1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page's 408 * memory cgroup pointer is NULL, and 409 * memcg_kmem_uncharge_page() in free_thread_stack() 410 * will ignore this page. 411 */ 412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 413 0); 414 if (ret) 415 return ret; 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 scs_release(tsk); 446 447 #ifndef CONFIG_THREAD_INFO_IN_TASK 448 /* 449 * The task is finally done with both the stack and thread_info, 450 * so free both. 451 */ 452 release_task_stack(tsk); 453 #else 454 /* 455 * If the task had a separate stack allocation, it should be gone 456 * by now. 457 */ 458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 459 #endif 460 rt_mutex_debug_task_free(tsk); 461 ftrace_graph_exit_task(tsk); 462 arch_release_task_struct(tsk); 463 if (tsk->flags & PF_KTHREAD) 464 free_kthread_struct(tsk); 465 free_task_struct(tsk); 466 } 467 EXPORT_SYMBOL(free_task); 468 469 #ifdef CONFIG_MMU 470 static __latent_entropy int dup_mmap(struct mm_struct *mm, 471 struct mm_struct *oldmm) 472 { 473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 474 struct rb_node **rb_link, *rb_parent; 475 int retval; 476 unsigned long charge; 477 LIST_HEAD(uf); 478 479 uprobe_start_dup_mmap(); 480 if (mmap_write_lock_killable(oldmm)) { 481 retval = -EINTR; 482 goto fail_uprobe_end; 483 } 484 flush_cache_dup_mm(oldmm); 485 uprobe_dup_mmap(oldmm, mm); 486 /* 487 * Not linked in yet - no deadlock potential: 488 */ 489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 490 491 /* No ordering required: file already has been exposed. */ 492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 493 494 mm->total_vm = oldmm->total_vm; 495 mm->data_vm = oldmm->data_vm; 496 mm->exec_vm = oldmm->exec_vm; 497 mm->stack_vm = oldmm->stack_vm; 498 499 rb_link = &mm->mm_rb.rb_node; 500 rb_parent = NULL; 501 pprev = &mm->mmap; 502 retval = ksm_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 retval = khugepaged_fork(mm, oldmm); 506 if (retval) 507 goto out; 508 509 prev = NULL; 510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 511 struct file *file; 512 513 if (mpnt->vm_flags & VM_DONTCOPY) { 514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 515 continue; 516 } 517 charge = 0; 518 /* 519 * Don't duplicate many vmas if we've been oom-killed (for 520 * example) 521 */ 522 if (fatal_signal_pending(current)) { 523 retval = -EINTR; 524 goto out; 525 } 526 if (mpnt->vm_flags & VM_ACCOUNT) { 527 unsigned long len = vma_pages(mpnt); 528 529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 530 goto fail_nomem; 531 charge = len; 532 } 533 tmp = vm_area_dup(mpnt); 534 if (!tmp) 535 goto fail_nomem; 536 retval = vma_dup_policy(mpnt, tmp); 537 if (retval) 538 goto fail_nomem_policy; 539 tmp->vm_mm = mm; 540 retval = dup_userfaultfd(tmp, &uf); 541 if (retval) 542 goto fail_nomem_anon_vma_fork; 543 if (tmp->vm_flags & VM_WIPEONFORK) { 544 /* 545 * VM_WIPEONFORK gets a clean slate in the child. 546 * Don't prepare anon_vma until fault since we don't 547 * copy page for current vma. 548 */ 549 tmp->anon_vma = NULL; 550 } else if (anon_vma_fork(tmp, mpnt)) 551 goto fail_nomem_anon_vma_fork; 552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 553 file = tmp->vm_file; 554 if (file) { 555 struct inode *inode = file_inode(file); 556 struct address_space *mapping = file->f_mapping; 557 558 get_file(file); 559 if (tmp->vm_flags & VM_DENYWRITE) 560 put_write_access(inode); 561 i_mmap_lock_write(mapping); 562 if (tmp->vm_flags & VM_SHARED) 563 mapping_allow_writable(mapping); 564 flush_dcache_mmap_lock(mapping); 565 /* insert tmp into the share list, just after mpnt */ 566 vma_interval_tree_insert_after(tmp, mpnt, 567 &mapping->i_mmap); 568 flush_dcache_mmap_unlock(mapping); 569 i_mmap_unlock_write(mapping); 570 } 571 572 /* 573 * Clear hugetlb-related page reserves for children. This only 574 * affects MAP_PRIVATE mappings. Faults generated by the child 575 * are not guaranteed to succeed, even if read-only 576 */ 577 if (is_vm_hugetlb_page(tmp)) 578 reset_vma_resv_huge_pages(tmp); 579 580 /* 581 * Link in the new vma and copy the page table entries. 582 */ 583 *pprev = tmp; 584 pprev = &tmp->vm_next; 585 tmp->vm_prev = prev; 586 prev = tmp; 587 588 __vma_link_rb(mm, tmp, rb_link, rb_parent); 589 rb_link = &tmp->vm_rb.rb_right; 590 rb_parent = &tmp->vm_rb; 591 592 mm->map_count++; 593 if (!(tmp->vm_flags & VM_WIPEONFORK)) 594 retval = copy_page_range(tmp, mpnt); 595 596 if (tmp->vm_ops && tmp->vm_ops->open) 597 tmp->vm_ops->open(tmp); 598 599 if (retval) 600 goto out; 601 } 602 /* a new mm has just been created */ 603 retval = arch_dup_mmap(oldmm, mm); 604 out: 605 mmap_write_unlock(mm); 606 flush_tlb_mm(oldmm); 607 mmap_write_unlock(oldmm); 608 dup_userfaultfd_complete(&uf); 609 fail_uprobe_end: 610 uprobe_end_dup_mmap(); 611 return retval; 612 fail_nomem_anon_vma_fork: 613 mpol_put(vma_policy(tmp)); 614 fail_nomem_policy: 615 vm_area_free(tmp); 616 fail_nomem: 617 retval = -ENOMEM; 618 vm_unacct_memory(charge); 619 goto out; 620 } 621 622 static inline int mm_alloc_pgd(struct mm_struct *mm) 623 { 624 mm->pgd = pgd_alloc(mm); 625 if (unlikely(!mm->pgd)) 626 return -ENOMEM; 627 return 0; 628 } 629 630 static inline void mm_free_pgd(struct mm_struct *mm) 631 { 632 pgd_free(mm, mm->pgd); 633 } 634 #else 635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 mmap_write_lock(oldmm); 638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 639 mmap_write_unlock(oldmm); 640 return 0; 641 } 642 #define mm_alloc_pgd(mm) (0) 643 #define mm_free_pgd(mm) 644 #endif /* CONFIG_MMU */ 645 646 static void check_mm(struct mm_struct *mm) 647 { 648 int i; 649 650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 651 "Please make sure 'struct resident_page_types[]' is updated as well"); 652 653 for (i = 0; i < NR_MM_COUNTERS; i++) { 654 long x = atomic_long_read(&mm->rss_stat.count[i]); 655 656 if (unlikely(x)) 657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 658 mm, resident_page_types[i], x); 659 } 660 661 if (mm_pgtables_bytes(mm)) 662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 663 mm_pgtables_bytes(mm)); 664 665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 667 #endif 668 } 669 670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 WARN_ON_ONCE(mm == current->mm); 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 destroy_context(mm); 685 mmu_notifier_subscriptions_destroy(mm); 686 check_mm(mm); 687 put_user_ns(mm->user_ns); 688 free_mm(mm); 689 } 690 EXPORT_SYMBOL_GPL(__mmdrop); 691 692 static void mmdrop_async_fn(struct work_struct *work) 693 { 694 struct mm_struct *mm; 695 696 mm = container_of(work, struct mm_struct, async_put_work); 697 __mmdrop(mm); 698 } 699 700 static void mmdrop_async(struct mm_struct *mm) 701 { 702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 704 schedule_work(&mm->async_put_work); 705 } 706 } 707 708 static inline void free_signal_struct(struct signal_struct *sig) 709 { 710 taskstats_tgid_free(sig); 711 sched_autogroup_exit(sig); 712 /* 713 * __mmdrop is not safe to call from softirq context on x86 due to 714 * pgd_dtor so postpone it to the async context 715 */ 716 if (sig->oom_mm) 717 mmdrop_async(sig->oom_mm); 718 kmem_cache_free(signal_cachep, sig); 719 } 720 721 static inline void put_signal_struct(struct signal_struct *sig) 722 { 723 if (refcount_dec_and_test(&sig->sigcnt)) 724 free_signal_struct(sig); 725 } 726 727 void __put_task_struct(struct task_struct *tsk) 728 { 729 WARN_ON(!tsk->exit_state); 730 WARN_ON(refcount_read(&tsk->usage)); 731 WARN_ON(tsk == current); 732 733 io_uring_free(tsk); 734 cgroup_free(tsk); 735 task_numa_free(tsk, true); 736 security_task_free(tsk); 737 exit_creds(tsk); 738 delayacct_tsk_free(tsk); 739 put_signal_struct(tsk->signal); 740 741 if (!profile_handoff_task(tsk)) 742 free_task(tsk); 743 } 744 EXPORT_SYMBOL_GPL(__put_task_struct); 745 746 void __init __weak arch_task_cache_init(void) { } 747 748 /* 749 * set_max_threads 750 */ 751 static void set_max_threads(unsigned int max_threads_suggested) 752 { 753 u64 threads; 754 unsigned long nr_pages = totalram_pages(); 755 756 /* 757 * The number of threads shall be limited such that the thread 758 * structures may only consume a small part of the available memory. 759 */ 760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 761 threads = MAX_THREADS; 762 else 763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 764 (u64) THREAD_SIZE * 8UL); 765 766 if (threads > max_threads_suggested) 767 threads = max_threads_suggested; 768 769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 770 } 771 772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 773 /* Initialized by the architecture: */ 774 int arch_task_struct_size __read_mostly; 775 #endif 776 777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 779 { 780 /* Fetch thread_struct whitelist for the architecture. */ 781 arch_thread_struct_whitelist(offset, size); 782 783 /* 784 * Handle zero-sized whitelist or empty thread_struct, otherwise 785 * adjust offset to position of thread_struct in task_struct. 786 */ 787 if (unlikely(*size == 0)) 788 *offset = 0; 789 else 790 *offset += offsetof(struct task_struct, thread); 791 } 792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 793 794 void __init fork_init(void) 795 { 796 int i; 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 #ifndef ARCH_MIN_TASKALIGN 799 #define ARCH_MIN_TASKALIGN 0 800 #endif 801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 802 unsigned long useroffset, usersize; 803 804 /* create a slab on which task_structs can be allocated */ 805 task_struct_whitelist(&useroffset, &usersize); 806 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 807 arch_task_struct_size, align, 808 SLAB_PANIC|SLAB_ACCOUNT, 809 useroffset, usersize, NULL); 810 #endif 811 812 /* do the arch specific task caches init */ 813 arch_task_cache_init(); 814 815 set_max_threads(MAX_THREADS); 816 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 819 init_task.signal->rlim[RLIMIT_SIGPENDING] = 820 init_task.signal->rlim[RLIMIT_NPROC]; 821 822 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 823 init_user_ns.ucount_max[i] = max_threads/2; 824 825 init_user_ns.ucount_max[UCOUNT_RLIMIT_NPROC] = task_rlimit(&init_task, RLIMIT_NPROC); 826 init_user_ns.ucount_max[UCOUNT_RLIMIT_MSGQUEUE] = task_rlimit(&init_task, RLIMIT_MSGQUEUE); 827 init_user_ns.ucount_max[UCOUNT_RLIMIT_SIGPENDING] = task_rlimit(&init_task, RLIMIT_SIGPENDING); 828 init_user_ns.ucount_max[UCOUNT_RLIMIT_MEMLOCK] = task_rlimit(&init_task, RLIMIT_MEMLOCK); 829 830 #ifdef CONFIG_VMAP_STACK 831 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 832 NULL, free_vm_stack_cache); 833 #endif 834 835 scs_init(); 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 err = scs_prepare(tsk, node); 897 if (err) 898 goto free_stack; 899 900 #ifdef CONFIG_SECCOMP 901 /* 902 * We must handle setting up seccomp filters once we're under 903 * the sighand lock in case orig has changed between now and 904 * then. Until then, filter must be NULL to avoid messing up 905 * the usage counts on the error path calling free_task. 906 */ 907 tsk->seccomp.filter = NULL; 908 #endif 909 910 setup_thread_stack(tsk, orig); 911 clear_user_return_notifier(tsk); 912 clear_tsk_need_resched(tsk); 913 set_task_stack_end_magic(tsk); 914 clear_syscall_work_syscall_user_dispatch(tsk); 915 916 #ifdef CONFIG_STACKPROTECTOR 917 tsk->stack_canary = get_random_canary(); 918 #endif 919 if (orig->cpus_ptr == &orig->cpus_mask) 920 tsk->cpus_ptr = &tsk->cpus_mask; 921 922 /* 923 * One for the user space visible state that goes away when reaped. 924 * One for the scheduler. 925 */ 926 refcount_set(&tsk->rcu_users, 2); 927 /* One for the rcu users */ 928 refcount_set(&tsk->usage, 1); 929 #ifdef CONFIG_BLK_DEV_IO_TRACE 930 tsk->btrace_seq = 0; 931 #endif 932 tsk->splice_pipe = NULL; 933 tsk->task_frag.page = NULL; 934 tsk->wake_q.next = NULL; 935 936 account_kernel_stack(tsk, 1); 937 938 kcov_task_init(tsk); 939 kmap_local_fork(tsk); 940 941 #ifdef CONFIG_FAULT_INJECTION 942 tsk->fail_nth = 0; 943 #endif 944 945 #ifdef CONFIG_BLK_CGROUP 946 tsk->throttle_queue = NULL; 947 tsk->use_memdelay = 0; 948 #endif 949 950 #ifdef CONFIG_MEMCG 951 tsk->active_memcg = NULL; 952 #endif 953 return tsk; 954 955 free_stack: 956 free_thread_stack(tsk); 957 free_tsk: 958 free_task_struct(tsk); 959 return NULL; 960 } 961 962 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 963 964 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 965 966 static int __init coredump_filter_setup(char *s) 967 { 968 default_dump_filter = 969 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 970 MMF_DUMP_FILTER_MASK; 971 return 1; 972 } 973 974 __setup("coredump_filter=", coredump_filter_setup); 975 976 #include <linux/init_task.h> 977 978 static void mm_init_aio(struct mm_struct *mm) 979 { 980 #ifdef CONFIG_AIO 981 spin_lock_init(&mm->ioctx_lock); 982 mm->ioctx_table = NULL; 983 #endif 984 } 985 986 static __always_inline void mm_clear_owner(struct mm_struct *mm, 987 struct task_struct *p) 988 { 989 #ifdef CONFIG_MEMCG 990 if (mm->owner == p) 991 WRITE_ONCE(mm->owner, NULL); 992 #endif 993 } 994 995 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 996 { 997 #ifdef CONFIG_MEMCG 998 mm->owner = p; 999 #endif 1000 } 1001 1002 static void mm_init_pasid(struct mm_struct *mm) 1003 { 1004 #ifdef CONFIG_IOMMU_SUPPORT 1005 mm->pasid = INIT_PASID; 1006 #endif 1007 } 1008 1009 static void mm_init_uprobes_state(struct mm_struct *mm) 1010 { 1011 #ifdef CONFIG_UPROBES 1012 mm->uprobes_state.xol_area = NULL; 1013 #endif 1014 } 1015 1016 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1017 struct user_namespace *user_ns) 1018 { 1019 mm->mmap = NULL; 1020 mm->mm_rb = RB_ROOT; 1021 mm->vmacache_seqnum = 0; 1022 atomic_set(&mm->mm_users, 1); 1023 atomic_set(&mm->mm_count, 1); 1024 seqcount_init(&mm->write_protect_seq); 1025 mmap_init_lock(mm); 1026 INIT_LIST_HEAD(&mm->mmlist); 1027 mm->core_state = NULL; 1028 mm_pgtables_bytes_init(mm); 1029 mm->map_count = 0; 1030 mm->locked_vm = 0; 1031 atomic_set(&mm->has_pinned, 0); 1032 atomic64_set(&mm->pinned_vm, 0); 1033 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1034 spin_lock_init(&mm->page_table_lock); 1035 spin_lock_init(&mm->arg_lock); 1036 mm_init_cpumask(mm); 1037 mm_init_aio(mm); 1038 mm_init_owner(mm, p); 1039 mm_init_pasid(mm); 1040 RCU_INIT_POINTER(mm->exe_file, NULL); 1041 mmu_notifier_subscriptions_init(mm); 1042 init_tlb_flush_pending(mm); 1043 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1044 mm->pmd_huge_pte = NULL; 1045 #endif 1046 mm_init_uprobes_state(mm); 1047 1048 if (current->mm) { 1049 mm->flags = current->mm->flags & MMF_INIT_MASK; 1050 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1051 } else { 1052 mm->flags = default_dump_filter; 1053 mm->def_flags = 0; 1054 } 1055 1056 if (mm_alloc_pgd(mm)) 1057 goto fail_nopgd; 1058 1059 if (init_new_context(p, mm)) 1060 goto fail_nocontext; 1061 1062 mm->user_ns = get_user_ns(user_ns); 1063 return mm; 1064 1065 fail_nocontext: 1066 mm_free_pgd(mm); 1067 fail_nopgd: 1068 free_mm(mm); 1069 return NULL; 1070 } 1071 1072 /* 1073 * Allocate and initialize an mm_struct. 1074 */ 1075 struct mm_struct *mm_alloc(void) 1076 { 1077 struct mm_struct *mm; 1078 1079 mm = allocate_mm(); 1080 if (!mm) 1081 return NULL; 1082 1083 memset(mm, 0, sizeof(*mm)); 1084 return mm_init(mm, current, current_user_ns()); 1085 } 1086 1087 static inline void __mmput(struct mm_struct *mm) 1088 { 1089 VM_BUG_ON(atomic_read(&mm->mm_users)); 1090 1091 uprobe_clear_state(mm); 1092 exit_aio(mm); 1093 ksm_exit(mm); 1094 khugepaged_exit(mm); /* must run before exit_mmap */ 1095 exit_mmap(mm); 1096 mm_put_huge_zero_page(mm); 1097 set_mm_exe_file(mm, NULL); 1098 if (!list_empty(&mm->mmlist)) { 1099 spin_lock(&mmlist_lock); 1100 list_del(&mm->mmlist); 1101 spin_unlock(&mmlist_lock); 1102 } 1103 if (mm->binfmt) 1104 module_put(mm->binfmt->module); 1105 mmdrop(mm); 1106 } 1107 1108 /* 1109 * Decrement the use count and release all resources for an mm. 1110 */ 1111 void mmput(struct mm_struct *mm) 1112 { 1113 might_sleep(); 1114 1115 if (atomic_dec_and_test(&mm->mm_users)) 1116 __mmput(mm); 1117 } 1118 EXPORT_SYMBOL_GPL(mmput); 1119 1120 #ifdef CONFIG_MMU 1121 static void mmput_async_fn(struct work_struct *work) 1122 { 1123 struct mm_struct *mm = container_of(work, struct mm_struct, 1124 async_put_work); 1125 1126 __mmput(mm); 1127 } 1128 1129 void mmput_async(struct mm_struct *mm) 1130 { 1131 if (atomic_dec_and_test(&mm->mm_users)) { 1132 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1133 schedule_work(&mm->async_put_work); 1134 } 1135 } 1136 #endif 1137 1138 /** 1139 * set_mm_exe_file - change a reference to the mm's executable file 1140 * 1141 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1142 * 1143 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1144 * invocations: in mmput() nobody alive left, in execve task is single 1145 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1146 * mm->exe_file, but does so without using set_mm_exe_file() in order 1147 * to do avoid the need for any locks. 1148 */ 1149 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1150 { 1151 struct file *old_exe_file; 1152 1153 /* 1154 * It is safe to dereference the exe_file without RCU as 1155 * this function is only called if nobody else can access 1156 * this mm -- see comment above for justification. 1157 */ 1158 old_exe_file = rcu_dereference_raw(mm->exe_file); 1159 1160 if (new_exe_file) 1161 get_file(new_exe_file); 1162 rcu_assign_pointer(mm->exe_file, new_exe_file); 1163 if (old_exe_file) 1164 fput(old_exe_file); 1165 } 1166 1167 /** 1168 * get_mm_exe_file - acquire a reference to the mm's executable file 1169 * 1170 * Returns %NULL if mm has no associated executable file. 1171 * User must release file via fput(). 1172 */ 1173 struct file *get_mm_exe_file(struct mm_struct *mm) 1174 { 1175 struct file *exe_file; 1176 1177 rcu_read_lock(); 1178 exe_file = rcu_dereference(mm->exe_file); 1179 if (exe_file && !get_file_rcu(exe_file)) 1180 exe_file = NULL; 1181 rcu_read_unlock(); 1182 return exe_file; 1183 } 1184 EXPORT_SYMBOL(get_mm_exe_file); 1185 1186 /** 1187 * get_task_exe_file - acquire a reference to the task's executable file 1188 * 1189 * Returns %NULL if task's mm (if any) has no associated executable file or 1190 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1191 * User must release file via fput(). 1192 */ 1193 struct file *get_task_exe_file(struct task_struct *task) 1194 { 1195 struct file *exe_file = NULL; 1196 struct mm_struct *mm; 1197 1198 task_lock(task); 1199 mm = task->mm; 1200 if (mm) { 1201 if (!(task->flags & PF_KTHREAD)) 1202 exe_file = get_mm_exe_file(mm); 1203 } 1204 task_unlock(task); 1205 return exe_file; 1206 } 1207 EXPORT_SYMBOL(get_task_exe_file); 1208 1209 /** 1210 * get_task_mm - acquire a reference to the task's mm 1211 * 1212 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1213 * this kernel workthread has transiently adopted a user mm with use_mm, 1214 * to do its AIO) is not set and if so returns a reference to it, after 1215 * bumping up the use count. User must release the mm via mmput() 1216 * after use. Typically used by /proc and ptrace. 1217 */ 1218 struct mm_struct *get_task_mm(struct task_struct *task) 1219 { 1220 struct mm_struct *mm; 1221 1222 task_lock(task); 1223 mm = task->mm; 1224 if (mm) { 1225 if (task->flags & PF_KTHREAD) 1226 mm = NULL; 1227 else 1228 mmget(mm); 1229 } 1230 task_unlock(task); 1231 return mm; 1232 } 1233 EXPORT_SYMBOL_GPL(get_task_mm); 1234 1235 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1236 { 1237 struct mm_struct *mm; 1238 int err; 1239 1240 err = down_read_killable(&task->signal->exec_update_lock); 1241 if (err) 1242 return ERR_PTR(err); 1243 1244 mm = get_task_mm(task); 1245 if (mm && mm != current->mm && 1246 !ptrace_may_access(task, mode)) { 1247 mmput(mm); 1248 mm = ERR_PTR(-EACCES); 1249 } 1250 up_read(&task->signal->exec_update_lock); 1251 1252 return mm; 1253 } 1254 1255 static void complete_vfork_done(struct task_struct *tsk) 1256 { 1257 struct completion *vfork; 1258 1259 task_lock(tsk); 1260 vfork = tsk->vfork_done; 1261 if (likely(vfork)) { 1262 tsk->vfork_done = NULL; 1263 complete(vfork); 1264 } 1265 task_unlock(tsk); 1266 } 1267 1268 static int wait_for_vfork_done(struct task_struct *child, 1269 struct completion *vfork) 1270 { 1271 int killed; 1272 1273 freezer_do_not_count(); 1274 cgroup_enter_frozen(); 1275 killed = wait_for_completion_killable(vfork); 1276 cgroup_leave_frozen(false); 1277 freezer_count(); 1278 1279 if (killed) { 1280 task_lock(child); 1281 child->vfork_done = NULL; 1282 task_unlock(child); 1283 } 1284 1285 put_task_struct(child); 1286 return killed; 1287 } 1288 1289 /* Please note the differences between mmput and mm_release. 1290 * mmput is called whenever we stop holding onto a mm_struct, 1291 * error success whatever. 1292 * 1293 * mm_release is called after a mm_struct has been removed 1294 * from the current process. 1295 * 1296 * This difference is important for error handling, when we 1297 * only half set up a mm_struct for a new process and need to restore 1298 * the old one. Because we mmput the new mm_struct before 1299 * restoring the old one. . . 1300 * Eric Biederman 10 January 1998 1301 */ 1302 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1303 { 1304 uprobe_free_utask(tsk); 1305 1306 /* Get rid of any cached register state */ 1307 deactivate_mm(tsk, mm); 1308 1309 /* 1310 * Signal userspace if we're not exiting with a core dump 1311 * because we want to leave the value intact for debugging 1312 * purposes. 1313 */ 1314 if (tsk->clear_child_tid) { 1315 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1316 atomic_read(&mm->mm_users) > 1) { 1317 /* 1318 * We don't check the error code - if userspace has 1319 * not set up a proper pointer then tough luck. 1320 */ 1321 put_user(0, tsk->clear_child_tid); 1322 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1323 1, NULL, NULL, 0, 0); 1324 } 1325 tsk->clear_child_tid = NULL; 1326 } 1327 1328 /* 1329 * All done, finally we can wake up parent and return this mm to him. 1330 * Also kthread_stop() uses this completion for synchronization. 1331 */ 1332 if (tsk->vfork_done) 1333 complete_vfork_done(tsk); 1334 } 1335 1336 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1337 { 1338 futex_exit_release(tsk); 1339 mm_release(tsk, mm); 1340 } 1341 1342 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1343 { 1344 futex_exec_release(tsk); 1345 mm_release(tsk, mm); 1346 } 1347 1348 /** 1349 * dup_mm() - duplicates an existing mm structure 1350 * @tsk: the task_struct with which the new mm will be associated. 1351 * @oldmm: the mm to duplicate. 1352 * 1353 * Allocates a new mm structure and duplicates the provided @oldmm structure 1354 * content into it. 1355 * 1356 * Return: the duplicated mm or NULL on failure. 1357 */ 1358 static struct mm_struct *dup_mm(struct task_struct *tsk, 1359 struct mm_struct *oldmm) 1360 { 1361 struct mm_struct *mm; 1362 int err; 1363 1364 mm = allocate_mm(); 1365 if (!mm) 1366 goto fail_nomem; 1367 1368 memcpy(mm, oldmm, sizeof(*mm)); 1369 1370 if (!mm_init(mm, tsk, mm->user_ns)) 1371 goto fail_nomem; 1372 1373 err = dup_mmap(mm, oldmm); 1374 if (err) 1375 goto free_pt; 1376 1377 mm->hiwater_rss = get_mm_rss(mm); 1378 mm->hiwater_vm = mm->total_vm; 1379 1380 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1381 goto free_pt; 1382 1383 return mm; 1384 1385 free_pt: 1386 /* don't put binfmt in mmput, we haven't got module yet */ 1387 mm->binfmt = NULL; 1388 mm_init_owner(mm, NULL); 1389 mmput(mm); 1390 1391 fail_nomem: 1392 return NULL; 1393 } 1394 1395 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1396 { 1397 struct mm_struct *mm, *oldmm; 1398 int retval; 1399 1400 tsk->min_flt = tsk->maj_flt = 0; 1401 tsk->nvcsw = tsk->nivcsw = 0; 1402 #ifdef CONFIG_DETECT_HUNG_TASK 1403 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1404 tsk->last_switch_time = 0; 1405 #endif 1406 1407 tsk->mm = NULL; 1408 tsk->active_mm = NULL; 1409 1410 /* 1411 * Are we cloning a kernel thread? 1412 * 1413 * We need to steal a active VM for that.. 1414 */ 1415 oldmm = current->mm; 1416 if (!oldmm) 1417 return 0; 1418 1419 /* initialize the new vmacache entries */ 1420 vmacache_flush(tsk); 1421 1422 if (clone_flags & CLONE_VM) { 1423 mmget(oldmm); 1424 mm = oldmm; 1425 goto good_mm; 1426 } 1427 1428 retval = -ENOMEM; 1429 mm = dup_mm(tsk, current->mm); 1430 if (!mm) 1431 goto fail_nomem; 1432 1433 good_mm: 1434 tsk->mm = mm; 1435 tsk->active_mm = mm; 1436 return 0; 1437 1438 fail_nomem: 1439 return retval; 1440 } 1441 1442 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1443 { 1444 struct fs_struct *fs = current->fs; 1445 if (clone_flags & CLONE_FS) { 1446 /* tsk->fs is already what we want */ 1447 spin_lock(&fs->lock); 1448 if (fs->in_exec) { 1449 spin_unlock(&fs->lock); 1450 return -EAGAIN; 1451 } 1452 fs->users++; 1453 spin_unlock(&fs->lock); 1454 return 0; 1455 } 1456 tsk->fs = copy_fs_struct(fs); 1457 if (!tsk->fs) 1458 return -ENOMEM; 1459 return 0; 1460 } 1461 1462 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1463 { 1464 struct files_struct *oldf, *newf; 1465 int error = 0; 1466 1467 /* 1468 * A background process may not have any files ... 1469 */ 1470 oldf = current->files; 1471 if (!oldf) 1472 goto out; 1473 1474 if (clone_flags & CLONE_FILES) { 1475 atomic_inc(&oldf->count); 1476 goto out; 1477 } 1478 1479 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1480 if (!newf) 1481 goto out; 1482 1483 tsk->files = newf; 1484 error = 0; 1485 out: 1486 return error; 1487 } 1488 1489 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1490 { 1491 #ifdef CONFIG_BLOCK 1492 struct io_context *ioc = current->io_context; 1493 struct io_context *new_ioc; 1494 1495 if (!ioc) 1496 return 0; 1497 /* 1498 * Share io context with parent, if CLONE_IO is set 1499 */ 1500 if (clone_flags & CLONE_IO) { 1501 ioc_task_link(ioc); 1502 tsk->io_context = ioc; 1503 } else if (ioprio_valid(ioc->ioprio)) { 1504 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1505 if (unlikely(!new_ioc)) 1506 return -ENOMEM; 1507 1508 new_ioc->ioprio = ioc->ioprio; 1509 put_io_context(new_ioc); 1510 } 1511 #endif 1512 return 0; 1513 } 1514 1515 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1516 { 1517 struct sighand_struct *sig; 1518 1519 if (clone_flags & CLONE_SIGHAND) { 1520 refcount_inc(¤t->sighand->count); 1521 return 0; 1522 } 1523 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1524 RCU_INIT_POINTER(tsk->sighand, sig); 1525 if (!sig) 1526 return -ENOMEM; 1527 1528 refcount_set(&sig->count, 1); 1529 spin_lock_irq(¤t->sighand->siglock); 1530 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1531 spin_unlock_irq(¤t->sighand->siglock); 1532 1533 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1534 if (clone_flags & CLONE_CLEAR_SIGHAND) 1535 flush_signal_handlers(tsk, 0); 1536 1537 return 0; 1538 } 1539 1540 void __cleanup_sighand(struct sighand_struct *sighand) 1541 { 1542 if (refcount_dec_and_test(&sighand->count)) { 1543 signalfd_cleanup(sighand); 1544 /* 1545 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1546 * without an RCU grace period, see __lock_task_sighand(). 1547 */ 1548 kmem_cache_free(sighand_cachep, sighand); 1549 } 1550 } 1551 1552 /* 1553 * Initialize POSIX timer handling for a thread group. 1554 */ 1555 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1556 { 1557 struct posix_cputimers *pct = &sig->posix_cputimers; 1558 unsigned long cpu_limit; 1559 1560 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1561 posix_cputimers_group_init(pct, cpu_limit); 1562 } 1563 1564 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1565 { 1566 struct signal_struct *sig; 1567 1568 if (clone_flags & CLONE_THREAD) 1569 return 0; 1570 1571 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1572 tsk->signal = sig; 1573 if (!sig) 1574 return -ENOMEM; 1575 1576 sig->nr_threads = 1; 1577 atomic_set(&sig->live, 1); 1578 refcount_set(&sig->sigcnt, 1); 1579 1580 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1581 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1582 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1583 1584 init_waitqueue_head(&sig->wait_chldexit); 1585 sig->curr_target = tsk; 1586 init_sigpending(&sig->shared_pending); 1587 INIT_HLIST_HEAD(&sig->multiprocess); 1588 seqlock_init(&sig->stats_lock); 1589 prev_cputime_init(&sig->prev_cputime); 1590 1591 #ifdef CONFIG_POSIX_TIMERS 1592 INIT_LIST_HEAD(&sig->posix_timers); 1593 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1594 sig->real_timer.function = it_real_fn; 1595 #endif 1596 1597 task_lock(current->group_leader); 1598 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1599 task_unlock(current->group_leader); 1600 1601 posix_cpu_timers_init_group(sig); 1602 1603 tty_audit_fork(sig); 1604 sched_autogroup_fork(sig); 1605 1606 sig->oom_score_adj = current->signal->oom_score_adj; 1607 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1608 1609 mutex_init(&sig->cred_guard_mutex); 1610 init_rwsem(&sig->exec_update_lock); 1611 1612 return 0; 1613 } 1614 1615 static void copy_seccomp(struct task_struct *p) 1616 { 1617 #ifdef CONFIG_SECCOMP 1618 /* 1619 * Must be called with sighand->lock held, which is common to 1620 * all threads in the group. Holding cred_guard_mutex is not 1621 * needed because this new task is not yet running and cannot 1622 * be racing exec. 1623 */ 1624 assert_spin_locked(¤t->sighand->siglock); 1625 1626 /* Ref-count the new filter user, and assign it. */ 1627 get_seccomp_filter(current); 1628 p->seccomp = current->seccomp; 1629 1630 /* 1631 * Explicitly enable no_new_privs here in case it got set 1632 * between the task_struct being duplicated and holding the 1633 * sighand lock. The seccomp state and nnp must be in sync. 1634 */ 1635 if (task_no_new_privs(current)) 1636 task_set_no_new_privs(p); 1637 1638 /* 1639 * If the parent gained a seccomp mode after copying thread 1640 * flags and between before we held the sighand lock, we have 1641 * to manually enable the seccomp thread flag here. 1642 */ 1643 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1644 set_task_syscall_work(p, SECCOMP); 1645 #endif 1646 } 1647 1648 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1649 { 1650 current->clear_child_tid = tidptr; 1651 1652 return task_pid_vnr(current); 1653 } 1654 1655 static void rt_mutex_init_task(struct task_struct *p) 1656 { 1657 raw_spin_lock_init(&p->pi_lock); 1658 #ifdef CONFIG_RT_MUTEXES 1659 p->pi_waiters = RB_ROOT_CACHED; 1660 p->pi_top_task = NULL; 1661 p->pi_blocked_on = NULL; 1662 #endif 1663 } 1664 1665 static inline void init_task_pid_links(struct task_struct *task) 1666 { 1667 enum pid_type type; 1668 1669 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1670 INIT_HLIST_NODE(&task->pid_links[type]); 1671 } 1672 1673 static inline void 1674 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1675 { 1676 if (type == PIDTYPE_PID) 1677 task->thread_pid = pid; 1678 else 1679 task->signal->pids[type] = pid; 1680 } 1681 1682 static inline void rcu_copy_process(struct task_struct *p) 1683 { 1684 #ifdef CONFIG_PREEMPT_RCU 1685 p->rcu_read_lock_nesting = 0; 1686 p->rcu_read_unlock_special.s = 0; 1687 p->rcu_blocked_node = NULL; 1688 INIT_LIST_HEAD(&p->rcu_node_entry); 1689 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1690 #ifdef CONFIG_TASKS_RCU 1691 p->rcu_tasks_holdout = false; 1692 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1693 p->rcu_tasks_idle_cpu = -1; 1694 #endif /* #ifdef CONFIG_TASKS_RCU */ 1695 #ifdef CONFIG_TASKS_TRACE_RCU 1696 p->trc_reader_nesting = 0; 1697 p->trc_reader_special.s = 0; 1698 INIT_LIST_HEAD(&p->trc_holdout_list); 1699 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1700 } 1701 1702 struct pid *pidfd_pid(const struct file *file) 1703 { 1704 if (file->f_op == &pidfd_fops) 1705 return file->private_data; 1706 1707 return ERR_PTR(-EBADF); 1708 } 1709 1710 static int pidfd_release(struct inode *inode, struct file *file) 1711 { 1712 struct pid *pid = file->private_data; 1713 1714 file->private_data = NULL; 1715 put_pid(pid); 1716 return 0; 1717 } 1718 1719 #ifdef CONFIG_PROC_FS 1720 /** 1721 * pidfd_show_fdinfo - print information about a pidfd 1722 * @m: proc fdinfo file 1723 * @f: file referencing a pidfd 1724 * 1725 * Pid: 1726 * This function will print the pid that a given pidfd refers to in the 1727 * pid namespace of the procfs instance. 1728 * If the pid namespace of the process is not a descendant of the pid 1729 * namespace of the procfs instance 0 will be shown as its pid. This is 1730 * similar to calling getppid() on a process whose parent is outside of 1731 * its pid namespace. 1732 * 1733 * NSpid: 1734 * If pid namespaces are supported then this function will also print 1735 * the pid of a given pidfd refers to for all descendant pid namespaces 1736 * starting from the current pid namespace of the instance, i.e. the 1737 * Pid field and the first entry in the NSpid field will be identical. 1738 * If the pid namespace of the process is not a descendant of the pid 1739 * namespace of the procfs instance 0 will be shown as its first NSpid 1740 * entry and no others will be shown. 1741 * Note that this differs from the Pid and NSpid fields in 1742 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1743 * the pid namespace of the procfs instance. The difference becomes 1744 * obvious when sending around a pidfd between pid namespaces from a 1745 * different branch of the tree, i.e. where no ancestoral relation is 1746 * present between the pid namespaces: 1747 * - create two new pid namespaces ns1 and ns2 in the initial pid 1748 * namespace (also take care to create new mount namespaces in the 1749 * new pid namespace and mount procfs) 1750 * - create a process with a pidfd in ns1 1751 * - send pidfd from ns1 to ns2 1752 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1753 * have exactly one entry, which is 0 1754 */ 1755 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1756 { 1757 struct pid *pid = f->private_data; 1758 struct pid_namespace *ns; 1759 pid_t nr = -1; 1760 1761 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1762 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1763 nr = pid_nr_ns(pid, ns); 1764 } 1765 1766 seq_put_decimal_ll(m, "Pid:\t", nr); 1767 1768 #ifdef CONFIG_PID_NS 1769 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1770 if (nr > 0) { 1771 int i; 1772 1773 /* If nr is non-zero it means that 'pid' is valid and that 1774 * ns, i.e. the pid namespace associated with the procfs 1775 * instance, is in the pid namespace hierarchy of pid. 1776 * Start at one below the already printed level. 1777 */ 1778 for (i = ns->level + 1; i <= pid->level; i++) 1779 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1780 } 1781 #endif 1782 seq_putc(m, '\n'); 1783 } 1784 #endif 1785 1786 /* 1787 * Poll support for process exit notification. 1788 */ 1789 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1790 { 1791 struct pid *pid = file->private_data; 1792 __poll_t poll_flags = 0; 1793 1794 poll_wait(file, &pid->wait_pidfd, pts); 1795 1796 /* 1797 * Inform pollers only when the whole thread group exits. 1798 * If the thread group leader exits before all other threads in the 1799 * group, then poll(2) should block, similar to the wait(2) family. 1800 */ 1801 if (thread_group_exited(pid)) 1802 poll_flags = EPOLLIN | EPOLLRDNORM; 1803 1804 return poll_flags; 1805 } 1806 1807 const struct file_operations pidfd_fops = { 1808 .release = pidfd_release, 1809 .poll = pidfd_poll, 1810 #ifdef CONFIG_PROC_FS 1811 .show_fdinfo = pidfd_show_fdinfo, 1812 #endif 1813 }; 1814 1815 static void __delayed_free_task(struct rcu_head *rhp) 1816 { 1817 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1818 1819 free_task(tsk); 1820 } 1821 1822 static __always_inline void delayed_free_task(struct task_struct *tsk) 1823 { 1824 if (IS_ENABLED(CONFIG_MEMCG)) 1825 call_rcu(&tsk->rcu, __delayed_free_task); 1826 else 1827 free_task(tsk); 1828 } 1829 1830 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1831 { 1832 /* Skip if kernel thread */ 1833 if (!tsk->mm) 1834 return; 1835 1836 /* Skip if spawning a thread or using vfork */ 1837 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1838 return; 1839 1840 /* We need to synchronize with __set_oom_adj */ 1841 mutex_lock(&oom_adj_mutex); 1842 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1843 /* Update the values in case they were changed after copy_signal */ 1844 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1845 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1846 mutex_unlock(&oom_adj_mutex); 1847 } 1848 1849 /* 1850 * This creates a new process as a copy of the old one, 1851 * but does not actually start it yet. 1852 * 1853 * It copies the registers, and all the appropriate 1854 * parts of the process environment (as per the clone 1855 * flags). The actual kick-off is left to the caller. 1856 */ 1857 static __latent_entropy struct task_struct *copy_process( 1858 struct pid *pid, 1859 int trace, 1860 int node, 1861 struct kernel_clone_args *args) 1862 { 1863 int pidfd = -1, retval; 1864 struct task_struct *p; 1865 struct multiprocess_signals delayed; 1866 struct file *pidfile = NULL; 1867 u64 clone_flags = args->flags; 1868 struct nsproxy *nsp = current->nsproxy; 1869 1870 /* 1871 * Don't allow sharing the root directory with processes in a different 1872 * namespace 1873 */ 1874 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1875 return ERR_PTR(-EINVAL); 1876 1877 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1878 return ERR_PTR(-EINVAL); 1879 1880 /* 1881 * Thread groups must share signals as well, and detached threads 1882 * can only be started up within the thread group. 1883 */ 1884 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1885 return ERR_PTR(-EINVAL); 1886 1887 /* 1888 * Shared signal handlers imply shared VM. By way of the above, 1889 * thread groups also imply shared VM. Blocking this case allows 1890 * for various simplifications in other code. 1891 */ 1892 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1893 return ERR_PTR(-EINVAL); 1894 1895 /* 1896 * Siblings of global init remain as zombies on exit since they are 1897 * not reaped by their parent (swapper). To solve this and to avoid 1898 * multi-rooted process trees, prevent global and container-inits 1899 * from creating siblings. 1900 */ 1901 if ((clone_flags & CLONE_PARENT) && 1902 current->signal->flags & SIGNAL_UNKILLABLE) 1903 return ERR_PTR(-EINVAL); 1904 1905 /* 1906 * If the new process will be in a different pid or user namespace 1907 * do not allow it to share a thread group with the forking task. 1908 */ 1909 if (clone_flags & CLONE_THREAD) { 1910 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1911 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1912 return ERR_PTR(-EINVAL); 1913 } 1914 1915 /* 1916 * If the new process will be in a different time namespace 1917 * do not allow it to share VM or a thread group with the forking task. 1918 */ 1919 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1920 if (nsp->time_ns != nsp->time_ns_for_children) 1921 return ERR_PTR(-EINVAL); 1922 } 1923 1924 if (clone_flags & CLONE_PIDFD) { 1925 /* 1926 * - CLONE_DETACHED is blocked so that we can potentially 1927 * reuse it later for CLONE_PIDFD. 1928 * - CLONE_THREAD is blocked until someone really needs it. 1929 */ 1930 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1931 return ERR_PTR(-EINVAL); 1932 } 1933 1934 /* 1935 * Force any signals received before this point to be delivered 1936 * before the fork happens. Collect up signals sent to multiple 1937 * processes that happen during the fork and delay them so that 1938 * they appear to happen after the fork. 1939 */ 1940 sigemptyset(&delayed.signal); 1941 INIT_HLIST_NODE(&delayed.node); 1942 1943 spin_lock_irq(¤t->sighand->siglock); 1944 if (!(clone_flags & CLONE_THREAD)) 1945 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1946 recalc_sigpending(); 1947 spin_unlock_irq(¤t->sighand->siglock); 1948 retval = -ERESTARTNOINTR; 1949 if (signal_pending(current)) 1950 goto fork_out; 1951 1952 retval = -ENOMEM; 1953 p = dup_task_struct(current, node); 1954 if (!p) 1955 goto fork_out; 1956 if (args->io_thread) { 1957 /* 1958 * Mark us an IO worker, and block any signal that isn't 1959 * fatal or STOP 1960 */ 1961 p->flags |= PF_IO_WORKER; 1962 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1963 } 1964 1965 /* 1966 * This _must_ happen before we call free_task(), i.e. before we jump 1967 * to any of the bad_fork_* labels. This is to avoid freeing 1968 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1969 * kernel threads (PF_KTHREAD). 1970 */ 1971 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1972 /* 1973 * Clear TID on mm_release()? 1974 */ 1975 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1976 1977 ftrace_graph_init_task(p); 1978 1979 rt_mutex_init_task(p); 1980 1981 lockdep_assert_irqs_enabled(); 1982 #ifdef CONFIG_PROVE_LOCKING 1983 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1984 #endif 1985 retval = -EAGAIN; 1986 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1987 if (p->real_cred->user != INIT_USER && 1988 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1989 goto bad_fork_free; 1990 } 1991 current->flags &= ~PF_NPROC_EXCEEDED; 1992 1993 retval = copy_creds(p, clone_flags); 1994 if (retval < 0) 1995 goto bad_fork_free; 1996 1997 /* 1998 * If multiple threads are within copy_process(), then this check 1999 * triggers too late. This doesn't hurt, the check is only there 2000 * to stop root fork bombs. 2001 */ 2002 retval = -EAGAIN; 2003 if (data_race(nr_threads >= max_threads)) 2004 goto bad_fork_cleanup_count; 2005 2006 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2007 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2008 p->flags |= PF_FORKNOEXEC; 2009 INIT_LIST_HEAD(&p->children); 2010 INIT_LIST_HEAD(&p->sibling); 2011 rcu_copy_process(p); 2012 p->vfork_done = NULL; 2013 spin_lock_init(&p->alloc_lock); 2014 2015 init_sigpending(&p->pending); 2016 2017 p->utime = p->stime = p->gtime = 0; 2018 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2019 p->utimescaled = p->stimescaled = 0; 2020 #endif 2021 prev_cputime_init(&p->prev_cputime); 2022 2023 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2024 seqcount_init(&p->vtime.seqcount); 2025 p->vtime.starttime = 0; 2026 p->vtime.state = VTIME_INACTIVE; 2027 #endif 2028 2029 #ifdef CONFIG_IO_URING 2030 p->io_uring = NULL; 2031 #endif 2032 2033 #if defined(SPLIT_RSS_COUNTING) 2034 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2035 #endif 2036 2037 p->default_timer_slack_ns = current->timer_slack_ns; 2038 2039 #ifdef CONFIG_PSI 2040 p->psi_flags = 0; 2041 #endif 2042 2043 task_io_accounting_init(&p->ioac); 2044 acct_clear_integrals(p); 2045 2046 posix_cputimers_init(&p->posix_cputimers); 2047 2048 p->io_context = NULL; 2049 audit_set_context(p, NULL); 2050 cgroup_fork(p); 2051 #ifdef CONFIG_NUMA 2052 p->mempolicy = mpol_dup(p->mempolicy); 2053 if (IS_ERR(p->mempolicy)) { 2054 retval = PTR_ERR(p->mempolicy); 2055 p->mempolicy = NULL; 2056 goto bad_fork_cleanup_threadgroup_lock; 2057 } 2058 #endif 2059 #ifdef CONFIG_CPUSETS 2060 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2061 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2062 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2063 #endif 2064 #ifdef CONFIG_TRACE_IRQFLAGS 2065 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2066 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2067 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2068 p->softirqs_enabled = 1; 2069 p->softirq_context = 0; 2070 #endif 2071 2072 p->pagefault_disabled = 0; 2073 2074 #ifdef CONFIG_LOCKDEP 2075 lockdep_init_task(p); 2076 #endif 2077 2078 #ifdef CONFIG_DEBUG_MUTEXES 2079 p->blocked_on = NULL; /* not blocked yet */ 2080 #endif 2081 #ifdef CONFIG_BCACHE 2082 p->sequential_io = 0; 2083 p->sequential_io_avg = 0; 2084 #endif 2085 2086 /* Perform scheduler related setup. Assign this task to a CPU. */ 2087 retval = sched_fork(clone_flags, p); 2088 if (retval) 2089 goto bad_fork_cleanup_policy; 2090 2091 retval = perf_event_init_task(p); 2092 if (retval) 2093 goto bad_fork_cleanup_policy; 2094 retval = audit_alloc(p); 2095 if (retval) 2096 goto bad_fork_cleanup_perf; 2097 /* copy all the process information */ 2098 shm_init_task(p); 2099 retval = security_task_alloc(p, clone_flags); 2100 if (retval) 2101 goto bad_fork_cleanup_audit; 2102 retval = copy_semundo(clone_flags, p); 2103 if (retval) 2104 goto bad_fork_cleanup_security; 2105 retval = copy_files(clone_flags, p); 2106 if (retval) 2107 goto bad_fork_cleanup_semundo; 2108 retval = copy_fs(clone_flags, p); 2109 if (retval) 2110 goto bad_fork_cleanup_files; 2111 retval = copy_sighand(clone_flags, p); 2112 if (retval) 2113 goto bad_fork_cleanup_fs; 2114 retval = copy_signal(clone_flags, p); 2115 if (retval) 2116 goto bad_fork_cleanup_sighand; 2117 retval = copy_mm(clone_flags, p); 2118 if (retval) 2119 goto bad_fork_cleanup_signal; 2120 retval = copy_namespaces(clone_flags, p); 2121 if (retval) 2122 goto bad_fork_cleanup_mm; 2123 retval = copy_io(clone_flags, p); 2124 if (retval) 2125 goto bad_fork_cleanup_namespaces; 2126 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2127 if (retval) 2128 goto bad_fork_cleanup_io; 2129 2130 stackleak_task_init(p); 2131 2132 if (pid != &init_struct_pid) { 2133 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2134 args->set_tid_size); 2135 if (IS_ERR(pid)) { 2136 retval = PTR_ERR(pid); 2137 goto bad_fork_cleanup_thread; 2138 } 2139 } 2140 2141 /* 2142 * This has to happen after we've potentially unshared the file 2143 * descriptor table (so that the pidfd doesn't leak into the child 2144 * if the fd table isn't shared). 2145 */ 2146 if (clone_flags & CLONE_PIDFD) { 2147 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2148 if (retval < 0) 2149 goto bad_fork_free_pid; 2150 2151 pidfd = retval; 2152 2153 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2154 O_RDWR | O_CLOEXEC); 2155 if (IS_ERR(pidfile)) { 2156 put_unused_fd(pidfd); 2157 retval = PTR_ERR(pidfile); 2158 goto bad_fork_free_pid; 2159 } 2160 get_pid(pid); /* held by pidfile now */ 2161 2162 retval = put_user(pidfd, args->pidfd); 2163 if (retval) 2164 goto bad_fork_put_pidfd; 2165 } 2166 2167 #ifdef CONFIG_BLOCK 2168 p->plug = NULL; 2169 #endif 2170 futex_init_task(p); 2171 2172 /* 2173 * sigaltstack should be cleared when sharing the same VM 2174 */ 2175 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2176 sas_ss_reset(p); 2177 2178 /* 2179 * Syscall tracing and stepping should be turned off in the 2180 * child regardless of CLONE_PTRACE. 2181 */ 2182 user_disable_single_step(p); 2183 clear_task_syscall_work(p, SYSCALL_TRACE); 2184 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2185 clear_task_syscall_work(p, SYSCALL_EMU); 2186 #endif 2187 clear_tsk_latency_tracing(p); 2188 2189 /* ok, now we should be set up.. */ 2190 p->pid = pid_nr(pid); 2191 if (clone_flags & CLONE_THREAD) { 2192 p->group_leader = current->group_leader; 2193 p->tgid = current->tgid; 2194 } else { 2195 p->group_leader = p; 2196 p->tgid = p->pid; 2197 } 2198 2199 p->nr_dirtied = 0; 2200 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2201 p->dirty_paused_when = 0; 2202 2203 p->pdeath_signal = 0; 2204 INIT_LIST_HEAD(&p->thread_group); 2205 p->task_works = NULL; 2206 2207 #ifdef CONFIG_KRETPROBES 2208 p->kretprobe_instances.first = NULL; 2209 #endif 2210 2211 /* 2212 * Ensure that the cgroup subsystem policies allow the new process to be 2213 * forked. It should be noted that the new process's css_set can be changed 2214 * between here and cgroup_post_fork() if an organisation operation is in 2215 * progress. 2216 */ 2217 retval = cgroup_can_fork(p, args); 2218 if (retval) 2219 goto bad_fork_put_pidfd; 2220 2221 /* 2222 * From this point on we must avoid any synchronous user-space 2223 * communication until we take the tasklist-lock. In particular, we do 2224 * not want user-space to be able to predict the process start-time by 2225 * stalling fork(2) after we recorded the start_time but before it is 2226 * visible to the system. 2227 */ 2228 2229 p->start_time = ktime_get_ns(); 2230 p->start_boottime = ktime_get_boottime_ns(); 2231 2232 /* 2233 * Make it visible to the rest of the system, but dont wake it up yet. 2234 * Need tasklist lock for parent etc handling! 2235 */ 2236 write_lock_irq(&tasklist_lock); 2237 2238 /* CLONE_PARENT re-uses the old parent */ 2239 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2240 p->real_parent = current->real_parent; 2241 p->parent_exec_id = current->parent_exec_id; 2242 if (clone_flags & CLONE_THREAD) 2243 p->exit_signal = -1; 2244 else 2245 p->exit_signal = current->group_leader->exit_signal; 2246 } else { 2247 p->real_parent = current; 2248 p->parent_exec_id = current->self_exec_id; 2249 p->exit_signal = args->exit_signal; 2250 } 2251 2252 klp_copy_process(p); 2253 2254 spin_lock(¤t->sighand->siglock); 2255 2256 /* 2257 * Copy seccomp details explicitly here, in case they were changed 2258 * before holding sighand lock. 2259 */ 2260 copy_seccomp(p); 2261 2262 rseq_fork(p, clone_flags); 2263 2264 /* Don't start children in a dying pid namespace */ 2265 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2266 retval = -ENOMEM; 2267 goto bad_fork_cancel_cgroup; 2268 } 2269 2270 /* Let kill terminate clone/fork in the middle */ 2271 if (fatal_signal_pending(current)) { 2272 retval = -EINTR; 2273 goto bad_fork_cancel_cgroup; 2274 } 2275 2276 /* past the last point of failure */ 2277 if (pidfile) 2278 fd_install(pidfd, pidfile); 2279 2280 init_task_pid_links(p); 2281 if (likely(p->pid)) { 2282 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2283 2284 init_task_pid(p, PIDTYPE_PID, pid); 2285 if (thread_group_leader(p)) { 2286 init_task_pid(p, PIDTYPE_TGID, pid); 2287 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2288 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2289 2290 if (is_child_reaper(pid)) { 2291 ns_of_pid(pid)->child_reaper = p; 2292 p->signal->flags |= SIGNAL_UNKILLABLE; 2293 } 2294 p->signal->shared_pending.signal = delayed.signal; 2295 p->signal->tty = tty_kref_get(current->signal->tty); 2296 /* 2297 * Inherit has_child_subreaper flag under the same 2298 * tasklist_lock with adding child to the process tree 2299 * for propagate_has_child_subreaper optimization. 2300 */ 2301 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2302 p->real_parent->signal->is_child_subreaper; 2303 list_add_tail(&p->sibling, &p->real_parent->children); 2304 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2305 attach_pid(p, PIDTYPE_TGID); 2306 attach_pid(p, PIDTYPE_PGID); 2307 attach_pid(p, PIDTYPE_SID); 2308 __this_cpu_inc(process_counts); 2309 } else { 2310 current->signal->nr_threads++; 2311 atomic_inc(¤t->signal->live); 2312 refcount_inc(¤t->signal->sigcnt); 2313 task_join_group_stop(p); 2314 list_add_tail_rcu(&p->thread_group, 2315 &p->group_leader->thread_group); 2316 list_add_tail_rcu(&p->thread_node, 2317 &p->signal->thread_head); 2318 } 2319 attach_pid(p, PIDTYPE_PID); 2320 nr_threads++; 2321 } 2322 total_forks++; 2323 hlist_del_init(&delayed.node); 2324 spin_unlock(¤t->sighand->siglock); 2325 syscall_tracepoint_update(p); 2326 write_unlock_irq(&tasklist_lock); 2327 2328 proc_fork_connector(p); 2329 sched_post_fork(p); 2330 cgroup_post_fork(p, args); 2331 perf_event_fork(p); 2332 2333 trace_task_newtask(p, clone_flags); 2334 uprobe_copy_process(p, clone_flags); 2335 2336 copy_oom_score_adj(clone_flags, p); 2337 2338 return p; 2339 2340 bad_fork_cancel_cgroup: 2341 spin_unlock(¤t->sighand->siglock); 2342 write_unlock_irq(&tasklist_lock); 2343 cgroup_cancel_fork(p, args); 2344 bad_fork_put_pidfd: 2345 if (clone_flags & CLONE_PIDFD) { 2346 fput(pidfile); 2347 put_unused_fd(pidfd); 2348 } 2349 bad_fork_free_pid: 2350 if (pid != &init_struct_pid) 2351 free_pid(pid); 2352 bad_fork_cleanup_thread: 2353 exit_thread(p); 2354 bad_fork_cleanup_io: 2355 if (p->io_context) 2356 exit_io_context(p); 2357 bad_fork_cleanup_namespaces: 2358 exit_task_namespaces(p); 2359 bad_fork_cleanup_mm: 2360 if (p->mm) { 2361 mm_clear_owner(p->mm, p); 2362 mmput(p->mm); 2363 } 2364 bad_fork_cleanup_signal: 2365 if (!(clone_flags & CLONE_THREAD)) 2366 free_signal_struct(p->signal); 2367 bad_fork_cleanup_sighand: 2368 __cleanup_sighand(p->sighand); 2369 bad_fork_cleanup_fs: 2370 exit_fs(p); /* blocking */ 2371 bad_fork_cleanup_files: 2372 exit_files(p); /* blocking */ 2373 bad_fork_cleanup_semundo: 2374 exit_sem(p); 2375 bad_fork_cleanup_security: 2376 security_task_free(p); 2377 bad_fork_cleanup_audit: 2378 audit_free(p); 2379 bad_fork_cleanup_perf: 2380 perf_event_free_task(p); 2381 bad_fork_cleanup_policy: 2382 lockdep_free_task(p); 2383 #ifdef CONFIG_NUMA 2384 mpol_put(p->mempolicy); 2385 bad_fork_cleanup_threadgroup_lock: 2386 #endif 2387 delayacct_tsk_free(p); 2388 bad_fork_cleanup_count: 2389 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2390 exit_creds(p); 2391 bad_fork_free: 2392 p->state = TASK_DEAD; 2393 put_task_stack(p); 2394 delayed_free_task(p); 2395 fork_out: 2396 spin_lock_irq(¤t->sighand->siglock); 2397 hlist_del_init(&delayed.node); 2398 spin_unlock_irq(¤t->sighand->siglock); 2399 return ERR_PTR(retval); 2400 } 2401 2402 static inline void init_idle_pids(struct task_struct *idle) 2403 { 2404 enum pid_type type; 2405 2406 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2407 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2408 init_task_pid(idle, type, &init_struct_pid); 2409 } 2410 } 2411 2412 struct task_struct *fork_idle(int cpu) 2413 { 2414 struct task_struct *task; 2415 struct kernel_clone_args args = { 2416 .flags = CLONE_VM, 2417 }; 2418 2419 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2420 if (!IS_ERR(task)) { 2421 init_idle_pids(task); 2422 init_idle(task, cpu); 2423 } 2424 2425 return task; 2426 } 2427 2428 struct mm_struct *copy_init_mm(void) 2429 { 2430 return dup_mm(NULL, &init_mm); 2431 } 2432 2433 /* 2434 * This is like kernel_clone(), but shaved down and tailored to just 2435 * creating io_uring workers. It returns a created task, or an error pointer. 2436 * The returned task is inactive, and the caller must fire it up through 2437 * wake_up_new_task(p). All signals are blocked in the created task. 2438 */ 2439 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2440 { 2441 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2442 CLONE_IO; 2443 struct kernel_clone_args args = { 2444 .flags = ((lower_32_bits(flags) | CLONE_VM | 2445 CLONE_UNTRACED) & ~CSIGNAL), 2446 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2447 .stack = (unsigned long)fn, 2448 .stack_size = (unsigned long)arg, 2449 .io_thread = 1, 2450 }; 2451 2452 return copy_process(NULL, 0, node, &args); 2453 } 2454 2455 /* 2456 * Ok, this is the main fork-routine. 2457 * 2458 * It copies the process, and if successful kick-starts 2459 * it and waits for it to finish using the VM if required. 2460 * 2461 * args->exit_signal is expected to be checked for sanity by the caller. 2462 */ 2463 pid_t kernel_clone(struct kernel_clone_args *args) 2464 { 2465 u64 clone_flags = args->flags; 2466 struct completion vfork; 2467 struct pid *pid; 2468 struct task_struct *p; 2469 int trace = 0; 2470 pid_t nr; 2471 2472 /* 2473 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2474 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2475 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2476 * field in struct clone_args and it still doesn't make sense to have 2477 * them both point at the same memory location. Performing this check 2478 * here has the advantage that we don't need to have a separate helper 2479 * to check for legacy clone(). 2480 */ 2481 if ((args->flags & CLONE_PIDFD) && 2482 (args->flags & CLONE_PARENT_SETTID) && 2483 (args->pidfd == args->parent_tid)) 2484 return -EINVAL; 2485 2486 /* 2487 * Determine whether and which event to report to ptracer. When 2488 * called from kernel_thread or CLONE_UNTRACED is explicitly 2489 * requested, no event is reported; otherwise, report if the event 2490 * for the type of forking is enabled. 2491 */ 2492 if (!(clone_flags & CLONE_UNTRACED)) { 2493 if (clone_flags & CLONE_VFORK) 2494 trace = PTRACE_EVENT_VFORK; 2495 else if (args->exit_signal != SIGCHLD) 2496 trace = PTRACE_EVENT_CLONE; 2497 else 2498 trace = PTRACE_EVENT_FORK; 2499 2500 if (likely(!ptrace_event_enabled(current, trace))) 2501 trace = 0; 2502 } 2503 2504 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2505 add_latent_entropy(); 2506 2507 if (IS_ERR(p)) 2508 return PTR_ERR(p); 2509 2510 /* 2511 * Do this prior waking up the new thread - the thread pointer 2512 * might get invalid after that point, if the thread exits quickly. 2513 */ 2514 trace_sched_process_fork(current, p); 2515 2516 pid = get_task_pid(p, PIDTYPE_PID); 2517 nr = pid_vnr(pid); 2518 2519 if (clone_flags & CLONE_PARENT_SETTID) 2520 put_user(nr, args->parent_tid); 2521 2522 if (clone_flags & CLONE_VFORK) { 2523 p->vfork_done = &vfork; 2524 init_completion(&vfork); 2525 get_task_struct(p); 2526 } 2527 2528 wake_up_new_task(p); 2529 2530 /* forking complete and child started to run, tell ptracer */ 2531 if (unlikely(trace)) 2532 ptrace_event_pid(trace, pid); 2533 2534 if (clone_flags & CLONE_VFORK) { 2535 if (!wait_for_vfork_done(p, &vfork)) 2536 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2537 } 2538 2539 put_pid(pid); 2540 return nr; 2541 } 2542 2543 /* 2544 * Create a kernel thread. 2545 */ 2546 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2547 { 2548 struct kernel_clone_args args = { 2549 .flags = ((lower_32_bits(flags) | CLONE_VM | 2550 CLONE_UNTRACED) & ~CSIGNAL), 2551 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2552 .stack = (unsigned long)fn, 2553 .stack_size = (unsigned long)arg, 2554 }; 2555 2556 return kernel_clone(&args); 2557 } 2558 2559 #ifdef __ARCH_WANT_SYS_FORK 2560 SYSCALL_DEFINE0(fork) 2561 { 2562 #ifdef CONFIG_MMU 2563 struct kernel_clone_args args = { 2564 .exit_signal = SIGCHLD, 2565 }; 2566 2567 return kernel_clone(&args); 2568 #else 2569 /* can not support in nommu mode */ 2570 return -EINVAL; 2571 #endif 2572 } 2573 #endif 2574 2575 #ifdef __ARCH_WANT_SYS_VFORK 2576 SYSCALL_DEFINE0(vfork) 2577 { 2578 struct kernel_clone_args args = { 2579 .flags = CLONE_VFORK | CLONE_VM, 2580 .exit_signal = SIGCHLD, 2581 }; 2582 2583 return kernel_clone(&args); 2584 } 2585 #endif 2586 2587 #ifdef __ARCH_WANT_SYS_CLONE 2588 #ifdef CONFIG_CLONE_BACKWARDS 2589 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2590 int __user *, parent_tidptr, 2591 unsigned long, tls, 2592 int __user *, child_tidptr) 2593 #elif defined(CONFIG_CLONE_BACKWARDS2) 2594 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2595 int __user *, parent_tidptr, 2596 int __user *, child_tidptr, 2597 unsigned long, tls) 2598 #elif defined(CONFIG_CLONE_BACKWARDS3) 2599 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2600 int, stack_size, 2601 int __user *, parent_tidptr, 2602 int __user *, child_tidptr, 2603 unsigned long, tls) 2604 #else 2605 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2606 int __user *, parent_tidptr, 2607 int __user *, child_tidptr, 2608 unsigned long, tls) 2609 #endif 2610 { 2611 struct kernel_clone_args args = { 2612 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2613 .pidfd = parent_tidptr, 2614 .child_tid = child_tidptr, 2615 .parent_tid = parent_tidptr, 2616 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2617 .stack = newsp, 2618 .tls = tls, 2619 }; 2620 2621 return kernel_clone(&args); 2622 } 2623 #endif 2624 2625 #ifdef __ARCH_WANT_SYS_CLONE3 2626 2627 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2628 struct clone_args __user *uargs, 2629 size_t usize) 2630 { 2631 int err; 2632 struct clone_args args; 2633 pid_t *kset_tid = kargs->set_tid; 2634 2635 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2636 CLONE_ARGS_SIZE_VER0); 2637 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2638 CLONE_ARGS_SIZE_VER1); 2639 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2640 CLONE_ARGS_SIZE_VER2); 2641 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2642 2643 if (unlikely(usize > PAGE_SIZE)) 2644 return -E2BIG; 2645 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2646 return -EINVAL; 2647 2648 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2649 if (err) 2650 return err; 2651 2652 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2653 return -EINVAL; 2654 2655 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2656 return -EINVAL; 2657 2658 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2659 return -EINVAL; 2660 2661 /* 2662 * Verify that higher 32bits of exit_signal are unset and that 2663 * it is a valid signal 2664 */ 2665 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2666 !valid_signal(args.exit_signal))) 2667 return -EINVAL; 2668 2669 if ((args.flags & CLONE_INTO_CGROUP) && 2670 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2671 return -EINVAL; 2672 2673 *kargs = (struct kernel_clone_args){ 2674 .flags = args.flags, 2675 .pidfd = u64_to_user_ptr(args.pidfd), 2676 .child_tid = u64_to_user_ptr(args.child_tid), 2677 .parent_tid = u64_to_user_ptr(args.parent_tid), 2678 .exit_signal = args.exit_signal, 2679 .stack = args.stack, 2680 .stack_size = args.stack_size, 2681 .tls = args.tls, 2682 .set_tid_size = args.set_tid_size, 2683 .cgroup = args.cgroup, 2684 }; 2685 2686 if (args.set_tid && 2687 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2688 (kargs->set_tid_size * sizeof(pid_t)))) 2689 return -EFAULT; 2690 2691 kargs->set_tid = kset_tid; 2692 2693 return 0; 2694 } 2695 2696 /** 2697 * clone3_stack_valid - check and prepare stack 2698 * @kargs: kernel clone args 2699 * 2700 * Verify that the stack arguments userspace gave us are sane. 2701 * In addition, set the stack direction for userspace since it's easy for us to 2702 * determine. 2703 */ 2704 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2705 { 2706 if (kargs->stack == 0) { 2707 if (kargs->stack_size > 0) 2708 return false; 2709 } else { 2710 if (kargs->stack_size == 0) 2711 return false; 2712 2713 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2714 return false; 2715 2716 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2717 kargs->stack += kargs->stack_size; 2718 #endif 2719 } 2720 2721 return true; 2722 } 2723 2724 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2725 { 2726 /* Verify that no unknown flags are passed along. */ 2727 if (kargs->flags & 2728 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2729 return false; 2730 2731 /* 2732 * - make the CLONE_DETACHED bit reuseable for clone3 2733 * - make the CSIGNAL bits reuseable for clone3 2734 */ 2735 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2736 return false; 2737 2738 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2739 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2740 return false; 2741 2742 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2743 kargs->exit_signal) 2744 return false; 2745 2746 if (!clone3_stack_valid(kargs)) 2747 return false; 2748 2749 return true; 2750 } 2751 2752 /** 2753 * clone3 - create a new process with specific properties 2754 * @uargs: argument structure 2755 * @size: size of @uargs 2756 * 2757 * clone3() is the extensible successor to clone()/clone2(). 2758 * It takes a struct as argument that is versioned by its size. 2759 * 2760 * Return: On success, a positive PID for the child process. 2761 * On error, a negative errno number. 2762 */ 2763 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2764 { 2765 int err; 2766 2767 struct kernel_clone_args kargs; 2768 pid_t set_tid[MAX_PID_NS_LEVEL]; 2769 2770 kargs.set_tid = set_tid; 2771 2772 err = copy_clone_args_from_user(&kargs, uargs, size); 2773 if (err) 2774 return err; 2775 2776 if (!clone3_args_valid(&kargs)) 2777 return -EINVAL; 2778 2779 return kernel_clone(&kargs); 2780 } 2781 #endif 2782 2783 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2784 { 2785 struct task_struct *leader, *parent, *child; 2786 int res; 2787 2788 read_lock(&tasklist_lock); 2789 leader = top = top->group_leader; 2790 down: 2791 for_each_thread(leader, parent) { 2792 list_for_each_entry(child, &parent->children, sibling) { 2793 res = visitor(child, data); 2794 if (res) { 2795 if (res < 0) 2796 goto out; 2797 leader = child; 2798 goto down; 2799 } 2800 up: 2801 ; 2802 } 2803 } 2804 2805 if (leader != top) { 2806 child = leader; 2807 parent = child->real_parent; 2808 leader = parent->group_leader; 2809 goto up; 2810 } 2811 out: 2812 read_unlock(&tasklist_lock); 2813 } 2814 2815 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2816 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2817 #endif 2818 2819 static void sighand_ctor(void *data) 2820 { 2821 struct sighand_struct *sighand = data; 2822 2823 spin_lock_init(&sighand->siglock); 2824 init_waitqueue_head(&sighand->signalfd_wqh); 2825 } 2826 2827 void __init proc_caches_init(void) 2828 { 2829 unsigned int mm_size; 2830 2831 sighand_cachep = kmem_cache_create("sighand_cache", 2832 sizeof(struct sighand_struct), 0, 2833 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2834 SLAB_ACCOUNT, sighand_ctor); 2835 signal_cachep = kmem_cache_create("signal_cache", 2836 sizeof(struct signal_struct), 0, 2837 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2838 NULL); 2839 files_cachep = kmem_cache_create("files_cache", 2840 sizeof(struct files_struct), 0, 2841 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2842 NULL); 2843 fs_cachep = kmem_cache_create("fs_cache", 2844 sizeof(struct fs_struct), 0, 2845 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2846 NULL); 2847 2848 /* 2849 * The mm_cpumask is located at the end of mm_struct, and is 2850 * dynamically sized based on the maximum CPU number this system 2851 * can have, taking hotplug into account (nr_cpu_ids). 2852 */ 2853 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2854 2855 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2856 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2857 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2858 offsetof(struct mm_struct, saved_auxv), 2859 sizeof_field(struct mm_struct, saved_auxv), 2860 NULL); 2861 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2862 mmap_init(); 2863 nsproxy_cache_init(); 2864 } 2865 2866 /* 2867 * Check constraints on flags passed to the unshare system call. 2868 */ 2869 static int check_unshare_flags(unsigned long unshare_flags) 2870 { 2871 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2872 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2873 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2874 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2875 CLONE_NEWTIME)) 2876 return -EINVAL; 2877 /* 2878 * Not implemented, but pretend it works if there is nothing 2879 * to unshare. Note that unsharing the address space or the 2880 * signal handlers also need to unshare the signal queues (aka 2881 * CLONE_THREAD). 2882 */ 2883 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2884 if (!thread_group_empty(current)) 2885 return -EINVAL; 2886 } 2887 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2888 if (refcount_read(¤t->sighand->count) > 1) 2889 return -EINVAL; 2890 } 2891 if (unshare_flags & CLONE_VM) { 2892 if (!current_is_single_threaded()) 2893 return -EINVAL; 2894 } 2895 2896 return 0; 2897 } 2898 2899 /* 2900 * Unshare the filesystem structure if it is being shared 2901 */ 2902 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2903 { 2904 struct fs_struct *fs = current->fs; 2905 2906 if (!(unshare_flags & CLONE_FS) || !fs) 2907 return 0; 2908 2909 /* don't need lock here; in the worst case we'll do useless copy */ 2910 if (fs->users == 1) 2911 return 0; 2912 2913 *new_fsp = copy_fs_struct(fs); 2914 if (!*new_fsp) 2915 return -ENOMEM; 2916 2917 return 0; 2918 } 2919 2920 /* 2921 * Unshare file descriptor table if it is being shared 2922 */ 2923 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2924 struct files_struct **new_fdp) 2925 { 2926 struct files_struct *fd = current->files; 2927 int error = 0; 2928 2929 if ((unshare_flags & CLONE_FILES) && 2930 (fd && atomic_read(&fd->count) > 1)) { 2931 *new_fdp = dup_fd(fd, max_fds, &error); 2932 if (!*new_fdp) 2933 return error; 2934 } 2935 2936 return 0; 2937 } 2938 2939 /* 2940 * unshare allows a process to 'unshare' part of the process 2941 * context which was originally shared using clone. copy_* 2942 * functions used by kernel_clone() cannot be used here directly 2943 * because they modify an inactive task_struct that is being 2944 * constructed. Here we are modifying the current, active, 2945 * task_struct. 2946 */ 2947 int ksys_unshare(unsigned long unshare_flags) 2948 { 2949 struct fs_struct *fs, *new_fs = NULL; 2950 struct files_struct *fd, *new_fd = NULL; 2951 struct cred *new_cred = NULL; 2952 struct nsproxy *new_nsproxy = NULL; 2953 int do_sysvsem = 0; 2954 int err; 2955 2956 /* 2957 * If unsharing a user namespace must also unshare the thread group 2958 * and unshare the filesystem root and working directories. 2959 */ 2960 if (unshare_flags & CLONE_NEWUSER) 2961 unshare_flags |= CLONE_THREAD | CLONE_FS; 2962 /* 2963 * If unsharing vm, must also unshare signal handlers. 2964 */ 2965 if (unshare_flags & CLONE_VM) 2966 unshare_flags |= CLONE_SIGHAND; 2967 /* 2968 * If unsharing a signal handlers, must also unshare the signal queues. 2969 */ 2970 if (unshare_flags & CLONE_SIGHAND) 2971 unshare_flags |= CLONE_THREAD; 2972 /* 2973 * If unsharing namespace, must also unshare filesystem information. 2974 */ 2975 if (unshare_flags & CLONE_NEWNS) 2976 unshare_flags |= CLONE_FS; 2977 2978 err = check_unshare_flags(unshare_flags); 2979 if (err) 2980 goto bad_unshare_out; 2981 /* 2982 * CLONE_NEWIPC must also detach from the undolist: after switching 2983 * to a new ipc namespace, the semaphore arrays from the old 2984 * namespace are unreachable. 2985 */ 2986 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2987 do_sysvsem = 1; 2988 err = unshare_fs(unshare_flags, &new_fs); 2989 if (err) 2990 goto bad_unshare_out; 2991 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2992 if (err) 2993 goto bad_unshare_cleanup_fs; 2994 err = unshare_userns(unshare_flags, &new_cred); 2995 if (err) 2996 goto bad_unshare_cleanup_fd; 2997 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2998 new_cred, new_fs); 2999 if (err) 3000 goto bad_unshare_cleanup_cred; 3001 3002 if (new_cred) { 3003 err = set_cred_ucounts(new_cred); 3004 if (err) 3005 goto bad_unshare_cleanup_cred; 3006 } 3007 3008 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3009 if (do_sysvsem) { 3010 /* 3011 * CLONE_SYSVSEM is equivalent to sys_exit(). 3012 */ 3013 exit_sem(current); 3014 } 3015 if (unshare_flags & CLONE_NEWIPC) { 3016 /* Orphan segments in old ns (see sem above). */ 3017 exit_shm(current); 3018 shm_init_task(current); 3019 } 3020 3021 if (new_nsproxy) 3022 switch_task_namespaces(current, new_nsproxy); 3023 3024 task_lock(current); 3025 3026 if (new_fs) { 3027 fs = current->fs; 3028 spin_lock(&fs->lock); 3029 current->fs = new_fs; 3030 if (--fs->users) 3031 new_fs = NULL; 3032 else 3033 new_fs = fs; 3034 spin_unlock(&fs->lock); 3035 } 3036 3037 if (new_fd) { 3038 fd = current->files; 3039 current->files = new_fd; 3040 new_fd = fd; 3041 } 3042 3043 task_unlock(current); 3044 3045 if (new_cred) { 3046 /* Install the new user namespace */ 3047 commit_creds(new_cred); 3048 new_cred = NULL; 3049 } 3050 } 3051 3052 perf_event_namespaces(current); 3053 3054 bad_unshare_cleanup_cred: 3055 if (new_cred) 3056 put_cred(new_cred); 3057 bad_unshare_cleanup_fd: 3058 if (new_fd) 3059 put_files_struct(new_fd); 3060 3061 bad_unshare_cleanup_fs: 3062 if (new_fs) 3063 free_fs_struct(new_fs); 3064 3065 bad_unshare_out: 3066 return err; 3067 } 3068 3069 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3070 { 3071 return ksys_unshare(unshare_flags); 3072 } 3073 3074 /* 3075 * Helper to unshare the files of the current task. 3076 * We don't want to expose copy_files internals to 3077 * the exec layer of the kernel. 3078 */ 3079 3080 int unshare_files(void) 3081 { 3082 struct task_struct *task = current; 3083 struct files_struct *old, *copy = NULL; 3084 int error; 3085 3086 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3087 if (error || !copy) 3088 return error; 3089 3090 old = task->files; 3091 task_lock(task); 3092 task->files = copy; 3093 task_unlock(task); 3094 put_files_struct(old); 3095 return 0; 3096 } 3097 3098 int sysctl_max_threads(struct ctl_table *table, int write, 3099 void *buffer, size_t *lenp, loff_t *ppos) 3100 { 3101 struct ctl_table t; 3102 int ret; 3103 int threads = max_threads; 3104 int min = 1; 3105 int max = MAX_THREADS; 3106 3107 t = *table; 3108 t.data = &threads; 3109 t.extra1 = &min; 3110 t.extra2 = &max; 3111 3112 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3113 if (ret || !write) 3114 return ret; 3115 3116 max_threads = threads; 3117 3118 return 0; 3119 } 3120