SDave Young void kimage_free(struct kimage *image)
5572965faa5SDave Young {
5582965faa5SDave Young 	kimage_entry_t *ptr, entry;
5592965faa5SDave Young 	kimage_entry_t ind = 0;
5602965faa5SDave Young 
5612965faa5SDave Young 	if (!image)
5622965faa5SDave Young 		return;
5632965faa5SDave Young 
56402aff848SBaoquan He #ifdef CONFIG_CRASH_DUMP
5651229384fSXunlei Pang 	if (image->vmcoreinfo_data_copy) {
5661229384fSXunlei Pang 		crash_update_vmcoreinfo_safecopy(NULL);
5671229384fSXunlei Pang 		vunmap(image->vmcoreinfo_data_copy);
5681229384fSXunlei Pang 	}
56902aff848SBaoquan He #endif
5701229384fSXunlei Pang 
5712965faa5SDave Young 	kimage_free_extra_pages(image);
5722965faa5SDave Young 	for_each_kimage_entry(image, ptr, entry) {
5732965faa5SDave Young 		if (entry & IND_INDIRECTION) {
5742965faa5SDave Young 			/* Free the previous indirection page */
5752965faa5SDave Young 			if (ind & IND_INDIRECTION)
5762965faa5SDave Young 				kimage_free_entry(ind);
5772965faa5SDave Young 			/* Save this indirection page until we are
5782965faa5SDave Young 			 * done with it.
5792965faa5SDave Young 			 */
5802965faa5SDave Young 			ind = entry;
5812965faa5SDave Young 		} else if (entry & IND_SOURCE)
5822965faa5SDave Young 			kimage_free_entry(entry);
5832965faa5SDave Young 	}
5842965faa5SDave Young 	/* Free the final indirection page */
5852965faa5SDave Young 	if (ind & IND_INDIRECTION)
5862965faa5SDave Young 		kimage_free_entry(ind);
5872965faa5SDave Young 
5882965faa5SDave Young 	/* Handle any machine specific cleanup */
5892965faa5SDave Young 	machine_kexec_cleanup(image);
5902965faa5SDave Young 
5912965faa5SDave Young 	/* Free the kexec control pages... */
5922965faa5SDave Young 	kimage_free_page_list(&image->control_pages);
5932965faa5SDave Young 
5942965faa5SDave Young 	/*
5952965faa5SDave Young 	 * Free up any temporary buffers allocated. This might hit if
5962965faa5SDave Young 	 * error occurred much later after buffer allocation.
5972965faa5SDave Young 	 */
5982965faa5SDave Young 	if (image->file_mode)
5992965faa5SDave Young 		kimage_file_post_load_cleanup(image);
6002965faa5SDave Young 
6012965faa5SDave Young 	kfree(image);
6022965faa5SDave Young }
6032965faa5SDave Young 
kimage_dst_used(struct kimage * image,unsigned long page)6042965faa5SDave Young static kimage_entry_t *kimage_dst_used(struct kimage *image,
6052965faa5SDave Young 					unsigned long page)
6062965faa5SDave Young {
6072965faa5SDave Young 	kimage_entry_t *ptr, entry;
6082965faa5SDave Young 	unsigned long destination = 0;
6092965faa5SDave Young 
6102965faa5SDave Young 	for_each_kimage_entry(image, ptr, entry) {
6112965faa5SDave Young 		if (entry & IND_DESTINATION)
6122965faa5SDave Young 			destination = entry & PAGE_MASK;
6132965faa5SDave Young 		else if (entry & IND_SOURCE) {
6142965faa5SDave Young 			if (page == destination)
6152965faa5SDave Young 				return ptr;
6162965faa5SDave Young 			destination += PAGE_SIZE;
6172965faa5SDave Young 		}
6182965faa5SDave Young 	}
6192965faa5SDave Young 
6202965faa5SDave Young 	return NULL;
6212965faa5SDave Young }
6222965faa5SDave Young 
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)6232965faa5SDave Young static struct page *kimage_alloc_page(struct kimage *image,
6242965faa5SDave Young 					gfp_t gfp_mask,
6252965faa5SDave Young 					unsigned long destination)
6262965faa5SDave Young {
6272965faa5SDave Young 	/*
6282965faa5SDave Young 	 * Here we implement safeguards to ensure that a source page
6292965faa5SDave Young 	 * is not copied to its destination page before the data on
6302965faa5SDave Young 	 * the destination page is no longer useful.
6312965faa5SDave Young 	 *
6322965faa5SDave Young 	 * To do this we maintain the invariant that a source page is
6332965faa5SDave Young 	 * either its own destination page, or it is not a
6342965faa5SDave Young 	 * destination page at all.
6352965faa5SDave Young 	 *
6362965faa5SDave Young 	 * That is slightly stronger than required, but the proof
6372965faa5SDave Young 	 * that no problems will not occur is trivial, and the
6382965faa5SDave Young 	 * implementation is simply to verify.
6392965faa5SDave Young 	 *
6402965faa5SDave Young 	 * When allocating all pages normally this algorithm will run
6412965faa5SDave Young 	 * in O(N) time, but in the worst case it will run in O(N^2)
6422965faa5SDave Young 	 * time.   If the runtime is a problem the data structures can
6432965faa5SDave Young 	 * be fixed.
6442965faa5SDave Young 	 */
6452965faa5SDave Young 	struct page *page;
6462965faa5SDave Young 	unsigned long addr;
6472965faa5SDave Young 
6482965faa5SDave Young 	/*
6492965faa5SDave Young 	 * Walk through the list of destination pages, and see if I
6502965faa5SDave Young 	 * have a match.
6512965faa5SDave Young 	 */
6522965faa5SDave Young 	list_for_each_entry(page, &image->dest_pages, lru) {
65343546d86SRussell King 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
6542965faa5SDave Young 		if (addr == destination) {
6552965faa5SDave Young 			list_del(&page->lru);
6562965faa5SDave Young 			return page;
6572965faa5SDave Young 		}
6582965faa5SDave Young 	}
6592965faa5SDave Young 	page = NULL;
6602965faa5SDave Young 	while (1) {
6612965faa5SDave Young 		kimage_entry_t *old;
6622965faa5SDave Young 
6632965faa5SDave Young 		/* Allocate a page, if we run out of memory give up */
6642965faa5SDave Young 		page = kimage_alloc_pages(gfp_mask, 0);
6652965faa5SDave Young 		if (!page)
6662965faa5SDave Young 			return NULL;
6672965faa5SDave Young 		/* If the page cannot be used file it away */
66843546d86SRussell King 		if (page_to_boot_pfn(page) >
6692965faa5SDave Young 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
6702965faa5SDave Young 			list_add(&page->lru, &image->unusable_pages);
6712965faa5SDave Young 			continue;
6722965faa5SDave Young 		}
67343546d86SRussell King 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
6742965faa5SDave Young 
6752965faa5SDave Young 		/* If it is the destination page we want use it */
6762965faa5SDave Young 		if (addr == destination)
6772965faa5SDave Young 			break;
6782965faa5SDave Young 
6792965faa5SDave Young 		/* If the page is not a destination page use it */
6802965faa5SDave Young 		if (!kimage_is_destination_range(image, addr,
681816d334aSYuntao Wang 						  addr + PAGE_SIZE - 1))
6822965faa5SDave Young 			break;
6832965faa5SDave Young 
6842965faa5SDave Young 		/*
6852965faa5SDave Young 		 * I know that the page is someones destination page.
6862965faa5SDave Young 		 * See if there is already a source page for this
6872965faa5SDave Young 		 * destination page.  And if so swap the source pages.
6882965faa5SDave Young 		 */
6892965faa5SDave Young 		old = kimage_dst_used(image, addr);
6902965faa5SDave Young 		if (old) {
6912965faa5SDave Young 			/* If so move it */
6922965faa5SDave Young 			unsigned long old_addr;
6932965faa5SDave Young 			struct page *old_page;
6942965faa5SDave Young 
6952965faa5SDave Young 			old_addr = *old & PAGE_MASK;
69643546d86SRussell King 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
6972965faa5SDave Young 			copy_highpage(page, old_page);
6982965faa5SDave Young 			*old = addr | (*old & ~PAGE_MASK);
6992965faa5SDave Young 
7002965faa5SDave Young 			/* The old page I have found cannot be a
7012965faa5SDave Young 			 * destination page, so return it if it's
7022965faa5SDave Young 			 * gfp_flags honor the ones passed in.
7032965faa5SDave Young 			 */
7042965faa5SDave Young 			if (!(gfp_mask & __GFP_HIGHMEM) &&
7052965faa5SDave Young 			    PageHighMem(old_page)) {
7062965faa5SDave Young 				kimage_free_pages(old_page);
7072965faa5SDave Young 				continue;
7082965faa5SDave Young 			}
7092965faa5SDave Young 			page = old_page;
7102965faa5SDave Young 			break;
7112965faa5SDave Young 		}
7122965faa5SDave Young 		/* Place the page on the destination list, to be used later */
7132965faa5SDave Young 		list_add(&page->lru, &image->dest_pages);
7142965faa5SDave Young 	}
7152965faa5SDave Young 
7162965faa5SDave Young 	return page;
7172965faa5SDave Young }
7182965faa5SDave Young 
kimage_load_normal_segment(struct kimage * image,struct kexec_segment * segment)7192965faa5SDave Young static int kimage_load_normal_segment(struct kimage *image,
7202965faa5SDave Young 					 struct kexec_segment *segment)
7212965faa5SDave Young {
7222965faa5SDave Young 	unsigned long maddr;
7232965faa5SDave Young 	size_t ubytes, mbytes;
7242965faa5SDave Young 	int result;
7252965faa5SDave Young 	unsigned char __user *buf = NULL;
7262965faa5SDave Young 	unsigned char *kbuf = NULL;
7272965faa5SDave Young 
7282965faa5SDave Young 	if (image->file_mode)
7292965faa5SDave Young 		kbuf = segment->kbuf;
7302965faa5SDave Young 	else
7312965faa5SDave Young 		buf = segment->buf;
7322965faa5SDave Young 	ubytes = segment->bufsz;
7332965faa5SDave Young 	mbytes = segment->memsz;
7342965faa5SDave Young 	maddr = segment->mem;
7352965faa5SDave Young 
7362965faa5SDave Young 	result = kimage_set_destination(image, maddr);
7372965faa5SDave Young 	if (result < 0)
7382965faa5SDave Young 		goto out;
7392965faa5SDave Young 
7402965faa5SDave Young 	while (mbytes) {
7412965faa5SDave Young 		struct page *page;
7422965faa5SDave Young 		char *ptr;
7432965faa5SDave Young 		size_t uchunk, mchunk;
7442965faa5SDave Young 
7452965faa5SDave Young 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
7462965faa5SDave Young 		if (!page) {
7472965faa5SDave Young 			result  = -ENOMEM;
7482965faa5SDave Young 			goto out;
7492965faa5SDave Young 		}
75043546d86SRussell King 		result = kimage_add_page(image, page_to_boot_pfn(page)
7512965faa5SDave Young 								<< PAGE_SHIFT);
7522965faa5SDave Young 		if (result < 0)
7532965faa5SDave Young 			goto out;
7542965faa5SDave Young 
755948084f0SFabio M. De Francesco 		ptr = kmap_local_page(page);
7562965faa5SDave Young 		/* Start with a clear page */
7572965faa5SDave Young 		clear_page(ptr);
7582965faa5SDave Young 		ptr += maddr & ~PAGE_MASK;
7592965faa5SDave Young 		mchunk = min_t(size_t, mbytes,
7602965faa5SDave Young 				PAGE_SIZE - (maddr & ~PAGE_MASK));
7612965faa5SDave Young 		uchunk = min(ubytes, mchunk);
7622965faa5SDave Young 
7634bb7be96Syang.zhang 		if (uchunk) {
7642965faa5SDave Young 			/* For file based kexec, source pages are in kernel memory */
7652965faa5SDave Young 			if (image->file_mode)
7662965faa5SDave Young 				memcpy(ptr, kbuf, uchunk);
7672965faa5SDave Young 			else
7682965faa5SDave Young 				result = copy_from_user(ptr, buf, uchunk);
7694bb7be96Syang.zhang 			ubytes -= uchunk;
7704bb7be96Syang.zhang 			if (image->file_mode)
7714bb7be96Syang.zhang 				kbuf += uchunk;
7724bb7be96Syang.zhang 			else
7734bb7be96Syang.zhang 				buf += uchunk;
7744bb7be96Syang.zhang 		}
775948084f0SFabio M. De Francesco 		kunmap_local(ptr);
7762965faa5SDave Young 		if (result) {
7772965faa5SDave Young 			result = -EFAULT;
7782965faa5SDave Young 			goto out;
7792965faa5SDave Young 		}
7802965faa5SDave Young 		maddr  += mchunk;
7812965faa5SDave Young 		mbytes -= mchunk;
782a8311f64SJarrett Farnitano 
783a8311f64SJarrett Farnitano 		cond_resched();
7842965faa5SDave Young 	}
7852965faa5SDave Young out:
7862965faa5SDave Young 	return result;
7872965faa5SDave Young }
7882965faa5SDave Young 
78902aff848SBaoquan He #ifdef CONFIG_CRASH_DUMP
kimage_load_crash_segment(struct kimage * image,struct kexec_segment * segment)7902965faa5SDave Young static int kimage_load_crash_segment(struct kimage *image,
7912965faa5SDave Young 					struct kexec_segment *segment)
7922965faa5SDave Young {
7932965faa5SDave Young 	/* For crash dumps kernels we simply copy the data from
7942965faa5SDave Young 	 * user space to it's destination.
7952965faa5SDave Young 	 * We do things a page at a time for the sake of kmap.
7962965faa5SDave Young 	 */
7972965faa5SDave Young 	unsigned long maddr;
7982965faa5SDave Young 	size_t ubytes, mbytes;
7992965faa5SDave Young 	int result;
8002965faa5SDave Young 	unsigned char __user *buf = NULL;
8012965faa5SDave Young 	unsigned char *kbuf = NULL;
8022965faa5SDave Young 
8032965faa5SDave Young 	result = 0;
8042965faa5SDave Young 	if (image->file_mode)
8052965faa5SDave Young 		kbuf = segment->kbuf;
8062965faa5SDave Young 	else
8072965faa5SDave Young 		buf = segment->buf;
8082965faa5SDave Young 	ubytes = segment->bufsz;
8092965faa5SDave Young 	mbytes = segment->memsz;
8102965faa5SDave Young 	maddr = segment->mem;
8112965faa5SDave Young 	while (mbytes) {
8122965faa5SDave Young 		struct page *page;
8132965faa5SDave Young 		char *ptr;
8142965faa5SDave Young 		size_t uchunk, mchunk;
8152965faa5SDave Young 
81643546d86SRussell King 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
8172965faa5SDave Young 		if (!page) {
8182965faa5SDave Young 			result  = -ENOMEM;
8192965faa5SDave Young 			goto out;
8202965faa5SDave Young 		}
8219cf38d55SLianbo Jiang 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
822948084f0SFabio M. De Francesco 		ptr = kmap_local_page(page);
8232965faa5SDave Young 		ptr += maddr & ~PAGE_MASK;
8242965faa5SDave Young 		mchunk = min_t(size_t, mbytes,
8252965faa5SDave Young 				PAGE_SIZE - (maddr & ~PAGE_MASK));
8262965faa5SDave Young 		uchunk = min(ubytes, mchunk);
8272965faa5SDave Young 		if (mchunk > uchunk) {
8282965faa5SDave Young 			/* Zero the trailing part of the page */
8292965faa5SDave Young 			memset(ptr + uchunk, 0, mchunk - uchunk);
8302965faa5SDave Young 		}
8312965faa5SDave Young 
8324bb7be96Syang.zhang 		if (uchunk) {
8332965faa5SDave Young 			/* For file based kexec, source pages are in kernel memory */
8342965faa5SDave Young 			if (image->file_mode)
8352965faa5SDave Young 				memcpy(ptr, kbuf, uchunk);
8362965faa5SDave Young 			else
8372965faa5SDave Young 				result = copy_from_user(ptr, buf, uchunk);
8384bb7be96Syang.zhang 			ubytes -= uchunk;
8394bb7be96Syang.zhang 			if (image->file_mode)
8404bb7be96Syang.zhang 				kbuf += uchunk;
8414bb7be96Syang.zhang 			else
8424bb7be96Syang.zhang 				buf += uchunk;
8434bb7be96Syang.zhang 		}
8442965faa5SDave Young 		kexec_flush_icache_page(page);
845948084f0SFabio M. De Francesco 		kunmap_local(ptr);
8469cf38d55SLianbo Jiang 		arch_kexec_pre_free_pages(page_address(page), 1);
8472965faa5SDave Young 		if (result) {
8482965faa5SDave Young 			result = -EFAULT;
8492965faa5SDave Young 			goto out;
8502965faa5SDave Young 		}
8512965faa5SDave Young 		maddr  += mchunk;
8522965faa5SDave Young 		mbytes -= mchunk;
853a8311f64SJarrett Farnitano 
854a8311f64SJarrett Farnitano 		cond_resched();
8552965faa5SDave Young 	}
8562965faa5SDave Young out:
8572965faa5SDave Young 	return result;
8582965faa5SDave Young }
85902aff848SBaoquan He #endif
8602965faa5SDave Young 
kimage_load_segment(struct kimage * image,struct kexec_segment * segment)8612965faa5SDave Young int kimage_load_segment(struct kimage *image,
8622965faa5SDave Young 				struct kexec_segment *segment)
8632965faa5SDave Young {
8642965faa5SDave Young 	int result = -ENOMEM;
8652965faa5SDave Young 
8662965faa5SDave Young 	switch (image->type) {
8672965faa5SDave Young 	case KEXEC_TYPE_DEFAULT:
8682965faa5SDave Young 		result = kimage_load_normal_segment(image, segment);
8692965faa5SDave Young 		break;
87002aff848SBaoquan He #ifdef CONFIG_CRASH_DUMP
8712965faa5SDave Young 	case KEXEC_TYPE_CRASH:
8722965faa5SDave Young 		result = kimage_load_crash_segment(image, segment);
8732965faa5SDave Young 		break;
87402aff848SBaoquan He #endif
8752965faa5SDave Young 	}
8762965faa5SDave Young 
8772965faa5SDave Young 	return result;
8782965faa5SDave Young }
8792965faa5SDave Young 
880a42aaad2SRicardo Ribalda struct kexec_load_limit {
881a42aaad2SRicardo Ribalda 	/* Mutex protects the limit count. */
882a42aaad2SRicardo Ribalda 	struct mutex mutex;
883a42aaad2SRicardo Ribalda 	int limit;
884a42aaad2SRicardo Ribalda };
885a42aaad2SRicardo Ribalda 
886a42aaad2SRicardo Ribalda static struct kexec_load_limit load_limit_reboot = {
887a42aaad2SRicardo Ribalda 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
888a42aaad2SRicardo Ribalda 	.limit = -1,
889a42aaad2SRicardo Ribalda };
890a42aaad2SRicardo Ribalda 
891a42aaad2SRicardo Ribalda static struct kexec_load_limit load_limit_panic = {
892a42aaad2SRicardo Ribalda 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
893a42aaad2SRicardo Ribalda 	.limit = -1,
894a42aaad2SRicardo Ribalda };
895a42aaad2SRicardo Ribalda 
8962965faa5SDave Young struct kimage *kexec_image;
8972965faa5SDave Young struct kimage *kexec_crash_image;
8987e99f8b6SRicardo Ribalda static int kexec_load_disabled;
899a42aaad2SRicardo Ribalda 
900a467257fSyingelin #ifdef CONFIG_SYSCTL
kexec_limit_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)90178eb4ea2SJoel Granados static int kexec_limit_handler(const struct ctl_table *table, int write,
902a42aaad2SRicardo Ribalda 			       void *buffer, size_t *lenp, loff_t *ppos)
903a42aaad2SRicardo Ribalda {
904a42aaad2SRicardo Ribalda 	struct kexec_load_limit *limit = table->data;
905a42aaad2SRicardo Ribalda 	int val;
906a42aaad2SRicardo Ribalda 	struct ctl_table tmp = {
907a42aaad2SRicardo Ribalda 		.data = &val,
908a42aaad2SRicardo Ribalda 		.maxlen = sizeof(val),
909a42aaad2SRicardo Ribalda 		.mode = table->mode,
910a42aaad2SRicardo Ribalda 	};
911a42aaad2SRicardo Ribalda 	int ret;
912a42aaad2SRicardo Ribalda 
913a42aaad2SRicardo Ribalda 	if (write) {
914a42aaad2SRicardo Ribalda 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
915a42aaad2SRicardo Ribalda 		if (ret)
916a42aaad2SRicardo Ribalda 			return ret;
917a42aaad2SRicardo Ribalda 
918a42aaad2SRicardo Ribalda 		if (val < 0)
919a42aaad2SRicardo Ribalda 			return -EINVAL;
920a42aaad2SRicardo Ribalda 
921a42aaad2SRicardo Ribalda 		mutex_lock(&limit->mutex);
922a42aaad2SRicardo Ribalda 		if (limit->limit != -1 && val >= limit->limit)
923a42aaad2SRicardo Ribalda 			ret = -EINVAL;
924a42aaad2SRicardo Ribalda 		else
925a42aaad2SRicardo Ribalda 			limit->limit = val;
926a42aaad2SRicardo Ribalda 		mutex_unlock(&limit->mutex);
927a42aaad2SRicardo Ribalda 
928a42aaad2SRicardo Ribalda 		return ret;
929a42aaad2SRicardo Ribalda 	}
930a42aaad2SRicardo Ribalda 
931a42aaad2SRicardo Ribalda 	mutex_lock(&limit->mutex);
932a42aaad2SRicardo Ribalda 	val = limit->limit;
933a42aaad2SRicardo Ribalda 	mutex_unlock(&limit->mutex);
934a42aaad2SRicardo Ribalda 
935a42aaad2SRicardo Ribalda 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
936a42aaad2SRicardo Ribalda }
937a42aaad2SRicardo Ribalda 
9381751f872SJoel Granados static const struct ctl_table kexec_core_sysctls[] = {
939a467257fSyingelin 	{
940a467257fSyingelin 		.procname	= "kexec_load_disabled",
941a467257fSyingelin 		.data		= &kexec_load_disabled,
942a467257fSyingelin 		.maxlen		= sizeof(int),
943a467257fSyingelin 		.mode		= 0644,
944a467257fSyingelin 		/* only handle a transition from default "0" to "1" */
945a467257fSyingelin 		.proc_handler	= proc_dointvec_minmax,
946a467257fSyingelin 		.extra1		= SYSCTL_ONE,
947a467257fSyingelin 		.extra2		= SYSCTL_ONE,
948a467257fSyingelin 	},
949a42aaad2SRicardo Ribalda 	{
950a42aaad2SRicardo Ribalda 		.procname	= "kexec_load_limit_panic",
951a42aaad2SRicardo Ribalda 		.data		= &load_limit_panic,
952a42aaad2SRicardo Ribalda 		.mode		= 0644,
953a42aaad2SRicardo Ribalda 		.proc_handler	= kexec_limit_handler,
954a42aaad2SRicardo Ribalda 	},
955a42aaad2SRicardo Ribalda 	{
956a42aaad2SRicardo Ribalda 		.procname	= "kexec_load_limit_reboot",
957a42aaad2SRicardo Ribalda 		.data		= &load_limit_reboot,
958a42aaad2SRicardo Ribalda 		.mode		= 0644,
959a42aaad2SRicardo Ribalda 		.proc_handler	= kexec_limit_handler,
960a42aaad2SRicardo Ribalda 	},
961a467257fSyingelin };
962a467257fSyingelin 
kexec_core_sysctl_init(void)963a467257fSyingelin static int __init kexec_core_sysctl_init(void)
964a467257fSyingelin {
965a467257fSyingelin 	register_sysctl_init("kernel", kexec_core_sysctls);
966a467257fSyingelin 	return 0;
967a467257fSyingelin }
968a467257fSyingelin late_initcall(kexec_core_sysctl_init);
969a467257fSyingelin #endif
9702965faa5SDave Young 
kexec_load_permitted(int kexec_image_type)971a42aaad2SRicardo Ribalda bool kexec_load_permitted(int kexec_image_type)
9727e99f8b6SRicardo Ribalda {
973a42aaad2SRicardo Ribalda 	struct kexec_load_limit *limit;
974a42aaad2SRicardo Ribalda 
9757e99f8b6SRicardo Ribalda 	/*
9767e99f8b6SRicardo Ribalda 	 * Only the superuser can use the kexec syscall and if it has not
9777e99f8b6SRicardo Ribalda 	 * been disabled.
9787e99f8b6SRicardo Ribalda 	 */
979a42aaad2SRicardo Ribalda 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
980a42aaad2SRicardo Ribalda 		return false;
981a42aaad2SRicardo Ribalda 
982a42aaad2SRicardo Ribalda 	/* Check limit counter and decrease it.*/
983a42aaad2SRicardo Ribalda 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
984a42aaad2SRicardo Ribalda 		&load_limit_panic : &load_limit_reboot;
985a42aaad2SRicardo Ribalda 	mutex_lock(&limit->mutex);
986a42aaad2SRicardo Ribalda 	if (!limit->limit) {
987a42aaad2SRicardo Ribalda 		mutex_unlock(&limit->mutex);
988a42aaad2SRicardo Ribalda 		return false;
989a42aaad2SRicardo Ribalda 	}
990a42aaad2SRicardo Ribalda 	if (limit->limit != -1)
991a42aaad2SRicardo Ribalda 		limit->limit--;
992a42aaad2SRicardo Ribalda 	mutex_unlock(&limit->mutex);
993a42aaad2SRicardo Ribalda 
994a42aaad2SRicardo Ribalda 	return true;
9957e99f8b6SRicardo Ribalda }
9967e99f8b6SRicardo Ribalda 
9977bbee5caSHidehiro Kawai /*
9982965faa5SDave Young  * Move into place and start executing a preloaded standalone
9992965faa5SDave Young  * executable.  If nothing was preloaded return an error.
10002965faa5SDave Young  */
kernel_kexec(void)10012965faa5SDave Young int kernel_kexec(void)
10022965faa5SDave Young {
10032965faa5SDave Young 	int error = 0;
10042965faa5SDave Young 
100505c62574SValentin Schneider 	if (!kexec_trylock())
10062965faa5SDave Young 		return -EBUSY;
10072965faa5SDave Young 	if (!kexec_image) {
10082965faa5SDave Young 		error = -EINVAL;
10092965faa5SDave Young 		goto Unlock;
10102965faa5SDave Young 	}
10112965faa5SDave Young 
10122965faa5SDave Young #ifdef CONFIG_KEXEC_JUMP
10132965faa5SDave Young 	if (kexec_image->preserve_context) {
1014dc6ffa6cSRafael J. Wysocki 		/*
1015dc6ffa6cSRafael J. Wysocki 		 * This flow is analogous to hibernation flows that occur
1016dc6ffa6cSRafael J. Wysocki 		 * before creating an image and before jumping from the
1017dc6ffa6cSRafael J. Wysocki 		 * restore kernel to the image one, so it uses the same
1018dc6ffa6cSRafael J. Wysocki 		 * device callbacks as those two flows.
1019dc6ffa6cSRafael J. Wysocki 		 */
10202965faa5SDave Young 		pm_prepare_console();
10212965faa5SDave Young 		error = freeze_processes();
10222965faa5SDave Young 		if (error) {
10232965faa5SDave Young 			error = -EBUSY;
10242965faa5SDave Young 			goto Restore_console;
10252965faa5SDave Young 		}
10262965faa5SDave Young 		console_suspend_all();
10272965faa5SDave Young 		error = dpm_suspend_start(PMSG_FREEZE);
10282965faa5SDave Young 		if (error)
10292965faa5SDave Young 			goto Resume_console;
1030dc6ffa6cSRafael J. Wysocki 		/*
1031dc6ffa6cSRafael J. Wysocki 		 * dpm_suspend_end() must be called after dpm_suspend_start()
1032dc6ffa6cSRafael J. Wysocki 		 * to complete the transition, like in the hibernation flows
1033dc6ffa6cSRafael J. Wysocki 		 * mentioned above.
10342965faa5SDave Young 		 */
10352965faa5SDave Young 		error = dpm_suspend_end(PMSG_FREEZE);
10362965faa5SDave Young 		if (error)
10372965faa5SDave Young 			goto Resume_devices;
10382f1a6fbbSNicholas Piggin 		error = suspend_disable_secondary_cpus();
10392965faa5SDave Young 		if (error)
10402965faa5SDave Young 			goto Enable_cpus;
10412965faa5SDave Young 		local_irq_disable();
10422965faa5SDave Young 		error = syscore_suspend();
10432965faa5SDave Young 		if (error)
10442965faa5SDave Young 			goto Enable_irqs;
10452965faa5SDave Young 	} else
10462965faa5SDave Young #endif
10472965faa5SDave Young 	{
10482965faa5SDave Young 		kexec_in_progress = true;
1049a119b4e5SJoe LeVeque 		kernel_restart_prepare("kexec reboot");
10502965faa5SDave Young 		migrate_to_reboot_cpu();
10517bb94380SJames Gowans 		syscore_shutdown();
10522965faa5SDave Young 
10532965faa5SDave Young 		/*
10542965faa5SDave Young 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
10552965faa5SDave Young 		 * no further code needs to use CPU hotplug (which is true in
10562965faa5SDave Young 		 * the reboot case). However, the kexec path depends on using
10572965faa5SDave Young 		 * CPU hotplug again; so re-enable it here.
10582965faa5SDave Young 		 */
10592965faa5SDave Young 		cpu_hotplug_enable();
1060d42cc530SPavel Tatashin 		pr_notice("Starting new kernel\n");
10612965faa5SDave Young 		machine_shutdown();
10622965faa5SDave Young 	}
10632965faa5SDave Young 
1064b2075dbbSPavel Tatashin 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
10652965faa5SDave Young 	machine_kexec(kexec_image);
10662965faa5SDave Young 
10672965faa5SDave Young #ifdef CONFIG_KEXEC_JUMP
10682965faa5SDave Young 	if (kexec_image->preserve_context) {
1069dc6ffa6cSRafael J. Wysocki 		/*
1070dc6ffa6cSRafael J. Wysocki 		 * This flow is analogous to hibernation flows that occur after
1071dc6ffa6cSRafael J. Wysocki 		 * creating an image and after the image kernel has got control
1072dc6ffa6cSRafael J. Wysocki 		 * back, and in case the devices have been reset or otherwise
1073dc6ffa6cSRafael J. Wysocki 		 * manipulated in the meantime, it uses the device callbacks
1074dc6ffa6cSRafael J. Wysocki 		 * used by the latter.
1075dc6ffa6cSRafael J. Wysocki 		 */
10762965faa5SDave Young 		syscore_resume();
10772965faa5SDave Young  Enable_irqs:
10782965faa5SDave Young 		local_irq_enable();
10792965faa5SDave Young  Enable_cpus:
10802f1a6fbbSNicholas Piggin 		suspend_enable_secondary_cpus();
10812965faa5SDave Young 		dpm_resume_start(PMSG_RESTORE);
10822965faa5SDave Young  Resume_devices:
10832965faa5SDave Young 		dpm_resume_end(PMSG_RESTORE);
10842965faa5SDave Young  Resume_console:
10852965faa5SDave Young 		console_resume_all();
10862965faa5SDave Young 		thaw_processes();
10872965faa5SDave Young  Restore_console:
10882965faa5SDave Young 		pm_restore_console();
10892965faa5SDave Young 	}
10902965faa5SDave Young #endif
10912965faa5SDave Young 
10922965faa5SDave Young  Unlock:
109305c62574SValentin Schneider 	kexec_unlock();
10942965faa5SDave Young 	return error;
10952965faa5SDave Young }
1096