1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 440 { 441 struct vm_area_struct *vma; 442 443 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 444 if (!vma) 445 return NULL; 446 447 vma_init(vma, mm); 448 449 return vma; 450 } 451 452 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 453 { 454 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 455 456 if (!new) 457 return NULL; 458 459 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 460 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 461 /* 462 * orig->shared.rb may be modified concurrently, but the clone 463 * will be reinitialized. 464 */ 465 data_race(memcpy(new, orig, sizeof(*new))); 466 vma_lock_init(new, true); 467 INIT_LIST_HEAD(&new->anon_vma_chain); 468 vma_numab_state_init(new); 469 dup_anon_vma_name(orig, new); 470 471 return new; 472 } 473 474 void __vm_area_free(struct vm_area_struct *vma) 475 { 476 /* The vma should be detached while being destroyed. */ 477 vma_assert_detached(vma); 478 vma_numab_state_free(vma); 479 free_anon_vma_name(vma); 480 kmem_cache_free(vm_area_cachep, vma); 481 } 482 483 #ifdef CONFIG_PER_VMA_LOCK 484 static void vm_area_free_rcu_cb(struct rcu_head *head) 485 { 486 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 487 vm_rcu); 488 489 __vm_area_free(vma); 490 } 491 #endif 492 493 void vm_area_free(struct vm_area_struct *vma) 494 { 495 #ifdef CONFIG_PER_VMA_LOCK 496 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 497 #else 498 __vm_area_free(vma); 499 #endif 500 } 501 502 static void account_kernel_stack(struct task_struct *tsk, int account) 503 { 504 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 505 struct vm_struct *vm = task_stack_vm_area(tsk); 506 int i; 507 508 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 509 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 510 account * (PAGE_SIZE / 1024)); 511 } else { 512 void *stack = task_stack_page(tsk); 513 514 /* All stack pages are in the same node. */ 515 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 516 account * (THREAD_SIZE / 1024)); 517 } 518 } 519 520 void exit_task_stack_account(struct task_struct *tsk) 521 { 522 account_kernel_stack(tsk, -1); 523 524 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 525 struct vm_struct *vm; 526 int i; 527 528 vm = task_stack_vm_area(tsk); 529 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 530 memcg_kmem_uncharge_page(vm->pages[i], 0); 531 } 532 } 533 534 static void release_task_stack(struct task_struct *tsk) 535 { 536 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 537 return; /* Better to leak the stack than to free prematurely */ 538 539 free_thread_stack(tsk); 540 } 541 542 #ifdef CONFIG_THREAD_INFO_IN_TASK 543 void put_task_stack(struct task_struct *tsk) 544 { 545 if (refcount_dec_and_test(&tsk->stack_refcount)) 546 release_task_stack(tsk); 547 } 548 #endif 549 550 void free_task(struct task_struct *tsk) 551 { 552 #ifdef CONFIG_SECCOMP 553 WARN_ON_ONCE(tsk->seccomp.filter); 554 #endif 555 release_user_cpus_ptr(tsk); 556 scs_release(tsk); 557 558 #ifndef CONFIG_THREAD_INFO_IN_TASK 559 /* 560 * The task is finally done with both the stack and thread_info, 561 * so free both. 562 */ 563 release_task_stack(tsk); 564 #else 565 /* 566 * If the task had a separate stack allocation, it should be gone 567 * by now. 568 */ 569 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 570 #endif 571 rt_mutex_debug_task_free(tsk); 572 ftrace_graph_exit_task(tsk); 573 arch_release_task_struct(tsk); 574 if (tsk->flags & PF_KTHREAD) 575 free_kthread_struct(tsk); 576 bpf_task_storage_free(tsk); 577 free_task_struct(tsk); 578 } 579 EXPORT_SYMBOL(free_task); 580 581 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 582 { 583 struct file *exe_file; 584 585 exe_file = get_mm_exe_file(oldmm); 586 RCU_INIT_POINTER(mm->exe_file, exe_file); 587 /* 588 * We depend on the oldmm having properly denied write access to the 589 * exe_file already. 590 */ 591 if (exe_file && exe_file_deny_write_access(exe_file)) 592 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 593 } 594 595 #ifdef CONFIG_MMU 596 static __latent_entropy int dup_mmap(struct mm_struct *mm, 597 struct mm_struct *oldmm) 598 { 599 struct vm_area_struct *mpnt, *tmp; 600 int retval; 601 unsigned long charge = 0; 602 LIST_HEAD(uf); 603 VMA_ITERATOR(vmi, mm, 0); 604 605 if (mmap_write_lock_killable(oldmm)) 606 return -EINTR; 607 flush_cache_dup_mm(oldmm); 608 uprobe_dup_mmap(oldmm, mm); 609 /* 610 * Not linked in yet - no deadlock potential: 611 */ 612 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 613 614 /* No ordering required: file already has been exposed. */ 615 dup_mm_exe_file(mm, oldmm); 616 617 mm->total_vm = oldmm->total_vm; 618 mm->data_vm = oldmm->data_vm; 619 mm->exec_vm = oldmm->exec_vm; 620 mm->stack_vm = oldmm->stack_vm; 621 622 /* Use __mt_dup() to efficiently build an identical maple tree. */ 623 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 624 if (unlikely(retval)) 625 goto out; 626 627 mt_clear_in_rcu(vmi.mas.tree); 628 for_each_vma(vmi, mpnt) { 629 struct file *file; 630 631 vma_start_write(mpnt); 632 if (mpnt->vm_flags & VM_DONTCOPY) { 633 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 634 mpnt->vm_end, GFP_KERNEL); 635 if (retval) 636 goto loop_out; 637 638 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 639 continue; 640 } 641 charge = 0; 642 /* 643 * Don't duplicate many vmas if we've been oom-killed (for 644 * example) 645 */ 646 if (fatal_signal_pending(current)) { 647 retval = -EINTR; 648 goto loop_out; 649 } 650 if (mpnt->vm_flags & VM_ACCOUNT) { 651 unsigned long len = vma_pages(mpnt); 652 653 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 654 goto fail_nomem; 655 charge = len; 656 } 657 tmp = vm_area_dup(mpnt); 658 if (!tmp) 659 goto fail_nomem; 660 retval = vma_dup_policy(mpnt, tmp); 661 if (retval) 662 goto fail_nomem_policy; 663 tmp->vm_mm = mm; 664 retval = dup_userfaultfd(tmp, &uf); 665 if (retval) 666 goto fail_nomem_anon_vma_fork; 667 if (tmp->vm_flags & VM_WIPEONFORK) { 668 /* 669 * VM_WIPEONFORK gets a clean slate in the child. 670 * Don't prepare anon_vma until fault since we don't 671 * copy page for current vma. 672 */ 673 tmp->anon_vma = NULL; 674 } else if (anon_vma_fork(tmp, mpnt)) 675 goto fail_nomem_anon_vma_fork; 676 vm_flags_clear(tmp, VM_LOCKED_MASK); 677 /* 678 * Copy/update hugetlb private vma information. 679 */ 680 if (is_vm_hugetlb_page(tmp)) 681 hugetlb_dup_vma_private(tmp); 682 683 /* 684 * Link the vma into the MT. After using __mt_dup(), memory 685 * allocation is not necessary here, so it cannot fail. 686 */ 687 vma_iter_bulk_store(&vmi, tmp); 688 689 mm->map_count++; 690 691 if (tmp->vm_ops && tmp->vm_ops->open) 692 tmp->vm_ops->open(tmp); 693 694 file = tmp->vm_file; 695 if (file) { 696 struct address_space *mapping = file->f_mapping; 697 698 get_file(file); 699 i_mmap_lock_write(mapping); 700 if (vma_is_shared_maywrite(tmp)) 701 mapping_allow_writable(mapping); 702 flush_dcache_mmap_lock(mapping); 703 /* insert tmp into the share list, just after mpnt */ 704 vma_interval_tree_insert_after(tmp, mpnt, 705 &mapping->i_mmap); 706 flush_dcache_mmap_unlock(mapping); 707 i_mmap_unlock_write(mapping); 708 } 709 710 if (!(tmp->vm_flags & VM_WIPEONFORK)) 711 retval = copy_page_range(tmp, mpnt); 712 713 if (retval) { 714 mpnt = vma_next(&vmi); 715 goto loop_out; 716 } 717 } 718 /* a new mm has just been created */ 719 retval = arch_dup_mmap(oldmm, mm); 720 loop_out: 721 vma_iter_free(&vmi); 722 if (!retval) { 723 mt_set_in_rcu(vmi.mas.tree); 724 ksm_fork(mm, oldmm); 725 khugepaged_fork(mm, oldmm); 726 } else { 727 728 /* 729 * The entire maple tree has already been duplicated. If the 730 * mmap duplication fails, mark the failure point with 731 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 732 * stop releasing VMAs that have not been duplicated after this 733 * point. 734 */ 735 if (mpnt) { 736 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 737 mas_store(&vmi.mas, XA_ZERO_ENTRY); 738 /* Avoid OOM iterating a broken tree */ 739 set_bit(MMF_OOM_SKIP, &mm->flags); 740 } 741 /* 742 * The mm_struct is going to exit, but the locks will be dropped 743 * first. Set the mm_struct as unstable is advisable as it is 744 * not fully initialised. 745 */ 746 set_bit(MMF_UNSTABLE, &mm->flags); 747 } 748 out: 749 mmap_write_unlock(mm); 750 flush_tlb_mm(oldmm); 751 mmap_write_unlock(oldmm); 752 if (!retval) 753 dup_userfaultfd_complete(&uf); 754 else 755 dup_userfaultfd_fail(&uf); 756 return retval; 757 758 fail_nomem_anon_vma_fork: 759 mpol_put(vma_policy(tmp)); 760 fail_nomem_policy: 761 vm_area_free(tmp); 762 fail_nomem: 763 retval = -ENOMEM; 764 vm_unacct_memory(charge); 765 goto loop_out; 766 } 767 768 static inline int mm_alloc_pgd(struct mm_struct *mm) 769 { 770 mm->pgd = pgd_alloc(mm); 771 if (unlikely(!mm->pgd)) 772 return -ENOMEM; 773 return 0; 774 } 775 776 static inline void mm_free_pgd(struct mm_struct *mm) 777 { 778 pgd_free(mm, mm->pgd); 779 } 780 #else 781 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 782 { 783 mmap_write_lock(oldmm); 784 dup_mm_exe_file(mm, oldmm); 785 mmap_write_unlock(oldmm); 786 return 0; 787 } 788 #define mm_alloc_pgd(mm) (0) 789 #define mm_free_pgd(mm) 790 #endif /* CONFIG_MMU */ 791 792 static void check_mm(struct mm_struct *mm) 793 { 794 int i; 795 796 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 797 "Please make sure 'struct resident_page_types[]' is updated as well"); 798 799 for (i = 0; i < NR_MM_COUNTERS; i++) { 800 long x = percpu_counter_sum(&mm->rss_stat[i]); 801 802 if (unlikely(x)) 803 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 804 mm, resident_page_types[i], x); 805 } 806 807 if (mm_pgtables_bytes(mm)) 808 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 809 mm_pgtables_bytes(mm)); 810 811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 812 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 813 #endif 814 } 815 816 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 817 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 818 819 static void do_check_lazy_tlb(void *arg) 820 { 821 struct mm_struct *mm = arg; 822 823 WARN_ON_ONCE(current->active_mm == mm); 824 } 825 826 static void do_shoot_lazy_tlb(void *arg) 827 { 828 struct mm_struct *mm = arg; 829 830 if (current->active_mm == mm) { 831 WARN_ON_ONCE(current->mm); 832 current->active_mm = &init_mm; 833 switch_mm(mm, &init_mm, current); 834 } 835 } 836 837 static void cleanup_lazy_tlbs(struct mm_struct *mm) 838 { 839 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 840 /* 841 * In this case, lazy tlb mms are refounted and would not reach 842 * __mmdrop until all CPUs have switched away and mmdrop()ed. 843 */ 844 return; 845 } 846 847 /* 848 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 849 * requires lazy mm users to switch to another mm when the refcount 850 * drops to zero, before the mm is freed. This requires IPIs here to 851 * switch kernel threads to init_mm. 852 * 853 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 854 * switch with the final userspace teardown TLB flush which leaves the 855 * mm lazy on this CPU but no others, reducing the need for additional 856 * IPIs here. There are cases where a final IPI is still required here, 857 * such as the final mmdrop being performed on a different CPU than the 858 * one exiting, or kernel threads using the mm when userspace exits. 859 * 860 * IPI overheads have not found to be expensive, but they could be 861 * reduced in a number of possible ways, for example (roughly 862 * increasing order of complexity): 863 * - The last lazy reference created by exit_mm() could instead switch 864 * to init_mm, however it's probable this will run on the same CPU 865 * immediately afterwards, so this may not reduce IPIs much. 866 * - A batch of mms requiring IPIs could be gathered and freed at once. 867 * - CPUs store active_mm where it can be remotely checked without a 868 * lock, to filter out false-positives in the cpumask. 869 * - After mm_users or mm_count reaches zero, switching away from the 870 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 871 * with some batching or delaying of the final IPIs. 872 * - A delayed freeing and RCU-like quiescing sequence based on mm 873 * switching to avoid IPIs completely. 874 */ 875 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 876 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 877 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 878 } 879 880 /* 881 * Called when the last reference to the mm 882 * is dropped: either by a lazy thread or by 883 * mmput. Free the page directory and the mm. 884 */ 885 void __mmdrop(struct mm_struct *mm) 886 { 887 BUG_ON(mm == &init_mm); 888 WARN_ON_ONCE(mm == current->mm); 889 890 /* Ensure no CPUs are using this as their lazy tlb mm */ 891 cleanup_lazy_tlbs(mm); 892 893 WARN_ON_ONCE(mm == current->active_mm); 894 mm_free_pgd(mm); 895 destroy_context(mm); 896 mmu_notifier_subscriptions_destroy(mm); 897 check_mm(mm); 898 put_user_ns(mm->user_ns); 899 mm_pasid_drop(mm); 900 mm_destroy_cid(mm); 901 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 902 903 free_mm(mm); 904 } 905 EXPORT_SYMBOL_GPL(__mmdrop); 906 907 static void mmdrop_async_fn(struct work_struct *work) 908 { 909 struct mm_struct *mm; 910 911 mm = container_of(work, struct mm_struct, async_put_work); 912 __mmdrop(mm); 913 } 914 915 static void mmdrop_async(struct mm_struct *mm) 916 { 917 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 918 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 919 schedule_work(&mm->async_put_work); 920 } 921 } 922 923 static inline void free_signal_struct(struct signal_struct *sig) 924 { 925 taskstats_tgid_free(sig); 926 sched_autogroup_exit(sig); 927 /* 928 * __mmdrop is not safe to call from softirq context on x86 due to 929 * pgd_dtor so postpone it to the async context 930 */ 931 if (sig->oom_mm) 932 mmdrop_async(sig->oom_mm); 933 kmem_cache_free(signal_cachep, sig); 934 } 935 936 static inline void put_signal_struct(struct signal_struct *sig) 937 { 938 if (refcount_dec_and_test(&sig->sigcnt)) 939 free_signal_struct(sig); 940 } 941 942 void __put_task_struct(struct task_struct *tsk) 943 { 944 WARN_ON(!tsk->exit_state); 945 WARN_ON(refcount_read(&tsk->usage)); 946 WARN_ON(tsk == current); 947 948 sched_ext_free(tsk); 949 io_uring_free(tsk); 950 cgroup_free(tsk); 951 task_numa_free(tsk, true); 952 security_task_free(tsk); 953 exit_creds(tsk); 954 delayacct_tsk_free(tsk); 955 put_signal_struct(tsk->signal); 956 sched_core_free(tsk); 957 free_task(tsk); 958 } 959 EXPORT_SYMBOL_GPL(__put_task_struct); 960 961 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 962 { 963 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 964 965 __put_task_struct(task); 966 } 967 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 968 969 void __init __weak arch_task_cache_init(void) { } 970 971 /* 972 * set_max_threads 973 */ 974 static void __init set_max_threads(unsigned int max_threads_suggested) 975 { 976 u64 threads; 977 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 978 979 /* 980 * The number of threads shall be limited such that the thread 981 * structures may only consume a small part of the available memory. 982 */ 983 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 984 threads = MAX_THREADS; 985 else 986 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 987 (u64) THREAD_SIZE * 8UL); 988 989 if (threads > max_threads_suggested) 990 threads = max_threads_suggested; 991 992 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 993 } 994 995 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 996 /* Initialized by the architecture: */ 997 int arch_task_struct_size __read_mostly; 998 #endif 999 1000 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1001 { 1002 /* Fetch thread_struct whitelist for the architecture. */ 1003 arch_thread_struct_whitelist(offset, size); 1004 1005 /* 1006 * Handle zero-sized whitelist or empty thread_struct, otherwise 1007 * adjust offset to position of thread_struct in task_struct. 1008 */ 1009 if (unlikely(*size == 0)) 1010 *offset = 0; 1011 else 1012 *offset += offsetof(struct task_struct, thread); 1013 } 1014 1015 void __init fork_init(void) 1016 { 1017 int i; 1018 #ifndef ARCH_MIN_TASKALIGN 1019 #define ARCH_MIN_TASKALIGN 0 1020 #endif 1021 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1022 unsigned long useroffset, usersize; 1023 1024 /* create a slab on which task_structs can be allocated */ 1025 task_struct_whitelist(&useroffset, &usersize); 1026 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1027 arch_task_struct_size, align, 1028 SLAB_PANIC|SLAB_ACCOUNT, 1029 useroffset, usersize, NULL); 1030 1031 /* do the arch specific task caches init */ 1032 arch_task_cache_init(); 1033 1034 set_max_threads(MAX_THREADS); 1035 1036 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1037 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1038 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1039 init_task.signal->rlim[RLIMIT_NPROC]; 1040 1041 for (i = 0; i < UCOUNT_COUNTS; i++) 1042 init_user_ns.ucount_max[i] = max_threads/2; 1043 1044 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1045 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1046 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1047 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1048 1049 #ifdef CONFIG_VMAP_STACK 1050 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1051 NULL, free_vm_stack_cache); 1052 #endif 1053 1054 scs_init(); 1055 1056 lockdep_init_task(&init_task); 1057 uprobes_init(); 1058 } 1059 1060 int __weak arch_dup_task_struct(struct task_struct *dst, 1061 struct task_struct *src) 1062 { 1063 *dst = *src; 1064 return 0; 1065 } 1066 1067 void set_task_stack_end_magic(struct task_struct *tsk) 1068 { 1069 unsigned long *stackend; 1070 1071 stackend = end_of_stack(tsk); 1072 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1073 } 1074 1075 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1076 { 1077 struct task_struct *tsk; 1078 int err; 1079 1080 if (node == NUMA_NO_NODE) 1081 node = tsk_fork_get_node(orig); 1082 tsk = alloc_task_struct_node(node); 1083 if (!tsk) 1084 return NULL; 1085 1086 err = arch_dup_task_struct(tsk, orig); 1087 if (err) 1088 goto free_tsk; 1089 1090 err = alloc_thread_stack_node(tsk, node); 1091 if (err) 1092 goto free_tsk; 1093 1094 #ifdef CONFIG_THREAD_INFO_IN_TASK 1095 refcount_set(&tsk->stack_refcount, 1); 1096 #endif 1097 account_kernel_stack(tsk, 1); 1098 1099 err = scs_prepare(tsk, node); 1100 if (err) 1101 goto free_stack; 1102 1103 #ifdef CONFIG_SECCOMP 1104 /* 1105 * We must handle setting up seccomp filters once we're under 1106 * the sighand lock in case orig has changed between now and 1107 * then. Until then, filter must be NULL to avoid messing up 1108 * the usage counts on the error path calling free_task. 1109 */ 1110 tsk->seccomp.filter = NULL; 1111 #endif 1112 1113 setup_thread_stack(tsk, orig); 1114 clear_user_return_notifier(tsk); 1115 clear_tsk_need_resched(tsk); 1116 set_task_stack_end_magic(tsk); 1117 clear_syscall_work_syscall_user_dispatch(tsk); 1118 1119 #ifdef CONFIG_STACKPROTECTOR 1120 tsk->stack_canary = get_random_canary(); 1121 #endif 1122 if (orig->cpus_ptr == &orig->cpus_mask) 1123 tsk->cpus_ptr = &tsk->cpus_mask; 1124 dup_user_cpus_ptr(tsk, orig, node); 1125 1126 /* 1127 * One for the user space visible state that goes away when reaped. 1128 * One for the scheduler. 1129 */ 1130 refcount_set(&tsk->rcu_users, 2); 1131 /* One for the rcu users */ 1132 refcount_set(&tsk->usage, 1); 1133 #ifdef CONFIG_BLK_DEV_IO_TRACE 1134 tsk->btrace_seq = 0; 1135 #endif 1136 tsk->splice_pipe = NULL; 1137 tsk->task_frag.page = NULL; 1138 tsk->wake_q.next = NULL; 1139 tsk->worker_private = NULL; 1140 1141 kcov_task_init(tsk); 1142 kmsan_task_create(tsk); 1143 kmap_local_fork(tsk); 1144 1145 #ifdef CONFIG_FAULT_INJECTION 1146 tsk->fail_nth = 0; 1147 #endif 1148 1149 #ifdef CONFIG_BLK_CGROUP 1150 tsk->throttle_disk = NULL; 1151 tsk->use_memdelay = 0; 1152 #endif 1153 1154 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1155 tsk->pasid_activated = 0; 1156 #endif 1157 1158 #ifdef CONFIG_MEMCG 1159 tsk->active_memcg = NULL; 1160 #endif 1161 1162 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1163 tsk->reported_split_lock = 0; 1164 #endif 1165 1166 #ifdef CONFIG_SCHED_MM_CID 1167 tsk->mm_cid = -1; 1168 tsk->last_mm_cid = -1; 1169 tsk->mm_cid_active = 0; 1170 tsk->migrate_from_cpu = -1; 1171 #endif 1172 return tsk; 1173 1174 free_stack: 1175 exit_task_stack_account(tsk); 1176 free_thread_stack(tsk); 1177 free_tsk: 1178 free_task_struct(tsk); 1179 return NULL; 1180 } 1181 1182 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1183 1184 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1185 1186 static int __init coredump_filter_setup(char *s) 1187 { 1188 default_dump_filter = 1189 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1190 MMF_DUMP_FILTER_MASK; 1191 return 1; 1192 } 1193 1194 __setup("coredump_filter=", coredump_filter_setup); 1195 1196 #include <linux/init_task.h> 1197 1198 static void mm_init_aio(struct mm_struct *mm) 1199 { 1200 #ifdef CONFIG_AIO 1201 spin_lock_init(&mm->ioctx_lock); 1202 mm->ioctx_table = NULL; 1203 #endif 1204 } 1205 1206 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1207 struct task_struct *p) 1208 { 1209 #ifdef CONFIG_MEMCG 1210 if (mm->owner == p) 1211 WRITE_ONCE(mm->owner, NULL); 1212 #endif 1213 } 1214 1215 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1216 { 1217 #ifdef CONFIG_MEMCG 1218 mm->owner = p; 1219 #endif 1220 } 1221 1222 static void mm_init_uprobes_state(struct mm_struct *mm) 1223 { 1224 #ifdef CONFIG_UPROBES 1225 mm->uprobes_state.xol_area = NULL; 1226 #endif 1227 } 1228 1229 static void mmap_init_lock(struct mm_struct *mm) 1230 { 1231 init_rwsem(&mm->mmap_lock); 1232 mm_lock_seqcount_init(mm); 1233 #ifdef CONFIG_PER_VMA_LOCK 1234 rcuwait_init(&mm->vma_writer_wait); 1235 #endif 1236 } 1237 1238 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1239 struct user_namespace *user_ns) 1240 { 1241 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1242 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1243 atomic_set(&mm->mm_users, 1); 1244 atomic_set(&mm->mm_count, 1); 1245 seqcount_init(&mm->write_protect_seq); 1246 mmap_init_lock(mm); 1247 INIT_LIST_HEAD(&mm->mmlist); 1248 mm_pgtables_bytes_init(mm); 1249 mm->map_count = 0; 1250 mm->locked_vm = 0; 1251 atomic64_set(&mm->pinned_vm, 0); 1252 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1253 spin_lock_init(&mm->page_table_lock); 1254 spin_lock_init(&mm->arg_lock); 1255 mm_init_cpumask(mm); 1256 mm_init_aio(mm); 1257 mm_init_owner(mm, p); 1258 mm_pasid_init(mm); 1259 RCU_INIT_POINTER(mm->exe_file, NULL); 1260 mmu_notifier_subscriptions_init(mm); 1261 init_tlb_flush_pending(mm); 1262 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1263 mm->pmd_huge_pte = NULL; 1264 #endif 1265 mm_init_uprobes_state(mm); 1266 hugetlb_count_init(mm); 1267 1268 if (current->mm) { 1269 mm->flags = mmf_init_flags(current->mm->flags); 1270 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1271 } else { 1272 mm->flags = default_dump_filter; 1273 mm->def_flags = 0; 1274 } 1275 1276 if (mm_alloc_pgd(mm)) 1277 goto fail_nopgd; 1278 1279 if (init_new_context(p, mm)) 1280 goto fail_nocontext; 1281 1282 if (mm_alloc_cid(mm, p)) 1283 goto fail_cid; 1284 1285 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1286 NR_MM_COUNTERS)) 1287 goto fail_pcpu; 1288 1289 mm->user_ns = get_user_ns(user_ns); 1290 lru_gen_init_mm(mm); 1291 return mm; 1292 1293 fail_pcpu: 1294 mm_destroy_cid(mm); 1295 fail_cid: 1296 destroy_context(mm); 1297 fail_nocontext: 1298 mm_free_pgd(mm); 1299 fail_nopgd: 1300 free_mm(mm); 1301 return NULL; 1302 } 1303 1304 /* 1305 * Allocate and initialize an mm_struct. 1306 */ 1307 struct mm_struct *mm_alloc(void) 1308 { 1309 struct mm_struct *mm; 1310 1311 mm = allocate_mm(); 1312 if (!mm) 1313 return NULL; 1314 1315 memset(mm, 0, sizeof(*mm)); 1316 return mm_init(mm, current, current_user_ns()); 1317 } 1318 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1319 1320 static inline void __mmput(struct mm_struct *mm) 1321 { 1322 VM_BUG_ON(atomic_read(&mm->mm_users)); 1323 1324 uprobe_clear_state(mm); 1325 exit_aio(mm); 1326 ksm_exit(mm); 1327 khugepaged_exit(mm); /* must run before exit_mmap */ 1328 exit_mmap(mm); 1329 mm_put_huge_zero_folio(mm); 1330 set_mm_exe_file(mm, NULL); 1331 if (!list_empty(&mm->mmlist)) { 1332 spin_lock(&mmlist_lock); 1333 list_del(&mm->mmlist); 1334 spin_unlock(&mmlist_lock); 1335 } 1336 if (mm->binfmt) 1337 module_put(mm->binfmt->module); 1338 lru_gen_del_mm(mm); 1339 mmdrop(mm); 1340 } 1341 1342 /* 1343 * Decrement the use count and release all resources for an mm. 1344 */ 1345 void mmput(struct mm_struct *mm) 1346 { 1347 might_sleep(); 1348 1349 if (atomic_dec_and_test(&mm->mm_users)) 1350 __mmput(mm); 1351 } 1352 EXPORT_SYMBOL_GPL(mmput); 1353 1354 #ifdef CONFIG_MMU 1355 static void mmput_async_fn(struct work_struct *work) 1356 { 1357 struct mm_struct *mm = container_of(work, struct mm_struct, 1358 async_put_work); 1359 1360 __mmput(mm); 1361 } 1362 1363 void mmput_async(struct mm_struct *mm) 1364 { 1365 if (atomic_dec_and_test(&mm->mm_users)) { 1366 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1367 schedule_work(&mm->async_put_work); 1368 } 1369 } 1370 EXPORT_SYMBOL_GPL(mmput_async); 1371 #endif 1372 1373 /** 1374 * set_mm_exe_file - change a reference to the mm's executable file 1375 * @mm: The mm to change. 1376 * @new_exe_file: The new file to use. 1377 * 1378 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1379 * 1380 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1381 * invocations: in mmput() nobody alive left, in execve it happens before 1382 * the new mm is made visible to anyone. 1383 * 1384 * Can only fail if new_exe_file != NULL. 1385 */ 1386 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1387 { 1388 struct file *old_exe_file; 1389 1390 /* 1391 * It is safe to dereference the exe_file without RCU as 1392 * this function is only called if nobody else can access 1393 * this mm -- see comment above for justification. 1394 */ 1395 old_exe_file = rcu_dereference_raw(mm->exe_file); 1396 1397 if (new_exe_file) { 1398 /* 1399 * We expect the caller (i.e., sys_execve) to already denied 1400 * write access, so this is unlikely to fail. 1401 */ 1402 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1403 return -EACCES; 1404 get_file(new_exe_file); 1405 } 1406 rcu_assign_pointer(mm->exe_file, new_exe_file); 1407 if (old_exe_file) { 1408 exe_file_allow_write_access(old_exe_file); 1409 fput(old_exe_file); 1410 } 1411 return 0; 1412 } 1413 1414 /** 1415 * replace_mm_exe_file - replace a reference to the mm's executable file 1416 * @mm: The mm to change. 1417 * @new_exe_file: The new file to use. 1418 * 1419 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1420 * 1421 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1422 */ 1423 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1424 { 1425 struct vm_area_struct *vma; 1426 struct file *old_exe_file; 1427 int ret = 0; 1428 1429 /* Forbid mm->exe_file change if old file still mapped. */ 1430 old_exe_file = get_mm_exe_file(mm); 1431 if (old_exe_file) { 1432 VMA_ITERATOR(vmi, mm, 0); 1433 mmap_read_lock(mm); 1434 for_each_vma(vmi, vma) { 1435 if (!vma->vm_file) 1436 continue; 1437 if (path_equal(&vma->vm_file->f_path, 1438 &old_exe_file->f_path)) { 1439 ret = -EBUSY; 1440 break; 1441 } 1442 } 1443 mmap_read_unlock(mm); 1444 fput(old_exe_file); 1445 if (ret) 1446 return ret; 1447 } 1448 1449 ret = exe_file_deny_write_access(new_exe_file); 1450 if (ret) 1451 return -EACCES; 1452 get_file(new_exe_file); 1453 1454 /* set the new file */ 1455 mmap_write_lock(mm); 1456 old_exe_file = rcu_dereference_raw(mm->exe_file); 1457 rcu_assign_pointer(mm->exe_file, new_exe_file); 1458 mmap_write_unlock(mm); 1459 1460 if (old_exe_file) { 1461 exe_file_allow_write_access(old_exe_file); 1462 fput(old_exe_file); 1463 } 1464 return 0; 1465 } 1466 1467 /** 1468 * get_mm_exe_file - acquire a reference to the mm's executable file 1469 * @mm: The mm of interest. 1470 * 1471 * Returns %NULL if mm has no associated executable file. 1472 * User must release file via fput(). 1473 */ 1474 struct file *get_mm_exe_file(struct mm_struct *mm) 1475 { 1476 struct file *exe_file; 1477 1478 rcu_read_lock(); 1479 exe_file = get_file_rcu(&mm->exe_file); 1480 rcu_read_unlock(); 1481 return exe_file; 1482 } 1483 1484 /** 1485 * get_task_exe_file - acquire a reference to the task's executable file 1486 * @task: The task. 1487 * 1488 * Returns %NULL if task's mm (if any) has no associated executable file or 1489 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1490 * User must release file via fput(). 1491 */ 1492 struct file *get_task_exe_file(struct task_struct *task) 1493 { 1494 struct file *exe_file = NULL; 1495 struct mm_struct *mm; 1496 1497 if (task->flags & PF_KTHREAD) 1498 return NULL; 1499 1500 task_lock(task); 1501 mm = task->mm; 1502 if (mm) 1503 exe_file = get_mm_exe_file(mm); 1504 task_unlock(task); 1505 return exe_file; 1506 } 1507 1508 /** 1509 * get_task_mm - acquire a reference to the task's mm 1510 * @task: The task. 1511 * 1512 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1513 * this kernel workthread has transiently adopted a user mm with use_mm, 1514 * to do its AIO) is not set and if so returns a reference to it, after 1515 * bumping up the use count. User must release the mm via mmput() 1516 * after use. Typically used by /proc and ptrace. 1517 */ 1518 struct mm_struct *get_task_mm(struct task_struct *task) 1519 { 1520 struct mm_struct *mm; 1521 1522 if (task->flags & PF_KTHREAD) 1523 return NULL; 1524 1525 task_lock(task); 1526 mm = task->mm; 1527 if (mm) 1528 mmget(mm); 1529 task_unlock(task); 1530 return mm; 1531 } 1532 EXPORT_SYMBOL_GPL(get_task_mm); 1533 1534 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1535 { 1536 struct mm_struct *mm; 1537 int err; 1538 1539 err = down_read_killable(&task->signal->exec_update_lock); 1540 if (err) 1541 return ERR_PTR(err); 1542 1543 mm = get_task_mm(task); 1544 if (!mm) { 1545 mm = ERR_PTR(-ESRCH); 1546 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1547 mmput(mm); 1548 mm = ERR_PTR(-EACCES); 1549 } 1550 up_read(&task->signal->exec_update_lock); 1551 1552 return mm; 1553 } 1554 1555 static void complete_vfork_done(struct task_struct *tsk) 1556 { 1557 struct completion *vfork; 1558 1559 task_lock(tsk); 1560 vfork = tsk->vfork_done; 1561 if (likely(vfork)) { 1562 tsk->vfork_done = NULL; 1563 complete(vfork); 1564 } 1565 task_unlock(tsk); 1566 } 1567 1568 static int wait_for_vfork_done(struct task_struct *child, 1569 struct completion *vfork) 1570 { 1571 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1572 int killed; 1573 1574 cgroup_enter_frozen(); 1575 killed = wait_for_completion_state(vfork, state); 1576 cgroup_leave_frozen(false); 1577 1578 if (killed) { 1579 task_lock(child); 1580 child->vfork_done = NULL; 1581 task_unlock(child); 1582 } 1583 1584 put_task_struct(child); 1585 return killed; 1586 } 1587 1588 /* Please note the differences between mmput and mm_release. 1589 * mmput is called whenever we stop holding onto a mm_struct, 1590 * error success whatever. 1591 * 1592 * mm_release is called after a mm_struct has been removed 1593 * from the current process. 1594 * 1595 * This difference is important for error handling, when we 1596 * only half set up a mm_struct for a new process and need to restore 1597 * the old one. Because we mmput the new mm_struct before 1598 * restoring the old one. . . 1599 * Eric Biederman 10 January 1998 1600 */ 1601 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1602 { 1603 uprobe_free_utask(tsk); 1604 1605 /* Get rid of any cached register state */ 1606 deactivate_mm(tsk, mm); 1607 1608 /* 1609 * Signal userspace if we're not exiting with a core dump 1610 * because we want to leave the value intact for debugging 1611 * purposes. 1612 */ 1613 if (tsk->clear_child_tid) { 1614 if (atomic_read(&mm->mm_users) > 1) { 1615 /* 1616 * We don't check the error code - if userspace has 1617 * not set up a proper pointer then tough luck. 1618 */ 1619 put_user(0, tsk->clear_child_tid); 1620 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1621 1, NULL, NULL, 0, 0); 1622 } 1623 tsk->clear_child_tid = NULL; 1624 } 1625 1626 /* 1627 * All done, finally we can wake up parent and return this mm to him. 1628 * Also kthread_stop() uses this completion for synchronization. 1629 */ 1630 if (tsk->vfork_done) 1631 complete_vfork_done(tsk); 1632 } 1633 1634 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1635 { 1636 futex_exit_release(tsk); 1637 mm_release(tsk, mm); 1638 } 1639 1640 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1641 { 1642 futex_exec_release(tsk); 1643 mm_release(tsk, mm); 1644 } 1645 1646 /** 1647 * dup_mm() - duplicates an existing mm structure 1648 * @tsk: the task_struct with which the new mm will be associated. 1649 * @oldmm: the mm to duplicate. 1650 * 1651 * Allocates a new mm structure and duplicates the provided @oldmm structure 1652 * content into it. 1653 * 1654 * Return: the duplicated mm or NULL on failure. 1655 */ 1656 static struct mm_struct *dup_mm(struct task_struct *tsk, 1657 struct mm_struct *oldmm) 1658 { 1659 struct mm_struct *mm; 1660 int err; 1661 1662 mm = allocate_mm(); 1663 if (!mm) 1664 goto fail_nomem; 1665 1666 memcpy(mm, oldmm, sizeof(*mm)); 1667 1668 if (!mm_init(mm, tsk, mm->user_ns)) 1669 goto fail_nomem; 1670 1671 uprobe_start_dup_mmap(); 1672 err = dup_mmap(mm, oldmm); 1673 if (err) 1674 goto free_pt; 1675 uprobe_end_dup_mmap(); 1676 1677 mm->hiwater_rss = get_mm_rss(mm); 1678 mm->hiwater_vm = mm->total_vm; 1679 1680 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1681 goto free_pt; 1682 1683 return mm; 1684 1685 free_pt: 1686 /* don't put binfmt in mmput, we haven't got module yet */ 1687 mm->binfmt = NULL; 1688 mm_init_owner(mm, NULL); 1689 mmput(mm); 1690 if (err) 1691 uprobe_end_dup_mmap(); 1692 1693 fail_nomem: 1694 return NULL; 1695 } 1696 1697 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1698 { 1699 struct mm_struct *mm, *oldmm; 1700 1701 tsk->min_flt = tsk->maj_flt = 0; 1702 tsk->nvcsw = tsk->nivcsw = 0; 1703 #ifdef CONFIG_DETECT_HUNG_TASK 1704 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1705 tsk->last_switch_time = 0; 1706 #endif 1707 1708 tsk->mm = NULL; 1709 tsk->active_mm = NULL; 1710 1711 /* 1712 * Are we cloning a kernel thread? 1713 * 1714 * We need to steal a active VM for that.. 1715 */ 1716 oldmm = current->mm; 1717 if (!oldmm) 1718 return 0; 1719 1720 if (clone_flags & CLONE_VM) { 1721 mmget(oldmm); 1722 mm = oldmm; 1723 } else { 1724 mm = dup_mm(tsk, current->mm); 1725 if (!mm) 1726 return -ENOMEM; 1727 } 1728 1729 tsk->mm = mm; 1730 tsk->active_mm = mm; 1731 sched_mm_cid_fork(tsk); 1732 return 0; 1733 } 1734 1735 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1736 { 1737 struct fs_struct *fs = current->fs; 1738 if (clone_flags & CLONE_FS) { 1739 /* tsk->fs is already what we want */ 1740 spin_lock(&fs->lock); 1741 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1742 if (fs->in_exec) { 1743 spin_unlock(&fs->lock); 1744 return -EAGAIN; 1745 } 1746 fs->users++; 1747 spin_unlock(&fs->lock); 1748 return 0; 1749 } 1750 tsk->fs = copy_fs_struct(fs); 1751 if (!tsk->fs) 1752 return -ENOMEM; 1753 return 0; 1754 } 1755 1756 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1757 int no_files) 1758 { 1759 struct files_struct *oldf, *newf; 1760 1761 /* 1762 * A background process may not have any files ... 1763 */ 1764 oldf = current->files; 1765 if (!oldf) 1766 return 0; 1767 1768 if (no_files) { 1769 tsk->files = NULL; 1770 return 0; 1771 } 1772 1773 if (clone_flags & CLONE_FILES) { 1774 atomic_inc(&oldf->count); 1775 return 0; 1776 } 1777 1778 newf = dup_fd(oldf, NULL); 1779 if (IS_ERR(newf)) 1780 return PTR_ERR(newf); 1781 1782 tsk->files = newf; 1783 return 0; 1784 } 1785 1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1787 { 1788 struct sighand_struct *sig; 1789 1790 if (clone_flags & CLONE_SIGHAND) { 1791 refcount_inc(¤t->sighand->count); 1792 return 0; 1793 } 1794 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1795 RCU_INIT_POINTER(tsk->sighand, sig); 1796 if (!sig) 1797 return -ENOMEM; 1798 1799 refcount_set(&sig->count, 1); 1800 spin_lock_irq(¤t->sighand->siglock); 1801 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1802 spin_unlock_irq(¤t->sighand->siglock); 1803 1804 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1805 if (clone_flags & CLONE_CLEAR_SIGHAND) 1806 flush_signal_handlers(tsk, 0); 1807 1808 return 0; 1809 } 1810 1811 void __cleanup_sighand(struct sighand_struct *sighand) 1812 { 1813 if (refcount_dec_and_test(&sighand->count)) { 1814 signalfd_cleanup(sighand); 1815 /* 1816 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1817 * without an RCU grace period, see __lock_task_sighand(). 1818 */ 1819 kmem_cache_free(sighand_cachep, sighand); 1820 } 1821 } 1822 1823 /* 1824 * Initialize POSIX timer handling for a thread group. 1825 */ 1826 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1827 { 1828 struct posix_cputimers *pct = &sig->posix_cputimers; 1829 unsigned long cpu_limit; 1830 1831 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1832 posix_cputimers_group_init(pct, cpu_limit); 1833 } 1834 1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1836 { 1837 struct signal_struct *sig; 1838 1839 if (clone_flags & CLONE_THREAD) 1840 return 0; 1841 1842 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1843 tsk->signal = sig; 1844 if (!sig) 1845 return -ENOMEM; 1846 1847 sig->nr_threads = 1; 1848 sig->quick_threads = 1; 1849 atomic_set(&sig->live, 1); 1850 refcount_set(&sig->sigcnt, 1); 1851 1852 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1853 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1854 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1855 1856 init_waitqueue_head(&sig->wait_chldexit); 1857 sig->curr_target = tsk; 1858 init_sigpending(&sig->shared_pending); 1859 INIT_HLIST_HEAD(&sig->multiprocess); 1860 seqlock_init(&sig->stats_lock); 1861 prev_cputime_init(&sig->prev_cputime); 1862 1863 #ifdef CONFIG_POSIX_TIMERS 1864 INIT_HLIST_HEAD(&sig->posix_timers); 1865 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1866 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1867 sig->real_timer.function = it_real_fn; 1868 #endif 1869 1870 task_lock(current->group_leader); 1871 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1872 task_unlock(current->group_leader); 1873 1874 posix_cpu_timers_init_group(sig); 1875 1876 tty_audit_fork(sig); 1877 sched_autogroup_fork(sig); 1878 1879 sig->oom_score_adj = current->signal->oom_score_adj; 1880 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1881 1882 mutex_init(&sig->cred_guard_mutex); 1883 init_rwsem(&sig->exec_update_lock); 1884 1885 return 0; 1886 } 1887 1888 static void copy_seccomp(struct task_struct *p) 1889 { 1890 #ifdef CONFIG_SECCOMP 1891 /* 1892 * Must be called with sighand->lock held, which is common to 1893 * all threads in the group. Holding cred_guard_mutex is not 1894 * needed because this new task is not yet running and cannot 1895 * be racing exec. 1896 */ 1897 assert_spin_locked(¤t->sighand->siglock); 1898 1899 /* Ref-count the new filter user, and assign it. */ 1900 get_seccomp_filter(current); 1901 p->seccomp = current->seccomp; 1902 1903 /* 1904 * Explicitly enable no_new_privs here in case it got set 1905 * between the task_struct being duplicated and holding the 1906 * sighand lock. The seccomp state and nnp must be in sync. 1907 */ 1908 if (task_no_new_privs(current)) 1909 task_set_no_new_privs(p); 1910 1911 /* 1912 * If the parent gained a seccomp mode after copying thread 1913 * flags and between before we held the sighand lock, we have 1914 * to manually enable the seccomp thread flag here. 1915 */ 1916 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1917 set_task_syscall_work(p, SECCOMP); 1918 #endif 1919 } 1920 1921 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1922 { 1923 current->clear_child_tid = tidptr; 1924 1925 return task_pid_vnr(current); 1926 } 1927 1928 static void rt_mutex_init_task(struct task_struct *p) 1929 { 1930 raw_spin_lock_init(&p->pi_lock); 1931 #ifdef CONFIG_RT_MUTEXES 1932 p->pi_waiters = RB_ROOT_CACHED; 1933 p->pi_top_task = NULL; 1934 p->pi_blocked_on = NULL; 1935 #endif 1936 } 1937 1938 static inline void init_task_pid_links(struct task_struct *task) 1939 { 1940 enum pid_type type; 1941 1942 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1943 INIT_HLIST_NODE(&task->pid_links[type]); 1944 } 1945 1946 static inline void 1947 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1948 { 1949 if (type == PIDTYPE_PID) 1950 task->thread_pid = pid; 1951 else 1952 task->signal->pids[type] = pid; 1953 } 1954 1955 static inline void rcu_copy_process(struct task_struct *p) 1956 { 1957 #ifdef CONFIG_PREEMPT_RCU 1958 p->rcu_read_lock_nesting = 0; 1959 p->rcu_read_unlock_special.s = 0; 1960 p->rcu_blocked_node = NULL; 1961 INIT_LIST_HEAD(&p->rcu_node_entry); 1962 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1963 #ifdef CONFIG_TASKS_RCU 1964 p->rcu_tasks_holdout = false; 1965 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1966 p->rcu_tasks_idle_cpu = -1; 1967 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1968 #endif /* #ifdef CONFIG_TASKS_RCU */ 1969 #ifdef CONFIG_TASKS_TRACE_RCU 1970 p->trc_reader_nesting = 0; 1971 p->trc_reader_special.s = 0; 1972 INIT_LIST_HEAD(&p->trc_holdout_list); 1973 INIT_LIST_HEAD(&p->trc_blkd_node); 1974 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1975 } 1976 1977 /** 1978 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1979 * @pid: the struct pid for which to create a pidfd 1980 * @flags: flags of the new @pidfd 1981 * @ret: Where to return the file for the pidfd. 1982 * 1983 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1984 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1985 * 1986 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1987 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1988 * pidfd file are prepared. 1989 * 1990 * If this function returns successfully the caller is responsible to either 1991 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1992 * order to install the pidfd into its file descriptor table or they must use 1993 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1994 * respectively. 1995 * 1996 * This function is useful when a pidfd must already be reserved but there 1997 * might still be points of failure afterwards and the caller wants to ensure 1998 * that no pidfd is leaked into its file descriptor table. 1999 * 2000 * Return: On success, a reserved pidfd is returned from the function and a new 2001 * pidfd file is returned in the last argument to the function. On 2002 * error, a negative error code is returned from the function and the 2003 * last argument remains unchanged. 2004 */ 2005 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2006 { 2007 int pidfd; 2008 struct file *pidfd_file; 2009 2010 pidfd = get_unused_fd_flags(O_CLOEXEC); 2011 if (pidfd < 0) 2012 return pidfd; 2013 2014 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2015 if (IS_ERR(pidfd_file)) { 2016 put_unused_fd(pidfd); 2017 return PTR_ERR(pidfd_file); 2018 } 2019 /* 2020 * anon_inode_getfile() ignores everything outside of the 2021 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2022 */ 2023 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2024 *ret = pidfd_file; 2025 return pidfd; 2026 } 2027 2028 /** 2029 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2030 * @pid: the struct pid for which to create a pidfd 2031 * @flags: flags of the new @pidfd 2032 * @ret: Where to return the pidfd. 2033 * 2034 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2035 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2036 * 2037 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2038 * task identified by @pid must be a thread-group leader. 2039 * 2040 * If this function returns successfully the caller is responsible to either 2041 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2042 * order to install the pidfd into its file descriptor table or they must use 2043 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2044 * respectively. 2045 * 2046 * This function is useful when a pidfd must already be reserved but there 2047 * might still be points of failure afterwards and the caller wants to ensure 2048 * that no pidfd is leaked into its file descriptor table. 2049 * 2050 * Return: On success, a reserved pidfd is returned from the function and a new 2051 * pidfd file is returned in the last argument to the function. On 2052 * error, a negative error code is returned from the function and the 2053 * last argument remains unchanged. 2054 */ 2055 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2056 { 2057 bool thread = flags & PIDFD_THREAD; 2058 2059 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2060 return -EINVAL; 2061 2062 return __pidfd_prepare(pid, flags, ret); 2063 } 2064 2065 static void __delayed_free_task(struct rcu_head *rhp) 2066 { 2067 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2068 2069 free_task(tsk); 2070 } 2071 2072 static __always_inline void delayed_free_task(struct task_struct *tsk) 2073 { 2074 if (IS_ENABLED(CONFIG_MEMCG)) 2075 call_rcu(&tsk->rcu, __delayed_free_task); 2076 else 2077 free_task(tsk); 2078 } 2079 2080 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2081 { 2082 /* Skip if kernel thread */ 2083 if (!tsk->mm) 2084 return; 2085 2086 /* Skip if spawning a thread or using vfork */ 2087 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2088 return; 2089 2090 /* We need to synchronize with __set_oom_adj */ 2091 mutex_lock(&oom_adj_mutex); 2092 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2093 /* Update the values in case they were changed after copy_signal */ 2094 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2095 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2096 mutex_unlock(&oom_adj_mutex); 2097 } 2098 2099 #ifdef CONFIG_RV 2100 static void rv_task_fork(struct task_struct *p) 2101 { 2102 int i; 2103 2104 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2105 p->rv[i].da_mon.monitoring = false; 2106 } 2107 #else 2108 #define rv_task_fork(p) do {} while (0) 2109 #endif 2110 2111 /* 2112 * This creates a new process as a copy of the old one, 2113 * but does not actually start it yet. 2114 * 2115 * It copies the registers, and all the appropriate 2116 * parts of the process environment (as per the clone 2117 * flags). The actual kick-off is left to the caller. 2118 */ 2119 __latent_entropy struct task_struct *copy_process( 2120 struct pid *pid, 2121 int trace, 2122 int node, 2123 struct kernel_clone_args *args) 2124 { 2125 int pidfd = -1, retval; 2126 struct task_struct *p; 2127 struct multiprocess_signals delayed; 2128 struct file *pidfile = NULL; 2129 const u64 clone_flags = args->flags; 2130 struct nsproxy *nsp = current->nsproxy; 2131 2132 /* 2133 * Don't allow sharing the root directory with processes in a different 2134 * namespace 2135 */ 2136 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2137 return ERR_PTR(-EINVAL); 2138 2139 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2140 return ERR_PTR(-EINVAL); 2141 2142 /* 2143 * Thread groups must share signals as well, and detached threads 2144 * can only be started up within the thread group. 2145 */ 2146 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2147 return ERR_PTR(-EINVAL); 2148 2149 /* 2150 * Shared signal handlers imply shared VM. By way of the above, 2151 * thread groups also imply shared VM. Blocking this case allows 2152 * for various simplifications in other code. 2153 */ 2154 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2155 return ERR_PTR(-EINVAL); 2156 2157 /* 2158 * Siblings of global init remain as zombies on exit since they are 2159 * not reaped by their parent (swapper). To solve this and to avoid 2160 * multi-rooted process trees, prevent global and container-inits 2161 * from creating siblings. 2162 */ 2163 if ((clone_flags & CLONE_PARENT) && 2164 current->signal->flags & SIGNAL_UNKILLABLE) 2165 return ERR_PTR(-EINVAL); 2166 2167 /* 2168 * If the new process will be in a different pid or user namespace 2169 * do not allow it to share a thread group with the forking task. 2170 */ 2171 if (clone_flags & CLONE_THREAD) { 2172 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2173 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2174 return ERR_PTR(-EINVAL); 2175 } 2176 2177 if (clone_flags & CLONE_PIDFD) { 2178 /* 2179 * - CLONE_DETACHED is blocked so that we can potentially 2180 * reuse it later for CLONE_PIDFD. 2181 */ 2182 if (clone_flags & CLONE_DETACHED) 2183 return ERR_PTR(-EINVAL); 2184 } 2185 2186 /* 2187 * Force any signals received before this point to be delivered 2188 * before the fork happens. Collect up signals sent to multiple 2189 * processes that happen during the fork and delay them so that 2190 * they appear to happen after the fork. 2191 */ 2192 sigemptyset(&delayed.signal); 2193 INIT_HLIST_NODE(&delayed.node); 2194 2195 spin_lock_irq(¤t->sighand->siglock); 2196 if (!(clone_flags & CLONE_THREAD)) 2197 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2198 recalc_sigpending(); 2199 spin_unlock_irq(¤t->sighand->siglock); 2200 retval = -ERESTARTNOINTR; 2201 if (task_sigpending(current)) 2202 goto fork_out; 2203 2204 retval = -ENOMEM; 2205 p = dup_task_struct(current, node); 2206 if (!p) 2207 goto fork_out; 2208 p->flags &= ~PF_KTHREAD; 2209 if (args->kthread) 2210 p->flags |= PF_KTHREAD; 2211 if (args->user_worker) { 2212 /* 2213 * Mark us a user worker, and block any signal that isn't 2214 * fatal or STOP 2215 */ 2216 p->flags |= PF_USER_WORKER; 2217 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2218 } 2219 if (args->io_thread) 2220 p->flags |= PF_IO_WORKER; 2221 2222 if (args->name) 2223 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2224 2225 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2226 /* 2227 * Clear TID on mm_release()? 2228 */ 2229 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2230 2231 ftrace_graph_init_task(p); 2232 2233 rt_mutex_init_task(p); 2234 2235 lockdep_assert_irqs_enabled(); 2236 #ifdef CONFIG_PROVE_LOCKING 2237 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2238 #endif 2239 retval = copy_creds(p, clone_flags); 2240 if (retval < 0) 2241 goto bad_fork_free; 2242 2243 retval = -EAGAIN; 2244 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2245 if (p->real_cred->user != INIT_USER && 2246 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2247 goto bad_fork_cleanup_count; 2248 } 2249 current->flags &= ~PF_NPROC_EXCEEDED; 2250 2251 /* 2252 * If multiple threads are within copy_process(), then this check 2253 * triggers too late. This doesn't hurt, the check is only there 2254 * to stop root fork bombs. 2255 */ 2256 retval = -EAGAIN; 2257 if (data_race(nr_threads >= max_threads)) 2258 goto bad_fork_cleanup_count; 2259 2260 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2261 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2262 p->flags |= PF_FORKNOEXEC; 2263 INIT_LIST_HEAD(&p->children); 2264 INIT_LIST_HEAD(&p->sibling); 2265 rcu_copy_process(p); 2266 p->vfork_done = NULL; 2267 spin_lock_init(&p->alloc_lock); 2268 2269 init_sigpending(&p->pending); 2270 2271 p->utime = p->stime = p->gtime = 0; 2272 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2273 p->utimescaled = p->stimescaled = 0; 2274 #endif 2275 prev_cputime_init(&p->prev_cputime); 2276 2277 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2278 seqcount_init(&p->vtime.seqcount); 2279 p->vtime.starttime = 0; 2280 p->vtime.state = VTIME_INACTIVE; 2281 #endif 2282 2283 #ifdef CONFIG_IO_URING 2284 p->io_uring = NULL; 2285 #endif 2286 2287 p->default_timer_slack_ns = current->timer_slack_ns; 2288 2289 #ifdef CONFIG_PSI 2290 p->psi_flags = 0; 2291 #endif 2292 2293 task_io_accounting_init(&p->ioac); 2294 acct_clear_integrals(p); 2295 2296 posix_cputimers_init(&p->posix_cputimers); 2297 tick_dep_init_task(p); 2298 2299 p->io_context = NULL; 2300 audit_set_context(p, NULL); 2301 cgroup_fork(p); 2302 if (args->kthread) { 2303 if (!set_kthread_struct(p)) 2304 goto bad_fork_cleanup_delayacct; 2305 } 2306 #ifdef CONFIG_NUMA 2307 p->mempolicy = mpol_dup(p->mempolicy); 2308 if (IS_ERR(p->mempolicy)) { 2309 retval = PTR_ERR(p->mempolicy); 2310 p->mempolicy = NULL; 2311 goto bad_fork_cleanup_delayacct; 2312 } 2313 #endif 2314 #ifdef CONFIG_CPUSETS 2315 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2316 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2317 #endif 2318 #ifdef CONFIG_TRACE_IRQFLAGS 2319 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2320 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2321 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2322 p->softirqs_enabled = 1; 2323 p->softirq_context = 0; 2324 #endif 2325 2326 p->pagefault_disabled = 0; 2327 2328 #ifdef CONFIG_LOCKDEP 2329 lockdep_init_task(p); 2330 #endif 2331 2332 #ifdef CONFIG_DEBUG_MUTEXES 2333 p->blocked_on = NULL; /* not blocked yet */ 2334 #endif 2335 #ifdef CONFIG_BCACHE 2336 p->sequential_io = 0; 2337 p->sequential_io_avg = 0; 2338 #endif 2339 #ifdef CONFIG_BPF_SYSCALL 2340 RCU_INIT_POINTER(p->bpf_storage, NULL); 2341 p->bpf_ctx = NULL; 2342 #endif 2343 2344 /* Perform scheduler related setup. Assign this task to a CPU. */ 2345 retval = sched_fork(clone_flags, p); 2346 if (retval) 2347 goto bad_fork_cleanup_policy; 2348 2349 retval = perf_event_init_task(p, clone_flags); 2350 if (retval) 2351 goto bad_fork_sched_cancel_fork; 2352 retval = audit_alloc(p); 2353 if (retval) 2354 goto bad_fork_cleanup_perf; 2355 /* copy all the process information */ 2356 shm_init_task(p); 2357 retval = security_task_alloc(p, clone_flags); 2358 if (retval) 2359 goto bad_fork_cleanup_audit; 2360 retval = copy_semundo(clone_flags, p); 2361 if (retval) 2362 goto bad_fork_cleanup_security; 2363 retval = copy_files(clone_flags, p, args->no_files); 2364 if (retval) 2365 goto bad_fork_cleanup_semundo; 2366 retval = copy_fs(clone_flags, p); 2367 if (retval) 2368 goto bad_fork_cleanup_files; 2369 retval = copy_sighand(clone_flags, p); 2370 if (retval) 2371 goto bad_fork_cleanup_fs; 2372 retval = copy_signal(clone_flags, p); 2373 if (retval) 2374 goto bad_fork_cleanup_sighand; 2375 retval = copy_mm(clone_flags, p); 2376 if (retval) 2377 goto bad_fork_cleanup_signal; 2378 retval = copy_namespaces(clone_flags, p); 2379 if (retval) 2380 goto bad_fork_cleanup_mm; 2381 retval = copy_io(clone_flags, p); 2382 if (retval) 2383 goto bad_fork_cleanup_namespaces; 2384 retval = copy_thread(p, args); 2385 if (retval) 2386 goto bad_fork_cleanup_io; 2387 2388 stackleak_task_init(p); 2389 2390 if (pid != &init_struct_pid) { 2391 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2392 args->set_tid_size); 2393 if (IS_ERR(pid)) { 2394 retval = PTR_ERR(pid); 2395 goto bad_fork_cleanup_thread; 2396 } 2397 } 2398 2399 /* 2400 * This has to happen after we've potentially unshared the file 2401 * descriptor table (so that the pidfd doesn't leak into the child 2402 * if the fd table isn't shared). 2403 */ 2404 if (clone_flags & CLONE_PIDFD) { 2405 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2406 2407 /* Note that no task has been attached to @pid yet. */ 2408 retval = __pidfd_prepare(pid, flags, &pidfile); 2409 if (retval < 0) 2410 goto bad_fork_free_pid; 2411 pidfd = retval; 2412 2413 retval = put_user(pidfd, args->pidfd); 2414 if (retval) 2415 goto bad_fork_put_pidfd; 2416 } 2417 2418 #ifdef CONFIG_BLOCK 2419 p->plug = NULL; 2420 #endif 2421 futex_init_task(p); 2422 2423 /* 2424 * sigaltstack should be cleared when sharing the same VM 2425 */ 2426 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2427 sas_ss_reset(p); 2428 2429 /* 2430 * Syscall tracing and stepping should be turned off in the 2431 * child regardless of CLONE_PTRACE. 2432 */ 2433 user_disable_single_step(p); 2434 clear_task_syscall_work(p, SYSCALL_TRACE); 2435 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2436 clear_task_syscall_work(p, SYSCALL_EMU); 2437 #endif 2438 clear_tsk_latency_tracing(p); 2439 2440 /* ok, now we should be set up.. */ 2441 p->pid = pid_nr(pid); 2442 if (clone_flags & CLONE_THREAD) { 2443 p->group_leader = current->group_leader; 2444 p->tgid = current->tgid; 2445 } else { 2446 p->group_leader = p; 2447 p->tgid = p->pid; 2448 } 2449 2450 p->nr_dirtied = 0; 2451 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2452 p->dirty_paused_when = 0; 2453 2454 p->pdeath_signal = 0; 2455 p->task_works = NULL; 2456 clear_posix_cputimers_work(p); 2457 2458 #ifdef CONFIG_KRETPROBES 2459 p->kretprobe_instances.first = NULL; 2460 #endif 2461 #ifdef CONFIG_RETHOOK 2462 p->rethooks.first = NULL; 2463 #endif 2464 2465 /* 2466 * Ensure that the cgroup subsystem policies allow the new process to be 2467 * forked. It should be noted that the new process's css_set can be changed 2468 * between here and cgroup_post_fork() if an organisation operation is in 2469 * progress. 2470 */ 2471 retval = cgroup_can_fork(p, args); 2472 if (retval) 2473 goto bad_fork_put_pidfd; 2474 2475 /* 2476 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2477 * the new task on the correct runqueue. All this *before* the task 2478 * becomes visible. 2479 * 2480 * This isn't part of ->can_fork() because while the re-cloning is 2481 * cgroup specific, it unconditionally needs to place the task on a 2482 * runqueue. 2483 */ 2484 retval = sched_cgroup_fork(p, args); 2485 if (retval) 2486 goto bad_fork_cancel_cgroup; 2487 2488 /* 2489 * From this point on we must avoid any synchronous user-space 2490 * communication until we take the tasklist-lock. In particular, we do 2491 * not want user-space to be able to predict the process start-time by 2492 * stalling fork(2) after we recorded the start_time but before it is 2493 * visible to the system. 2494 */ 2495 2496 p->start_time = ktime_get_ns(); 2497 p->start_boottime = ktime_get_boottime_ns(); 2498 2499 /* 2500 * Make it visible to the rest of the system, but dont wake it up yet. 2501 * Need tasklist lock for parent etc handling! 2502 */ 2503 write_lock_irq(&tasklist_lock); 2504 2505 /* CLONE_PARENT re-uses the old parent */ 2506 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2507 p->real_parent = current->real_parent; 2508 p->parent_exec_id = current->parent_exec_id; 2509 if (clone_flags & CLONE_THREAD) 2510 p->exit_signal = -1; 2511 else 2512 p->exit_signal = current->group_leader->exit_signal; 2513 } else { 2514 p->real_parent = current; 2515 p->parent_exec_id = current->self_exec_id; 2516 p->exit_signal = args->exit_signal; 2517 } 2518 2519 klp_copy_process(p); 2520 2521 sched_core_fork(p); 2522 2523 spin_lock(¤t->sighand->siglock); 2524 2525 rv_task_fork(p); 2526 2527 rseq_fork(p, clone_flags); 2528 2529 /* Don't start children in a dying pid namespace */ 2530 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2531 retval = -ENOMEM; 2532 goto bad_fork_core_free; 2533 } 2534 2535 /* Let kill terminate clone/fork in the middle */ 2536 if (fatal_signal_pending(current)) { 2537 retval = -EINTR; 2538 goto bad_fork_core_free; 2539 } 2540 2541 /* No more failure paths after this point. */ 2542 2543 /* 2544 * Copy seccomp details explicitly here, in case they were changed 2545 * before holding sighand lock. 2546 */ 2547 copy_seccomp(p); 2548 2549 init_task_pid_links(p); 2550 if (likely(p->pid)) { 2551 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2552 2553 init_task_pid(p, PIDTYPE_PID, pid); 2554 if (thread_group_leader(p)) { 2555 init_task_pid(p, PIDTYPE_TGID, pid); 2556 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2557 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2558 2559 if (is_child_reaper(pid)) { 2560 ns_of_pid(pid)->child_reaper = p; 2561 p->signal->flags |= SIGNAL_UNKILLABLE; 2562 } 2563 p->signal->shared_pending.signal = delayed.signal; 2564 p->signal->tty = tty_kref_get(current->signal->tty); 2565 /* 2566 * Inherit has_child_subreaper flag under the same 2567 * tasklist_lock with adding child to the process tree 2568 * for propagate_has_child_subreaper optimization. 2569 */ 2570 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2571 p->real_parent->signal->is_child_subreaper; 2572 list_add_tail(&p->sibling, &p->real_parent->children); 2573 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2574 attach_pid(p, PIDTYPE_TGID); 2575 attach_pid(p, PIDTYPE_PGID); 2576 attach_pid(p, PIDTYPE_SID); 2577 __this_cpu_inc(process_counts); 2578 } else { 2579 current->signal->nr_threads++; 2580 current->signal->quick_threads++; 2581 atomic_inc(¤t->signal->live); 2582 refcount_inc(¤t->signal->sigcnt); 2583 task_join_group_stop(p); 2584 list_add_tail_rcu(&p->thread_node, 2585 &p->signal->thread_head); 2586 } 2587 attach_pid(p, PIDTYPE_PID); 2588 nr_threads++; 2589 } 2590 total_forks++; 2591 hlist_del_init(&delayed.node); 2592 spin_unlock(¤t->sighand->siglock); 2593 syscall_tracepoint_update(p); 2594 write_unlock_irq(&tasklist_lock); 2595 2596 if (pidfile) 2597 fd_install(pidfd, pidfile); 2598 2599 proc_fork_connector(p); 2600 sched_post_fork(p); 2601 cgroup_post_fork(p, args); 2602 perf_event_fork(p); 2603 2604 trace_task_newtask(p, clone_flags); 2605 uprobe_copy_process(p, clone_flags); 2606 user_events_fork(p, clone_flags); 2607 2608 copy_oom_score_adj(clone_flags, p); 2609 2610 return p; 2611 2612 bad_fork_core_free: 2613 sched_core_free(p); 2614 spin_unlock(¤t->sighand->siglock); 2615 write_unlock_irq(&tasklist_lock); 2616 bad_fork_cancel_cgroup: 2617 cgroup_cancel_fork(p, args); 2618 bad_fork_put_pidfd: 2619 if (clone_flags & CLONE_PIDFD) { 2620 fput(pidfile); 2621 put_unused_fd(pidfd); 2622 } 2623 bad_fork_free_pid: 2624 if (pid != &init_struct_pid) 2625 free_pid(pid); 2626 bad_fork_cleanup_thread: 2627 exit_thread(p); 2628 bad_fork_cleanup_io: 2629 if (p->io_context) 2630 exit_io_context(p); 2631 bad_fork_cleanup_namespaces: 2632 exit_task_namespaces(p); 2633 bad_fork_cleanup_mm: 2634 if (p->mm) { 2635 mm_clear_owner(p->mm, p); 2636 mmput(p->mm); 2637 } 2638 bad_fork_cleanup_signal: 2639 if (!(clone_flags & CLONE_THREAD)) 2640 free_signal_struct(p->signal); 2641 bad_fork_cleanup_sighand: 2642 __cleanup_sighand(p->sighand); 2643 bad_fork_cleanup_fs: 2644 exit_fs(p); /* blocking */ 2645 bad_fork_cleanup_files: 2646 exit_files(p); /* blocking */ 2647 bad_fork_cleanup_semundo: 2648 exit_sem(p); 2649 bad_fork_cleanup_security: 2650 security_task_free(p); 2651 bad_fork_cleanup_audit: 2652 audit_free(p); 2653 bad_fork_cleanup_perf: 2654 perf_event_free_task(p); 2655 bad_fork_sched_cancel_fork: 2656 sched_cancel_fork(p); 2657 bad_fork_cleanup_policy: 2658 lockdep_free_task(p); 2659 #ifdef CONFIG_NUMA 2660 mpol_put(p->mempolicy); 2661 #endif 2662 bad_fork_cleanup_delayacct: 2663 delayacct_tsk_free(p); 2664 bad_fork_cleanup_count: 2665 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2666 exit_creds(p); 2667 bad_fork_free: 2668 WRITE_ONCE(p->__state, TASK_DEAD); 2669 exit_task_stack_account(p); 2670 put_task_stack(p); 2671 delayed_free_task(p); 2672 fork_out: 2673 spin_lock_irq(¤t->sighand->siglock); 2674 hlist_del_init(&delayed.node); 2675 spin_unlock_irq(¤t->sighand->siglock); 2676 return ERR_PTR(retval); 2677 } 2678 2679 static inline void init_idle_pids(struct task_struct *idle) 2680 { 2681 enum pid_type type; 2682 2683 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2684 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2685 init_task_pid(idle, type, &init_struct_pid); 2686 } 2687 } 2688 2689 static int idle_dummy(void *dummy) 2690 { 2691 /* This function is never called */ 2692 return 0; 2693 } 2694 2695 struct task_struct * __init fork_idle(int cpu) 2696 { 2697 struct task_struct *task; 2698 struct kernel_clone_args args = { 2699 .flags = CLONE_VM, 2700 .fn = &idle_dummy, 2701 .fn_arg = NULL, 2702 .kthread = 1, 2703 .idle = 1, 2704 }; 2705 2706 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2707 if (!IS_ERR(task)) { 2708 init_idle_pids(task); 2709 init_idle(task, cpu); 2710 } 2711 2712 return task; 2713 } 2714 2715 /* 2716 * This is like kernel_clone(), but shaved down and tailored to just 2717 * creating io_uring workers. It returns a created task, or an error pointer. 2718 * The returned task is inactive, and the caller must fire it up through 2719 * wake_up_new_task(p). All signals are blocked in the created task. 2720 */ 2721 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2722 { 2723 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2724 CLONE_IO; 2725 struct kernel_clone_args args = { 2726 .flags = ((lower_32_bits(flags) | CLONE_VM | 2727 CLONE_UNTRACED) & ~CSIGNAL), 2728 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2729 .fn = fn, 2730 .fn_arg = arg, 2731 .io_thread = 1, 2732 .user_worker = 1, 2733 }; 2734 2735 return copy_process(NULL, 0, node, &args); 2736 } 2737 2738 /* 2739 * Ok, this is the main fork-routine. 2740 * 2741 * It copies the process, and if successful kick-starts 2742 * it and waits for it to finish using the VM if required. 2743 * 2744 * args->exit_signal is expected to be checked for sanity by the caller. 2745 */ 2746 pid_t kernel_clone(struct kernel_clone_args *args) 2747 { 2748 u64 clone_flags = args->flags; 2749 struct completion vfork; 2750 struct pid *pid; 2751 struct task_struct *p; 2752 int trace = 0; 2753 pid_t nr; 2754 2755 /* 2756 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2757 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2758 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2759 * field in struct clone_args and it still doesn't make sense to have 2760 * them both point at the same memory location. Performing this check 2761 * here has the advantage that we don't need to have a separate helper 2762 * to check for legacy clone(). 2763 */ 2764 if ((clone_flags & CLONE_PIDFD) && 2765 (clone_flags & CLONE_PARENT_SETTID) && 2766 (args->pidfd == args->parent_tid)) 2767 return -EINVAL; 2768 2769 /* 2770 * Determine whether and which event to report to ptracer. When 2771 * called from kernel_thread or CLONE_UNTRACED is explicitly 2772 * requested, no event is reported; otherwise, report if the event 2773 * for the type of forking is enabled. 2774 */ 2775 if (!(clone_flags & CLONE_UNTRACED)) { 2776 if (clone_flags & CLONE_VFORK) 2777 trace = PTRACE_EVENT_VFORK; 2778 else if (args->exit_signal != SIGCHLD) 2779 trace = PTRACE_EVENT_CLONE; 2780 else 2781 trace = PTRACE_EVENT_FORK; 2782 2783 if (likely(!ptrace_event_enabled(current, trace))) 2784 trace = 0; 2785 } 2786 2787 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2788 add_latent_entropy(); 2789 2790 if (IS_ERR(p)) 2791 return PTR_ERR(p); 2792 2793 /* 2794 * Do this prior waking up the new thread - the thread pointer 2795 * might get invalid after that point, if the thread exits quickly. 2796 */ 2797 trace_sched_process_fork(current, p); 2798 2799 pid = get_task_pid(p, PIDTYPE_PID); 2800 nr = pid_vnr(pid); 2801 2802 if (clone_flags & CLONE_PARENT_SETTID) 2803 put_user(nr, args->parent_tid); 2804 2805 if (clone_flags & CLONE_VFORK) { 2806 p->vfork_done = &vfork; 2807 init_completion(&vfork); 2808 get_task_struct(p); 2809 } 2810 2811 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2812 /* lock the task to synchronize with memcg migration */ 2813 task_lock(p); 2814 lru_gen_add_mm(p->mm); 2815 task_unlock(p); 2816 } 2817 2818 wake_up_new_task(p); 2819 2820 /* forking complete and child started to run, tell ptracer */ 2821 if (unlikely(trace)) 2822 ptrace_event_pid(trace, pid); 2823 2824 if (clone_flags & CLONE_VFORK) { 2825 if (!wait_for_vfork_done(p, &vfork)) 2826 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2827 } 2828 2829 put_pid(pid); 2830 return nr; 2831 } 2832 2833 /* 2834 * Create a kernel thread. 2835 */ 2836 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2837 unsigned long flags) 2838 { 2839 struct kernel_clone_args args = { 2840 .flags = ((lower_32_bits(flags) | CLONE_VM | 2841 CLONE_UNTRACED) & ~CSIGNAL), 2842 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2843 .fn = fn, 2844 .fn_arg = arg, 2845 .name = name, 2846 .kthread = 1, 2847 }; 2848 2849 return kernel_clone(&args); 2850 } 2851 2852 /* 2853 * Create a user mode thread. 2854 */ 2855 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2856 { 2857 struct kernel_clone_args args = { 2858 .flags = ((lower_32_bits(flags) | CLONE_VM | 2859 CLONE_UNTRACED) & ~CSIGNAL), 2860 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2861 .fn = fn, 2862 .fn_arg = arg, 2863 }; 2864 2865 return kernel_clone(&args); 2866 } 2867 2868 #ifdef __ARCH_WANT_SYS_FORK 2869 SYSCALL_DEFINE0(fork) 2870 { 2871 #ifdef CONFIG_MMU 2872 struct kernel_clone_args args = { 2873 .exit_signal = SIGCHLD, 2874 }; 2875 2876 return kernel_clone(&args); 2877 #else 2878 /* can not support in nommu mode */ 2879 return -EINVAL; 2880 #endif 2881 } 2882 #endif 2883 2884 #ifdef __ARCH_WANT_SYS_VFORK 2885 SYSCALL_DEFINE0(vfork) 2886 { 2887 struct kernel_clone_args args = { 2888 .flags = CLONE_VFORK | CLONE_VM, 2889 .exit_signal = SIGCHLD, 2890 }; 2891 2892 return kernel_clone(&args); 2893 } 2894 #endif 2895 2896 #ifdef __ARCH_WANT_SYS_CLONE 2897 #ifdef CONFIG_CLONE_BACKWARDS 2898 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2899 int __user *, parent_tidptr, 2900 unsigned long, tls, 2901 int __user *, child_tidptr) 2902 #elif defined(CONFIG_CLONE_BACKWARDS2) 2903 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2904 int __user *, parent_tidptr, 2905 int __user *, child_tidptr, 2906 unsigned long, tls) 2907 #elif defined(CONFIG_CLONE_BACKWARDS3) 2908 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2909 int, stack_size, 2910 int __user *, parent_tidptr, 2911 int __user *, child_tidptr, 2912 unsigned long, tls) 2913 #else 2914 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2915 int __user *, parent_tidptr, 2916 int __user *, child_tidptr, 2917 unsigned long, tls) 2918 #endif 2919 { 2920 struct kernel_clone_args args = { 2921 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2922 .pidfd = parent_tidptr, 2923 .child_tid = child_tidptr, 2924 .parent_tid = parent_tidptr, 2925 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2926 .stack = newsp, 2927 .tls = tls, 2928 }; 2929 2930 return kernel_clone(&args); 2931 } 2932 #endif 2933 2934 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2935 struct clone_args __user *uargs, 2936 size_t usize) 2937 { 2938 int err; 2939 struct clone_args args; 2940 pid_t *kset_tid = kargs->set_tid; 2941 2942 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2943 CLONE_ARGS_SIZE_VER0); 2944 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2945 CLONE_ARGS_SIZE_VER1); 2946 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2947 CLONE_ARGS_SIZE_VER2); 2948 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2949 2950 if (unlikely(usize > PAGE_SIZE)) 2951 return -E2BIG; 2952 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2953 return -EINVAL; 2954 2955 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2956 if (err) 2957 return err; 2958 2959 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2960 return -EINVAL; 2961 2962 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2963 return -EINVAL; 2964 2965 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2966 return -EINVAL; 2967 2968 /* 2969 * Verify that higher 32bits of exit_signal are unset and that 2970 * it is a valid signal 2971 */ 2972 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2973 !valid_signal(args.exit_signal))) 2974 return -EINVAL; 2975 2976 if ((args.flags & CLONE_INTO_CGROUP) && 2977 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2978 return -EINVAL; 2979 2980 *kargs = (struct kernel_clone_args){ 2981 .flags = args.flags, 2982 .pidfd = u64_to_user_ptr(args.pidfd), 2983 .child_tid = u64_to_user_ptr(args.child_tid), 2984 .parent_tid = u64_to_user_ptr(args.parent_tid), 2985 .exit_signal = args.exit_signal, 2986 .stack = args.stack, 2987 .stack_size = args.stack_size, 2988 .tls = args.tls, 2989 .set_tid_size = args.set_tid_size, 2990 .cgroup = args.cgroup, 2991 }; 2992 2993 if (args.set_tid && 2994 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2995 (kargs->set_tid_size * sizeof(pid_t)))) 2996 return -EFAULT; 2997 2998 kargs->set_tid = kset_tid; 2999 3000 return 0; 3001 } 3002 3003 /** 3004 * clone3_stack_valid - check and prepare stack 3005 * @kargs: kernel clone args 3006 * 3007 * Verify that the stack arguments userspace gave us are sane. 3008 * In addition, set the stack direction for userspace since it's easy for us to 3009 * determine. 3010 */ 3011 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3012 { 3013 if (kargs->stack == 0) { 3014 if (kargs->stack_size > 0) 3015 return false; 3016 } else { 3017 if (kargs->stack_size == 0) 3018 return false; 3019 3020 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3021 return false; 3022 3023 #if !defined(CONFIG_STACK_GROWSUP) 3024 kargs->stack += kargs->stack_size; 3025 #endif 3026 } 3027 3028 return true; 3029 } 3030 3031 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3032 { 3033 /* Verify that no unknown flags are passed along. */ 3034 if (kargs->flags & 3035 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3036 return false; 3037 3038 /* 3039 * - make the CLONE_DETACHED bit reusable for clone3 3040 * - make the CSIGNAL bits reusable for clone3 3041 */ 3042 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3043 return false; 3044 3045 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3046 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3047 return false; 3048 3049 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3050 kargs->exit_signal) 3051 return false; 3052 3053 if (!clone3_stack_valid(kargs)) 3054 return false; 3055 3056 return true; 3057 } 3058 3059 /** 3060 * sys_clone3 - create a new process with specific properties 3061 * @uargs: argument structure 3062 * @size: size of @uargs 3063 * 3064 * clone3() is the extensible successor to clone()/clone2(). 3065 * It takes a struct as argument that is versioned by its size. 3066 * 3067 * Return: On success, a positive PID for the child process. 3068 * On error, a negative errno number. 3069 */ 3070 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3071 { 3072 int err; 3073 3074 struct kernel_clone_args kargs; 3075 pid_t set_tid[MAX_PID_NS_LEVEL]; 3076 3077 #ifdef __ARCH_BROKEN_SYS_CLONE3 3078 #warning clone3() entry point is missing, please fix 3079 return -ENOSYS; 3080 #endif 3081 3082 kargs.set_tid = set_tid; 3083 3084 err = copy_clone_args_from_user(&kargs, uargs, size); 3085 if (err) 3086 return err; 3087 3088 if (!clone3_args_valid(&kargs)) 3089 return -EINVAL; 3090 3091 return kernel_clone(&kargs); 3092 } 3093 3094 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3095 { 3096 struct task_struct *leader, *parent, *child; 3097 int res; 3098 3099 read_lock(&tasklist_lock); 3100 leader = top = top->group_leader; 3101 down: 3102 for_each_thread(leader, parent) { 3103 list_for_each_entry(child, &parent->children, sibling) { 3104 res = visitor(child, data); 3105 if (res) { 3106 if (res < 0) 3107 goto out; 3108 leader = child; 3109 goto down; 3110 } 3111 up: 3112 ; 3113 } 3114 } 3115 3116 if (leader != top) { 3117 child = leader; 3118 parent = child->real_parent; 3119 leader = parent->group_leader; 3120 goto up; 3121 } 3122 out: 3123 read_unlock(&tasklist_lock); 3124 } 3125 3126 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3127 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3128 #endif 3129 3130 static void sighand_ctor(void *data) 3131 { 3132 struct sighand_struct *sighand = data; 3133 3134 spin_lock_init(&sighand->siglock); 3135 init_waitqueue_head(&sighand->signalfd_wqh); 3136 } 3137 3138 void __init mm_cache_init(void) 3139 { 3140 unsigned int mm_size; 3141 3142 /* 3143 * The mm_cpumask is located at the end of mm_struct, and is 3144 * dynamically sized based on the maximum CPU number this system 3145 * can have, taking hotplug into account (nr_cpu_ids). 3146 */ 3147 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3148 3149 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3150 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3151 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3152 offsetof(struct mm_struct, saved_auxv), 3153 sizeof_field(struct mm_struct, saved_auxv), 3154 NULL); 3155 } 3156 3157 void __init proc_caches_init(void) 3158 { 3159 sighand_cachep = kmem_cache_create("sighand_cache", 3160 sizeof(struct sighand_struct), 0, 3161 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3162 SLAB_ACCOUNT, sighand_ctor); 3163 signal_cachep = kmem_cache_create("signal_cache", 3164 sizeof(struct signal_struct), 0, 3165 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3166 NULL); 3167 files_cachep = kmem_cache_create("files_cache", 3168 sizeof(struct files_struct), 0, 3169 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3170 NULL); 3171 fs_cachep = kmem_cache_create("fs_cache", 3172 sizeof(struct fs_struct), 0, 3173 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3174 NULL); 3175 vm_area_cachep = KMEM_CACHE(vm_area_struct, 3176 SLAB_HWCACHE_ALIGN|SLAB_NO_MERGE|SLAB_PANIC| 3177 SLAB_ACCOUNT); 3178 mmap_init(); 3179 nsproxy_cache_init(); 3180 } 3181 3182 /* 3183 * Check constraints on flags passed to the unshare system call. 3184 */ 3185 static int check_unshare_flags(unsigned long unshare_flags) 3186 { 3187 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3188 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3189 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3190 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3191 CLONE_NEWTIME)) 3192 return -EINVAL; 3193 /* 3194 * Not implemented, but pretend it works if there is nothing 3195 * to unshare. Note that unsharing the address space or the 3196 * signal handlers also need to unshare the signal queues (aka 3197 * CLONE_THREAD). 3198 */ 3199 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3200 if (!thread_group_empty(current)) 3201 return -EINVAL; 3202 } 3203 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3204 if (refcount_read(¤t->sighand->count) > 1) 3205 return -EINVAL; 3206 } 3207 if (unshare_flags & CLONE_VM) { 3208 if (!current_is_single_threaded()) 3209 return -EINVAL; 3210 } 3211 3212 return 0; 3213 } 3214 3215 /* 3216 * Unshare the filesystem structure if it is being shared 3217 */ 3218 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3219 { 3220 struct fs_struct *fs = current->fs; 3221 3222 if (!(unshare_flags & CLONE_FS) || !fs) 3223 return 0; 3224 3225 /* don't need lock here; in the worst case we'll do useless copy */ 3226 if (fs->users == 1) 3227 return 0; 3228 3229 *new_fsp = copy_fs_struct(fs); 3230 if (!*new_fsp) 3231 return -ENOMEM; 3232 3233 return 0; 3234 } 3235 3236 /* 3237 * Unshare file descriptor table if it is being shared 3238 */ 3239 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3240 { 3241 struct files_struct *fd = current->files; 3242 3243 if ((unshare_flags & CLONE_FILES) && 3244 (fd && atomic_read(&fd->count) > 1)) { 3245 fd = dup_fd(fd, NULL); 3246 if (IS_ERR(fd)) 3247 return PTR_ERR(fd); 3248 *new_fdp = fd; 3249 } 3250 3251 return 0; 3252 } 3253 3254 /* 3255 * unshare allows a process to 'unshare' part of the process 3256 * context which was originally shared using clone. copy_* 3257 * functions used by kernel_clone() cannot be used here directly 3258 * because they modify an inactive task_struct that is being 3259 * constructed. Here we are modifying the current, active, 3260 * task_struct. 3261 */ 3262 int ksys_unshare(unsigned long unshare_flags) 3263 { 3264 struct fs_struct *fs, *new_fs = NULL; 3265 struct files_struct *new_fd = NULL; 3266 struct cred *new_cred = NULL; 3267 struct nsproxy *new_nsproxy = NULL; 3268 int do_sysvsem = 0; 3269 int err; 3270 3271 /* 3272 * If unsharing a user namespace must also unshare the thread group 3273 * and unshare the filesystem root and working directories. 3274 */ 3275 if (unshare_flags & CLONE_NEWUSER) 3276 unshare_flags |= CLONE_THREAD | CLONE_FS; 3277 /* 3278 * If unsharing vm, must also unshare signal handlers. 3279 */ 3280 if (unshare_flags & CLONE_VM) 3281 unshare_flags |= CLONE_SIGHAND; 3282 /* 3283 * If unsharing a signal handlers, must also unshare the signal queues. 3284 */ 3285 if (unshare_flags & CLONE_SIGHAND) 3286 unshare_flags |= CLONE_THREAD; 3287 /* 3288 * If unsharing namespace, must also unshare filesystem information. 3289 */ 3290 if (unshare_flags & CLONE_NEWNS) 3291 unshare_flags |= CLONE_FS; 3292 3293 err = check_unshare_flags(unshare_flags); 3294 if (err) 3295 goto bad_unshare_out; 3296 /* 3297 * CLONE_NEWIPC must also detach from the undolist: after switching 3298 * to a new ipc namespace, the semaphore arrays from the old 3299 * namespace are unreachable. 3300 */ 3301 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3302 do_sysvsem = 1; 3303 err = unshare_fs(unshare_flags, &new_fs); 3304 if (err) 3305 goto bad_unshare_out; 3306 err = unshare_fd(unshare_flags, &new_fd); 3307 if (err) 3308 goto bad_unshare_cleanup_fs; 3309 err = unshare_userns(unshare_flags, &new_cred); 3310 if (err) 3311 goto bad_unshare_cleanup_fd; 3312 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3313 new_cred, new_fs); 3314 if (err) 3315 goto bad_unshare_cleanup_cred; 3316 3317 if (new_cred) { 3318 err = set_cred_ucounts(new_cred); 3319 if (err) 3320 goto bad_unshare_cleanup_cred; 3321 } 3322 3323 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3324 if (do_sysvsem) { 3325 /* 3326 * CLONE_SYSVSEM is equivalent to sys_exit(). 3327 */ 3328 exit_sem(current); 3329 } 3330 if (unshare_flags & CLONE_NEWIPC) { 3331 /* Orphan segments in old ns (see sem above). */ 3332 exit_shm(current); 3333 shm_init_task(current); 3334 } 3335 3336 if (new_nsproxy) 3337 switch_task_namespaces(current, new_nsproxy); 3338 3339 task_lock(current); 3340 3341 if (new_fs) { 3342 fs = current->fs; 3343 spin_lock(&fs->lock); 3344 current->fs = new_fs; 3345 if (--fs->users) 3346 new_fs = NULL; 3347 else 3348 new_fs = fs; 3349 spin_unlock(&fs->lock); 3350 } 3351 3352 if (new_fd) 3353 swap(current->files, new_fd); 3354 3355 task_unlock(current); 3356 3357 if (new_cred) { 3358 /* Install the new user namespace */ 3359 commit_creds(new_cred); 3360 new_cred = NULL; 3361 } 3362 } 3363 3364 perf_event_namespaces(current); 3365 3366 bad_unshare_cleanup_cred: 3367 if (new_cred) 3368 put_cred(new_cred); 3369 bad_unshare_cleanup_fd: 3370 if (new_fd) 3371 put_files_struct(new_fd); 3372 3373 bad_unshare_cleanup_fs: 3374 if (new_fs) 3375 free_fs_struct(new_fs); 3376 3377 bad_unshare_out: 3378 return err; 3379 } 3380 3381 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3382 { 3383 return ksys_unshare(unshare_flags); 3384 } 3385 3386 /* 3387 * Helper to unshare the files of the current task. 3388 * We don't want to expose copy_files internals to 3389 * the exec layer of the kernel. 3390 */ 3391 3392 int unshare_files(void) 3393 { 3394 struct task_struct *task = current; 3395 struct files_struct *old, *copy = NULL; 3396 int error; 3397 3398 error = unshare_fd(CLONE_FILES, ©); 3399 if (error || !copy) 3400 return error; 3401 3402 old = task->files; 3403 task_lock(task); 3404 task->files = copy; 3405 task_unlock(task); 3406 put_files_struct(old); 3407 return 0; 3408 } 3409 3410 int sysctl_max_threads(const struct ctl_table *table, int write, 3411 void *buffer, size_t *lenp, loff_t *ppos) 3412 { 3413 struct ctl_table t; 3414 int ret; 3415 int threads = max_threads; 3416 int min = 1; 3417 int max = MAX_THREADS; 3418 3419 t = *table; 3420 t.data = &threads; 3421 t.extra1 = &min; 3422 t.extra2 = &max; 3423 3424 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3425 if (ret || !write) 3426 return ret; 3427 3428 max_threads = threads; 3429 3430 return 0; 3431 } 3432