xref: /linux-6.15/kernel/fork.c (revision e4aebf06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105 
106 #include <trace/events/sched.h>
107 
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110 
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115 
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120 
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;	/* Handle normal Linux uptimes. */
125 int nr_threads;			/* The idle threads do not count.. */
126 
127 static int max_threads;		/* tunable limit on nr_threads */
128 
129 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
130 
131 static const char * const resident_page_types[] = {
132 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137 
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139 
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141 
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 	return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149 
150 int nr_processes(void)
151 {
152 	int cpu;
153 	int total = 0;
154 
155 	for_each_possible_cpu(cpu)
156 		total += per_cpu(process_counts, cpu);
157 
158 	return total;
159 }
160 
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164 
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167 
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172 
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 	kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178 
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180 
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194 
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 	int i;
199 
200 	for (i = 0; i < NR_CACHED_STACKS; i++) {
201 		struct vm_struct *vm_stack = cached_vm_stacks[i];
202 
203 		if (!vm_stack)
204 			continue;
205 
206 		vfree(vm_stack->addr);
207 		cached_vm_stacks[i] = NULL;
208 	}
209 
210 	return 0;
211 }
212 #endif
213 
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	void *stack;
218 	int i;
219 
220 	for (i = 0; i < NR_CACHED_STACKS; i++) {
221 		struct vm_struct *s;
222 
223 		s = this_cpu_xchg(cached_stacks[i], NULL);
224 
225 		if (!s)
226 			continue;
227 
228 		/* Mark stack accessible for KASAN. */
229 		kasan_unpoison_range(s->addr, THREAD_SIZE);
230 
231 		/* Clear stale pointers from reused stack. */
232 		memset(s->addr, 0, THREAD_SIZE);
233 
234 		tsk->stack_vm_area = s;
235 		tsk->stack = s->addr;
236 		return s->addr;
237 	}
238 
239 	/*
240 	 * Allocated stacks are cached and later reused by new threads,
241 	 * so memcg accounting is performed manually on assigning/releasing
242 	 * stacks to tasks. Drop __GFP_ACCOUNT.
243 	 */
244 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 				     VMALLOC_START, VMALLOC_END,
246 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
247 				     PAGE_KERNEL,
248 				     0, node, __builtin_return_address(0));
249 
250 	/*
251 	 * We can't call find_vm_area() in interrupt context, and
252 	 * free_thread_stack() can be called in interrupt context,
253 	 * so cache the vm_struct.
254 	 */
255 	if (stack) {
256 		tsk->stack_vm_area = find_vm_area(stack);
257 		tsk->stack = stack;
258 	}
259 	return stack;
260 #else
261 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 					     THREAD_SIZE_ORDER);
263 
264 	if (likely(page)) {
265 		tsk->stack = kasan_reset_tag(page_address(page));
266 		return tsk->stack;
267 	}
268 	return NULL;
269 #endif
270 }
271 
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 	struct vm_struct *vm = task_stack_vm_area(tsk);
276 
277 	if (vm) {
278 		int i;
279 
280 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 			memcg_kmem_uncharge_page(vm->pages[i], 0);
282 
283 		for (i = 0; i < NR_CACHED_STACKS; i++) {
284 			if (this_cpu_cmpxchg(cached_stacks[i],
285 					NULL, tsk->stack_vm_area) != NULL)
286 				continue;
287 
288 			return;
289 		}
290 
291 		vfree_atomic(tsk->stack);
292 		return;
293 	}
294 #endif
295 
296 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300 
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 						  int node)
303 {
304 	unsigned long *stack;
305 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 	stack = kasan_reset_tag(stack);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 		/*
362 		 * orig->shared.rb may be modified concurrently, but the clone
363 		 * will be reinitialized.
364 		 */
365 		*new = data_race(*orig);
366 		INIT_LIST_HEAD(&new->anon_vma_chain);
367 		new->vm_next = new->vm_prev = NULL;
368 	}
369 	return new;
370 }
371 
372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 	kmem_cache_free(vm_area_cachep, vma);
375 }
376 
377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 	void *stack = task_stack_page(tsk);
380 	struct vm_struct *vm = task_stack_vm_area(tsk);
381 
382 
383 	/* All stack pages are in the same node. */
384 	if (vm)
385 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 				      account * (THREAD_SIZE / 1024));
387 	else
388 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
389 				      account * (THREAD_SIZE / 1024));
390 }
391 
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395 	struct vm_struct *vm = task_stack_vm_area(tsk);
396 	int ret;
397 
398 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399 
400 	if (vm) {
401 		int i;
402 
403 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404 
405 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 			/*
407 			 * If memcg_kmem_charge_page() fails, page's
408 			 * memory cgroup pointer is NULL, and
409 			 * memcg_kmem_uncharge_page() in free_thread_stack()
410 			 * will ignore this page.
411 			 */
412 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
413 						     0);
414 			if (ret)
415 				return ret;
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 	scs_release(tsk);
446 
447 #ifndef CONFIG_THREAD_INFO_IN_TASK
448 	/*
449 	 * The task is finally done with both the stack and thread_info,
450 	 * so free both.
451 	 */
452 	release_task_stack(tsk);
453 #else
454 	/*
455 	 * If the task had a separate stack allocation, it should be gone
456 	 * by now.
457 	 */
458 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 #endif
460 	rt_mutex_debug_task_free(tsk);
461 	ftrace_graph_exit_task(tsk);
462 	arch_release_task_struct(tsk);
463 	if (tsk->flags & PF_KTHREAD)
464 		free_kthread_struct(tsk);
465 	free_task_struct(tsk);
466 }
467 EXPORT_SYMBOL(free_task);
468 
469 #ifdef CONFIG_MMU
470 static __latent_entropy int dup_mmap(struct mm_struct *mm,
471 					struct mm_struct *oldmm)
472 {
473 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
474 	struct rb_node **rb_link, *rb_parent;
475 	int retval;
476 	unsigned long charge;
477 	LIST_HEAD(uf);
478 
479 	uprobe_start_dup_mmap();
480 	if (mmap_write_lock_killable(oldmm)) {
481 		retval = -EINTR;
482 		goto fail_uprobe_end;
483 	}
484 	flush_cache_dup_mm(oldmm);
485 	uprobe_dup_mmap(oldmm, mm);
486 	/*
487 	 * Not linked in yet - no deadlock potential:
488 	 */
489 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490 
491 	/* No ordering required: file already has been exposed. */
492 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493 
494 	mm->total_vm = oldmm->total_vm;
495 	mm->data_vm = oldmm->data_vm;
496 	mm->exec_vm = oldmm->exec_vm;
497 	mm->stack_vm = oldmm->stack_vm;
498 
499 	rb_link = &mm->mm_rb.rb_node;
500 	rb_parent = NULL;
501 	pprev = &mm->mmap;
502 	retval = ksm_fork(mm, oldmm);
503 	if (retval)
504 		goto out;
505 	retval = khugepaged_fork(mm, oldmm);
506 	if (retval)
507 		goto out;
508 
509 	prev = NULL;
510 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
511 		struct file *file;
512 
513 		if (mpnt->vm_flags & VM_DONTCOPY) {
514 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
515 			continue;
516 		}
517 		charge = 0;
518 		/*
519 		 * Don't duplicate many vmas if we've been oom-killed (for
520 		 * example)
521 		 */
522 		if (fatal_signal_pending(current)) {
523 			retval = -EINTR;
524 			goto out;
525 		}
526 		if (mpnt->vm_flags & VM_ACCOUNT) {
527 			unsigned long len = vma_pages(mpnt);
528 
529 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
530 				goto fail_nomem;
531 			charge = len;
532 		}
533 		tmp = vm_area_dup(mpnt);
534 		if (!tmp)
535 			goto fail_nomem;
536 		retval = vma_dup_policy(mpnt, tmp);
537 		if (retval)
538 			goto fail_nomem_policy;
539 		tmp->vm_mm = mm;
540 		retval = dup_userfaultfd(tmp, &uf);
541 		if (retval)
542 			goto fail_nomem_anon_vma_fork;
543 		if (tmp->vm_flags & VM_WIPEONFORK) {
544 			/*
545 			 * VM_WIPEONFORK gets a clean slate in the child.
546 			 * Don't prepare anon_vma until fault since we don't
547 			 * copy page for current vma.
548 			 */
549 			tmp->anon_vma = NULL;
550 		} else if (anon_vma_fork(tmp, mpnt))
551 			goto fail_nomem_anon_vma_fork;
552 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
553 		file = tmp->vm_file;
554 		if (file) {
555 			struct inode *inode = file_inode(file);
556 			struct address_space *mapping = file->f_mapping;
557 
558 			get_file(file);
559 			if (tmp->vm_flags & VM_DENYWRITE)
560 				put_write_access(inode);
561 			i_mmap_lock_write(mapping);
562 			if (tmp->vm_flags & VM_SHARED)
563 				mapping_allow_writable(mapping);
564 			flush_dcache_mmap_lock(mapping);
565 			/* insert tmp into the share list, just after mpnt */
566 			vma_interval_tree_insert_after(tmp, mpnt,
567 					&mapping->i_mmap);
568 			flush_dcache_mmap_unlock(mapping);
569 			i_mmap_unlock_write(mapping);
570 		}
571 
572 		/*
573 		 * Clear hugetlb-related page reserves for children. This only
574 		 * affects MAP_PRIVATE mappings. Faults generated by the child
575 		 * are not guaranteed to succeed, even if read-only
576 		 */
577 		if (is_vm_hugetlb_page(tmp))
578 			reset_vma_resv_huge_pages(tmp);
579 
580 		/*
581 		 * Link in the new vma and copy the page table entries.
582 		 */
583 		*pprev = tmp;
584 		pprev = &tmp->vm_next;
585 		tmp->vm_prev = prev;
586 		prev = tmp;
587 
588 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
589 		rb_link = &tmp->vm_rb.rb_right;
590 		rb_parent = &tmp->vm_rb;
591 
592 		mm->map_count++;
593 		if (!(tmp->vm_flags & VM_WIPEONFORK))
594 			retval = copy_page_range(tmp, mpnt);
595 
596 		if (tmp->vm_ops && tmp->vm_ops->open)
597 			tmp->vm_ops->open(tmp);
598 
599 		if (retval)
600 			goto out;
601 	}
602 	/* a new mm has just been created */
603 	retval = arch_dup_mmap(oldmm, mm);
604 out:
605 	mmap_write_unlock(mm);
606 	flush_tlb_mm(oldmm);
607 	mmap_write_unlock(oldmm);
608 	dup_userfaultfd_complete(&uf);
609 fail_uprobe_end:
610 	uprobe_end_dup_mmap();
611 	return retval;
612 fail_nomem_anon_vma_fork:
613 	mpol_put(vma_policy(tmp));
614 fail_nomem_policy:
615 	vm_area_free(tmp);
616 fail_nomem:
617 	retval = -ENOMEM;
618 	vm_unacct_memory(charge);
619 	goto out;
620 }
621 
622 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 {
624 	mm->pgd = pgd_alloc(mm);
625 	if (unlikely(!mm->pgd))
626 		return -ENOMEM;
627 	return 0;
628 }
629 
630 static inline void mm_free_pgd(struct mm_struct *mm)
631 {
632 	pgd_free(mm, mm->pgd);
633 }
634 #else
635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 {
637 	mmap_write_lock(oldmm);
638 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
639 	mmap_write_unlock(oldmm);
640 	return 0;
641 }
642 #define mm_alloc_pgd(mm)	(0)
643 #define mm_free_pgd(mm)
644 #endif /* CONFIG_MMU */
645 
646 static void check_mm(struct mm_struct *mm)
647 {
648 	int i;
649 
650 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
651 			 "Please make sure 'struct resident_page_types[]' is updated as well");
652 
653 	for (i = 0; i < NR_MM_COUNTERS; i++) {
654 		long x = atomic_long_read(&mm->rss_stat.count[i]);
655 
656 		if (unlikely(x))
657 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
658 				 mm, resident_page_types[i], x);
659 	}
660 
661 	if (mm_pgtables_bytes(mm))
662 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663 				mm_pgtables_bytes(mm));
664 
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
668 }
669 
670 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
672 
673 /*
674  * Called when the last reference to the mm
675  * is dropped: either by a lazy thread or by
676  * mmput. Free the page directory and the mm.
677  */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 	BUG_ON(mm == &init_mm);
681 	WARN_ON_ONCE(mm == current->mm);
682 	WARN_ON_ONCE(mm == current->active_mm);
683 	mm_free_pgd(mm);
684 	destroy_context(mm);
685 	mmu_notifier_subscriptions_destroy(mm);
686 	check_mm(mm);
687 	put_user_ns(mm->user_ns);
688 	free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691 
692 static void mmdrop_async_fn(struct work_struct *work)
693 {
694 	struct mm_struct *mm;
695 
696 	mm = container_of(work, struct mm_struct, async_put_work);
697 	__mmdrop(mm);
698 }
699 
700 static void mmdrop_async(struct mm_struct *mm)
701 {
702 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704 		schedule_work(&mm->async_put_work);
705 	}
706 }
707 
708 static inline void free_signal_struct(struct signal_struct *sig)
709 {
710 	taskstats_tgid_free(sig);
711 	sched_autogroup_exit(sig);
712 	/*
713 	 * __mmdrop is not safe to call from softirq context on x86 due to
714 	 * pgd_dtor so postpone it to the async context
715 	 */
716 	if (sig->oom_mm)
717 		mmdrop_async(sig->oom_mm);
718 	kmem_cache_free(signal_cachep, sig);
719 }
720 
721 static inline void put_signal_struct(struct signal_struct *sig)
722 {
723 	if (refcount_dec_and_test(&sig->sigcnt))
724 		free_signal_struct(sig);
725 }
726 
727 void __put_task_struct(struct task_struct *tsk)
728 {
729 	WARN_ON(!tsk->exit_state);
730 	WARN_ON(refcount_read(&tsk->usage));
731 	WARN_ON(tsk == current);
732 
733 	io_uring_free(tsk);
734 	cgroup_free(tsk);
735 	task_numa_free(tsk, true);
736 	security_task_free(tsk);
737 	exit_creds(tsk);
738 	delayacct_tsk_free(tsk);
739 	put_signal_struct(tsk->signal);
740 
741 	if (!profile_handoff_task(tsk))
742 		free_task(tsk);
743 }
744 EXPORT_SYMBOL_GPL(__put_task_struct);
745 
746 void __init __weak arch_task_cache_init(void) { }
747 
748 /*
749  * set_max_threads
750  */
751 static void set_max_threads(unsigned int max_threads_suggested)
752 {
753 	u64 threads;
754 	unsigned long nr_pages = totalram_pages();
755 
756 	/*
757 	 * The number of threads shall be limited such that the thread
758 	 * structures may only consume a small part of the available memory.
759 	 */
760 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
761 		threads = MAX_THREADS;
762 	else
763 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
764 				    (u64) THREAD_SIZE * 8UL);
765 
766 	if (threads > max_threads_suggested)
767 		threads = max_threads_suggested;
768 
769 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
770 }
771 
772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
773 /* Initialized by the architecture: */
774 int arch_task_struct_size __read_mostly;
775 #endif
776 
777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 {
780 	/* Fetch thread_struct whitelist for the architecture. */
781 	arch_thread_struct_whitelist(offset, size);
782 
783 	/*
784 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
785 	 * adjust offset to position of thread_struct in task_struct.
786 	 */
787 	if (unlikely(*size == 0))
788 		*offset = 0;
789 	else
790 		*offset += offsetof(struct task_struct, thread);
791 }
792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793 
794 void __init fork_init(void)
795 {
796 	int i;
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 #ifndef ARCH_MIN_TASKALIGN
799 #define ARCH_MIN_TASKALIGN	0
800 #endif
801 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
802 	unsigned long useroffset, usersize;
803 
804 	/* create a slab on which task_structs can be allocated */
805 	task_struct_whitelist(&useroffset, &usersize);
806 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
807 			arch_task_struct_size, align,
808 			SLAB_PANIC|SLAB_ACCOUNT,
809 			useroffset, usersize, NULL);
810 #endif
811 
812 	/* do the arch specific task caches init */
813 	arch_task_cache_init();
814 
815 	set_max_threads(MAX_THREADS);
816 
817 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
818 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
819 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
820 		init_task.signal->rlim[RLIMIT_NPROC];
821 
822 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
823 		init_user_ns.ucount_max[i] = max_threads/2;
824 
825 	init_user_ns.ucount_max[UCOUNT_RLIMIT_NPROC] = task_rlimit(&init_task, RLIMIT_NPROC);
826 	init_user_ns.ucount_max[UCOUNT_RLIMIT_MSGQUEUE] = task_rlimit(&init_task, RLIMIT_MSGQUEUE);
827 	init_user_ns.ucount_max[UCOUNT_RLIMIT_SIGPENDING] = task_rlimit(&init_task, RLIMIT_SIGPENDING);
828 	init_user_ns.ucount_max[UCOUNT_RLIMIT_MEMLOCK] = task_rlimit(&init_task, RLIMIT_MEMLOCK);
829 
830 #ifdef CONFIG_VMAP_STACK
831 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
832 			  NULL, free_vm_stack_cache);
833 #endif
834 
835 	scs_init();
836 
837 	lockdep_init_task(&init_task);
838 	uprobes_init();
839 }
840 
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 					       struct task_struct *src)
843 {
844 	*dst = *src;
845 	return 0;
846 }
847 
848 void set_task_stack_end_magic(struct task_struct *tsk)
849 {
850 	unsigned long *stackend;
851 
852 	stackend = end_of_stack(tsk);
853 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
854 }
855 
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857 {
858 	struct task_struct *tsk;
859 	unsigned long *stack;
860 	struct vm_struct *stack_vm_area __maybe_unused;
861 	int err;
862 
863 	if (node == NUMA_NO_NODE)
864 		node = tsk_fork_get_node(orig);
865 	tsk = alloc_task_struct_node(node);
866 	if (!tsk)
867 		return NULL;
868 
869 	stack = alloc_thread_stack_node(tsk, node);
870 	if (!stack)
871 		goto free_tsk;
872 
873 	if (memcg_charge_kernel_stack(tsk))
874 		goto free_stack;
875 
876 	stack_vm_area = task_stack_vm_area(tsk);
877 
878 	err = arch_dup_task_struct(tsk, orig);
879 
880 	/*
881 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
882 	 * sure they're properly initialized before using any stack-related
883 	 * functions again.
884 	 */
885 	tsk->stack = stack;
886 #ifdef CONFIG_VMAP_STACK
887 	tsk->stack_vm_area = stack_vm_area;
888 #endif
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 	refcount_set(&tsk->stack_refcount, 1);
891 #endif
892 
893 	if (err)
894 		goto free_stack;
895 
896 	err = scs_prepare(tsk, node);
897 	if (err)
898 		goto free_stack;
899 
900 #ifdef CONFIG_SECCOMP
901 	/*
902 	 * We must handle setting up seccomp filters once we're under
903 	 * the sighand lock in case orig has changed between now and
904 	 * then. Until then, filter must be NULL to avoid messing up
905 	 * the usage counts on the error path calling free_task.
906 	 */
907 	tsk->seccomp.filter = NULL;
908 #endif
909 
910 	setup_thread_stack(tsk, orig);
911 	clear_user_return_notifier(tsk);
912 	clear_tsk_need_resched(tsk);
913 	set_task_stack_end_magic(tsk);
914 	clear_syscall_work_syscall_user_dispatch(tsk);
915 
916 #ifdef CONFIG_STACKPROTECTOR
917 	tsk->stack_canary = get_random_canary();
918 #endif
919 	if (orig->cpus_ptr == &orig->cpus_mask)
920 		tsk->cpus_ptr = &tsk->cpus_mask;
921 
922 	/*
923 	 * One for the user space visible state that goes away when reaped.
924 	 * One for the scheduler.
925 	 */
926 	refcount_set(&tsk->rcu_users, 2);
927 	/* One for the rcu users */
928 	refcount_set(&tsk->usage, 1);
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 	tsk->btrace_seq = 0;
931 #endif
932 	tsk->splice_pipe = NULL;
933 	tsk->task_frag.page = NULL;
934 	tsk->wake_q.next = NULL;
935 
936 	account_kernel_stack(tsk, 1);
937 
938 	kcov_task_init(tsk);
939 	kmap_local_fork(tsk);
940 
941 #ifdef CONFIG_FAULT_INJECTION
942 	tsk->fail_nth = 0;
943 #endif
944 
945 #ifdef CONFIG_BLK_CGROUP
946 	tsk->throttle_queue = NULL;
947 	tsk->use_memdelay = 0;
948 #endif
949 
950 #ifdef CONFIG_MEMCG
951 	tsk->active_memcg = NULL;
952 #endif
953 	return tsk;
954 
955 free_stack:
956 	free_thread_stack(tsk);
957 free_tsk:
958 	free_task_struct(tsk);
959 	return NULL;
960 }
961 
962 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
963 
964 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
965 
966 static int __init coredump_filter_setup(char *s)
967 {
968 	default_dump_filter =
969 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
970 		MMF_DUMP_FILTER_MASK;
971 	return 1;
972 }
973 
974 __setup("coredump_filter=", coredump_filter_setup);
975 
976 #include <linux/init_task.h>
977 
978 static void mm_init_aio(struct mm_struct *mm)
979 {
980 #ifdef CONFIG_AIO
981 	spin_lock_init(&mm->ioctx_lock);
982 	mm->ioctx_table = NULL;
983 #endif
984 }
985 
986 static __always_inline void mm_clear_owner(struct mm_struct *mm,
987 					   struct task_struct *p)
988 {
989 #ifdef CONFIG_MEMCG
990 	if (mm->owner == p)
991 		WRITE_ONCE(mm->owner, NULL);
992 #endif
993 }
994 
995 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 	mm->owner = p;
999 #endif
1000 }
1001 
1002 static void mm_init_pasid(struct mm_struct *mm)
1003 {
1004 #ifdef CONFIG_IOMMU_SUPPORT
1005 	mm->pasid = INIT_PASID;
1006 #endif
1007 }
1008 
1009 static void mm_init_uprobes_state(struct mm_struct *mm)
1010 {
1011 #ifdef CONFIG_UPROBES
1012 	mm->uprobes_state.xol_area = NULL;
1013 #endif
1014 }
1015 
1016 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1017 	struct user_namespace *user_ns)
1018 {
1019 	mm->mmap = NULL;
1020 	mm->mm_rb = RB_ROOT;
1021 	mm->vmacache_seqnum = 0;
1022 	atomic_set(&mm->mm_users, 1);
1023 	atomic_set(&mm->mm_count, 1);
1024 	seqcount_init(&mm->write_protect_seq);
1025 	mmap_init_lock(mm);
1026 	INIT_LIST_HEAD(&mm->mmlist);
1027 	mm->core_state = NULL;
1028 	mm_pgtables_bytes_init(mm);
1029 	mm->map_count = 0;
1030 	mm->locked_vm = 0;
1031 	atomic_set(&mm->has_pinned, 0);
1032 	atomic64_set(&mm->pinned_vm, 0);
1033 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1034 	spin_lock_init(&mm->page_table_lock);
1035 	spin_lock_init(&mm->arg_lock);
1036 	mm_init_cpumask(mm);
1037 	mm_init_aio(mm);
1038 	mm_init_owner(mm, p);
1039 	mm_init_pasid(mm);
1040 	RCU_INIT_POINTER(mm->exe_file, NULL);
1041 	mmu_notifier_subscriptions_init(mm);
1042 	init_tlb_flush_pending(mm);
1043 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1044 	mm->pmd_huge_pte = NULL;
1045 #endif
1046 	mm_init_uprobes_state(mm);
1047 
1048 	if (current->mm) {
1049 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1050 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1051 	} else {
1052 		mm->flags = default_dump_filter;
1053 		mm->def_flags = 0;
1054 	}
1055 
1056 	if (mm_alloc_pgd(mm))
1057 		goto fail_nopgd;
1058 
1059 	if (init_new_context(p, mm))
1060 		goto fail_nocontext;
1061 
1062 	mm->user_ns = get_user_ns(user_ns);
1063 	return mm;
1064 
1065 fail_nocontext:
1066 	mm_free_pgd(mm);
1067 fail_nopgd:
1068 	free_mm(mm);
1069 	return NULL;
1070 }
1071 
1072 /*
1073  * Allocate and initialize an mm_struct.
1074  */
1075 struct mm_struct *mm_alloc(void)
1076 {
1077 	struct mm_struct *mm;
1078 
1079 	mm = allocate_mm();
1080 	if (!mm)
1081 		return NULL;
1082 
1083 	memset(mm, 0, sizeof(*mm));
1084 	return mm_init(mm, current, current_user_ns());
1085 }
1086 
1087 static inline void __mmput(struct mm_struct *mm)
1088 {
1089 	VM_BUG_ON(atomic_read(&mm->mm_users));
1090 
1091 	uprobe_clear_state(mm);
1092 	exit_aio(mm);
1093 	ksm_exit(mm);
1094 	khugepaged_exit(mm); /* must run before exit_mmap */
1095 	exit_mmap(mm);
1096 	mm_put_huge_zero_page(mm);
1097 	set_mm_exe_file(mm, NULL);
1098 	if (!list_empty(&mm->mmlist)) {
1099 		spin_lock(&mmlist_lock);
1100 		list_del(&mm->mmlist);
1101 		spin_unlock(&mmlist_lock);
1102 	}
1103 	if (mm->binfmt)
1104 		module_put(mm->binfmt->module);
1105 	mmdrop(mm);
1106 }
1107 
1108 /*
1109  * Decrement the use count and release all resources for an mm.
1110  */
1111 void mmput(struct mm_struct *mm)
1112 {
1113 	might_sleep();
1114 
1115 	if (atomic_dec_and_test(&mm->mm_users))
1116 		__mmput(mm);
1117 }
1118 EXPORT_SYMBOL_GPL(mmput);
1119 
1120 #ifdef CONFIG_MMU
1121 static void mmput_async_fn(struct work_struct *work)
1122 {
1123 	struct mm_struct *mm = container_of(work, struct mm_struct,
1124 					    async_put_work);
1125 
1126 	__mmput(mm);
1127 }
1128 
1129 void mmput_async(struct mm_struct *mm)
1130 {
1131 	if (atomic_dec_and_test(&mm->mm_users)) {
1132 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1133 		schedule_work(&mm->async_put_work);
1134 	}
1135 }
1136 #endif
1137 
1138 /**
1139  * set_mm_exe_file - change a reference to the mm's executable file
1140  *
1141  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1142  *
1143  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1144  * invocations: in mmput() nobody alive left, in execve task is single
1145  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1146  * mm->exe_file, but does so without using set_mm_exe_file() in order
1147  * to do avoid the need for any locks.
1148  */
1149 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1150 {
1151 	struct file *old_exe_file;
1152 
1153 	/*
1154 	 * It is safe to dereference the exe_file without RCU as
1155 	 * this function is only called if nobody else can access
1156 	 * this mm -- see comment above for justification.
1157 	 */
1158 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1159 
1160 	if (new_exe_file)
1161 		get_file(new_exe_file);
1162 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1163 	if (old_exe_file)
1164 		fput(old_exe_file);
1165 }
1166 
1167 /**
1168  * get_mm_exe_file - acquire a reference to the mm's executable file
1169  *
1170  * Returns %NULL if mm has no associated executable file.
1171  * User must release file via fput().
1172  */
1173 struct file *get_mm_exe_file(struct mm_struct *mm)
1174 {
1175 	struct file *exe_file;
1176 
1177 	rcu_read_lock();
1178 	exe_file = rcu_dereference(mm->exe_file);
1179 	if (exe_file && !get_file_rcu(exe_file))
1180 		exe_file = NULL;
1181 	rcu_read_unlock();
1182 	return exe_file;
1183 }
1184 EXPORT_SYMBOL(get_mm_exe_file);
1185 
1186 /**
1187  * get_task_exe_file - acquire a reference to the task's executable file
1188  *
1189  * Returns %NULL if task's mm (if any) has no associated executable file or
1190  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1191  * User must release file via fput().
1192  */
1193 struct file *get_task_exe_file(struct task_struct *task)
1194 {
1195 	struct file *exe_file = NULL;
1196 	struct mm_struct *mm;
1197 
1198 	task_lock(task);
1199 	mm = task->mm;
1200 	if (mm) {
1201 		if (!(task->flags & PF_KTHREAD))
1202 			exe_file = get_mm_exe_file(mm);
1203 	}
1204 	task_unlock(task);
1205 	return exe_file;
1206 }
1207 EXPORT_SYMBOL(get_task_exe_file);
1208 
1209 /**
1210  * get_task_mm - acquire a reference to the task's mm
1211  *
1212  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1213  * this kernel workthread has transiently adopted a user mm with use_mm,
1214  * to do its AIO) is not set and if so returns a reference to it, after
1215  * bumping up the use count.  User must release the mm via mmput()
1216  * after use.  Typically used by /proc and ptrace.
1217  */
1218 struct mm_struct *get_task_mm(struct task_struct *task)
1219 {
1220 	struct mm_struct *mm;
1221 
1222 	task_lock(task);
1223 	mm = task->mm;
1224 	if (mm) {
1225 		if (task->flags & PF_KTHREAD)
1226 			mm = NULL;
1227 		else
1228 			mmget(mm);
1229 	}
1230 	task_unlock(task);
1231 	return mm;
1232 }
1233 EXPORT_SYMBOL_GPL(get_task_mm);
1234 
1235 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1236 {
1237 	struct mm_struct *mm;
1238 	int err;
1239 
1240 	err =  down_read_killable(&task->signal->exec_update_lock);
1241 	if (err)
1242 		return ERR_PTR(err);
1243 
1244 	mm = get_task_mm(task);
1245 	if (mm && mm != current->mm &&
1246 			!ptrace_may_access(task, mode)) {
1247 		mmput(mm);
1248 		mm = ERR_PTR(-EACCES);
1249 	}
1250 	up_read(&task->signal->exec_update_lock);
1251 
1252 	return mm;
1253 }
1254 
1255 static void complete_vfork_done(struct task_struct *tsk)
1256 {
1257 	struct completion *vfork;
1258 
1259 	task_lock(tsk);
1260 	vfork = tsk->vfork_done;
1261 	if (likely(vfork)) {
1262 		tsk->vfork_done = NULL;
1263 		complete(vfork);
1264 	}
1265 	task_unlock(tsk);
1266 }
1267 
1268 static int wait_for_vfork_done(struct task_struct *child,
1269 				struct completion *vfork)
1270 {
1271 	int killed;
1272 
1273 	freezer_do_not_count();
1274 	cgroup_enter_frozen();
1275 	killed = wait_for_completion_killable(vfork);
1276 	cgroup_leave_frozen(false);
1277 	freezer_count();
1278 
1279 	if (killed) {
1280 		task_lock(child);
1281 		child->vfork_done = NULL;
1282 		task_unlock(child);
1283 	}
1284 
1285 	put_task_struct(child);
1286 	return killed;
1287 }
1288 
1289 /* Please note the differences between mmput and mm_release.
1290  * mmput is called whenever we stop holding onto a mm_struct,
1291  * error success whatever.
1292  *
1293  * mm_release is called after a mm_struct has been removed
1294  * from the current process.
1295  *
1296  * This difference is important for error handling, when we
1297  * only half set up a mm_struct for a new process and need to restore
1298  * the old one.  Because we mmput the new mm_struct before
1299  * restoring the old one. . .
1300  * Eric Biederman 10 January 1998
1301  */
1302 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1303 {
1304 	uprobe_free_utask(tsk);
1305 
1306 	/* Get rid of any cached register state */
1307 	deactivate_mm(tsk, mm);
1308 
1309 	/*
1310 	 * Signal userspace if we're not exiting with a core dump
1311 	 * because we want to leave the value intact for debugging
1312 	 * purposes.
1313 	 */
1314 	if (tsk->clear_child_tid) {
1315 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316 		    atomic_read(&mm->mm_users) > 1) {
1317 			/*
1318 			 * We don't check the error code - if userspace has
1319 			 * not set up a proper pointer then tough luck.
1320 			 */
1321 			put_user(0, tsk->clear_child_tid);
1322 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323 					1, NULL, NULL, 0, 0);
1324 		}
1325 		tsk->clear_child_tid = NULL;
1326 	}
1327 
1328 	/*
1329 	 * All done, finally we can wake up parent and return this mm to him.
1330 	 * Also kthread_stop() uses this completion for synchronization.
1331 	 */
1332 	if (tsk->vfork_done)
1333 		complete_vfork_done(tsk);
1334 }
1335 
1336 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1337 {
1338 	futex_exit_release(tsk);
1339 	mm_release(tsk, mm);
1340 }
1341 
1342 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1343 {
1344 	futex_exec_release(tsk);
1345 	mm_release(tsk, mm);
1346 }
1347 
1348 /**
1349  * dup_mm() - duplicates an existing mm structure
1350  * @tsk: the task_struct with which the new mm will be associated.
1351  * @oldmm: the mm to duplicate.
1352  *
1353  * Allocates a new mm structure and duplicates the provided @oldmm structure
1354  * content into it.
1355  *
1356  * Return: the duplicated mm or NULL on failure.
1357  */
1358 static struct mm_struct *dup_mm(struct task_struct *tsk,
1359 				struct mm_struct *oldmm)
1360 {
1361 	struct mm_struct *mm;
1362 	int err;
1363 
1364 	mm = allocate_mm();
1365 	if (!mm)
1366 		goto fail_nomem;
1367 
1368 	memcpy(mm, oldmm, sizeof(*mm));
1369 
1370 	if (!mm_init(mm, tsk, mm->user_ns))
1371 		goto fail_nomem;
1372 
1373 	err = dup_mmap(mm, oldmm);
1374 	if (err)
1375 		goto free_pt;
1376 
1377 	mm->hiwater_rss = get_mm_rss(mm);
1378 	mm->hiwater_vm = mm->total_vm;
1379 
1380 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1381 		goto free_pt;
1382 
1383 	return mm;
1384 
1385 free_pt:
1386 	/* don't put binfmt in mmput, we haven't got module yet */
1387 	mm->binfmt = NULL;
1388 	mm_init_owner(mm, NULL);
1389 	mmput(mm);
1390 
1391 fail_nomem:
1392 	return NULL;
1393 }
1394 
1395 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1396 {
1397 	struct mm_struct *mm, *oldmm;
1398 	int retval;
1399 
1400 	tsk->min_flt = tsk->maj_flt = 0;
1401 	tsk->nvcsw = tsk->nivcsw = 0;
1402 #ifdef CONFIG_DETECT_HUNG_TASK
1403 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1404 	tsk->last_switch_time = 0;
1405 #endif
1406 
1407 	tsk->mm = NULL;
1408 	tsk->active_mm = NULL;
1409 
1410 	/*
1411 	 * Are we cloning a kernel thread?
1412 	 *
1413 	 * We need to steal a active VM for that..
1414 	 */
1415 	oldmm = current->mm;
1416 	if (!oldmm)
1417 		return 0;
1418 
1419 	/* initialize the new vmacache entries */
1420 	vmacache_flush(tsk);
1421 
1422 	if (clone_flags & CLONE_VM) {
1423 		mmget(oldmm);
1424 		mm = oldmm;
1425 		goto good_mm;
1426 	}
1427 
1428 	retval = -ENOMEM;
1429 	mm = dup_mm(tsk, current->mm);
1430 	if (!mm)
1431 		goto fail_nomem;
1432 
1433 good_mm:
1434 	tsk->mm = mm;
1435 	tsk->active_mm = mm;
1436 	return 0;
1437 
1438 fail_nomem:
1439 	return retval;
1440 }
1441 
1442 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1443 {
1444 	struct fs_struct *fs = current->fs;
1445 	if (clone_flags & CLONE_FS) {
1446 		/* tsk->fs is already what we want */
1447 		spin_lock(&fs->lock);
1448 		if (fs->in_exec) {
1449 			spin_unlock(&fs->lock);
1450 			return -EAGAIN;
1451 		}
1452 		fs->users++;
1453 		spin_unlock(&fs->lock);
1454 		return 0;
1455 	}
1456 	tsk->fs = copy_fs_struct(fs);
1457 	if (!tsk->fs)
1458 		return -ENOMEM;
1459 	return 0;
1460 }
1461 
1462 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1463 {
1464 	struct files_struct *oldf, *newf;
1465 	int error = 0;
1466 
1467 	/*
1468 	 * A background process may not have any files ...
1469 	 */
1470 	oldf = current->files;
1471 	if (!oldf)
1472 		goto out;
1473 
1474 	if (clone_flags & CLONE_FILES) {
1475 		atomic_inc(&oldf->count);
1476 		goto out;
1477 	}
1478 
1479 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1480 	if (!newf)
1481 		goto out;
1482 
1483 	tsk->files = newf;
1484 	error = 0;
1485 out:
1486 	return error;
1487 }
1488 
1489 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1490 {
1491 #ifdef CONFIG_BLOCK
1492 	struct io_context *ioc = current->io_context;
1493 	struct io_context *new_ioc;
1494 
1495 	if (!ioc)
1496 		return 0;
1497 	/*
1498 	 * Share io context with parent, if CLONE_IO is set
1499 	 */
1500 	if (clone_flags & CLONE_IO) {
1501 		ioc_task_link(ioc);
1502 		tsk->io_context = ioc;
1503 	} else if (ioprio_valid(ioc->ioprio)) {
1504 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1505 		if (unlikely(!new_ioc))
1506 			return -ENOMEM;
1507 
1508 		new_ioc->ioprio = ioc->ioprio;
1509 		put_io_context(new_ioc);
1510 	}
1511 #endif
1512 	return 0;
1513 }
1514 
1515 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 	struct sighand_struct *sig;
1518 
1519 	if (clone_flags & CLONE_SIGHAND) {
1520 		refcount_inc(&current->sighand->count);
1521 		return 0;
1522 	}
1523 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1524 	RCU_INIT_POINTER(tsk->sighand, sig);
1525 	if (!sig)
1526 		return -ENOMEM;
1527 
1528 	refcount_set(&sig->count, 1);
1529 	spin_lock_irq(&current->sighand->siglock);
1530 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1531 	spin_unlock_irq(&current->sighand->siglock);
1532 
1533 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1534 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1535 		flush_signal_handlers(tsk, 0);
1536 
1537 	return 0;
1538 }
1539 
1540 void __cleanup_sighand(struct sighand_struct *sighand)
1541 {
1542 	if (refcount_dec_and_test(&sighand->count)) {
1543 		signalfd_cleanup(sighand);
1544 		/*
1545 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1546 		 * without an RCU grace period, see __lock_task_sighand().
1547 		 */
1548 		kmem_cache_free(sighand_cachep, sighand);
1549 	}
1550 }
1551 
1552 /*
1553  * Initialize POSIX timer handling for a thread group.
1554  */
1555 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1556 {
1557 	struct posix_cputimers *pct = &sig->posix_cputimers;
1558 	unsigned long cpu_limit;
1559 
1560 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1561 	posix_cputimers_group_init(pct, cpu_limit);
1562 }
1563 
1564 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1565 {
1566 	struct signal_struct *sig;
1567 
1568 	if (clone_flags & CLONE_THREAD)
1569 		return 0;
1570 
1571 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1572 	tsk->signal = sig;
1573 	if (!sig)
1574 		return -ENOMEM;
1575 
1576 	sig->nr_threads = 1;
1577 	atomic_set(&sig->live, 1);
1578 	refcount_set(&sig->sigcnt, 1);
1579 
1580 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1581 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1582 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1583 
1584 	init_waitqueue_head(&sig->wait_chldexit);
1585 	sig->curr_target = tsk;
1586 	init_sigpending(&sig->shared_pending);
1587 	INIT_HLIST_HEAD(&sig->multiprocess);
1588 	seqlock_init(&sig->stats_lock);
1589 	prev_cputime_init(&sig->prev_cputime);
1590 
1591 #ifdef CONFIG_POSIX_TIMERS
1592 	INIT_LIST_HEAD(&sig->posix_timers);
1593 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1594 	sig->real_timer.function = it_real_fn;
1595 #endif
1596 
1597 	task_lock(current->group_leader);
1598 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1599 	task_unlock(current->group_leader);
1600 
1601 	posix_cpu_timers_init_group(sig);
1602 
1603 	tty_audit_fork(sig);
1604 	sched_autogroup_fork(sig);
1605 
1606 	sig->oom_score_adj = current->signal->oom_score_adj;
1607 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1608 
1609 	mutex_init(&sig->cred_guard_mutex);
1610 	init_rwsem(&sig->exec_update_lock);
1611 
1612 	return 0;
1613 }
1614 
1615 static void copy_seccomp(struct task_struct *p)
1616 {
1617 #ifdef CONFIG_SECCOMP
1618 	/*
1619 	 * Must be called with sighand->lock held, which is common to
1620 	 * all threads in the group. Holding cred_guard_mutex is not
1621 	 * needed because this new task is not yet running and cannot
1622 	 * be racing exec.
1623 	 */
1624 	assert_spin_locked(&current->sighand->siglock);
1625 
1626 	/* Ref-count the new filter user, and assign it. */
1627 	get_seccomp_filter(current);
1628 	p->seccomp = current->seccomp;
1629 
1630 	/*
1631 	 * Explicitly enable no_new_privs here in case it got set
1632 	 * between the task_struct being duplicated and holding the
1633 	 * sighand lock. The seccomp state and nnp must be in sync.
1634 	 */
1635 	if (task_no_new_privs(current))
1636 		task_set_no_new_privs(p);
1637 
1638 	/*
1639 	 * If the parent gained a seccomp mode after copying thread
1640 	 * flags and between before we held the sighand lock, we have
1641 	 * to manually enable the seccomp thread flag here.
1642 	 */
1643 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1644 		set_task_syscall_work(p, SECCOMP);
1645 #endif
1646 }
1647 
1648 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1649 {
1650 	current->clear_child_tid = tidptr;
1651 
1652 	return task_pid_vnr(current);
1653 }
1654 
1655 static void rt_mutex_init_task(struct task_struct *p)
1656 {
1657 	raw_spin_lock_init(&p->pi_lock);
1658 #ifdef CONFIG_RT_MUTEXES
1659 	p->pi_waiters = RB_ROOT_CACHED;
1660 	p->pi_top_task = NULL;
1661 	p->pi_blocked_on = NULL;
1662 #endif
1663 }
1664 
1665 static inline void init_task_pid_links(struct task_struct *task)
1666 {
1667 	enum pid_type type;
1668 
1669 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1670 		INIT_HLIST_NODE(&task->pid_links[type]);
1671 }
1672 
1673 static inline void
1674 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675 {
1676 	if (type == PIDTYPE_PID)
1677 		task->thread_pid = pid;
1678 	else
1679 		task->signal->pids[type] = pid;
1680 }
1681 
1682 static inline void rcu_copy_process(struct task_struct *p)
1683 {
1684 #ifdef CONFIG_PREEMPT_RCU
1685 	p->rcu_read_lock_nesting = 0;
1686 	p->rcu_read_unlock_special.s = 0;
1687 	p->rcu_blocked_node = NULL;
1688 	INIT_LIST_HEAD(&p->rcu_node_entry);
1689 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1690 #ifdef CONFIG_TASKS_RCU
1691 	p->rcu_tasks_holdout = false;
1692 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693 	p->rcu_tasks_idle_cpu = -1;
1694 #endif /* #ifdef CONFIG_TASKS_RCU */
1695 #ifdef CONFIG_TASKS_TRACE_RCU
1696 	p->trc_reader_nesting = 0;
1697 	p->trc_reader_special.s = 0;
1698 	INIT_LIST_HEAD(&p->trc_holdout_list);
1699 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1700 }
1701 
1702 struct pid *pidfd_pid(const struct file *file)
1703 {
1704 	if (file->f_op == &pidfd_fops)
1705 		return file->private_data;
1706 
1707 	return ERR_PTR(-EBADF);
1708 }
1709 
1710 static int pidfd_release(struct inode *inode, struct file *file)
1711 {
1712 	struct pid *pid = file->private_data;
1713 
1714 	file->private_data = NULL;
1715 	put_pid(pid);
1716 	return 0;
1717 }
1718 
1719 #ifdef CONFIG_PROC_FS
1720 /**
1721  * pidfd_show_fdinfo - print information about a pidfd
1722  * @m: proc fdinfo file
1723  * @f: file referencing a pidfd
1724  *
1725  * Pid:
1726  * This function will print the pid that a given pidfd refers to in the
1727  * pid namespace of the procfs instance.
1728  * If the pid namespace of the process is not a descendant of the pid
1729  * namespace of the procfs instance 0 will be shown as its pid. This is
1730  * similar to calling getppid() on a process whose parent is outside of
1731  * its pid namespace.
1732  *
1733  * NSpid:
1734  * If pid namespaces are supported then this function will also print
1735  * the pid of a given pidfd refers to for all descendant pid namespaces
1736  * starting from the current pid namespace of the instance, i.e. the
1737  * Pid field and the first entry in the NSpid field will be identical.
1738  * If the pid namespace of the process is not a descendant of the pid
1739  * namespace of the procfs instance 0 will be shown as its first NSpid
1740  * entry and no others will be shown.
1741  * Note that this differs from the Pid and NSpid fields in
1742  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1743  * the  pid namespace of the procfs instance. The difference becomes
1744  * obvious when sending around a pidfd between pid namespaces from a
1745  * different branch of the tree, i.e. where no ancestoral relation is
1746  * present between the pid namespaces:
1747  * - create two new pid namespaces ns1 and ns2 in the initial pid
1748  *   namespace (also take care to create new mount namespaces in the
1749  *   new pid namespace and mount procfs)
1750  * - create a process with a pidfd in ns1
1751  * - send pidfd from ns1 to ns2
1752  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1753  *   have exactly one entry, which is 0
1754  */
1755 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1756 {
1757 	struct pid *pid = f->private_data;
1758 	struct pid_namespace *ns;
1759 	pid_t nr = -1;
1760 
1761 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1762 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1763 		nr = pid_nr_ns(pid, ns);
1764 	}
1765 
1766 	seq_put_decimal_ll(m, "Pid:\t", nr);
1767 
1768 #ifdef CONFIG_PID_NS
1769 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1770 	if (nr > 0) {
1771 		int i;
1772 
1773 		/* If nr is non-zero it means that 'pid' is valid and that
1774 		 * ns, i.e. the pid namespace associated with the procfs
1775 		 * instance, is in the pid namespace hierarchy of pid.
1776 		 * Start at one below the already printed level.
1777 		 */
1778 		for (i = ns->level + 1; i <= pid->level; i++)
1779 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1780 	}
1781 #endif
1782 	seq_putc(m, '\n');
1783 }
1784 #endif
1785 
1786 /*
1787  * Poll support for process exit notification.
1788  */
1789 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1790 {
1791 	struct pid *pid = file->private_data;
1792 	__poll_t poll_flags = 0;
1793 
1794 	poll_wait(file, &pid->wait_pidfd, pts);
1795 
1796 	/*
1797 	 * Inform pollers only when the whole thread group exits.
1798 	 * If the thread group leader exits before all other threads in the
1799 	 * group, then poll(2) should block, similar to the wait(2) family.
1800 	 */
1801 	if (thread_group_exited(pid))
1802 		poll_flags = EPOLLIN | EPOLLRDNORM;
1803 
1804 	return poll_flags;
1805 }
1806 
1807 const struct file_operations pidfd_fops = {
1808 	.release = pidfd_release,
1809 	.poll = pidfd_poll,
1810 #ifdef CONFIG_PROC_FS
1811 	.show_fdinfo = pidfd_show_fdinfo,
1812 #endif
1813 };
1814 
1815 static void __delayed_free_task(struct rcu_head *rhp)
1816 {
1817 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1818 
1819 	free_task(tsk);
1820 }
1821 
1822 static __always_inline void delayed_free_task(struct task_struct *tsk)
1823 {
1824 	if (IS_ENABLED(CONFIG_MEMCG))
1825 		call_rcu(&tsk->rcu, __delayed_free_task);
1826 	else
1827 		free_task(tsk);
1828 }
1829 
1830 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1831 {
1832 	/* Skip if kernel thread */
1833 	if (!tsk->mm)
1834 		return;
1835 
1836 	/* Skip if spawning a thread or using vfork */
1837 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1838 		return;
1839 
1840 	/* We need to synchronize with __set_oom_adj */
1841 	mutex_lock(&oom_adj_mutex);
1842 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1843 	/* Update the values in case they were changed after copy_signal */
1844 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1845 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1846 	mutex_unlock(&oom_adj_mutex);
1847 }
1848 
1849 /*
1850  * This creates a new process as a copy of the old one,
1851  * but does not actually start it yet.
1852  *
1853  * It copies the registers, and all the appropriate
1854  * parts of the process environment (as per the clone
1855  * flags). The actual kick-off is left to the caller.
1856  */
1857 static __latent_entropy struct task_struct *copy_process(
1858 					struct pid *pid,
1859 					int trace,
1860 					int node,
1861 					struct kernel_clone_args *args)
1862 {
1863 	int pidfd = -1, retval;
1864 	struct task_struct *p;
1865 	struct multiprocess_signals delayed;
1866 	struct file *pidfile = NULL;
1867 	u64 clone_flags = args->flags;
1868 	struct nsproxy *nsp = current->nsproxy;
1869 
1870 	/*
1871 	 * Don't allow sharing the root directory with processes in a different
1872 	 * namespace
1873 	 */
1874 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1875 		return ERR_PTR(-EINVAL);
1876 
1877 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1878 		return ERR_PTR(-EINVAL);
1879 
1880 	/*
1881 	 * Thread groups must share signals as well, and detached threads
1882 	 * can only be started up within the thread group.
1883 	 */
1884 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1885 		return ERR_PTR(-EINVAL);
1886 
1887 	/*
1888 	 * Shared signal handlers imply shared VM. By way of the above,
1889 	 * thread groups also imply shared VM. Blocking this case allows
1890 	 * for various simplifications in other code.
1891 	 */
1892 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1893 		return ERR_PTR(-EINVAL);
1894 
1895 	/*
1896 	 * Siblings of global init remain as zombies on exit since they are
1897 	 * not reaped by their parent (swapper). To solve this and to avoid
1898 	 * multi-rooted process trees, prevent global and container-inits
1899 	 * from creating siblings.
1900 	 */
1901 	if ((clone_flags & CLONE_PARENT) &&
1902 				current->signal->flags & SIGNAL_UNKILLABLE)
1903 		return ERR_PTR(-EINVAL);
1904 
1905 	/*
1906 	 * If the new process will be in a different pid or user namespace
1907 	 * do not allow it to share a thread group with the forking task.
1908 	 */
1909 	if (clone_flags & CLONE_THREAD) {
1910 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1911 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1912 			return ERR_PTR(-EINVAL);
1913 	}
1914 
1915 	/*
1916 	 * If the new process will be in a different time namespace
1917 	 * do not allow it to share VM or a thread group with the forking task.
1918 	 */
1919 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1920 		if (nsp->time_ns != nsp->time_ns_for_children)
1921 			return ERR_PTR(-EINVAL);
1922 	}
1923 
1924 	if (clone_flags & CLONE_PIDFD) {
1925 		/*
1926 		 * - CLONE_DETACHED is blocked so that we can potentially
1927 		 *   reuse it later for CLONE_PIDFD.
1928 		 * - CLONE_THREAD is blocked until someone really needs it.
1929 		 */
1930 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1931 			return ERR_PTR(-EINVAL);
1932 	}
1933 
1934 	/*
1935 	 * Force any signals received before this point to be delivered
1936 	 * before the fork happens.  Collect up signals sent to multiple
1937 	 * processes that happen during the fork and delay them so that
1938 	 * they appear to happen after the fork.
1939 	 */
1940 	sigemptyset(&delayed.signal);
1941 	INIT_HLIST_NODE(&delayed.node);
1942 
1943 	spin_lock_irq(&current->sighand->siglock);
1944 	if (!(clone_flags & CLONE_THREAD))
1945 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1946 	recalc_sigpending();
1947 	spin_unlock_irq(&current->sighand->siglock);
1948 	retval = -ERESTARTNOINTR;
1949 	if (signal_pending(current))
1950 		goto fork_out;
1951 
1952 	retval = -ENOMEM;
1953 	p = dup_task_struct(current, node);
1954 	if (!p)
1955 		goto fork_out;
1956 	if (args->io_thread) {
1957 		/*
1958 		 * Mark us an IO worker, and block any signal that isn't
1959 		 * fatal or STOP
1960 		 */
1961 		p->flags |= PF_IO_WORKER;
1962 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1963 	}
1964 
1965 	/*
1966 	 * This _must_ happen before we call free_task(), i.e. before we jump
1967 	 * to any of the bad_fork_* labels. This is to avoid freeing
1968 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1969 	 * kernel threads (PF_KTHREAD).
1970 	 */
1971 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1972 	/*
1973 	 * Clear TID on mm_release()?
1974 	 */
1975 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1976 
1977 	ftrace_graph_init_task(p);
1978 
1979 	rt_mutex_init_task(p);
1980 
1981 	lockdep_assert_irqs_enabled();
1982 #ifdef CONFIG_PROVE_LOCKING
1983 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1984 #endif
1985 	retval = -EAGAIN;
1986 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1987 		if (p->real_cred->user != INIT_USER &&
1988 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1989 			goto bad_fork_free;
1990 	}
1991 	current->flags &= ~PF_NPROC_EXCEEDED;
1992 
1993 	retval = copy_creds(p, clone_flags);
1994 	if (retval < 0)
1995 		goto bad_fork_free;
1996 
1997 	/*
1998 	 * If multiple threads are within copy_process(), then this check
1999 	 * triggers too late. This doesn't hurt, the check is only there
2000 	 * to stop root fork bombs.
2001 	 */
2002 	retval = -EAGAIN;
2003 	if (data_race(nr_threads >= max_threads))
2004 		goto bad_fork_cleanup_count;
2005 
2006 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2007 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2008 	p->flags |= PF_FORKNOEXEC;
2009 	INIT_LIST_HEAD(&p->children);
2010 	INIT_LIST_HEAD(&p->sibling);
2011 	rcu_copy_process(p);
2012 	p->vfork_done = NULL;
2013 	spin_lock_init(&p->alloc_lock);
2014 
2015 	init_sigpending(&p->pending);
2016 
2017 	p->utime = p->stime = p->gtime = 0;
2018 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2019 	p->utimescaled = p->stimescaled = 0;
2020 #endif
2021 	prev_cputime_init(&p->prev_cputime);
2022 
2023 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2024 	seqcount_init(&p->vtime.seqcount);
2025 	p->vtime.starttime = 0;
2026 	p->vtime.state = VTIME_INACTIVE;
2027 #endif
2028 
2029 #ifdef CONFIG_IO_URING
2030 	p->io_uring = NULL;
2031 #endif
2032 
2033 #if defined(SPLIT_RSS_COUNTING)
2034 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2035 #endif
2036 
2037 	p->default_timer_slack_ns = current->timer_slack_ns;
2038 
2039 #ifdef CONFIG_PSI
2040 	p->psi_flags = 0;
2041 #endif
2042 
2043 	task_io_accounting_init(&p->ioac);
2044 	acct_clear_integrals(p);
2045 
2046 	posix_cputimers_init(&p->posix_cputimers);
2047 
2048 	p->io_context = NULL;
2049 	audit_set_context(p, NULL);
2050 	cgroup_fork(p);
2051 #ifdef CONFIG_NUMA
2052 	p->mempolicy = mpol_dup(p->mempolicy);
2053 	if (IS_ERR(p->mempolicy)) {
2054 		retval = PTR_ERR(p->mempolicy);
2055 		p->mempolicy = NULL;
2056 		goto bad_fork_cleanup_threadgroup_lock;
2057 	}
2058 #endif
2059 #ifdef CONFIG_CPUSETS
2060 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2061 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2062 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2063 #endif
2064 #ifdef CONFIG_TRACE_IRQFLAGS
2065 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2066 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2067 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2068 	p->softirqs_enabled		= 1;
2069 	p->softirq_context		= 0;
2070 #endif
2071 
2072 	p->pagefault_disabled = 0;
2073 
2074 #ifdef CONFIG_LOCKDEP
2075 	lockdep_init_task(p);
2076 #endif
2077 
2078 #ifdef CONFIG_DEBUG_MUTEXES
2079 	p->blocked_on = NULL; /* not blocked yet */
2080 #endif
2081 #ifdef CONFIG_BCACHE
2082 	p->sequential_io	= 0;
2083 	p->sequential_io_avg	= 0;
2084 #endif
2085 
2086 	/* Perform scheduler related setup. Assign this task to a CPU. */
2087 	retval = sched_fork(clone_flags, p);
2088 	if (retval)
2089 		goto bad_fork_cleanup_policy;
2090 
2091 	retval = perf_event_init_task(p);
2092 	if (retval)
2093 		goto bad_fork_cleanup_policy;
2094 	retval = audit_alloc(p);
2095 	if (retval)
2096 		goto bad_fork_cleanup_perf;
2097 	/* copy all the process information */
2098 	shm_init_task(p);
2099 	retval = security_task_alloc(p, clone_flags);
2100 	if (retval)
2101 		goto bad_fork_cleanup_audit;
2102 	retval = copy_semundo(clone_flags, p);
2103 	if (retval)
2104 		goto bad_fork_cleanup_security;
2105 	retval = copy_files(clone_flags, p);
2106 	if (retval)
2107 		goto bad_fork_cleanup_semundo;
2108 	retval = copy_fs(clone_flags, p);
2109 	if (retval)
2110 		goto bad_fork_cleanup_files;
2111 	retval = copy_sighand(clone_flags, p);
2112 	if (retval)
2113 		goto bad_fork_cleanup_fs;
2114 	retval = copy_signal(clone_flags, p);
2115 	if (retval)
2116 		goto bad_fork_cleanup_sighand;
2117 	retval = copy_mm(clone_flags, p);
2118 	if (retval)
2119 		goto bad_fork_cleanup_signal;
2120 	retval = copy_namespaces(clone_flags, p);
2121 	if (retval)
2122 		goto bad_fork_cleanup_mm;
2123 	retval = copy_io(clone_flags, p);
2124 	if (retval)
2125 		goto bad_fork_cleanup_namespaces;
2126 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2127 	if (retval)
2128 		goto bad_fork_cleanup_io;
2129 
2130 	stackleak_task_init(p);
2131 
2132 	if (pid != &init_struct_pid) {
2133 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2134 				args->set_tid_size);
2135 		if (IS_ERR(pid)) {
2136 			retval = PTR_ERR(pid);
2137 			goto bad_fork_cleanup_thread;
2138 		}
2139 	}
2140 
2141 	/*
2142 	 * This has to happen after we've potentially unshared the file
2143 	 * descriptor table (so that the pidfd doesn't leak into the child
2144 	 * if the fd table isn't shared).
2145 	 */
2146 	if (clone_flags & CLONE_PIDFD) {
2147 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2148 		if (retval < 0)
2149 			goto bad_fork_free_pid;
2150 
2151 		pidfd = retval;
2152 
2153 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2154 					      O_RDWR | O_CLOEXEC);
2155 		if (IS_ERR(pidfile)) {
2156 			put_unused_fd(pidfd);
2157 			retval = PTR_ERR(pidfile);
2158 			goto bad_fork_free_pid;
2159 		}
2160 		get_pid(pid);	/* held by pidfile now */
2161 
2162 		retval = put_user(pidfd, args->pidfd);
2163 		if (retval)
2164 			goto bad_fork_put_pidfd;
2165 	}
2166 
2167 #ifdef CONFIG_BLOCK
2168 	p->plug = NULL;
2169 #endif
2170 	futex_init_task(p);
2171 
2172 	/*
2173 	 * sigaltstack should be cleared when sharing the same VM
2174 	 */
2175 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2176 		sas_ss_reset(p);
2177 
2178 	/*
2179 	 * Syscall tracing and stepping should be turned off in the
2180 	 * child regardless of CLONE_PTRACE.
2181 	 */
2182 	user_disable_single_step(p);
2183 	clear_task_syscall_work(p, SYSCALL_TRACE);
2184 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2185 	clear_task_syscall_work(p, SYSCALL_EMU);
2186 #endif
2187 	clear_tsk_latency_tracing(p);
2188 
2189 	/* ok, now we should be set up.. */
2190 	p->pid = pid_nr(pid);
2191 	if (clone_flags & CLONE_THREAD) {
2192 		p->group_leader = current->group_leader;
2193 		p->tgid = current->tgid;
2194 	} else {
2195 		p->group_leader = p;
2196 		p->tgid = p->pid;
2197 	}
2198 
2199 	p->nr_dirtied = 0;
2200 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2201 	p->dirty_paused_when = 0;
2202 
2203 	p->pdeath_signal = 0;
2204 	INIT_LIST_HEAD(&p->thread_group);
2205 	p->task_works = NULL;
2206 
2207 #ifdef CONFIG_KRETPROBES
2208 	p->kretprobe_instances.first = NULL;
2209 #endif
2210 
2211 	/*
2212 	 * Ensure that the cgroup subsystem policies allow the new process to be
2213 	 * forked. It should be noted that the new process's css_set can be changed
2214 	 * between here and cgroup_post_fork() if an organisation operation is in
2215 	 * progress.
2216 	 */
2217 	retval = cgroup_can_fork(p, args);
2218 	if (retval)
2219 		goto bad_fork_put_pidfd;
2220 
2221 	/*
2222 	 * From this point on we must avoid any synchronous user-space
2223 	 * communication until we take the tasklist-lock. In particular, we do
2224 	 * not want user-space to be able to predict the process start-time by
2225 	 * stalling fork(2) after we recorded the start_time but before it is
2226 	 * visible to the system.
2227 	 */
2228 
2229 	p->start_time = ktime_get_ns();
2230 	p->start_boottime = ktime_get_boottime_ns();
2231 
2232 	/*
2233 	 * Make it visible to the rest of the system, but dont wake it up yet.
2234 	 * Need tasklist lock for parent etc handling!
2235 	 */
2236 	write_lock_irq(&tasklist_lock);
2237 
2238 	/* CLONE_PARENT re-uses the old parent */
2239 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2240 		p->real_parent = current->real_parent;
2241 		p->parent_exec_id = current->parent_exec_id;
2242 		if (clone_flags & CLONE_THREAD)
2243 			p->exit_signal = -1;
2244 		else
2245 			p->exit_signal = current->group_leader->exit_signal;
2246 	} else {
2247 		p->real_parent = current;
2248 		p->parent_exec_id = current->self_exec_id;
2249 		p->exit_signal = args->exit_signal;
2250 	}
2251 
2252 	klp_copy_process(p);
2253 
2254 	spin_lock(&current->sighand->siglock);
2255 
2256 	/*
2257 	 * Copy seccomp details explicitly here, in case they were changed
2258 	 * before holding sighand lock.
2259 	 */
2260 	copy_seccomp(p);
2261 
2262 	rseq_fork(p, clone_flags);
2263 
2264 	/* Don't start children in a dying pid namespace */
2265 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2266 		retval = -ENOMEM;
2267 		goto bad_fork_cancel_cgroup;
2268 	}
2269 
2270 	/* Let kill terminate clone/fork in the middle */
2271 	if (fatal_signal_pending(current)) {
2272 		retval = -EINTR;
2273 		goto bad_fork_cancel_cgroup;
2274 	}
2275 
2276 	/* past the last point of failure */
2277 	if (pidfile)
2278 		fd_install(pidfd, pidfile);
2279 
2280 	init_task_pid_links(p);
2281 	if (likely(p->pid)) {
2282 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2283 
2284 		init_task_pid(p, PIDTYPE_PID, pid);
2285 		if (thread_group_leader(p)) {
2286 			init_task_pid(p, PIDTYPE_TGID, pid);
2287 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2288 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2289 
2290 			if (is_child_reaper(pid)) {
2291 				ns_of_pid(pid)->child_reaper = p;
2292 				p->signal->flags |= SIGNAL_UNKILLABLE;
2293 			}
2294 			p->signal->shared_pending.signal = delayed.signal;
2295 			p->signal->tty = tty_kref_get(current->signal->tty);
2296 			/*
2297 			 * Inherit has_child_subreaper flag under the same
2298 			 * tasklist_lock with adding child to the process tree
2299 			 * for propagate_has_child_subreaper optimization.
2300 			 */
2301 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2302 							 p->real_parent->signal->is_child_subreaper;
2303 			list_add_tail(&p->sibling, &p->real_parent->children);
2304 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2305 			attach_pid(p, PIDTYPE_TGID);
2306 			attach_pid(p, PIDTYPE_PGID);
2307 			attach_pid(p, PIDTYPE_SID);
2308 			__this_cpu_inc(process_counts);
2309 		} else {
2310 			current->signal->nr_threads++;
2311 			atomic_inc(&current->signal->live);
2312 			refcount_inc(&current->signal->sigcnt);
2313 			task_join_group_stop(p);
2314 			list_add_tail_rcu(&p->thread_group,
2315 					  &p->group_leader->thread_group);
2316 			list_add_tail_rcu(&p->thread_node,
2317 					  &p->signal->thread_head);
2318 		}
2319 		attach_pid(p, PIDTYPE_PID);
2320 		nr_threads++;
2321 	}
2322 	total_forks++;
2323 	hlist_del_init(&delayed.node);
2324 	spin_unlock(&current->sighand->siglock);
2325 	syscall_tracepoint_update(p);
2326 	write_unlock_irq(&tasklist_lock);
2327 
2328 	proc_fork_connector(p);
2329 	sched_post_fork(p);
2330 	cgroup_post_fork(p, args);
2331 	perf_event_fork(p);
2332 
2333 	trace_task_newtask(p, clone_flags);
2334 	uprobe_copy_process(p, clone_flags);
2335 
2336 	copy_oom_score_adj(clone_flags, p);
2337 
2338 	return p;
2339 
2340 bad_fork_cancel_cgroup:
2341 	spin_unlock(&current->sighand->siglock);
2342 	write_unlock_irq(&tasklist_lock);
2343 	cgroup_cancel_fork(p, args);
2344 bad_fork_put_pidfd:
2345 	if (clone_flags & CLONE_PIDFD) {
2346 		fput(pidfile);
2347 		put_unused_fd(pidfd);
2348 	}
2349 bad_fork_free_pid:
2350 	if (pid != &init_struct_pid)
2351 		free_pid(pid);
2352 bad_fork_cleanup_thread:
2353 	exit_thread(p);
2354 bad_fork_cleanup_io:
2355 	if (p->io_context)
2356 		exit_io_context(p);
2357 bad_fork_cleanup_namespaces:
2358 	exit_task_namespaces(p);
2359 bad_fork_cleanup_mm:
2360 	if (p->mm) {
2361 		mm_clear_owner(p->mm, p);
2362 		mmput(p->mm);
2363 	}
2364 bad_fork_cleanup_signal:
2365 	if (!(clone_flags & CLONE_THREAD))
2366 		free_signal_struct(p->signal);
2367 bad_fork_cleanup_sighand:
2368 	__cleanup_sighand(p->sighand);
2369 bad_fork_cleanup_fs:
2370 	exit_fs(p); /* blocking */
2371 bad_fork_cleanup_files:
2372 	exit_files(p); /* blocking */
2373 bad_fork_cleanup_semundo:
2374 	exit_sem(p);
2375 bad_fork_cleanup_security:
2376 	security_task_free(p);
2377 bad_fork_cleanup_audit:
2378 	audit_free(p);
2379 bad_fork_cleanup_perf:
2380 	perf_event_free_task(p);
2381 bad_fork_cleanup_policy:
2382 	lockdep_free_task(p);
2383 #ifdef CONFIG_NUMA
2384 	mpol_put(p->mempolicy);
2385 bad_fork_cleanup_threadgroup_lock:
2386 #endif
2387 	delayacct_tsk_free(p);
2388 bad_fork_cleanup_count:
2389 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2390 	exit_creds(p);
2391 bad_fork_free:
2392 	p->state = TASK_DEAD;
2393 	put_task_stack(p);
2394 	delayed_free_task(p);
2395 fork_out:
2396 	spin_lock_irq(&current->sighand->siglock);
2397 	hlist_del_init(&delayed.node);
2398 	spin_unlock_irq(&current->sighand->siglock);
2399 	return ERR_PTR(retval);
2400 }
2401 
2402 static inline void init_idle_pids(struct task_struct *idle)
2403 {
2404 	enum pid_type type;
2405 
2406 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2407 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2408 		init_task_pid(idle, type, &init_struct_pid);
2409 	}
2410 }
2411 
2412 struct task_struct *fork_idle(int cpu)
2413 {
2414 	struct task_struct *task;
2415 	struct kernel_clone_args args = {
2416 		.flags = CLONE_VM,
2417 	};
2418 
2419 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2420 	if (!IS_ERR(task)) {
2421 		init_idle_pids(task);
2422 		init_idle(task, cpu);
2423 	}
2424 
2425 	return task;
2426 }
2427 
2428 struct mm_struct *copy_init_mm(void)
2429 {
2430 	return dup_mm(NULL, &init_mm);
2431 }
2432 
2433 /*
2434  * This is like kernel_clone(), but shaved down and tailored to just
2435  * creating io_uring workers. It returns a created task, or an error pointer.
2436  * The returned task is inactive, and the caller must fire it up through
2437  * wake_up_new_task(p). All signals are blocked in the created task.
2438  */
2439 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2440 {
2441 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2442 				CLONE_IO;
2443 	struct kernel_clone_args args = {
2444 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2445 				    CLONE_UNTRACED) & ~CSIGNAL),
2446 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2447 		.stack		= (unsigned long)fn,
2448 		.stack_size	= (unsigned long)arg,
2449 		.io_thread	= 1,
2450 	};
2451 
2452 	return copy_process(NULL, 0, node, &args);
2453 }
2454 
2455 /*
2456  *  Ok, this is the main fork-routine.
2457  *
2458  * It copies the process, and if successful kick-starts
2459  * it and waits for it to finish using the VM if required.
2460  *
2461  * args->exit_signal is expected to be checked for sanity by the caller.
2462  */
2463 pid_t kernel_clone(struct kernel_clone_args *args)
2464 {
2465 	u64 clone_flags = args->flags;
2466 	struct completion vfork;
2467 	struct pid *pid;
2468 	struct task_struct *p;
2469 	int trace = 0;
2470 	pid_t nr;
2471 
2472 	/*
2473 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2474 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2475 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2476 	 * field in struct clone_args and it still doesn't make sense to have
2477 	 * them both point at the same memory location. Performing this check
2478 	 * here has the advantage that we don't need to have a separate helper
2479 	 * to check for legacy clone().
2480 	 */
2481 	if ((args->flags & CLONE_PIDFD) &&
2482 	    (args->flags & CLONE_PARENT_SETTID) &&
2483 	    (args->pidfd == args->parent_tid))
2484 		return -EINVAL;
2485 
2486 	/*
2487 	 * Determine whether and which event to report to ptracer.  When
2488 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2489 	 * requested, no event is reported; otherwise, report if the event
2490 	 * for the type of forking is enabled.
2491 	 */
2492 	if (!(clone_flags & CLONE_UNTRACED)) {
2493 		if (clone_flags & CLONE_VFORK)
2494 			trace = PTRACE_EVENT_VFORK;
2495 		else if (args->exit_signal != SIGCHLD)
2496 			trace = PTRACE_EVENT_CLONE;
2497 		else
2498 			trace = PTRACE_EVENT_FORK;
2499 
2500 		if (likely(!ptrace_event_enabled(current, trace)))
2501 			trace = 0;
2502 	}
2503 
2504 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2505 	add_latent_entropy();
2506 
2507 	if (IS_ERR(p))
2508 		return PTR_ERR(p);
2509 
2510 	/*
2511 	 * Do this prior waking up the new thread - the thread pointer
2512 	 * might get invalid after that point, if the thread exits quickly.
2513 	 */
2514 	trace_sched_process_fork(current, p);
2515 
2516 	pid = get_task_pid(p, PIDTYPE_PID);
2517 	nr = pid_vnr(pid);
2518 
2519 	if (clone_flags & CLONE_PARENT_SETTID)
2520 		put_user(nr, args->parent_tid);
2521 
2522 	if (clone_flags & CLONE_VFORK) {
2523 		p->vfork_done = &vfork;
2524 		init_completion(&vfork);
2525 		get_task_struct(p);
2526 	}
2527 
2528 	wake_up_new_task(p);
2529 
2530 	/* forking complete and child started to run, tell ptracer */
2531 	if (unlikely(trace))
2532 		ptrace_event_pid(trace, pid);
2533 
2534 	if (clone_flags & CLONE_VFORK) {
2535 		if (!wait_for_vfork_done(p, &vfork))
2536 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2537 	}
2538 
2539 	put_pid(pid);
2540 	return nr;
2541 }
2542 
2543 /*
2544  * Create a kernel thread.
2545  */
2546 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2547 {
2548 	struct kernel_clone_args args = {
2549 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2550 				    CLONE_UNTRACED) & ~CSIGNAL),
2551 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2552 		.stack		= (unsigned long)fn,
2553 		.stack_size	= (unsigned long)arg,
2554 	};
2555 
2556 	return kernel_clone(&args);
2557 }
2558 
2559 #ifdef __ARCH_WANT_SYS_FORK
2560 SYSCALL_DEFINE0(fork)
2561 {
2562 #ifdef CONFIG_MMU
2563 	struct kernel_clone_args args = {
2564 		.exit_signal = SIGCHLD,
2565 	};
2566 
2567 	return kernel_clone(&args);
2568 #else
2569 	/* can not support in nommu mode */
2570 	return -EINVAL;
2571 #endif
2572 }
2573 #endif
2574 
2575 #ifdef __ARCH_WANT_SYS_VFORK
2576 SYSCALL_DEFINE0(vfork)
2577 {
2578 	struct kernel_clone_args args = {
2579 		.flags		= CLONE_VFORK | CLONE_VM,
2580 		.exit_signal	= SIGCHLD,
2581 	};
2582 
2583 	return kernel_clone(&args);
2584 }
2585 #endif
2586 
2587 #ifdef __ARCH_WANT_SYS_CLONE
2588 #ifdef CONFIG_CLONE_BACKWARDS
2589 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2590 		 int __user *, parent_tidptr,
2591 		 unsigned long, tls,
2592 		 int __user *, child_tidptr)
2593 #elif defined(CONFIG_CLONE_BACKWARDS2)
2594 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2595 		 int __user *, parent_tidptr,
2596 		 int __user *, child_tidptr,
2597 		 unsigned long, tls)
2598 #elif defined(CONFIG_CLONE_BACKWARDS3)
2599 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2600 		int, stack_size,
2601 		int __user *, parent_tidptr,
2602 		int __user *, child_tidptr,
2603 		unsigned long, tls)
2604 #else
2605 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2606 		 int __user *, parent_tidptr,
2607 		 int __user *, child_tidptr,
2608 		 unsigned long, tls)
2609 #endif
2610 {
2611 	struct kernel_clone_args args = {
2612 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2613 		.pidfd		= parent_tidptr,
2614 		.child_tid	= child_tidptr,
2615 		.parent_tid	= parent_tidptr,
2616 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2617 		.stack		= newsp,
2618 		.tls		= tls,
2619 	};
2620 
2621 	return kernel_clone(&args);
2622 }
2623 #endif
2624 
2625 #ifdef __ARCH_WANT_SYS_CLONE3
2626 
2627 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2628 					      struct clone_args __user *uargs,
2629 					      size_t usize)
2630 {
2631 	int err;
2632 	struct clone_args args;
2633 	pid_t *kset_tid = kargs->set_tid;
2634 
2635 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2636 		     CLONE_ARGS_SIZE_VER0);
2637 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2638 		     CLONE_ARGS_SIZE_VER1);
2639 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2640 		     CLONE_ARGS_SIZE_VER2);
2641 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2642 
2643 	if (unlikely(usize > PAGE_SIZE))
2644 		return -E2BIG;
2645 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2646 		return -EINVAL;
2647 
2648 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2649 	if (err)
2650 		return err;
2651 
2652 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2653 		return -EINVAL;
2654 
2655 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2656 		return -EINVAL;
2657 
2658 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2659 		return -EINVAL;
2660 
2661 	/*
2662 	 * Verify that higher 32bits of exit_signal are unset and that
2663 	 * it is a valid signal
2664 	 */
2665 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2666 		     !valid_signal(args.exit_signal)))
2667 		return -EINVAL;
2668 
2669 	if ((args.flags & CLONE_INTO_CGROUP) &&
2670 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2671 		return -EINVAL;
2672 
2673 	*kargs = (struct kernel_clone_args){
2674 		.flags		= args.flags,
2675 		.pidfd		= u64_to_user_ptr(args.pidfd),
2676 		.child_tid	= u64_to_user_ptr(args.child_tid),
2677 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2678 		.exit_signal	= args.exit_signal,
2679 		.stack		= args.stack,
2680 		.stack_size	= args.stack_size,
2681 		.tls		= args.tls,
2682 		.set_tid_size	= args.set_tid_size,
2683 		.cgroup		= args.cgroup,
2684 	};
2685 
2686 	if (args.set_tid &&
2687 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2688 			(kargs->set_tid_size * sizeof(pid_t))))
2689 		return -EFAULT;
2690 
2691 	kargs->set_tid = kset_tid;
2692 
2693 	return 0;
2694 }
2695 
2696 /**
2697  * clone3_stack_valid - check and prepare stack
2698  * @kargs: kernel clone args
2699  *
2700  * Verify that the stack arguments userspace gave us are sane.
2701  * In addition, set the stack direction for userspace since it's easy for us to
2702  * determine.
2703  */
2704 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2705 {
2706 	if (kargs->stack == 0) {
2707 		if (kargs->stack_size > 0)
2708 			return false;
2709 	} else {
2710 		if (kargs->stack_size == 0)
2711 			return false;
2712 
2713 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2714 			return false;
2715 
2716 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2717 		kargs->stack += kargs->stack_size;
2718 #endif
2719 	}
2720 
2721 	return true;
2722 }
2723 
2724 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2725 {
2726 	/* Verify that no unknown flags are passed along. */
2727 	if (kargs->flags &
2728 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2729 		return false;
2730 
2731 	/*
2732 	 * - make the CLONE_DETACHED bit reuseable for clone3
2733 	 * - make the CSIGNAL bits reuseable for clone3
2734 	 */
2735 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2736 		return false;
2737 
2738 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2739 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2740 		return false;
2741 
2742 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2743 	    kargs->exit_signal)
2744 		return false;
2745 
2746 	if (!clone3_stack_valid(kargs))
2747 		return false;
2748 
2749 	return true;
2750 }
2751 
2752 /**
2753  * clone3 - create a new process with specific properties
2754  * @uargs: argument structure
2755  * @size:  size of @uargs
2756  *
2757  * clone3() is the extensible successor to clone()/clone2().
2758  * It takes a struct as argument that is versioned by its size.
2759  *
2760  * Return: On success, a positive PID for the child process.
2761  *         On error, a negative errno number.
2762  */
2763 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2764 {
2765 	int err;
2766 
2767 	struct kernel_clone_args kargs;
2768 	pid_t set_tid[MAX_PID_NS_LEVEL];
2769 
2770 	kargs.set_tid = set_tid;
2771 
2772 	err = copy_clone_args_from_user(&kargs, uargs, size);
2773 	if (err)
2774 		return err;
2775 
2776 	if (!clone3_args_valid(&kargs))
2777 		return -EINVAL;
2778 
2779 	return kernel_clone(&kargs);
2780 }
2781 #endif
2782 
2783 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2784 {
2785 	struct task_struct *leader, *parent, *child;
2786 	int res;
2787 
2788 	read_lock(&tasklist_lock);
2789 	leader = top = top->group_leader;
2790 down:
2791 	for_each_thread(leader, parent) {
2792 		list_for_each_entry(child, &parent->children, sibling) {
2793 			res = visitor(child, data);
2794 			if (res) {
2795 				if (res < 0)
2796 					goto out;
2797 				leader = child;
2798 				goto down;
2799 			}
2800 up:
2801 			;
2802 		}
2803 	}
2804 
2805 	if (leader != top) {
2806 		child = leader;
2807 		parent = child->real_parent;
2808 		leader = parent->group_leader;
2809 		goto up;
2810 	}
2811 out:
2812 	read_unlock(&tasklist_lock);
2813 }
2814 
2815 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2816 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2817 #endif
2818 
2819 static void sighand_ctor(void *data)
2820 {
2821 	struct sighand_struct *sighand = data;
2822 
2823 	spin_lock_init(&sighand->siglock);
2824 	init_waitqueue_head(&sighand->signalfd_wqh);
2825 }
2826 
2827 void __init proc_caches_init(void)
2828 {
2829 	unsigned int mm_size;
2830 
2831 	sighand_cachep = kmem_cache_create("sighand_cache",
2832 			sizeof(struct sighand_struct), 0,
2833 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2834 			SLAB_ACCOUNT, sighand_ctor);
2835 	signal_cachep = kmem_cache_create("signal_cache",
2836 			sizeof(struct signal_struct), 0,
2837 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2838 			NULL);
2839 	files_cachep = kmem_cache_create("files_cache",
2840 			sizeof(struct files_struct), 0,
2841 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2842 			NULL);
2843 	fs_cachep = kmem_cache_create("fs_cache",
2844 			sizeof(struct fs_struct), 0,
2845 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2846 			NULL);
2847 
2848 	/*
2849 	 * The mm_cpumask is located at the end of mm_struct, and is
2850 	 * dynamically sized based on the maximum CPU number this system
2851 	 * can have, taking hotplug into account (nr_cpu_ids).
2852 	 */
2853 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2854 
2855 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2856 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2857 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2858 			offsetof(struct mm_struct, saved_auxv),
2859 			sizeof_field(struct mm_struct, saved_auxv),
2860 			NULL);
2861 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2862 	mmap_init();
2863 	nsproxy_cache_init();
2864 }
2865 
2866 /*
2867  * Check constraints on flags passed to the unshare system call.
2868  */
2869 static int check_unshare_flags(unsigned long unshare_flags)
2870 {
2871 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2872 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2873 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2874 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2875 				CLONE_NEWTIME))
2876 		return -EINVAL;
2877 	/*
2878 	 * Not implemented, but pretend it works if there is nothing
2879 	 * to unshare.  Note that unsharing the address space or the
2880 	 * signal handlers also need to unshare the signal queues (aka
2881 	 * CLONE_THREAD).
2882 	 */
2883 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2884 		if (!thread_group_empty(current))
2885 			return -EINVAL;
2886 	}
2887 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2888 		if (refcount_read(&current->sighand->count) > 1)
2889 			return -EINVAL;
2890 	}
2891 	if (unshare_flags & CLONE_VM) {
2892 		if (!current_is_single_threaded())
2893 			return -EINVAL;
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 /*
2900  * Unshare the filesystem structure if it is being shared
2901  */
2902 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2903 {
2904 	struct fs_struct *fs = current->fs;
2905 
2906 	if (!(unshare_flags & CLONE_FS) || !fs)
2907 		return 0;
2908 
2909 	/* don't need lock here; in the worst case we'll do useless copy */
2910 	if (fs->users == 1)
2911 		return 0;
2912 
2913 	*new_fsp = copy_fs_struct(fs);
2914 	if (!*new_fsp)
2915 		return -ENOMEM;
2916 
2917 	return 0;
2918 }
2919 
2920 /*
2921  * Unshare file descriptor table if it is being shared
2922  */
2923 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2924 	       struct files_struct **new_fdp)
2925 {
2926 	struct files_struct *fd = current->files;
2927 	int error = 0;
2928 
2929 	if ((unshare_flags & CLONE_FILES) &&
2930 	    (fd && atomic_read(&fd->count) > 1)) {
2931 		*new_fdp = dup_fd(fd, max_fds, &error);
2932 		if (!*new_fdp)
2933 			return error;
2934 	}
2935 
2936 	return 0;
2937 }
2938 
2939 /*
2940  * unshare allows a process to 'unshare' part of the process
2941  * context which was originally shared using clone.  copy_*
2942  * functions used by kernel_clone() cannot be used here directly
2943  * because they modify an inactive task_struct that is being
2944  * constructed. Here we are modifying the current, active,
2945  * task_struct.
2946  */
2947 int ksys_unshare(unsigned long unshare_flags)
2948 {
2949 	struct fs_struct *fs, *new_fs = NULL;
2950 	struct files_struct *fd, *new_fd = NULL;
2951 	struct cred *new_cred = NULL;
2952 	struct nsproxy *new_nsproxy = NULL;
2953 	int do_sysvsem = 0;
2954 	int err;
2955 
2956 	/*
2957 	 * If unsharing a user namespace must also unshare the thread group
2958 	 * and unshare the filesystem root and working directories.
2959 	 */
2960 	if (unshare_flags & CLONE_NEWUSER)
2961 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2962 	/*
2963 	 * If unsharing vm, must also unshare signal handlers.
2964 	 */
2965 	if (unshare_flags & CLONE_VM)
2966 		unshare_flags |= CLONE_SIGHAND;
2967 	/*
2968 	 * If unsharing a signal handlers, must also unshare the signal queues.
2969 	 */
2970 	if (unshare_flags & CLONE_SIGHAND)
2971 		unshare_flags |= CLONE_THREAD;
2972 	/*
2973 	 * If unsharing namespace, must also unshare filesystem information.
2974 	 */
2975 	if (unshare_flags & CLONE_NEWNS)
2976 		unshare_flags |= CLONE_FS;
2977 
2978 	err = check_unshare_flags(unshare_flags);
2979 	if (err)
2980 		goto bad_unshare_out;
2981 	/*
2982 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2983 	 * to a new ipc namespace, the semaphore arrays from the old
2984 	 * namespace are unreachable.
2985 	 */
2986 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2987 		do_sysvsem = 1;
2988 	err = unshare_fs(unshare_flags, &new_fs);
2989 	if (err)
2990 		goto bad_unshare_out;
2991 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2992 	if (err)
2993 		goto bad_unshare_cleanup_fs;
2994 	err = unshare_userns(unshare_flags, &new_cred);
2995 	if (err)
2996 		goto bad_unshare_cleanup_fd;
2997 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2998 					 new_cred, new_fs);
2999 	if (err)
3000 		goto bad_unshare_cleanup_cred;
3001 
3002 	if (new_cred) {
3003 		err = set_cred_ucounts(new_cred);
3004 		if (err)
3005 			goto bad_unshare_cleanup_cred;
3006 	}
3007 
3008 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3009 		if (do_sysvsem) {
3010 			/*
3011 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3012 			 */
3013 			exit_sem(current);
3014 		}
3015 		if (unshare_flags & CLONE_NEWIPC) {
3016 			/* Orphan segments in old ns (see sem above). */
3017 			exit_shm(current);
3018 			shm_init_task(current);
3019 		}
3020 
3021 		if (new_nsproxy)
3022 			switch_task_namespaces(current, new_nsproxy);
3023 
3024 		task_lock(current);
3025 
3026 		if (new_fs) {
3027 			fs = current->fs;
3028 			spin_lock(&fs->lock);
3029 			current->fs = new_fs;
3030 			if (--fs->users)
3031 				new_fs = NULL;
3032 			else
3033 				new_fs = fs;
3034 			spin_unlock(&fs->lock);
3035 		}
3036 
3037 		if (new_fd) {
3038 			fd = current->files;
3039 			current->files = new_fd;
3040 			new_fd = fd;
3041 		}
3042 
3043 		task_unlock(current);
3044 
3045 		if (new_cred) {
3046 			/* Install the new user namespace */
3047 			commit_creds(new_cred);
3048 			new_cred = NULL;
3049 		}
3050 	}
3051 
3052 	perf_event_namespaces(current);
3053 
3054 bad_unshare_cleanup_cred:
3055 	if (new_cred)
3056 		put_cred(new_cred);
3057 bad_unshare_cleanup_fd:
3058 	if (new_fd)
3059 		put_files_struct(new_fd);
3060 
3061 bad_unshare_cleanup_fs:
3062 	if (new_fs)
3063 		free_fs_struct(new_fs);
3064 
3065 bad_unshare_out:
3066 	return err;
3067 }
3068 
3069 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3070 {
3071 	return ksys_unshare(unshare_flags);
3072 }
3073 
3074 /*
3075  *	Helper to unshare the files of the current task.
3076  *	We don't want to expose copy_files internals to
3077  *	the exec layer of the kernel.
3078  */
3079 
3080 int unshare_files(void)
3081 {
3082 	struct task_struct *task = current;
3083 	struct files_struct *old, *copy = NULL;
3084 	int error;
3085 
3086 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3087 	if (error || !copy)
3088 		return error;
3089 
3090 	old = task->files;
3091 	task_lock(task);
3092 	task->files = copy;
3093 	task_unlock(task);
3094 	put_files_struct(old);
3095 	return 0;
3096 }
3097 
3098 int sysctl_max_threads(struct ctl_table *table, int write,
3099 		       void *buffer, size_t *lenp, loff_t *ppos)
3100 {
3101 	struct ctl_table t;
3102 	int ret;
3103 	int threads = max_threads;
3104 	int min = 1;
3105 	int max = MAX_THREADS;
3106 
3107 	t = *table;
3108 	t.data = &threads;
3109 	t.extra1 = &min;
3110 	t.extra2 = &max;
3111 
3112 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3113 	if (ret || !write)
3114 		return ret;
3115 
3116 	max_threads = threads;
3117 
3118 	return 0;
3119 }
3120