1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 #ifdef CONFIG_PER_VMA_LOCK 440 441 /* SLAB cache for vm_area_struct.lock */ 442 static struct kmem_cache *vma_lock_cachep; 443 444 static bool vma_lock_alloc(struct vm_area_struct *vma) 445 { 446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 447 if (!vma->vm_lock) 448 return false; 449 450 init_rwsem(&vma->vm_lock->lock); 451 vma->vm_lock_seq = UINT_MAX; 452 453 return true; 454 } 455 456 static inline void vma_lock_free(struct vm_area_struct *vma) 457 { 458 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 459 } 460 461 #else /* CONFIG_PER_VMA_LOCK */ 462 463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 464 static inline void vma_lock_free(struct vm_area_struct *vma) {} 465 466 #endif /* CONFIG_PER_VMA_LOCK */ 467 468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 469 { 470 struct vm_area_struct *vma; 471 472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 473 if (!vma) 474 return NULL; 475 476 vma_init(vma, mm); 477 if (!vma_lock_alloc(vma)) { 478 kmem_cache_free(vm_area_cachep, vma); 479 return NULL; 480 } 481 482 return vma; 483 } 484 485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 486 { 487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 489 if (!new) 490 return NULL; 491 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 494 /* 495 * orig->shared.rb may be modified concurrently, but the clone 496 * will be reinitialized. 497 */ 498 data_race(memcpy(new, orig, sizeof(*new))); 499 if (!vma_lock_alloc(new)) { 500 kmem_cache_free(vm_area_cachep, new); 501 return NULL; 502 } 503 INIT_LIST_HEAD(&new->anon_vma_chain); 504 vma_numab_state_init(new); 505 dup_anon_vma_name(orig, new); 506 507 return new; 508 } 509 510 void __vm_area_free(struct vm_area_struct *vma) 511 { 512 vma_numab_state_free(vma); 513 free_anon_vma_name(vma); 514 vma_lock_free(vma); 515 kmem_cache_free(vm_area_cachep, vma); 516 } 517 518 #ifdef CONFIG_PER_VMA_LOCK 519 static void vm_area_free_rcu_cb(struct rcu_head *head) 520 { 521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 522 vm_rcu); 523 524 /* The vma should not be locked while being destroyed. */ 525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 526 __vm_area_free(vma); 527 } 528 #endif 529 530 void vm_area_free(struct vm_area_struct *vma) 531 { 532 #ifdef CONFIG_PER_VMA_LOCK 533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 534 #else 535 __vm_area_free(vma); 536 #endif 537 } 538 539 static void account_kernel_stack(struct task_struct *tsk, int account) 540 { 541 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 542 struct vm_struct *vm = task_stack_vm_area(tsk); 543 int i; 544 545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 547 account * (PAGE_SIZE / 1024)); 548 } else { 549 void *stack = task_stack_page(tsk); 550 551 /* All stack pages are in the same node. */ 552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 553 account * (THREAD_SIZE / 1024)); 554 } 555 } 556 557 void exit_task_stack_account(struct task_struct *tsk) 558 { 559 account_kernel_stack(tsk, -1); 560 561 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 562 struct vm_struct *vm; 563 int i; 564 565 vm = task_stack_vm_area(tsk); 566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 567 memcg_kmem_uncharge_page(vm->pages[i], 0); 568 } 569 } 570 571 static void release_task_stack(struct task_struct *tsk) 572 { 573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 574 return; /* Better to leak the stack than to free prematurely */ 575 576 free_thread_stack(tsk); 577 } 578 579 #ifdef CONFIG_THREAD_INFO_IN_TASK 580 void put_task_stack(struct task_struct *tsk) 581 { 582 if (refcount_dec_and_test(&tsk->stack_refcount)) 583 release_task_stack(tsk); 584 } 585 #endif 586 587 void free_task(struct task_struct *tsk) 588 { 589 #ifdef CONFIG_SECCOMP 590 WARN_ON_ONCE(tsk->seccomp.filter); 591 #endif 592 release_user_cpus_ptr(tsk); 593 scs_release(tsk); 594 595 #ifndef CONFIG_THREAD_INFO_IN_TASK 596 /* 597 * The task is finally done with both the stack and thread_info, 598 * so free both. 599 */ 600 release_task_stack(tsk); 601 #else 602 /* 603 * If the task had a separate stack allocation, it should be gone 604 * by now. 605 */ 606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 607 #endif 608 rt_mutex_debug_task_free(tsk); 609 ftrace_graph_exit_task(tsk); 610 arch_release_task_struct(tsk); 611 if (tsk->flags & PF_KTHREAD) 612 free_kthread_struct(tsk); 613 bpf_task_storage_free(tsk); 614 free_task_struct(tsk); 615 } 616 EXPORT_SYMBOL(free_task); 617 618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 619 { 620 struct file *exe_file; 621 622 exe_file = get_mm_exe_file(oldmm); 623 RCU_INIT_POINTER(mm->exe_file, exe_file); 624 /* 625 * We depend on the oldmm having properly denied write access to the 626 * exe_file already. 627 */ 628 if (exe_file && deny_write_access(exe_file)) 629 pr_warn_once("deny_write_access() failed in %s\n", __func__); 630 } 631 632 #ifdef CONFIG_MMU 633 static __latent_entropy int dup_mmap(struct mm_struct *mm, 634 struct mm_struct *oldmm) 635 { 636 struct vm_area_struct *mpnt, *tmp; 637 int retval; 638 unsigned long charge = 0; 639 LIST_HEAD(uf); 640 VMA_ITERATOR(vmi, mm, 0); 641 642 uprobe_start_dup_mmap(); 643 if (mmap_write_lock_killable(oldmm)) { 644 retval = -EINTR; 645 goto fail_uprobe_end; 646 } 647 flush_cache_dup_mm(oldmm); 648 uprobe_dup_mmap(oldmm, mm); 649 /* 650 * Not linked in yet - no deadlock potential: 651 */ 652 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 653 654 /* No ordering required: file already has been exposed. */ 655 dup_mm_exe_file(mm, oldmm); 656 657 mm->total_vm = oldmm->total_vm; 658 mm->data_vm = oldmm->data_vm; 659 mm->exec_vm = oldmm->exec_vm; 660 mm->stack_vm = oldmm->stack_vm; 661 662 /* Use __mt_dup() to efficiently build an identical maple tree. */ 663 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 664 if (unlikely(retval)) 665 goto out; 666 667 mt_clear_in_rcu(vmi.mas.tree); 668 for_each_vma(vmi, mpnt) { 669 struct file *file; 670 671 vma_start_write(mpnt); 672 if (mpnt->vm_flags & VM_DONTCOPY) { 673 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 674 mpnt->vm_end, GFP_KERNEL); 675 if (retval) 676 goto loop_out; 677 678 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 679 continue; 680 } 681 charge = 0; 682 /* 683 * Don't duplicate many vmas if we've been oom-killed (for 684 * example) 685 */ 686 if (fatal_signal_pending(current)) { 687 retval = -EINTR; 688 goto loop_out; 689 } 690 if (mpnt->vm_flags & VM_ACCOUNT) { 691 unsigned long len = vma_pages(mpnt); 692 693 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 694 goto fail_nomem; 695 charge = len; 696 } 697 tmp = vm_area_dup(mpnt); 698 if (!tmp) 699 goto fail_nomem; 700 retval = vma_dup_policy(mpnt, tmp); 701 if (retval) 702 goto fail_nomem_policy; 703 tmp->vm_mm = mm; 704 retval = dup_userfaultfd(tmp, &uf); 705 if (retval) 706 goto fail_nomem_anon_vma_fork; 707 if (tmp->vm_flags & VM_WIPEONFORK) { 708 /* 709 * VM_WIPEONFORK gets a clean slate in the child. 710 * Don't prepare anon_vma until fault since we don't 711 * copy page for current vma. 712 */ 713 tmp->anon_vma = NULL; 714 } else if (anon_vma_fork(tmp, mpnt)) 715 goto fail_nomem_anon_vma_fork; 716 vm_flags_clear(tmp, VM_LOCKED_MASK); 717 /* 718 * Copy/update hugetlb private vma information. 719 */ 720 if (is_vm_hugetlb_page(tmp)) 721 hugetlb_dup_vma_private(tmp); 722 723 /* 724 * Link the vma into the MT. After using __mt_dup(), memory 725 * allocation is not necessary here, so it cannot fail. 726 */ 727 vma_iter_bulk_store(&vmi, tmp); 728 729 mm->map_count++; 730 731 if (tmp->vm_ops && tmp->vm_ops->open) 732 tmp->vm_ops->open(tmp); 733 734 file = tmp->vm_file; 735 if (file) { 736 struct address_space *mapping = file->f_mapping; 737 738 get_file(file); 739 i_mmap_lock_write(mapping); 740 if (vma_is_shared_maywrite(tmp)) 741 mapping_allow_writable(mapping); 742 flush_dcache_mmap_lock(mapping); 743 /* insert tmp into the share list, just after mpnt */ 744 vma_interval_tree_insert_after(tmp, mpnt, 745 &mapping->i_mmap); 746 flush_dcache_mmap_unlock(mapping); 747 i_mmap_unlock_write(mapping); 748 } 749 750 if (!(tmp->vm_flags & VM_WIPEONFORK)) 751 retval = copy_page_range(tmp, mpnt); 752 753 if (retval) { 754 mpnt = vma_next(&vmi); 755 goto loop_out; 756 } 757 } 758 /* a new mm has just been created */ 759 retval = arch_dup_mmap(oldmm, mm); 760 loop_out: 761 vma_iter_free(&vmi); 762 if (!retval) { 763 mt_set_in_rcu(vmi.mas.tree); 764 ksm_fork(mm, oldmm); 765 khugepaged_fork(mm, oldmm); 766 } else if (mpnt) { 767 /* 768 * The entire maple tree has already been duplicated. If the 769 * mmap duplication fails, mark the failure point with 770 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 771 * stop releasing VMAs that have not been duplicated after this 772 * point. 773 */ 774 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 775 mas_store(&vmi.mas, XA_ZERO_ENTRY); 776 } 777 out: 778 mmap_write_unlock(mm); 779 flush_tlb_mm(oldmm); 780 mmap_write_unlock(oldmm); 781 if (!retval) 782 dup_userfaultfd_complete(&uf); 783 else 784 dup_userfaultfd_fail(&uf); 785 fail_uprobe_end: 786 uprobe_end_dup_mmap(); 787 return retval; 788 789 fail_nomem_anon_vma_fork: 790 mpol_put(vma_policy(tmp)); 791 fail_nomem_policy: 792 vm_area_free(tmp); 793 fail_nomem: 794 retval = -ENOMEM; 795 vm_unacct_memory(charge); 796 goto loop_out; 797 } 798 799 static inline int mm_alloc_pgd(struct mm_struct *mm) 800 { 801 mm->pgd = pgd_alloc(mm); 802 if (unlikely(!mm->pgd)) 803 return -ENOMEM; 804 return 0; 805 } 806 807 static inline void mm_free_pgd(struct mm_struct *mm) 808 { 809 pgd_free(mm, mm->pgd); 810 } 811 #else 812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 813 { 814 mmap_write_lock(oldmm); 815 dup_mm_exe_file(mm, oldmm); 816 mmap_write_unlock(oldmm); 817 return 0; 818 } 819 #define mm_alloc_pgd(mm) (0) 820 #define mm_free_pgd(mm) 821 #endif /* CONFIG_MMU */ 822 823 static void check_mm(struct mm_struct *mm) 824 { 825 int i; 826 827 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 828 "Please make sure 'struct resident_page_types[]' is updated as well"); 829 830 for (i = 0; i < NR_MM_COUNTERS; i++) { 831 long x = percpu_counter_sum(&mm->rss_stat[i]); 832 833 if (unlikely(x)) 834 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 835 mm, resident_page_types[i], x); 836 } 837 838 if (mm_pgtables_bytes(mm)) 839 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 840 mm_pgtables_bytes(mm)); 841 842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 843 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 844 #endif 845 } 846 847 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 848 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 849 850 static void do_check_lazy_tlb(void *arg) 851 { 852 struct mm_struct *mm = arg; 853 854 WARN_ON_ONCE(current->active_mm == mm); 855 } 856 857 static void do_shoot_lazy_tlb(void *arg) 858 { 859 struct mm_struct *mm = arg; 860 861 if (current->active_mm == mm) { 862 WARN_ON_ONCE(current->mm); 863 current->active_mm = &init_mm; 864 switch_mm(mm, &init_mm, current); 865 } 866 } 867 868 static void cleanup_lazy_tlbs(struct mm_struct *mm) 869 { 870 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 871 /* 872 * In this case, lazy tlb mms are refounted and would not reach 873 * __mmdrop until all CPUs have switched away and mmdrop()ed. 874 */ 875 return; 876 } 877 878 /* 879 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 880 * requires lazy mm users to switch to another mm when the refcount 881 * drops to zero, before the mm is freed. This requires IPIs here to 882 * switch kernel threads to init_mm. 883 * 884 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 885 * switch with the final userspace teardown TLB flush which leaves the 886 * mm lazy on this CPU but no others, reducing the need for additional 887 * IPIs here. There are cases where a final IPI is still required here, 888 * such as the final mmdrop being performed on a different CPU than the 889 * one exiting, or kernel threads using the mm when userspace exits. 890 * 891 * IPI overheads have not found to be expensive, but they could be 892 * reduced in a number of possible ways, for example (roughly 893 * increasing order of complexity): 894 * - The last lazy reference created by exit_mm() could instead switch 895 * to init_mm, however it's probable this will run on the same CPU 896 * immediately afterwards, so this may not reduce IPIs much. 897 * - A batch of mms requiring IPIs could be gathered and freed at once. 898 * - CPUs store active_mm where it can be remotely checked without a 899 * lock, to filter out false-positives in the cpumask. 900 * - After mm_users or mm_count reaches zero, switching away from the 901 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 902 * with some batching or delaying of the final IPIs. 903 * - A delayed freeing and RCU-like quiescing sequence based on mm 904 * switching to avoid IPIs completely. 905 */ 906 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 907 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 908 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 909 } 910 911 /* 912 * Called when the last reference to the mm 913 * is dropped: either by a lazy thread or by 914 * mmput. Free the page directory and the mm. 915 */ 916 void __mmdrop(struct mm_struct *mm) 917 { 918 BUG_ON(mm == &init_mm); 919 WARN_ON_ONCE(mm == current->mm); 920 921 /* Ensure no CPUs are using this as their lazy tlb mm */ 922 cleanup_lazy_tlbs(mm); 923 924 WARN_ON_ONCE(mm == current->active_mm); 925 mm_free_pgd(mm); 926 destroy_context(mm); 927 mmu_notifier_subscriptions_destroy(mm); 928 check_mm(mm); 929 put_user_ns(mm->user_ns); 930 mm_pasid_drop(mm); 931 mm_destroy_cid(mm); 932 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 933 934 free_mm(mm); 935 } 936 EXPORT_SYMBOL_GPL(__mmdrop); 937 938 static void mmdrop_async_fn(struct work_struct *work) 939 { 940 struct mm_struct *mm; 941 942 mm = container_of(work, struct mm_struct, async_put_work); 943 __mmdrop(mm); 944 } 945 946 static void mmdrop_async(struct mm_struct *mm) 947 { 948 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 949 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 950 schedule_work(&mm->async_put_work); 951 } 952 } 953 954 static inline void free_signal_struct(struct signal_struct *sig) 955 { 956 taskstats_tgid_free(sig); 957 sched_autogroup_exit(sig); 958 /* 959 * __mmdrop is not safe to call from softirq context on x86 due to 960 * pgd_dtor so postpone it to the async context 961 */ 962 if (sig->oom_mm) 963 mmdrop_async(sig->oom_mm); 964 kmem_cache_free(signal_cachep, sig); 965 } 966 967 static inline void put_signal_struct(struct signal_struct *sig) 968 { 969 if (refcount_dec_and_test(&sig->sigcnt)) 970 free_signal_struct(sig); 971 } 972 973 void __put_task_struct(struct task_struct *tsk) 974 { 975 WARN_ON(!tsk->exit_state); 976 WARN_ON(refcount_read(&tsk->usage)); 977 WARN_ON(tsk == current); 978 979 sched_ext_free(tsk); 980 io_uring_free(tsk); 981 cgroup_free(tsk); 982 task_numa_free(tsk, true); 983 security_task_free(tsk); 984 exit_creds(tsk); 985 delayacct_tsk_free(tsk); 986 put_signal_struct(tsk->signal); 987 sched_core_free(tsk); 988 free_task(tsk); 989 } 990 EXPORT_SYMBOL_GPL(__put_task_struct); 991 992 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 993 { 994 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 995 996 __put_task_struct(task); 997 } 998 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 999 1000 void __init __weak arch_task_cache_init(void) { } 1001 1002 /* 1003 * set_max_threads 1004 */ 1005 static void __init set_max_threads(unsigned int max_threads_suggested) 1006 { 1007 u64 threads; 1008 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1009 1010 /* 1011 * The number of threads shall be limited such that the thread 1012 * structures may only consume a small part of the available memory. 1013 */ 1014 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1015 threads = MAX_THREADS; 1016 else 1017 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1018 (u64) THREAD_SIZE * 8UL); 1019 1020 if (threads > max_threads_suggested) 1021 threads = max_threads_suggested; 1022 1023 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1024 } 1025 1026 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1027 /* Initialized by the architecture: */ 1028 int arch_task_struct_size __read_mostly; 1029 #endif 1030 1031 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1032 { 1033 /* Fetch thread_struct whitelist for the architecture. */ 1034 arch_thread_struct_whitelist(offset, size); 1035 1036 /* 1037 * Handle zero-sized whitelist or empty thread_struct, otherwise 1038 * adjust offset to position of thread_struct in task_struct. 1039 */ 1040 if (unlikely(*size == 0)) 1041 *offset = 0; 1042 else 1043 *offset += offsetof(struct task_struct, thread); 1044 } 1045 1046 void __init fork_init(void) 1047 { 1048 int i; 1049 #ifndef ARCH_MIN_TASKALIGN 1050 #define ARCH_MIN_TASKALIGN 0 1051 #endif 1052 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1053 unsigned long useroffset, usersize; 1054 1055 /* create a slab on which task_structs can be allocated */ 1056 task_struct_whitelist(&useroffset, &usersize); 1057 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1058 arch_task_struct_size, align, 1059 SLAB_PANIC|SLAB_ACCOUNT, 1060 useroffset, usersize, NULL); 1061 1062 /* do the arch specific task caches init */ 1063 arch_task_cache_init(); 1064 1065 set_max_threads(MAX_THREADS); 1066 1067 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1068 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1069 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1070 init_task.signal->rlim[RLIMIT_NPROC]; 1071 1072 for (i = 0; i < UCOUNT_COUNTS; i++) 1073 init_user_ns.ucount_max[i] = max_threads/2; 1074 1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1077 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1079 1080 #ifdef CONFIG_VMAP_STACK 1081 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1082 NULL, free_vm_stack_cache); 1083 #endif 1084 1085 scs_init(); 1086 1087 lockdep_init_task(&init_task); 1088 uprobes_init(); 1089 } 1090 1091 int __weak arch_dup_task_struct(struct task_struct *dst, 1092 struct task_struct *src) 1093 { 1094 *dst = *src; 1095 return 0; 1096 } 1097 1098 void set_task_stack_end_magic(struct task_struct *tsk) 1099 { 1100 unsigned long *stackend; 1101 1102 stackend = end_of_stack(tsk); 1103 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1104 } 1105 1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1107 { 1108 struct task_struct *tsk; 1109 int err; 1110 1111 if (node == NUMA_NO_NODE) 1112 node = tsk_fork_get_node(orig); 1113 tsk = alloc_task_struct_node(node); 1114 if (!tsk) 1115 return NULL; 1116 1117 err = arch_dup_task_struct(tsk, orig); 1118 if (err) 1119 goto free_tsk; 1120 1121 err = alloc_thread_stack_node(tsk, node); 1122 if (err) 1123 goto free_tsk; 1124 1125 #ifdef CONFIG_THREAD_INFO_IN_TASK 1126 refcount_set(&tsk->stack_refcount, 1); 1127 #endif 1128 account_kernel_stack(tsk, 1); 1129 1130 err = scs_prepare(tsk, node); 1131 if (err) 1132 goto free_stack; 1133 1134 #ifdef CONFIG_SECCOMP 1135 /* 1136 * We must handle setting up seccomp filters once we're under 1137 * the sighand lock in case orig has changed between now and 1138 * then. Until then, filter must be NULL to avoid messing up 1139 * the usage counts on the error path calling free_task. 1140 */ 1141 tsk->seccomp.filter = NULL; 1142 #endif 1143 1144 setup_thread_stack(tsk, orig); 1145 clear_user_return_notifier(tsk); 1146 clear_tsk_need_resched(tsk); 1147 set_task_stack_end_magic(tsk); 1148 clear_syscall_work_syscall_user_dispatch(tsk); 1149 1150 #ifdef CONFIG_STACKPROTECTOR 1151 tsk->stack_canary = get_random_canary(); 1152 #endif 1153 if (orig->cpus_ptr == &orig->cpus_mask) 1154 tsk->cpus_ptr = &tsk->cpus_mask; 1155 dup_user_cpus_ptr(tsk, orig, node); 1156 1157 /* 1158 * One for the user space visible state that goes away when reaped. 1159 * One for the scheduler. 1160 */ 1161 refcount_set(&tsk->rcu_users, 2); 1162 /* One for the rcu users */ 1163 refcount_set(&tsk->usage, 1); 1164 #ifdef CONFIG_BLK_DEV_IO_TRACE 1165 tsk->btrace_seq = 0; 1166 #endif 1167 tsk->splice_pipe = NULL; 1168 tsk->task_frag.page = NULL; 1169 tsk->wake_q.next = NULL; 1170 tsk->worker_private = NULL; 1171 1172 kcov_task_init(tsk); 1173 kmsan_task_create(tsk); 1174 kmap_local_fork(tsk); 1175 1176 #ifdef CONFIG_FAULT_INJECTION 1177 tsk->fail_nth = 0; 1178 #endif 1179 1180 #ifdef CONFIG_BLK_CGROUP 1181 tsk->throttle_disk = NULL; 1182 tsk->use_memdelay = 0; 1183 #endif 1184 1185 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1186 tsk->pasid_activated = 0; 1187 #endif 1188 1189 #ifdef CONFIG_MEMCG 1190 tsk->active_memcg = NULL; 1191 #endif 1192 1193 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1194 tsk->reported_split_lock = 0; 1195 #endif 1196 1197 #ifdef CONFIG_SCHED_MM_CID 1198 tsk->mm_cid = -1; 1199 tsk->last_mm_cid = -1; 1200 tsk->mm_cid_active = 0; 1201 tsk->migrate_from_cpu = -1; 1202 #endif 1203 return tsk; 1204 1205 free_stack: 1206 exit_task_stack_account(tsk); 1207 free_thread_stack(tsk); 1208 free_tsk: 1209 free_task_struct(tsk); 1210 return NULL; 1211 } 1212 1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1214 1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1216 1217 static int __init coredump_filter_setup(char *s) 1218 { 1219 default_dump_filter = 1220 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1221 MMF_DUMP_FILTER_MASK; 1222 return 1; 1223 } 1224 1225 __setup("coredump_filter=", coredump_filter_setup); 1226 1227 #include <linux/init_task.h> 1228 1229 static void mm_init_aio(struct mm_struct *mm) 1230 { 1231 #ifdef CONFIG_AIO 1232 spin_lock_init(&mm->ioctx_lock); 1233 mm->ioctx_table = NULL; 1234 #endif 1235 } 1236 1237 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1238 struct task_struct *p) 1239 { 1240 #ifdef CONFIG_MEMCG 1241 if (mm->owner == p) 1242 WRITE_ONCE(mm->owner, NULL); 1243 #endif 1244 } 1245 1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1247 { 1248 #ifdef CONFIG_MEMCG 1249 mm->owner = p; 1250 #endif 1251 } 1252 1253 static void mm_init_uprobes_state(struct mm_struct *mm) 1254 { 1255 #ifdef CONFIG_UPROBES 1256 mm->uprobes_state.xol_area = NULL; 1257 #endif 1258 } 1259 1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1261 struct user_namespace *user_ns) 1262 { 1263 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1264 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1265 atomic_set(&mm->mm_users, 1); 1266 atomic_set(&mm->mm_count, 1); 1267 seqcount_init(&mm->write_protect_seq); 1268 mmap_init_lock(mm); 1269 INIT_LIST_HEAD(&mm->mmlist); 1270 mm_pgtables_bytes_init(mm); 1271 mm->map_count = 0; 1272 mm->locked_vm = 0; 1273 atomic64_set(&mm->pinned_vm, 0); 1274 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1275 spin_lock_init(&mm->page_table_lock); 1276 spin_lock_init(&mm->arg_lock); 1277 mm_init_cpumask(mm); 1278 mm_init_aio(mm); 1279 mm_init_owner(mm, p); 1280 mm_pasid_init(mm); 1281 RCU_INIT_POINTER(mm->exe_file, NULL); 1282 mmu_notifier_subscriptions_init(mm); 1283 init_tlb_flush_pending(mm); 1284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1285 mm->pmd_huge_pte = NULL; 1286 #endif 1287 mm_init_uprobes_state(mm); 1288 hugetlb_count_init(mm); 1289 1290 if (current->mm) { 1291 mm->flags = mmf_init_flags(current->mm->flags); 1292 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1293 } else { 1294 mm->flags = default_dump_filter; 1295 mm->def_flags = 0; 1296 } 1297 1298 if (mm_alloc_pgd(mm)) 1299 goto fail_nopgd; 1300 1301 if (init_new_context(p, mm)) 1302 goto fail_nocontext; 1303 1304 if (mm_alloc_cid(mm, p)) 1305 goto fail_cid; 1306 1307 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1308 NR_MM_COUNTERS)) 1309 goto fail_pcpu; 1310 1311 mm->user_ns = get_user_ns(user_ns); 1312 lru_gen_init_mm(mm); 1313 return mm; 1314 1315 fail_pcpu: 1316 mm_destroy_cid(mm); 1317 fail_cid: 1318 destroy_context(mm); 1319 fail_nocontext: 1320 mm_free_pgd(mm); 1321 fail_nopgd: 1322 free_mm(mm); 1323 return NULL; 1324 } 1325 1326 /* 1327 * Allocate and initialize an mm_struct. 1328 */ 1329 struct mm_struct *mm_alloc(void) 1330 { 1331 struct mm_struct *mm; 1332 1333 mm = allocate_mm(); 1334 if (!mm) 1335 return NULL; 1336 1337 memset(mm, 0, sizeof(*mm)); 1338 return mm_init(mm, current, current_user_ns()); 1339 } 1340 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1341 1342 static inline void __mmput(struct mm_struct *mm) 1343 { 1344 VM_BUG_ON(atomic_read(&mm->mm_users)); 1345 1346 uprobe_clear_state(mm); 1347 exit_aio(mm); 1348 ksm_exit(mm); 1349 khugepaged_exit(mm); /* must run before exit_mmap */ 1350 exit_mmap(mm); 1351 mm_put_huge_zero_folio(mm); 1352 set_mm_exe_file(mm, NULL); 1353 if (!list_empty(&mm->mmlist)) { 1354 spin_lock(&mmlist_lock); 1355 list_del(&mm->mmlist); 1356 spin_unlock(&mmlist_lock); 1357 } 1358 if (mm->binfmt) 1359 module_put(mm->binfmt->module); 1360 lru_gen_del_mm(mm); 1361 mmdrop(mm); 1362 } 1363 1364 /* 1365 * Decrement the use count and release all resources for an mm. 1366 */ 1367 void mmput(struct mm_struct *mm) 1368 { 1369 might_sleep(); 1370 1371 if (atomic_dec_and_test(&mm->mm_users)) 1372 __mmput(mm); 1373 } 1374 EXPORT_SYMBOL_GPL(mmput); 1375 1376 #ifdef CONFIG_MMU 1377 static void mmput_async_fn(struct work_struct *work) 1378 { 1379 struct mm_struct *mm = container_of(work, struct mm_struct, 1380 async_put_work); 1381 1382 __mmput(mm); 1383 } 1384 1385 void mmput_async(struct mm_struct *mm) 1386 { 1387 if (atomic_dec_and_test(&mm->mm_users)) { 1388 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1389 schedule_work(&mm->async_put_work); 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(mmput_async); 1393 #endif 1394 1395 /** 1396 * set_mm_exe_file - change a reference to the mm's executable file 1397 * @mm: The mm to change. 1398 * @new_exe_file: The new file to use. 1399 * 1400 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1401 * 1402 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1403 * invocations: in mmput() nobody alive left, in execve it happens before 1404 * the new mm is made visible to anyone. 1405 * 1406 * Can only fail if new_exe_file != NULL. 1407 */ 1408 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1409 { 1410 struct file *old_exe_file; 1411 1412 /* 1413 * It is safe to dereference the exe_file without RCU as 1414 * this function is only called if nobody else can access 1415 * this mm -- see comment above for justification. 1416 */ 1417 old_exe_file = rcu_dereference_raw(mm->exe_file); 1418 1419 if (new_exe_file) { 1420 /* 1421 * We expect the caller (i.e., sys_execve) to already denied 1422 * write access, so this is unlikely to fail. 1423 */ 1424 if (unlikely(deny_write_access(new_exe_file))) 1425 return -EACCES; 1426 get_file(new_exe_file); 1427 } 1428 rcu_assign_pointer(mm->exe_file, new_exe_file); 1429 if (old_exe_file) { 1430 allow_write_access(old_exe_file); 1431 fput(old_exe_file); 1432 } 1433 return 0; 1434 } 1435 1436 /** 1437 * replace_mm_exe_file - replace a reference to the mm's executable file 1438 * @mm: The mm to change. 1439 * @new_exe_file: The new file to use. 1440 * 1441 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1442 * 1443 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1444 */ 1445 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1446 { 1447 struct vm_area_struct *vma; 1448 struct file *old_exe_file; 1449 int ret = 0; 1450 1451 /* Forbid mm->exe_file change if old file still mapped. */ 1452 old_exe_file = get_mm_exe_file(mm); 1453 if (old_exe_file) { 1454 VMA_ITERATOR(vmi, mm, 0); 1455 mmap_read_lock(mm); 1456 for_each_vma(vmi, vma) { 1457 if (!vma->vm_file) 1458 continue; 1459 if (path_equal(&vma->vm_file->f_path, 1460 &old_exe_file->f_path)) { 1461 ret = -EBUSY; 1462 break; 1463 } 1464 } 1465 mmap_read_unlock(mm); 1466 fput(old_exe_file); 1467 if (ret) 1468 return ret; 1469 } 1470 1471 ret = deny_write_access(new_exe_file); 1472 if (ret) 1473 return -EACCES; 1474 get_file(new_exe_file); 1475 1476 /* set the new file */ 1477 mmap_write_lock(mm); 1478 old_exe_file = rcu_dereference_raw(mm->exe_file); 1479 rcu_assign_pointer(mm->exe_file, new_exe_file); 1480 mmap_write_unlock(mm); 1481 1482 if (old_exe_file) { 1483 allow_write_access(old_exe_file); 1484 fput(old_exe_file); 1485 } 1486 return 0; 1487 } 1488 1489 /** 1490 * get_mm_exe_file - acquire a reference to the mm's executable file 1491 * @mm: The mm of interest. 1492 * 1493 * Returns %NULL if mm has no associated executable file. 1494 * User must release file via fput(). 1495 */ 1496 struct file *get_mm_exe_file(struct mm_struct *mm) 1497 { 1498 struct file *exe_file; 1499 1500 rcu_read_lock(); 1501 exe_file = get_file_rcu(&mm->exe_file); 1502 rcu_read_unlock(); 1503 return exe_file; 1504 } 1505 1506 /** 1507 * get_task_exe_file - acquire a reference to the task's executable file 1508 * @task: The task. 1509 * 1510 * Returns %NULL if task's mm (if any) has no associated executable file or 1511 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1512 * User must release file via fput(). 1513 */ 1514 struct file *get_task_exe_file(struct task_struct *task) 1515 { 1516 struct file *exe_file = NULL; 1517 struct mm_struct *mm; 1518 1519 task_lock(task); 1520 mm = task->mm; 1521 if (mm) { 1522 if (!(task->flags & PF_KTHREAD)) 1523 exe_file = get_mm_exe_file(mm); 1524 } 1525 task_unlock(task); 1526 return exe_file; 1527 } 1528 1529 /** 1530 * get_task_mm - acquire a reference to the task's mm 1531 * @task: The task. 1532 * 1533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1534 * this kernel workthread has transiently adopted a user mm with use_mm, 1535 * to do its AIO) is not set and if so returns a reference to it, after 1536 * bumping up the use count. User must release the mm via mmput() 1537 * after use. Typically used by /proc and ptrace. 1538 */ 1539 struct mm_struct *get_task_mm(struct task_struct *task) 1540 { 1541 struct mm_struct *mm; 1542 1543 if (task->flags & PF_KTHREAD) 1544 return NULL; 1545 1546 task_lock(task); 1547 mm = task->mm; 1548 if (mm) 1549 mmget(mm); 1550 task_unlock(task); 1551 return mm; 1552 } 1553 EXPORT_SYMBOL_GPL(get_task_mm); 1554 1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1556 { 1557 struct mm_struct *mm; 1558 int err; 1559 1560 err = down_read_killable(&task->signal->exec_update_lock); 1561 if (err) 1562 return ERR_PTR(err); 1563 1564 mm = get_task_mm(task); 1565 if (!mm) { 1566 mm = ERR_PTR(-ESRCH); 1567 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1568 mmput(mm); 1569 mm = ERR_PTR(-EACCES); 1570 } 1571 up_read(&task->signal->exec_update_lock); 1572 1573 return mm; 1574 } 1575 1576 static void complete_vfork_done(struct task_struct *tsk) 1577 { 1578 struct completion *vfork; 1579 1580 task_lock(tsk); 1581 vfork = tsk->vfork_done; 1582 if (likely(vfork)) { 1583 tsk->vfork_done = NULL; 1584 complete(vfork); 1585 } 1586 task_unlock(tsk); 1587 } 1588 1589 static int wait_for_vfork_done(struct task_struct *child, 1590 struct completion *vfork) 1591 { 1592 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1593 int killed; 1594 1595 cgroup_enter_frozen(); 1596 killed = wait_for_completion_state(vfork, state); 1597 cgroup_leave_frozen(false); 1598 1599 if (killed) { 1600 task_lock(child); 1601 child->vfork_done = NULL; 1602 task_unlock(child); 1603 } 1604 1605 put_task_struct(child); 1606 return killed; 1607 } 1608 1609 /* Please note the differences between mmput and mm_release. 1610 * mmput is called whenever we stop holding onto a mm_struct, 1611 * error success whatever. 1612 * 1613 * mm_release is called after a mm_struct has been removed 1614 * from the current process. 1615 * 1616 * This difference is important for error handling, when we 1617 * only half set up a mm_struct for a new process and need to restore 1618 * the old one. Because we mmput the new mm_struct before 1619 * restoring the old one. . . 1620 * Eric Biederman 10 January 1998 1621 */ 1622 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1623 { 1624 uprobe_free_utask(tsk); 1625 1626 /* Get rid of any cached register state */ 1627 deactivate_mm(tsk, mm); 1628 1629 /* 1630 * Signal userspace if we're not exiting with a core dump 1631 * because we want to leave the value intact for debugging 1632 * purposes. 1633 */ 1634 if (tsk->clear_child_tid) { 1635 if (atomic_read(&mm->mm_users) > 1) { 1636 /* 1637 * We don't check the error code - if userspace has 1638 * not set up a proper pointer then tough luck. 1639 */ 1640 put_user(0, tsk->clear_child_tid); 1641 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1642 1, NULL, NULL, 0, 0); 1643 } 1644 tsk->clear_child_tid = NULL; 1645 } 1646 1647 /* 1648 * All done, finally we can wake up parent and return this mm to him. 1649 * Also kthread_stop() uses this completion for synchronization. 1650 */ 1651 if (tsk->vfork_done) 1652 complete_vfork_done(tsk); 1653 } 1654 1655 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1656 { 1657 futex_exit_release(tsk); 1658 mm_release(tsk, mm); 1659 } 1660 1661 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1662 { 1663 futex_exec_release(tsk); 1664 mm_release(tsk, mm); 1665 } 1666 1667 /** 1668 * dup_mm() - duplicates an existing mm structure 1669 * @tsk: the task_struct with which the new mm will be associated. 1670 * @oldmm: the mm to duplicate. 1671 * 1672 * Allocates a new mm structure and duplicates the provided @oldmm structure 1673 * content into it. 1674 * 1675 * Return: the duplicated mm or NULL on failure. 1676 */ 1677 static struct mm_struct *dup_mm(struct task_struct *tsk, 1678 struct mm_struct *oldmm) 1679 { 1680 struct mm_struct *mm; 1681 int err; 1682 1683 mm = allocate_mm(); 1684 if (!mm) 1685 goto fail_nomem; 1686 1687 memcpy(mm, oldmm, sizeof(*mm)); 1688 1689 if (!mm_init(mm, tsk, mm->user_ns)) 1690 goto fail_nomem; 1691 1692 err = dup_mmap(mm, oldmm); 1693 if (err) 1694 goto free_pt; 1695 1696 mm->hiwater_rss = get_mm_rss(mm); 1697 mm->hiwater_vm = mm->total_vm; 1698 1699 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1700 goto free_pt; 1701 1702 return mm; 1703 1704 free_pt: 1705 /* don't put binfmt in mmput, we haven't got module yet */ 1706 mm->binfmt = NULL; 1707 mm_init_owner(mm, NULL); 1708 mmput(mm); 1709 1710 fail_nomem: 1711 return NULL; 1712 } 1713 1714 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1715 { 1716 struct mm_struct *mm, *oldmm; 1717 1718 tsk->min_flt = tsk->maj_flt = 0; 1719 tsk->nvcsw = tsk->nivcsw = 0; 1720 #ifdef CONFIG_DETECT_HUNG_TASK 1721 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1722 tsk->last_switch_time = 0; 1723 #endif 1724 1725 tsk->mm = NULL; 1726 tsk->active_mm = NULL; 1727 1728 /* 1729 * Are we cloning a kernel thread? 1730 * 1731 * We need to steal a active VM for that.. 1732 */ 1733 oldmm = current->mm; 1734 if (!oldmm) 1735 return 0; 1736 1737 if (clone_flags & CLONE_VM) { 1738 mmget(oldmm); 1739 mm = oldmm; 1740 } else { 1741 mm = dup_mm(tsk, current->mm); 1742 if (!mm) 1743 return -ENOMEM; 1744 } 1745 1746 tsk->mm = mm; 1747 tsk->active_mm = mm; 1748 sched_mm_cid_fork(tsk); 1749 return 0; 1750 } 1751 1752 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1753 { 1754 struct fs_struct *fs = current->fs; 1755 if (clone_flags & CLONE_FS) { 1756 /* tsk->fs is already what we want */ 1757 spin_lock(&fs->lock); 1758 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1759 if (fs->in_exec) { 1760 spin_unlock(&fs->lock); 1761 return -EAGAIN; 1762 } 1763 fs->users++; 1764 spin_unlock(&fs->lock); 1765 return 0; 1766 } 1767 tsk->fs = copy_fs_struct(fs); 1768 if (!tsk->fs) 1769 return -ENOMEM; 1770 return 0; 1771 } 1772 1773 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1774 int no_files) 1775 { 1776 struct files_struct *oldf, *newf; 1777 1778 /* 1779 * A background process may not have any files ... 1780 */ 1781 oldf = current->files; 1782 if (!oldf) 1783 return 0; 1784 1785 if (no_files) { 1786 tsk->files = NULL; 1787 return 0; 1788 } 1789 1790 if (clone_flags & CLONE_FILES) { 1791 atomic_inc(&oldf->count); 1792 return 0; 1793 } 1794 1795 newf = dup_fd(oldf, NULL); 1796 if (IS_ERR(newf)) 1797 return PTR_ERR(newf); 1798 1799 tsk->files = newf; 1800 return 0; 1801 } 1802 1803 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1804 { 1805 struct sighand_struct *sig; 1806 1807 if (clone_flags & CLONE_SIGHAND) { 1808 refcount_inc(¤t->sighand->count); 1809 return 0; 1810 } 1811 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1812 RCU_INIT_POINTER(tsk->sighand, sig); 1813 if (!sig) 1814 return -ENOMEM; 1815 1816 refcount_set(&sig->count, 1); 1817 spin_lock_irq(¤t->sighand->siglock); 1818 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1819 spin_unlock_irq(¤t->sighand->siglock); 1820 1821 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1822 if (clone_flags & CLONE_CLEAR_SIGHAND) 1823 flush_signal_handlers(tsk, 0); 1824 1825 return 0; 1826 } 1827 1828 void __cleanup_sighand(struct sighand_struct *sighand) 1829 { 1830 if (refcount_dec_and_test(&sighand->count)) { 1831 signalfd_cleanup(sighand); 1832 /* 1833 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1834 * without an RCU grace period, see __lock_task_sighand(). 1835 */ 1836 kmem_cache_free(sighand_cachep, sighand); 1837 } 1838 } 1839 1840 /* 1841 * Initialize POSIX timer handling for a thread group. 1842 */ 1843 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1844 { 1845 struct posix_cputimers *pct = &sig->posix_cputimers; 1846 unsigned long cpu_limit; 1847 1848 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1849 posix_cputimers_group_init(pct, cpu_limit); 1850 } 1851 1852 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1853 { 1854 struct signal_struct *sig; 1855 1856 if (clone_flags & CLONE_THREAD) 1857 return 0; 1858 1859 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1860 tsk->signal = sig; 1861 if (!sig) 1862 return -ENOMEM; 1863 1864 sig->nr_threads = 1; 1865 sig->quick_threads = 1; 1866 atomic_set(&sig->live, 1); 1867 refcount_set(&sig->sigcnt, 1); 1868 1869 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1870 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1871 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1872 1873 init_waitqueue_head(&sig->wait_chldexit); 1874 sig->curr_target = tsk; 1875 init_sigpending(&sig->shared_pending); 1876 INIT_HLIST_HEAD(&sig->multiprocess); 1877 seqlock_init(&sig->stats_lock); 1878 prev_cputime_init(&sig->prev_cputime); 1879 1880 #ifdef CONFIG_POSIX_TIMERS 1881 INIT_HLIST_HEAD(&sig->posix_timers); 1882 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1883 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1884 sig->real_timer.function = it_real_fn; 1885 #endif 1886 1887 task_lock(current->group_leader); 1888 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1889 task_unlock(current->group_leader); 1890 1891 posix_cpu_timers_init_group(sig); 1892 1893 tty_audit_fork(sig); 1894 sched_autogroup_fork(sig); 1895 1896 sig->oom_score_adj = current->signal->oom_score_adj; 1897 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1898 1899 mutex_init(&sig->cred_guard_mutex); 1900 init_rwsem(&sig->exec_update_lock); 1901 1902 return 0; 1903 } 1904 1905 static void copy_seccomp(struct task_struct *p) 1906 { 1907 #ifdef CONFIG_SECCOMP 1908 /* 1909 * Must be called with sighand->lock held, which is common to 1910 * all threads in the group. Holding cred_guard_mutex is not 1911 * needed because this new task is not yet running and cannot 1912 * be racing exec. 1913 */ 1914 assert_spin_locked(¤t->sighand->siglock); 1915 1916 /* Ref-count the new filter user, and assign it. */ 1917 get_seccomp_filter(current); 1918 p->seccomp = current->seccomp; 1919 1920 /* 1921 * Explicitly enable no_new_privs here in case it got set 1922 * between the task_struct being duplicated and holding the 1923 * sighand lock. The seccomp state and nnp must be in sync. 1924 */ 1925 if (task_no_new_privs(current)) 1926 task_set_no_new_privs(p); 1927 1928 /* 1929 * If the parent gained a seccomp mode after copying thread 1930 * flags and between before we held the sighand lock, we have 1931 * to manually enable the seccomp thread flag here. 1932 */ 1933 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1934 set_task_syscall_work(p, SECCOMP); 1935 #endif 1936 } 1937 1938 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1939 { 1940 current->clear_child_tid = tidptr; 1941 1942 return task_pid_vnr(current); 1943 } 1944 1945 static void rt_mutex_init_task(struct task_struct *p) 1946 { 1947 raw_spin_lock_init(&p->pi_lock); 1948 #ifdef CONFIG_RT_MUTEXES 1949 p->pi_waiters = RB_ROOT_CACHED; 1950 p->pi_top_task = NULL; 1951 p->pi_blocked_on = NULL; 1952 #endif 1953 } 1954 1955 static inline void init_task_pid_links(struct task_struct *task) 1956 { 1957 enum pid_type type; 1958 1959 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1960 INIT_HLIST_NODE(&task->pid_links[type]); 1961 } 1962 1963 static inline void 1964 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1965 { 1966 if (type == PIDTYPE_PID) 1967 task->thread_pid = pid; 1968 else 1969 task->signal->pids[type] = pid; 1970 } 1971 1972 static inline void rcu_copy_process(struct task_struct *p) 1973 { 1974 #ifdef CONFIG_PREEMPT_RCU 1975 p->rcu_read_lock_nesting = 0; 1976 p->rcu_read_unlock_special.s = 0; 1977 p->rcu_blocked_node = NULL; 1978 INIT_LIST_HEAD(&p->rcu_node_entry); 1979 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1980 #ifdef CONFIG_TASKS_RCU 1981 p->rcu_tasks_holdout = false; 1982 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1983 p->rcu_tasks_idle_cpu = -1; 1984 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1985 #endif /* #ifdef CONFIG_TASKS_RCU */ 1986 #ifdef CONFIG_TASKS_TRACE_RCU 1987 p->trc_reader_nesting = 0; 1988 p->trc_reader_special.s = 0; 1989 INIT_LIST_HEAD(&p->trc_holdout_list); 1990 INIT_LIST_HEAD(&p->trc_blkd_node); 1991 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1992 } 1993 1994 /** 1995 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1996 * @pid: the struct pid for which to create a pidfd 1997 * @flags: flags of the new @pidfd 1998 * @ret: Where to return the file for the pidfd. 1999 * 2000 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2001 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2002 * 2003 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2004 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2005 * pidfd file are prepared. 2006 * 2007 * If this function returns successfully the caller is responsible to either 2008 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2009 * order to install the pidfd into its file descriptor table or they must use 2010 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2011 * respectively. 2012 * 2013 * This function is useful when a pidfd must already be reserved but there 2014 * might still be points of failure afterwards and the caller wants to ensure 2015 * that no pidfd is leaked into its file descriptor table. 2016 * 2017 * Return: On success, a reserved pidfd is returned from the function and a new 2018 * pidfd file is returned in the last argument to the function. On 2019 * error, a negative error code is returned from the function and the 2020 * last argument remains unchanged. 2021 */ 2022 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2023 { 2024 int pidfd; 2025 struct file *pidfd_file; 2026 2027 pidfd = get_unused_fd_flags(O_CLOEXEC); 2028 if (pidfd < 0) 2029 return pidfd; 2030 2031 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2032 if (IS_ERR(pidfd_file)) { 2033 put_unused_fd(pidfd); 2034 return PTR_ERR(pidfd_file); 2035 } 2036 /* 2037 * anon_inode_getfile() ignores everything outside of the 2038 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2039 */ 2040 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2041 *ret = pidfd_file; 2042 return pidfd; 2043 } 2044 2045 /** 2046 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2047 * @pid: the struct pid for which to create a pidfd 2048 * @flags: flags of the new @pidfd 2049 * @ret: Where to return the pidfd. 2050 * 2051 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2052 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2053 * 2054 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2055 * task identified by @pid must be a thread-group leader. 2056 * 2057 * If this function returns successfully the caller is responsible to either 2058 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2059 * order to install the pidfd into its file descriptor table or they must use 2060 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2061 * respectively. 2062 * 2063 * This function is useful when a pidfd must already be reserved but there 2064 * might still be points of failure afterwards and the caller wants to ensure 2065 * that no pidfd is leaked into its file descriptor table. 2066 * 2067 * Return: On success, a reserved pidfd is returned from the function and a new 2068 * pidfd file is returned in the last argument to the function. On 2069 * error, a negative error code is returned from the function and the 2070 * last argument remains unchanged. 2071 */ 2072 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2073 { 2074 bool thread = flags & PIDFD_THREAD; 2075 2076 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2077 return -EINVAL; 2078 2079 return __pidfd_prepare(pid, flags, ret); 2080 } 2081 2082 static void __delayed_free_task(struct rcu_head *rhp) 2083 { 2084 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2085 2086 free_task(tsk); 2087 } 2088 2089 static __always_inline void delayed_free_task(struct task_struct *tsk) 2090 { 2091 if (IS_ENABLED(CONFIG_MEMCG)) 2092 call_rcu(&tsk->rcu, __delayed_free_task); 2093 else 2094 free_task(tsk); 2095 } 2096 2097 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2098 { 2099 /* Skip if kernel thread */ 2100 if (!tsk->mm) 2101 return; 2102 2103 /* Skip if spawning a thread or using vfork */ 2104 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2105 return; 2106 2107 /* We need to synchronize with __set_oom_adj */ 2108 mutex_lock(&oom_adj_mutex); 2109 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2110 /* Update the values in case they were changed after copy_signal */ 2111 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2112 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2113 mutex_unlock(&oom_adj_mutex); 2114 } 2115 2116 #ifdef CONFIG_RV 2117 static void rv_task_fork(struct task_struct *p) 2118 { 2119 int i; 2120 2121 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2122 p->rv[i].da_mon.monitoring = false; 2123 } 2124 #else 2125 #define rv_task_fork(p) do {} while (0) 2126 #endif 2127 2128 /* 2129 * This creates a new process as a copy of the old one, 2130 * but does not actually start it yet. 2131 * 2132 * It copies the registers, and all the appropriate 2133 * parts of the process environment (as per the clone 2134 * flags). The actual kick-off is left to the caller. 2135 */ 2136 __latent_entropy struct task_struct *copy_process( 2137 struct pid *pid, 2138 int trace, 2139 int node, 2140 struct kernel_clone_args *args) 2141 { 2142 int pidfd = -1, retval; 2143 struct task_struct *p; 2144 struct multiprocess_signals delayed; 2145 struct file *pidfile = NULL; 2146 const u64 clone_flags = args->flags; 2147 struct nsproxy *nsp = current->nsproxy; 2148 2149 /* 2150 * Don't allow sharing the root directory with processes in a different 2151 * namespace 2152 */ 2153 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2154 return ERR_PTR(-EINVAL); 2155 2156 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2157 return ERR_PTR(-EINVAL); 2158 2159 /* 2160 * Thread groups must share signals as well, and detached threads 2161 * can only be started up within the thread group. 2162 */ 2163 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2164 return ERR_PTR(-EINVAL); 2165 2166 /* 2167 * Shared signal handlers imply shared VM. By way of the above, 2168 * thread groups also imply shared VM. Blocking this case allows 2169 * for various simplifications in other code. 2170 */ 2171 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2172 return ERR_PTR(-EINVAL); 2173 2174 /* 2175 * Siblings of global init remain as zombies on exit since they are 2176 * not reaped by their parent (swapper). To solve this and to avoid 2177 * multi-rooted process trees, prevent global and container-inits 2178 * from creating siblings. 2179 */ 2180 if ((clone_flags & CLONE_PARENT) && 2181 current->signal->flags & SIGNAL_UNKILLABLE) 2182 return ERR_PTR(-EINVAL); 2183 2184 /* 2185 * If the new process will be in a different pid or user namespace 2186 * do not allow it to share a thread group with the forking task. 2187 */ 2188 if (clone_flags & CLONE_THREAD) { 2189 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2190 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2191 return ERR_PTR(-EINVAL); 2192 } 2193 2194 if (clone_flags & CLONE_PIDFD) { 2195 /* 2196 * - CLONE_DETACHED is blocked so that we can potentially 2197 * reuse it later for CLONE_PIDFD. 2198 */ 2199 if (clone_flags & CLONE_DETACHED) 2200 return ERR_PTR(-EINVAL); 2201 } 2202 2203 /* 2204 * Force any signals received before this point to be delivered 2205 * before the fork happens. Collect up signals sent to multiple 2206 * processes that happen during the fork and delay them so that 2207 * they appear to happen after the fork. 2208 */ 2209 sigemptyset(&delayed.signal); 2210 INIT_HLIST_NODE(&delayed.node); 2211 2212 spin_lock_irq(¤t->sighand->siglock); 2213 if (!(clone_flags & CLONE_THREAD)) 2214 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2215 recalc_sigpending(); 2216 spin_unlock_irq(¤t->sighand->siglock); 2217 retval = -ERESTARTNOINTR; 2218 if (task_sigpending(current)) 2219 goto fork_out; 2220 2221 retval = -ENOMEM; 2222 p = dup_task_struct(current, node); 2223 if (!p) 2224 goto fork_out; 2225 p->flags &= ~PF_KTHREAD; 2226 if (args->kthread) 2227 p->flags |= PF_KTHREAD; 2228 if (args->user_worker) { 2229 /* 2230 * Mark us a user worker, and block any signal that isn't 2231 * fatal or STOP 2232 */ 2233 p->flags |= PF_USER_WORKER; 2234 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2235 } 2236 if (args->io_thread) 2237 p->flags |= PF_IO_WORKER; 2238 2239 if (args->name) 2240 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2241 2242 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2243 /* 2244 * Clear TID on mm_release()? 2245 */ 2246 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2247 2248 ftrace_graph_init_task(p); 2249 2250 rt_mutex_init_task(p); 2251 2252 lockdep_assert_irqs_enabled(); 2253 #ifdef CONFIG_PROVE_LOCKING 2254 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2255 #endif 2256 retval = copy_creds(p, clone_flags); 2257 if (retval < 0) 2258 goto bad_fork_free; 2259 2260 retval = -EAGAIN; 2261 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2262 if (p->real_cred->user != INIT_USER && 2263 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2264 goto bad_fork_cleanup_count; 2265 } 2266 current->flags &= ~PF_NPROC_EXCEEDED; 2267 2268 /* 2269 * If multiple threads are within copy_process(), then this check 2270 * triggers too late. This doesn't hurt, the check is only there 2271 * to stop root fork bombs. 2272 */ 2273 retval = -EAGAIN; 2274 if (data_race(nr_threads >= max_threads)) 2275 goto bad_fork_cleanup_count; 2276 2277 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2278 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2279 p->flags |= PF_FORKNOEXEC; 2280 INIT_LIST_HEAD(&p->children); 2281 INIT_LIST_HEAD(&p->sibling); 2282 rcu_copy_process(p); 2283 p->vfork_done = NULL; 2284 spin_lock_init(&p->alloc_lock); 2285 2286 init_sigpending(&p->pending); 2287 2288 p->utime = p->stime = p->gtime = 0; 2289 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2290 p->utimescaled = p->stimescaled = 0; 2291 #endif 2292 prev_cputime_init(&p->prev_cputime); 2293 2294 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2295 seqcount_init(&p->vtime.seqcount); 2296 p->vtime.starttime = 0; 2297 p->vtime.state = VTIME_INACTIVE; 2298 #endif 2299 2300 #ifdef CONFIG_IO_URING 2301 p->io_uring = NULL; 2302 #endif 2303 2304 p->default_timer_slack_ns = current->timer_slack_ns; 2305 2306 #ifdef CONFIG_PSI 2307 p->psi_flags = 0; 2308 #endif 2309 2310 task_io_accounting_init(&p->ioac); 2311 acct_clear_integrals(p); 2312 2313 posix_cputimers_init(&p->posix_cputimers); 2314 tick_dep_init_task(p); 2315 2316 p->io_context = NULL; 2317 audit_set_context(p, NULL); 2318 cgroup_fork(p); 2319 if (args->kthread) { 2320 if (!set_kthread_struct(p)) 2321 goto bad_fork_cleanup_delayacct; 2322 } 2323 #ifdef CONFIG_NUMA 2324 p->mempolicy = mpol_dup(p->mempolicy); 2325 if (IS_ERR(p->mempolicy)) { 2326 retval = PTR_ERR(p->mempolicy); 2327 p->mempolicy = NULL; 2328 goto bad_fork_cleanup_delayacct; 2329 } 2330 #endif 2331 #ifdef CONFIG_CPUSETS 2332 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2333 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2334 #endif 2335 #ifdef CONFIG_TRACE_IRQFLAGS 2336 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2337 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2338 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2339 p->softirqs_enabled = 1; 2340 p->softirq_context = 0; 2341 #endif 2342 2343 p->pagefault_disabled = 0; 2344 2345 #ifdef CONFIG_LOCKDEP 2346 lockdep_init_task(p); 2347 #endif 2348 2349 #ifdef CONFIG_DEBUG_MUTEXES 2350 p->blocked_on = NULL; /* not blocked yet */ 2351 #endif 2352 #ifdef CONFIG_BCACHE 2353 p->sequential_io = 0; 2354 p->sequential_io_avg = 0; 2355 #endif 2356 #ifdef CONFIG_BPF_SYSCALL 2357 RCU_INIT_POINTER(p->bpf_storage, NULL); 2358 p->bpf_ctx = NULL; 2359 #endif 2360 2361 /* Perform scheduler related setup. Assign this task to a CPU. */ 2362 retval = sched_fork(clone_flags, p); 2363 if (retval) 2364 goto bad_fork_cleanup_policy; 2365 2366 retval = perf_event_init_task(p, clone_flags); 2367 if (retval) 2368 goto bad_fork_sched_cancel_fork; 2369 retval = audit_alloc(p); 2370 if (retval) 2371 goto bad_fork_cleanup_perf; 2372 /* copy all the process information */ 2373 shm_init_task(p); 2374 retval = security_task_alloc(p, clone_flags); 2375 if (retval) 2376 goto bad_fork_cleanup_audit; 2377 retval = copy_semundo(clone_flags, p); 2378 if (retval) 2379 goto bad_fork_cleanup_security; 2380 retval = copy_files(clone_flags, p, args->no_files); 2381 if (retval) 2382 goto bad_fork_cleanup_semundo; 2383 retval = copy_fs(clone_flags, p); 2384 if (retval) 2385 goto bad_fork_cleanup_files; 2386 retval = copy_sighand(clone_flags, p); 2387 if (retval) 2388 goto bad_fork_cleanup_fs; 2389 retval = copy_signal(clone_flags, p); 2390 if (retval) 2391 goto bad_fork_cleanup_sighand; 2392 retval = copy_mm(clone_flags, p); 2393 if (retval) 2394 goto bad_fork_cleanup_signal; 2395 retval = copy_namespaces(clone_flags, p); 2396 if (retval) 2397 goto bad_fork_cleanup_mm; 2398 retval = copy_io(clone_flags, p); 2399 if (retval) 2400 goto bad_fork_cleanup_namespaces; 2401 retval = copy_thread(p, args); 2402 if (retval) 2403 goto bad_fork_cleanup_io; 2404 2405 stackleak_task_init(p); 2406 2407 if (pid != &init_struct_pid) { 2408 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2409 args->set_tid_size); 2410 if (IS_ERR(pid)) { 2411 retval = PTR_ERR(pid); 2412 goto bad_fork_cleanup_thread; 2413 } 2414 } 2415 2416 /* 2417 * This has to happen after we've potentially unshared the file 2418 * descriptor table (so that the pidfd doesn't leak into the child 2419 * if the fd table isn't shared). 2420 */ 2421 if (clone_flags & CLONE_PIDFD) { 2422 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2423 2424 /* Note that no task has been attached to @pid yet. */ 2425 retval = __pidfd_prepare(pid, flags, &pidfile); 2426 if (retval < 0) 2427 goto bad_fork_free_pid; 2428 pidfd = retval; 2429 2430 retval = put_user(pidfd, args->pidfd); 2431 if (retval) 2432 goto bad_fork_put_pidfd; 2433 } 2434 2435 #ifdef CONFIG_BLOCK 2436 p->plug = NULL; 2437 #endif 2438 futex_init_task(p); 2439 2440 /* 2441 * sigaltstack should be cleared when sharing the same VM 2442 */ 2443 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2444 sas_ss_reset(p); 2445 2446 /* 2447 * Syscall tracing and stepping should be turned off in the 2448 * child regardless of CLONE_PTRACE. 2449 */ 2450 user_disable_single_step(p); 2451 clear_task_syscall_work(p, SYSCALL_TRACE); 2452 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2453 clear_task_syscall_work(p, SYSCALL_EMU); 2454 #endif 2455 clear_tsk_latency_tracing(p); 2456 2457 /* ok, now we should be set up.. */ 2458 p->pid = pid_nr(pid); 2459 if (clone_flags & CLONE_THREAD) { 2460 p->group_leader = current->group_leader; 2461 p->tgid = current->tgid; 2462 } else { 2463 p->group_leader = p; 2464 p->tgid = p->pid; 2465 } 2466 2467 p->nr_dirtied = 0; 2468 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2469 p->dirty_paused_when = 0; 2470 2471 p->pdeath_signal = 0; 2472 p->task_works = NULL; 2473 clear_posix_cputimers_work(p); 2474 2475 #ifdef CONFIG_KRETPROBES 2476 p->kretprobe_instances.first = NULL; 2477 #endif 2478 #ifdef CONFIG_RETHOOK 2479 p->rethooks.first = NULL; 2480 #endif 2481 2482 /* 2483 * Ensure that the cgroup subsystem policies allow the new process to be 2484 * forked. It should be noted that the new process's css_set can be changed 2485 * between here and cgroup_post_fork() if an organisation operation is in 2486 * progress. 2487 */ 2488 retval = cgroup_can_fork(p, args); 2489 if (retval) 2490 goto bad_fork_put_pidfd; 2491 2492 /* 2493 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2494 * the new task on the correct runqueue. All this *before* the task 2495 * becomes visible. 2496 * 2497 * This isn't part of ->can_fork() because while the re-cloning is 2498 * cgroup specific, it unconditionally needs to place the task on a 2499 * runqueue. 2500 */ 2501 retval = sched_cgroup_fork(p, args); 2502 if (retval) 2503 goto bad_fork_cancel_cgroup; 2504 2505 /* 2506 * From this point on we must avoid any synchronous user-space 2507 * communication until we take the tasklist-lock. In particular, we do 2508 * not want user-space to be able to predict the process start-time by 2509 * stalling fork(2) after we recorded the start_time but before it is 2510 * visible to the system. 2511 */ 2512 2513 p->start_time = ktime_get_ns(); 2514 p->start_boottime = ktime_get_boottime_ns(); 2515 2516 /* 2517 * Make it visible to the rest of the system, but dont wake it up yet. 2518 * Need tasklist lock for parent etc handling! 2519 */ 2520 write_lock_irq(&tasklist_lock); 2521 2522 /* CLONE_PARENT re-uses the old parent */ 2523 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2524 p->real_parent = current->real_parent; 2525 p->parent_exec_id = current->parent_exec_id; 2526 if (clone_flags & CLONE_THREAD) 2527 p->exit_signal = -1; 2528 else 2529 p->exit_signal = current->group_leader->exit_signal; 2530 } else { 2531 p->real_parent = current; 2532 p->parent_exec_id = current->self_exec_id; 2533 p->exit_signal = args->exit_signal; 2534 } 2535 2536 klp_copy_process(p); 2537 2538 sched_core_fork(p); 2539 2540 spin_lock(¤t->sighand->siglock); 2541 2542 rv_task_fork(p); 2543 2544 rseq_fork(p, clone_flags); 2545 2546 /* Don't start children in a dying pid namespace */ 2547 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2548 retval = -ENOMEM; 2549 goto bad_fork_core_free; 2550 } 2551 2552 /* Let kill terminate clone/fork in the middle */ 2553 if (fatal_signal_pending(current)) { 2554 retval = -EINTR; 2555 goto bad_fork_core_free; 2556 } 2557 2558 /* No more failure paths after this point. */ 2559 2560 /* 2561 * Copy seccomp details explicitly here, in case they were changed 2562 * before holding sighand lock. 2563 */ 2564 copy_seccomp(p); 2565 2566 init_task_pid_links(p); 2567 if (likely(p->pid)) { 2568 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2569 2570 init_task_pid(p, PIDTYPE_PID, pid); 2571 if (thread_group_leader(p)) { 2572 init_task_pid(p, PIDTYPE_TGID, pid); 2573 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2574 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2575 2576 if (is_child_reaper(pid)) { 2577 ns_of_pid(pid)->child_reaper = p; 2578 p->signal->flags |= SIGNAL_UNKILLABLE; 2579 } 2580 p->signal->shared_pending.signal = delayed.signal; 2581 p->signal->tty = tty_kref_get(current->signal->tty); 2582 /* 2583 * Inherit has_child_subreaper flag under the same 2584 * tasklist_lock with adding child to the process tree 2585 * for propagate_has_child_subreaper optimization. 2586 */ 2587 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2588 p->real_parent->signal->is_child_subreaper; 2589 list_add_tail(&p->sibling, &p->real_parent->children); 2590 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2591 attach_pid(p, PIDTYPE_TGID); 2592 attach_pid(p, PIDTYPE_PGID); 2593 attach_pid(p, PIDTYPE_SID); 2594 __this_cpu_inc(process_counts); 2595 } else { 2596 current->signal->nr_threads++; 2597 current->signal->quick_threads++; 2598 atomic_inc(¤t->signal->live); 2599 refcount_inc(¤t->signal->sigcnt); 2600 task_join_group_stop(p); 2601 list_add_tail_rcu(&p->thread_node, 2602 &p->signal->thread_head); 2603 } 2604 attach_pid(p, PIDTYPE_PID); 2605 nr_threads++; 2606 } 2607 total_forks++; 2608 hlist_del_init(&delayed.node); 2609 spin_unlock(¤t->sighand->siglock); 2610 syscall_tracepoint_update(p); 2611 write_unlock_irq(&tasklist_lock); 2612 2613 if (pidfile) 2614 fd_install(pidfd, pidfile); 2615 2616 proc_fork_connector(p); 2617 sched_post_fork(p); 2618 cgroup_post_fork(p, args); 2619 perf_event_fork(p); 2620 2621 trace_task_newtask(p, clone_flags); 2622 uprobe_copy_process(p, clone_flags); 2623 user_events_fork(p, clone_flags); 2624 2625 copy_oom_score_adj(clone_flags, p); 2626 2627 return p; 2628 2629 bad_fork_core_free: 2630 sched_core_free(p); 2631 spin_unlock(¤t->sighand->siglock); 2632 write_unlock_irq(&tasklist_lock); 2633 bad_fork_cancel_cgroup: 2634 cgroup_cancel_fork(p, args); 2635 bad_fork_put_pidfd: 2636 if (clone_flags & CLONE_PIDFD) { 2637 fput(pidfile); 2638 put_unused_fd(pidfd); 2639 } 2640 bad_fork_free_pid: 2641 if (pid != &init_struct_pid) 2642 free_pid(pid); 2643 bad_fork_cleanup_thread: 2644 exit_thread(p); 2645 bad_fork_cleanup_io: 2646 if (p->io_context) 2647 exit_io_context(p); 2648 bad_fork_cleanup_namespaces: 2649 exit_task_namespaces(p); 2650 bad_fork_cleanup_mm: 2651 if (p->mm) { 2652 mm_clear_owner(p->mm, p); 2653 mmput(p->mm); 2654 } 2655 bad_fork_cleanup_signal: 2656 if (!(clone_flags & CLONE_THREAD)) 2657 free_signal_struct(p->signal); 2658 bad_fork_cleanup_sighand: 2659 __cleanup_sighand(p->sighand); 2660 bad_fork_cleanup_fs: 2661 exit_fs(p); /* blocking */ 2662 bad_fork_cleanup_files: 2663 exit_files(p); /* blocking */ 2664 bad_fork_cleanup_semundo: 2665 exit_sem(p); 2666 bad_fork_cleanup_security: 2667 security_task_free(p); 2668 bad_fork_cleanup_audit: 2669 audit_free(p); 2670 bad_fork_cleanup_perf: 2671 perf_event_free_task(p); 2672 bad_fork_sched_cancel_fork: 2673 sched_cancel_fork(p); 2674 bad_fork_cleanup_policy: 2675 lockdep_free_task(p); 2676 #ifdef CONFIG_NUMA 2677 mpol_put(p->mempolicy); 2678 #endif 2679 bad_fork_cleanup_delayacct: 2680 delayacct_tsk_free(p); 2681 bad_fork_cleanup_count: 2682 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2683 exit_creds(p); 2684 bad_fork_free: 2685 WRITE_ONCE(p->__state, TASK_DEAD); 2686 exit_task_stack_account(p); 2687 put_task_stack(p); 2688 delayed_free_task(p); 2689 fork_out: 2690 spin_lock_irq(¤t->sighand->siglock); 2691 hlist_del_init(&delayed.node); 2692 spin_unlock_irq(¤t->sighand->siglock); 2693 return ERR_PTR(retval); 2694 } 2695 2696 static inline void init_idle_pids(struct task_struct *idle) 2697 { 2698 enum pid_type type; 2699 2700 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2701 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2702 init_task_pid(idle, type, &init_struct_pid); 2703 } 2704 } 2705 2706 static int idle_dummy(void *dummy) 2707 { 2708 /* This function is never called */ 2709 return 0; 2710 } 2711 2712 struct task_struct * __init fork_idle(int cpu) 2713 { 2714 struct task_struct *task; 2715 struct kernel_clone_args args = { 2716 .flags = CLONE_VM, 2717 .fn = &idle_dummy, 2718 .fn_arg = NULL, 2719 .kthread = 1, 2720 .idle = 1, 2721 }; 2722 2723 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2724 if (!IS_ERR(task)) { 2725 init_idle_pids(task); 2726 init_idle(task, cpu); 2727 } 2728 2729 return task; 2730 } 2731 2732 /* 2733 * This is like kernel_clone(), but shaved down and tailored to just 2734 * creating io_uring workers. It returns a created task, or an error pointer. 2735 * The returned task is inactive, and the caller must fire it up through 2736 * wake_up_new_task(p). All signals are blocked in the created task. 2737 */ 2738 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2739 { 2740 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2741 CLONE_IO; 2742 struct kernel_clone_args args = { 2743 .flags = ((lower_32_bits(flags) | CLONE_VM | 2744 CLONE_UNTRACED) & ~CSIGNAL), 2745 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2746 .fn = fn, 2747 .fn_arg = arg, 2748 .io_thread = 1, 2749 .user_worker = 1, 2750 }; 2751 2752 return copy_process(NULL, 0, node, &args); 2753 } 2754 2755 /* 2756 * Ok, this is the main fork-routine. 2757 * 2758 * It copies the process, and if successful kick-starts 2759 * it and waits for it to finish using the VM if required. 2760 * 2761 * args->exit_signal is expected to be checked for sanity by the caller. 2762 */ 2763 pid_t kernel_clone(struct kernel_clone_args *args) 2764 { 2765 u64 clone_flags = args->flags; 2766 struct completion vfork; 2767 struct pid *pid; 2768 struct task_struct *p; 2769 int trace = 0; 2770 pid_t nr; 2771 2772 /* 2773 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2774 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2775 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2776 * field in struct clone_args and it still doesn't make sense to have 2777 * them both point at the same memory location. Performing this check 2778 * here has the advantage that we don't need to have a separate helper 2779 * to check for legacy clone(). 2780 */ 2781 if ((clone_flags & CLONE_PIDFD) && 2782 (clone_flags & CLONE_PARENT_SETTID) && 2783 (args->pidfd == args->parent_tid)) 2784 return -EINVAL; 2785 2786 /* 2787 * Determine whether and which event to report to ptracer. When 2788 * called from kernel_thread or CLONE_UNTRACED is explicitly 2789 * requested, no event is reported; otherwise, report if the event 2790 * for the type of forking is enabled. 2791 */ 2792 if (!(clone_flags & CLONE_UNTRACED)) { 2793 if (clone_flags & CLONE_VFORK) 2794 trace = PTRACE_EVENT_VFORK; 2795 else if (args->exit_signal != SIGCHLD) 2796 trace = PTRACE_EVENT_CLONE; 2797 else 2798 trace = PTRACE_EVENT_FORK; 2799 2800 if (likely(!ptrace_event_enabled(current, trace))) 2801 trace = 0; 2802 } 2803 2804 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2805 add_latent_entropy(); 2806 2807 if (IS_ERR(p)) 2808 return PTR_ERR(p); 2809 2810 /* 2811 * Do this prior waking up the new thread - the thread pointer 2812 * might get invalid after that point, if the thread exits quickly. 2813 */ 2814 trace_sched_process_fork(current, p); 2815 2816 pid = get_task_pid(p, PIDTYPE_PID); 2817 nr = pid_vnr(pid); 2818 2819 if (clone_flags & CLONE_PARENT_SETTID) 2820 put_user(nr, args->parent_tid); 2821 2822 if (clone_flags & CLONE_VFORK) { 2823 p->vfork_done = &vfork; 2824 init_completion(&vfork); 2825 get_task_struct(p); 2826 } 2827 2828 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2829 /* lock the task to synchronize with memcg migration */ 2830 task_lock(p); 2831 lru_gen_add_mm(p->mm); 2832 task_unlock(p); 2833 } 2834 2835 wake_up_new_task(p); 2836 2837 /* forking complete and child started to run, tell ptracer */ 2838 if (unlikely(trace)) 2839 ptrace_event_pid(trace, pid); 2840 2841 if (clone_flags & CLONE_VFORK) { 2842 if (!wait_for_vfork_done(p, &vfork)) 2843 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2844 } 2845 2846 put_pid(pid); 2847 return nr; 2848 } 2849 2850 /* 2851 * Create a kernel thread. 2852 */ 2853 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2854 unsigned long flags) 2855 { 2856 struct kernel_clone_args args = { 2857 .flags = ((lower_32_bits(flags) | CLONE_VM | 2858 CLONE_UNTRACED) & ~CSIGNAL), 2859 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2860 .fn = fn, 2861 .fn_arg = arg, 2862 .name = name, 2863 .kthread = 1, 2864 }; 2865 2866 return kernel_clone(&args); 2867 } 2868 2869 /* 2870 * Create a user mode thread. 2871 */ 2872 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2873 { 2874 struct kernel_clone_args args = { 2875 .flags = ((lower_32_bits(flags) | CLONE_VM | 2876 CLONE_UNTRACED) & ~CSIGNAL), 2877 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2878 .fn = fn, 2879 .fn_arg = arg, 2880 }; 2881 2882 return kernel_clone(&args); 2883 } 2884 2885 #ifdef __ARCH_WANT_SYS_FORK 2886 SYSCALL_DEFINE0(fork) 2887 { 2888 #ifdef CONFIG_MMU 2889 struct kernel_clone_args args = { 2890 .exit_signal = SIGCHLD, 2891 }; 2892 2893 return kernel_clone(&args); 2894 #else 2895 /* can not support in nommu mode */ 2896 return -EINVAL; 2897 #endif 2898 } 2899 #endif 2900 2901 #ifdef __ARCH_WANT_SYS_VFORK 2902 SYSCALL_DEFINE0(vfork) 2903 { 2904 struct kernel_clone_args args = { 2905 .flags = CLONE_VFORK | CLONE_VM, 2906 .exit_signal = SIGCHLD, 2907 }; 2908 2909 return kernel_clone(&args); 2910 } 2911 #endif 2912 2913 #ifdef __ARCH_WANT_SYS_CLONE 2914 #ifdef CONFIG_CLONE_BACKWARDS 2915 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2916 int __user *, parent_tidptr, 2917 unsigned long, tls, 2918 int __user *, child_tidptr) 2919 #elif defined(CONFIG_CLONE_BACKWARDS2) 2920 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2921 int __user *, parent_tidptr, 2922 int __user *, child_tidptr, 2923 unsigned long, tls) 2924 #elif defined(CONFIG_CLONE_BACKWARDS3) 2925 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2926 int, stack_size, 2927 int __user *, parent_tidptr, 2928 int __user *, child_tidptr, 2929 unsigned long, tls) 2930 #else 2931 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2932 int __user *, parent_tidptr, 2933 int __user *, child_tidptr, 2934 unsigned long, tls) 2935 #endif 2936 { 2937 struct kernel_clone_args args = { 2938 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2939 .pidfd = parent_tidptr, 2940 .child_tid = child_tidptr, 2941 .parent_tid = parent_tidptr, 2942 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2943 .stack = newsp, 2944 .tls = tls, 2945 }; 2946 2947 return kernel_clone(&args); 2948 } 2949 #endif 2950 2951 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2952 struct clone_args __user *uargs, 2953 size_t usize) 2954 { 2955 int err; 2956 struct clone_args args; 2957 pid_t *kset_tid = kargs->set_tid; 2958 2959 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2960 CLONE_ARGS_SIZE_VER0); 2961 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2962 CLONE_ARGS_SIZE_VER1); 2963 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2964 CLONE_ARGS_SIZE_VER2); 2965 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2966 2967 if (unlikely(usize > PAGE_SIZE)) 2968 return -E2BIG; 2969 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2970 return -EINVAL; 2971 2972 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2973 if (err) 2974 return err; 2975 2976 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2977 return -EINVAL; 2978 2979 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2980 return -EINVAL; 2981 2982 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2983 return -EINVAL; 2984 2985 /* 2986 * Verify that higher 32bits of exit_signal are unset and that 2987 * it is a valid signal 2988 */ 2989 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2990 !valid_signal(args.exit_signal))) 2991 return -EINVAL; 2992 2993 if ((args.flags & CLONE_INTO_CGROUP) && 2994 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2995 return -EINVAL; 2996 2997 *kargs = (struct kernel_clone_args){ 2998 .flags = args.flags, 2999 .pidfd = u64_to_user_ptr(args.pidfd), 3000 .child_tid = u64_to_user_ptr(args.child_tid), 3001 .parent_tid = u64_to_user_ptr(args.parent_tid), 3002 .exit_signal = args.exit_signal, 3003 .stack = args.stack, 3004 .stack_size = args.stack_size, 3005 .tls = args.tls, 3006 .set_tid_size = args.set_tid_size, 3007 .cgroup = args.cgroup, 3008 }; 3009 3010 if (args.set_tid && 3011 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3012 (kargs->set_tid_size * sizeof(pid_t)))) 3013 return -EFAULT; 3014 3015 kargs->set_tid = kset_tid; 3016 3017 return 0; 3018 } 3019 3020 /** 3021 * clone3_stack_valid - check and prepare stack 3022 * @kargs: kernel clone args 3023 * 3024 * Verify that the stack arguments userspace gave us are sane. 3025 * In addition, set the stack direction for userspace since it's easy for us to 3026 * determine. 3027 */ 3028 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3029 { 3030 if (kargs->stack == 0) { 3031 if (kargs->stack_size > 0) 3032 return false; 3033 } else { 3034 if (kargs->stack_size == 0) 3035 return false; 3036 3037 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3038 return false; 3039 3040 #if !defined(CONFIG_STACK_GROWSUP) 3041 kargs->stack += kargs->stack_size; 3042 #endif 3043 } 3044 3045 return true; 3046 } 3047 3048 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3049 { 3050 /* Verify that no unknown flags are passed along. */ 3051 if (kargs->flags & 3052 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3053 return false; 3054 3055 /* 3056 * - make the CLONE_DETACHED bit reusable for clone3 3057 * - make the CSIGNAL bits reusable for clone3 3058 */ 3059 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3060 return false; 3061 3062 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3063 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3064 return false; 3065 3066 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3067 kargs->exit_signal) 3068 return false; 3069 3070 if (!clone3_stack_valid(kargs)) 3071 return false; 3072 3073 return true; 3074 } 3075 3076 /** 3077 * sys_clone3 - create a new process with specific properties 3078 * @uargs: argument structure 3079 * @size: size of @uargs 3080 * 3081 * clone3() is the extensible successor to clone()/clone2(). 3082 * It takes a struct as argument that is versioned by its size. 3083 * 3084 * Return: On success, a positive PID for the child process. 3085 * On error, a negative errno number. 3086 */ 3087 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3088 { 3089 int err; 3090 3091 struct kernel_clone_args kargs; 3092 pid_t set_tid[MAX_PID_NS_LEVEL]; 3093 3094 #ifdef __ARCH_BROKEN_SYS_CLONE3 3095 #warning clone3() entry point is missing, please fix 3096 return -ENOSYS; 3097 #endif 3098 3099 kargs.set_tid = set_tid; 3100 3101 err = copy_clone_args_from_user(&kargs, uargs, size); 3102 if (err) 3103 return err; 3104 3105 if (!clone3_args_valid(&kargs)) 3106 return -EINVAL; 3107 3108 return kernel_clone(&kargs); 3109 } 3110 3111 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3112 { 3113 struct task_struct *leader, *parent, *child; 3114 int res; 3115 3116 read_lock(&tasklist_lock); 3117 leader = top = top->group_leader; 3118 down: 3119 for_each_thread(leader, parent) { 3120 list_for_each_entry(child, &parent->children, sibling) { 3121 res = visitor(child, data); 3122 if (res) { 3123 if (res < 0) 3124 goto out; 3125 leader = child; 3126 goto down; 3127 } 3128 up: 3129 ; 3130 } 3131 } 3132 3133 if (leader != top) { 3134 child = leader; 3135 parent = child->real_parent; 3136 leader = parent->group_leader; 3137 goto up; 3138 } 3139 out: 3140 read_unlock(&tasklist_lock); 3141 } 3142 3143 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3144 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3145 #endif 3146 3147 static void sighand_ctor(void *data) 3148 { 3149 struct sighand_struct *sighand = data; 3150 3151 spin_lock_init(&sighand->siglock); 3152 init_waitqueue_head(&sighand->signalfd_wqh); 3153 } 3154 3155 void __init mm_cache_init(void) 3156 { 3157 unsigned int mm_size; 3158 3159 /* 3160 * The mm_cpumask is located at the end of mm_struct, and is 3161 * dynamically sized based on the maximum CPU number this system 3162 * can have, taking hotplug into account (nr_cpu_ids). 3163 */ 3164 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3165 3166 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3167 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3168 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3169 offsetof(struct mm_struct, saved_auxv), 3170 sizeof_field(struct mm_struct, saved_auxv), 3171 NULL); 3172 } 3173 3174 void __init proc_caches_init(void) 3175 { 3176 sighand_cachep = kmem_cache_create("sighand_cache", 3177 sizeof(struct sighand_struct), 0, 3178 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3179 SLAB_ACCOUNT, sighand_ctor); 3180 signal_cachep = kmem_cache_create("signal_cache", 3181 sizeof(struct signal_struct), 0, 3182 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3183 NULL); 3184 files_cachep = kmem_cache_create("files_cache", 3185 sizeof(struct files_struct), 0, 3186 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3187 NULL); 3188 fs_cachep = kmem_cache_create("fs_cache", 3189 sizeof(struct fs_struct), 0, 3190 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3191 NULL); 3192 3193 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3194 #ifdef CONFIG_PER_VMA_LOCK 3195 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3196 #endif 3197 mmap_init(); 3198 nsproxy_cache_init(); 3199 } 3200 3201 /* 3202 * Check constraints on flags passed to the unshare system call. 3203 */ 3204 static int check_unshare_flags(unsigned long unshare_flags) 3205 { 3206 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3207 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3208 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3209 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3210 CLONE_NEWTIME)) 3211 return -EINVAL; 3212 /* 3213 * Not implemented, but pretend it works if there is nothing 3214 * to unshare. Note that unsharing the address space or the 3215 * signal handlers also need to unshare the signal queues (aka 3216 * CLONE_THREAD). 3217 */ 3218 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3219 if (!thread_group_empty(current)) 3220 return -EINVAL; 3221 } 3222 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3223 if (refcount_read(¤t->sighand->count) > 1) 3224 return -EINVAL; 3225 } 3226 if (unshare_flags & CLONE_VM) { 3227 if (!current_is_single_threaded()) 3228 return -EINVAL; 3229 } 3230 3231 return 0; 3232 } 3233 3234 /* 3235 * Unshare the filesystem structure if it is being shared 3236 */ 3237 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3238 { 3239 struct fs_struct *fs = current->fs; 3240 3241 if (!(unshare_flags & CLONE_FS) || !fs) 3242 return 0; 3243 3244 /* don't need lock here; in the worst case we'll do useless copy */ 3245 if (fs->users == 1) 3246 return 0; 3247 3248 *new_fsp = copy_fs_struct(fs); 3249 if (!*new_fsp) 3250 return -ENOMEM; 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * Unshare file descriptor table if it is being shared 3257 */ 3258 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3259 { 3260 struct files_struct *fd = current->files; 3261 3262 if ((unshare_flags & CLONE_FILES) && 3263 (fd && atomic_read(&fd->count) > 1)) { 3264 fd = dup_fd(fd, NULL); 3265 if (IS_ERR(fd)) 3266 return PTR_ERR(fd); 3267 *new_fdp = fd; 3268 } 3269 3270 return 0; 3271 } 3272 3273 /* 3274 * unshare allows a process to 'unshare' part of the process 3275 * context which was originally shared using clone. copy_* 3276 * functions used by kernel_clone() cannot be used here directly 3277 * because they modify an inactive task_struct that is being 3278 * constructed. Here we are modifying the current, active, 3279 * task_struct. 3280 */ 3281 int ksys_unshare(unsigned long unshare_flags) 3282 { 3283 struct fs_struct *fs, *new_fs = NULL; 3284 struct files_struct *new_fd = NULL; 3285 struct cred *new_cred = NULL; 3286 struct nsproxy *new_nsproxy = NULL; 3287 int do_sysvsem = 0; 3288 int err; 3289 3290 /* 3291 * If unsharing a user namespace must also unshare the thread group 3292 * and unshare the filesystem root and working directories. 3293 */ 3294 if (unshare_flags & CLONE_NEWUSER) 3295 unshare_flags |= CLONE_THREAD | CLONE_FS; 3296 /* 3297 * If unsharing vm, must also unshare signal handlers. 3298 */ 3299 if (unshare_flags & CLONE_VM) 3300 unshare_flags |= CLONE_SIGHAND; 3301 /* 3302 * If unsharing a signal handlers, must also unshare the signal queues. 3303 */ 3304 if (unshare_flags & CLONE_SIGHAND) 3305 unshare_flags |= CLONE_THREAD; 3306 /* 3307 * If unsharing namespace, must also unshare filesystem information. 3308 */ 3309 if (unshare_flags & CLONE_NEWNS) 3310 unshare_flags |= CLONE_FS; 3311 3312 err = check_unshare_flags(unshare_flags); 3313 if (err) 3314 goto bad_unshare_out; 3315 /* 3316 * CLONE_NEWIPC must also detach from the undolist: after switching 3317 * to a new ipc namespace, the semaphore arrays from the old 3318 * namespace are unreachable. 3319 */ 3320 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3321 do_sysvsem = 1; 3322 err = unshare_fs(unshare_flags, &new_fs); 3323 if (err) 3324 goto bad_unshare_out; 3325 err = unshare_fd(unshare_flags, &new_fd); 3326 if (err) 3327 goto bad_unshare_cleanup_fs; 3328 err = unshare_userns(unshare_flags, &new_cred); 3329 if (err) 3330 goto bad_unshare_cleanup_fd; 3331 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3332 new_cred, new_fs); 3333 if (err) 3334 goto bad_unshare_cleanup_cred; 3335 3336 if (new_cred) { 3337 err = set_cred_ucounts(new_cred); 3338 if (err) 3339 goto bad_unshare_cleanup_cred; 3340 } 3341 3342 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3343 if (do_sysvsem) { 3344 /* 3345 * CLONE_SYSVSEM is equivalent to sys_exit(). 3346 */ 3347 exit_sem(current); 3348 } 3349 if (unshare_flags & CLONE_NEWIPC) { 3350 /* Orphan segments in old ns (see sem above). */ 3351 exit_shm(current); 3352 shm_init_task(current); 3353 } 3354 3355 if (new_nsproxy) 3356 switch_task_namespaces(current, new_nsproxy); 3357 3358 task_lock(current); 3359 3360 if (new_fs) { 3361 fs = current->fs; 3362 spin_lock(&fs->lock); 3363 current->fs = new_fs; 3364 if (--fs->users) 3365 new_fs = NULL; 3366 else 3367 new_fs = fs; 3368 spin_unlock(&fs->lock); 3369 } 3370 3371 if (new_fd) 3372 swap(current->files, new_fd); 3373 3374 task_unlock(current); 3375 3376 if (new_cred) { 3377 /* Install the new user namespace */ 3378 commit_creds(new_cred); 3379 new_cred = NULL; 3380 } 3381 } 3382 3383 perf_event_namespaces(current); 3384 3385 bad_unshare_cleanup_cred: 3386 if (new_cred) 3387 put_cred(new_cred); 3388 bad_unshare_cleanup_fd: 3389 if (new_fd) 3390 put_files_struct(new_fd); 3391 3392 bad_unshare_cleanup_fs: 3393 if (new_fs) 3394 free_fs_struct(new_fs); 3395 3396 bad_unshare_out: 3397 return err; 3398 } 3399 3400 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3401 { 3402 return ksys_unshare(unshare_flags); 3403 } 3404 3405 /* 3406 * Helper to unshare the files of the current task. 3407 * We don't want to expose copy_files internals to 3408 * the exec layer of the kernel. 3409 */ 3410 3411 int unshare_files(void) 3412 { 3413 struct task_struct *task = current; 3414 struct files_struct *old, *copy = NULL; 3415 int error; 3416 3417 error = unshare_fd(CLONE_FILES, ©); 3418 if (error || !copy) 3419 return error; 3420 3421 old = task->files; 3422 task_lock(task); 3423 task->files = copy; 3424 task_unlock(task); 3425 put_files_struct(old); 3426 return 0; 3427 } 3428 3429 int sysctl_max_threads(const struct ctl_table *table, int write, 3430 void *buffer, size_t *lenp, loff_t *ppos) 3431 { 3432 struct ctl_table t; 3433 int ret; 3434 int threads = max_threads; 3435 int min = 1; 3436 int max = MAX_THREADS; 3437 3438 t = *table; 3439 t.data = &threads; 3440 t.extra1 = &min; 3441 t.extra2 = &max; 3442 3443 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3444 if (ret || !write) 3445 return ret; 3446 3447 max_threads = threads; 3448 3449 return 0; 3450 } 3451