xref: /linux-6.15/kernel/fork.c (revision d83a7cb3)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91 
92 #include <asm/pgtable.h>
93 #include <asm/pgalloc.h>
94 #include <linux/uaccess.h>
95 #include <asm/mmu_context.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
98 
99 #include <trace/events/sched.h>
100 
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/task.h>
103 
104 /*
105  * Minimum number of threads to boot the kernel
106  */
107 #define MIN_THREADS 20
108 
109 /*
110  * Maximum number of threads
111  */
112 #define MAX_THREADS FUTEX_TID_MASK
113 
114 /*
115  * Protected counters by write_lock_irq(&tasklist_lock)
116  */
117 unsigned long total_forks;	/* Handle normal Linux uptimes. */
118 int nr_threads;			/* The idle threads do not count.. */
119 
120 int max_threads;		/* tunable limit on nr_threads */
121 
122 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123 
124 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
125 
126 #ifdef CONFIG_PROVE_RCU
127 int lockdep_tasklist_lock_is_held(void)
128 {
129 	return lockdep_is_held(&tasklist_lock);
130 }
131 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
132 #endif /* #ifdef CONFIG_PROVE_RCU */
133 
134 int nr_processes(void)
135 {
136 	int cpu;
137 	int total = 0;
138 
139 	for_each_possible_cpu(cpu)
140 		total += per_cpu(process_counts, cpu);
141 
142 	return total;
143 }
144 
145 void __weak arch_release_task_struct(struct task_struct *tsk)
146 {
147 }
148 
149 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
150 static struct kmem_cache *task_struct_cachep;
151 
152 static inline struct task_struct *alloc_task_struct_node(int node)
153 {
154 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
155 }
156 
157 static inline void free_task_struct(struct task_struct *tsk)
158 {
159 	kmem_cache_free(task_struct_cachep, tsk);
160 }
161 #endif
162 
163 void __weak arch_release_thread_stack(unsigned long *stack)
164 {
165 }
166 
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168 
169 /*
170  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171  * kmemcache based allocator.
172  */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174 
175 #ifdef CONFIG_VMAP_STACK
176 /*
177  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178  * flush.  Try to minimize the number of calls by caching stacks.
179  */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182 #endif
183 
184 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
185 {
186 #ifdef CONFIG_VMAP_STACK
187 	void *stack;
188 	int i;
189 
190 	local_irq_disable();
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
193 
194 		if (!s)
195 			continue;
196 		this_cpu_write(cached_stacks[i], NULL);
197 
198 		tsk->stack_vm_area = s;
199 		local_irq_enable();
200 		return s->addr;
201 	}
202 	local_irq_enable();
203 
204 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
205 				     VMALLOC_START, VMALLOC_END,
206 				     THREADINFO_GFP | __GFP_HIGHMEM,
207 				     PAGE_KERNEL,
208 				     0, node, __builtin_return_address(0));
209 
210 	/*
211 	 * We can't call find_vm_area() in interrupt context, and
212 	 * free_thread_stack() can be called in interrupt context,
213 	 * so cache the vm_struct.
214 	 */
215 	if (stack)
216 		tsk->stack_vm_area = find_vm_area(stack);
217 	return stack;
218 #else
219 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
220 					     THREAD_SIZE_ORDER);
221 
222 	return page ? page_address(page) : NULL;
223 #endif
224 }
225 
226 static inline void free_thread_stack(struct task_struct *tsk)
227 {
228 #ifdef CONFIG_VMAP_STACK
229 	if (task_stack_vm_area(tsk)) {
230 		unsigned long flags;
231 		int i;
232 
233 		local_irq_save(flags);
234 		for (i = 0; i < NR_CACHED_STACKS; i++) {
235 			if (this_cpu_read(cached_stacks[i]))
236 				continue;
237 
238 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
239 			local_irq_restore(flags);
240 			return;
241 		}
242 		local_irq_restore(flags);
243 
244 		vfree_atomic(tsk->stack);
245 		return;
246 	}
247 #endif
248 
249 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
250 }
251 # else
252 static struct kmem_cache *thread_stack_cache;
253 
254 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
255 						  int node)
256 {
257 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
258 }
259 
260 static void free_thread_stack(struct task_struct *tsk)
261 {
262 	kmem_cache_free(thread_stack_cache, tsk->stack);
263 }
264 
265 void thread_stack_cache_init(void)
266 {
267 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
268 					      THREAD_SIZE, 0, NULL);
269 	BUG_ON(thread_stack_cache == NULL);
270 }
271 # endif
272 #endif
273 
274 /* SLAB cache for signal_struct structures (tsk->signal) */
275 static struct kmem_cache *signal_cachep;
276 
277 /* SLAB cache for sighand_struct structures (tsk->sighand) */
278 struct kmem_cache *sighand_cachep;
279 
280 /* SLAB cache for files_struct structures (tsk->files) */
281 struct kmem_cache *files_cachep;
282 
283 /* SLAB cache for fs_struct structures (tsk->fs) */
284 struct kmem_cache *fs_cachep;
285 
286 /* SLAB cache for vm_area_struct structures */
287 struct kmem_cache *vm_area_cachep;
288 
289 /* SLAB cache for mm_struct structures (tsk->mm) */
290 static struct kmem_cache *mm_cachep;
291 
292 static void account_kernel_stack(struct task_struct *tsk, int account)
293 {
294 	void *stack = task_stack_page(tsk);
295 	struct vm_struct *vm = task_stack_vm_area(tsk);
296 
297 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
298 
299 	if (vm) {
300 		int i;
301 
302 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
303 
304 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
305 			mod_zone_page_state(page_zone(vm->pages[i]),
306 					    NR_KERNEL_STACK_KB,
307 					    PAGE_SIZE / 1024 * account);
308 		}
309 
310 		/* All stack pages belong to the same memcg. */
311 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
312 					    account * (THREAD_SIZE / 1024));
313 	} else {
314 		/*
315 		 * All stack pages are in the same zone and belong to the
316 		 * same memcg.
317 		 */
318 		struct page *first_page = virt_to_page(stack);
319 
320 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
321 				    THREAD_SIZE / 1024 * account);
322 
323 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
324 					    account * (THREAD_SIZE / 1024));
325 	}
326 }
327 
328 static void release_task_stack(struct task_struct *tsk)
329 {
330 	if (WARN_ON(tsk->state != TASK_DEAD))
331 		return;  /* Better to leak the stack than to free prematurely */
332 
333 	account_kernel_stack(tsk, -1);
334 	arch_release_thread_stack(tsk->stack);
335 	free_thread_stack(tsk);
336 	tsk->stack = NULL;
337 #ifdef CONFIG_VMAP_STACK
338 	tsk->stack_vm_area = NULL;
339 #endif
340 }
341 
342 #ifdef CONFIG_THREAD_INFO_IN_TASK
343 void put_task_stack(struct task_struct *tsk)
344 {
345 	if (atomic_dec_and_test(&tsk->stack_refcount))
346 		release_task_stack(tsk);
347 }
348 #endif
349 
350 void free_task(struct task_struct *tsk)
351 {
352 #ifndef CONFIG_THREAD_INFO_IN_TASK
353 	/*
354 	 * The task is finally done with both the stack and thread_info,
355 	 * so free both.
356 	 */
357 	release_task_stack(tsk);
358 #else
359 	/*
360 	 * If the task had a separate stack allocation, it should be gone
361 	 * by now.
362 	 */
363 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
364 #endif
365 	rt_mutex_debug_task_free(tsk);
366 	ftrace_graph_exit_task(tsk);
367 	put_seccomp_filter(tsk);
368 	arch_release_task_struct(tsk);
369 	if (tsk->flags & PF_KTHREAD)
370 		free_kthread_struct(tsk);
371 	free_task_struct(tsk);
372 }
373 EXPORT_SYMBOL(free_task);
374 
375 static inline void free_signal_struct(struct signal_struct *sig)
376 {
377 	taskstats_tgid_free(sig);
378 	sched_autogroup_exit(sig);
379 	/*
380 	 * __mmdrop is not safe to call from softirq context on x86 due to
381 	 * pgd_dtor so postpone it to the async context
382 	 */
383 	if (sig->oom_mm)
384 		mmdrop_async(sig->oom_mm);
385 	kmem_cache_free(signal_cachep, sig);
386 }
387 
388 static inline void put_signal_struct(struct signal_struct *sig)
389 {
390 	if (atomic_dec_and_test(&sig->sigcnt))
391 		free_signal_struct(sig);
392 }
393 
394 void __put_task_struct(struct task_struct *tsk)
395 {
396 	WARN_ON(!tsk->exit_state);
397 	WARN_ON(atomic_read(&tsk->usage));
398 	WARN_ON(tsk == current);
399 
400 	cgroup_free(tsk);
401 	task_numa_free(tsk);
402 	security_task_free(tsk);
403 	exit_creds(tsk);
404 	delayacct_tsk_free(tsk);
405 	put_signal_struct(tsk->signal);
406 
407 	if (!profile_handoff_task(tsk))
408 		free_task(tsk);
409 }
410 EXPORT_SYMBOL_GPL(__put_task_struct);
411 
412 void __init __weak arch_task_cache_init(void) { }
413 
414 /*
415  * set_max_threads
416  */
417 static void set_max_threads(unsigned int max_threads_suggested)
418 {
419 	u64 threads;
420 
421 	/*
422 	 * The number of threads shall be limited such that the thread
423 	 * structures may only consume a small part of the available memory.
424 	 */
425 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
426 		threads = MAX_THREADS;
427 	else
428 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
429 				    (u64) THREAD_SIZE * 8UL);
430 
431 	if (threads > max_threads_suggested)
432 		threads = max_threads_suggested;
433 
434 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
435 }
436 
437 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
438 /* Initialized by the architecture: */
439 int arch_task_struct_size __read_mostly;
440 #endif
441 
442 void __init fork_init(void)
443 {
444 	int i;
445 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
446 #ifndef ARCH_MIN_TASKALIGN
447 #define ARCH_MIN_TASKALIGN	0
448 #endif
449 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
450 
451 	/* create a slab on which task_structs can be allocated */
452 	task_struct_cachep = kmem_cache_create("task_struct",
453 			arch_task_struct_size, align,
454 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
455 #endif
456 
457 	/* do the arch specific task caches init */
458 	arch_task_cache_init();
459 
460 	set_max_threads(MAX_THREADS);
461 
462 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
463 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
464 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
465 		init_task.signal->rlim[RLIMIT_NPROC];
466 
467 	for (i = 0; i < UCOUNT_COUNTS; i++) {
468 		init_user_ns.ucount_max[i] = max_threads/2;
469 	}
470 }
471 
472 int __weak arch_dup_task_struct(struct task_struct *dst,
473 					       struct task_struct *src)
474 {
475 	*dst = *src;
476 	return 0;
477 }
478 
479 void set_task_stack_end_magic(struct task_struct *tsk)
480 {
481 	unsigned long *stackend;
482 
483 	stackend = end_of_stack(tsk);
484 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
485 }
486 
487 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
488 {
489 	struct task_struct *tsk;
490 	unsigned long *stack;
491 	struct vm_struct *stack_vm_area;
492 	int err;
493 
494 	if (node == NUMA_NO_NODE)
495 		node = tsk_fork_get_node(orig);
496 	tsk = alloc_task_struct_node(node);
497 	if (!tsk)
498 		return NULL;
499 
500 	stack = alloc_thread_stack_node(tsk, node);
501 	if (!stack)
502 		goto free_tsk;
503 
504 	stack_vm_area = task_stack_vm_area(tsk);
505 
506 	err = arch_dup_task_struct(tsk, orig);
507 
508 	/*
509 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
510 	 * sure they're properly initialized before using any stack-related
511 	 * functions again.
512 	 */
513 	tsk->stack = stack;
514 #ifdef CONFIG_VMAP_STACK
515 	tsk->stack_vm_area = stack_vm_area;
516 #endif
517 #ifdef CONFIG_THREAD_INFO_IN_TASK
518 	atomic_set(&tsk->stack_refcount, 1);
519 #endif
520 
521 	if (err)
522 		goto free_stack;
523 
524 #ifdef CONFIG_SECCOMP
525 	/*
526 	 * We must handle setting up seccomp filters once we're under
527 	 * the sighand lock in case orig has changed between now and
528 	 * then. Until then, filter must be NULL to avoid messing up
529 	 * the usage counts on the error path calling free_task.
530 	 */
531 	tsk->seccomp.filter = NULL;
532 #endif
533 
534 	setup_thread_stack(tsk, orig);
535 	clear_user_return_notifier(tsk);
536 	clear_tsk_need_resched(tsk);
537 	set_task_stack_end_magic(tsk);
538 
539 #ifdef CONFIG_CC_STACKPROTECTOR
540 	tsk->stack_canary = get_random_int();
541 #endif
542 
543 	/*
544 	 * One for us, one for whoever does the "release_task()" (usually
545 	 * parent)
546 	 */
547 	atomic_set(&tsk->usage, 2);
548 #ifdef CONFIG_BLK_DEV_IO_TRACE
549 	tsk->btrace_seq = 0;
550 #endif
551 	tsk->splice_pipe = NULL;
552 	tsk->task_frag.page = NULL;
553 	tsk->wake_q.next = NULL;
554 
555 	account_kernel_stack(tsk, 1);
556 
557 	kcov_task_init(tsk);
558 
559 	return tsk;
560 
561 free_stack:
562 	free_thread_stack(tsk);
563 free_tsk:
564 	free_task_struct(tsk);
565 	return NULL;
566 }
567 
568 #ifdef CONFIG_MMU
569 static __latent_entropy int dup_mmap(struct mm_struct *mm,
570 					struct mm_struct *oldmm)
571 {
572 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
573 	struct rb_node **rb_link, *rb_parent;
574 	int retval;
575 	unsigned long charge;
576 	LIST_HEAD(uf);
577 
578 	uprobe_start_dup_mmap();
579 	if (down_write_killable(&oldmm->mmap_sem)) {
580 		retval = -EINTR;
581 		goto fail_uprobe_end;
582 	}
583 	flush_cache_dup_mm(oldmm);
584 	uprobe_dup_mmap(oldmm, mm);
585 	/*
586 	 * Not linked in yet - no deadlock potential:
587 	 */
588 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
589 
590 	/* No ordering required: file already has been exposed. */
591 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
592 
593 	mm->total_vm = oldmm->total_vm;
594 	mm->data_vm = oldmm->data_vm;
595 	mm->exec_vm = oldmm->exec_vm;
596 	mm->stack_vm = oldmm->stack_vm;
597 
598 	rb_link = &mm->mm_rb.rb_node;
599 	rb_parent = NULL;
600 	pprev = &mm->mmap;
601 	retval = ksm_fork(mm, oldmm);
602 	if (retval)
603 		goto out;
604 	retval = khugepaged_fork(mm, oldmm);
605 	if (retval)
606 		goto out;
607 
608 	prev = NULL;
609 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
610 		struct file *file;
611 
612 		if (mpnt->vm_flags & VM_DONTCOPY) {
613 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
614 			continue;
615 		}
616 		charge = 0;
617 		if (mpnt->vm_flags & VM_ACCOUNT) {
618 			unsigned long len = vma_pages(mpnt);
619 
620 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
621 				goto fail_nomem;
622 			charge = len;
623 		}
624 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
625 		if (!tmp)
626 			goto fail_nomem;
627 		*tmp = *mpnt;
628 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
629 		retval = vma_dup_policy(mpnt, tmp);
630 		if (retval)
631 			goto fail_nomem_policy;
632 		tmp->vm_mm = mm;
633 		retval = dup_userfaultfd(tmp, &uf);
634 		if (retval)
635 			goto fail_nomem_anon_vma_fork;
636 		if (anon_vma_fork(tmp, mpnt))
637 			goto fail_nomem_anon_vma_fork;
638 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
639 		tmp->vm_next = tmp->vm_prev = NULL;
640 		file = tmp->vm_file;
641 		if (file) {
642 			struct inode *inode = file_inode(file);
643 			struct address_space *mapping = file->f_mapping;
644 
645 			get_file(file);
646 			if (tmp->vm_flags & VM_DENYWRITE)
647 				atomic_dec(&inode->i_writecount);
648 			i_mmap_lock_write(mapping);
649 			if (tmp->vm_flags & VM_SHARED)
650 				atomic_inc(&mapping->i_mmap_writable);
651 			flush_dcache_mmap_lock(mapping);
652 			/* insert tmp into the share list, just after mpnt */
653 			vma_interval_tree_insert_after(tmp, mpnt,
654 					&mapping->i_mmap);
655 			flush_dcache_mmap_unlock(mapping);
656 			i_mmap_unlock_write(mapping);
657 		}
658 
659 		/*
660 		 * Clear hugetlb-related page reserves for children. This only
661 		 * affects MAP_PRIVATE mappings. Faults generated by the child
662 		 * are not guaranteed to succeed, even if read-only
663 		 */
664 		if (is_vm_hugetlb_page(tmp))
665 			reset_vma_resv_huge_pages(tmp);
666 
667 		/*
668 		 * Link in the new vma and copy the page table entries.
669 		 */
670 		*pprev = tmp;
671 		pprev = &tmp->vm_next;
672 		tmp->vm_prev = prev;
673 		prev = tmp;
674 
675 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
676 		rb_link = &tmp->vm_rb.rb_right;
677 		rb_parent = &tmp->vm_rb;
678 
679 		mm->map_count++;
680 		retval = copy_page_range(mm, oldmm, mpnt);
681 
682 		if (tmp->vm_ops && tmp->vm_ops->open)
683 			tmp->vm_ops->open(tmp);
684 
685 		if (retval)
686 			goto out;
687 	}
688 	/* a new mm has just been created */
689 	arch_dup_mmap(oldmm, mm);
690 	retval = 0;
691 out:
692 	up_write(&mm->mmap_sem);
693 	flush_tlb_mm(oldmm);
694 	up_write(&oldmm->mmap_sem);
695 	dup_userfaultfd_complete(&uf);
696 fail_uprobe_end:
697 	uprobe_end_dup_mmap();
698 	return retval;
699 fail_nomem_anon_vma_fork:
700 	mpol_put(vma_policy(tmp));
701 fail_nomem_policy:
702 	kmem_cache_free(vm_area_cachep, tmp);
703 fail_nomem:
704 	retval = -ENOMEM;
705 	vm_unacct_memory(charge);
706 	goto out;
707 }
708 
709 static inline int mm_alloc_pgd(struct mm_struct *mm)
710 {
711 	mm->pgd = pgd_alloc(mm);
712 	if (unlikely(!mm->pgd))
713 		return -ENOMEM;
714 	return 0;
715 }
716 
717 static inline void mm_free_pgd(struct mm_struct *mm)
718 {
719 	pgd_free(mm, mm->pgd);
720 }
721 #else
722 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
723 {
724 	down_write(&oldmm->mmap_sem);
725 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
726 	up_write(&oldmm->mmap_sem);
727 	return 0;
728 }
729 #define mm_alloc_pgd(mm)	(0)
730 #define mm_free_pgd(mm)
731 #endif /* CONFIG_MMU */
732 
733 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
734 
735 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
736 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
737 
738 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
739 
740 static int __init coredump_filter_setup(char *s)
741 {
742 	default_dump_filter =
743 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
744 		MMF_DUMP_FILTER_MASK;
745 	return 1;
746 }
747 
748 __setup("coredump_filter=", coredump_filter_setup);
749 
750 #include <linux/init_task.h>
751 
752 static void mm_init_aio(struct mm_struct *mm)
753 {
754 #ifdef CONFIG_AIO
755 	spin_lock_init(&mm->ioctx_lock);
756 	mm->ioctx_table = NULL;
757 #endif
758 }
759 
760 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
761 {
762 #ifdef CONFIG_MEMCG
763 	mm->owner = p;
764 #endif
765 }
766 
767 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
768 	struct user_namespace *user_ns)
769 {
770 	mm->mmap = NULL;
771 	mm->mm_rb = RB_ROOT;
772 	mm->vmacache_seqnum = 0;
773 	atomic_set(&mm->mm_users, 1);
774 	atomic_set(&mm->mm_count, 1);
775 	init_rwsem(&mm->mmap_sem);
776 	INIT_LIST_HEAD(&mm->mmlist);
777 	mm->core_state = NULL;
778 	atomic_long_set(&mm->nr_ptes, 0);
779 	mm_nr_pmds_init(mm);
780 	mm->map_count = 0;
781 	mm->locked_vm = 0;
782 	mm->pinned_vm = 0;
783 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
784 	spin_lock_init(&mm->page_table_lock);
785 	mm_init_cpumask(mm);
786 	mm_init_aio(mm);
787 	mm_init_owner(mm, p);
788 	mmu_notifier_mm_init(mm);
789 	clear_tlb_flush_pending(mm);
790 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
791 	mm->pmd_huge_pte = NULL;
792 #endif
793 
794 	if (current->mm) {
795 		mm->flags = current->mm->flags & MMF_INIT_MASK;
796 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
797 	} else {
798 		mm->flags = default_dump_filter;
799 		mm->def_flags = 0;
800 	}
801 
802 	if (mm_alloc_pgd(mm))
803 		goto fail_nopgd;
804 
805 	if (init_new_context(p, mm))
806 		goto fail_nocontext;
807 
808 	mm->user_ns = get_user_ns(user_ns);
809 	return mm;
810 
811 fail_nocontext:
812 	mm_free_pgd(mm);
813 fail_nopgd:
814 	free_mm(mm);
815 	return NULL;
816 }
817 
818 static void check_mm(struct mm_struct *mm)
819 {
820 	int i;
821 
822 	for (i = 0; i < NR_MM_COUNTERS; i++) {
823 		long x = atomic_long_read(&mm->rss_stat.count[i]);
824 
825 		if (unlikely(x))
826 			printk(KERN_ALERT "BUG: Bad rss-counter state "
827 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
828 	}
829 
830 	if (atomic_long_read(&mm->nr_ptes))
831 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
832 				atomic_long_read(&mm->nr_ptes));
833 	if (mm_nr_pmds(mm))
834 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
835 				mm_nr_pmds(mm));
836 
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841 
842 /*
843  * Allocate and initialize an mm_struct.
844  */
845 struct mm_struct *mm_alloc(void)
846 {
847 	struct mm_struct *mm;
848 
849 	mm = allocate_mm();
850 	if (!mm)
851 		return NULL;
852 
853 	memset(mm, 0, sizeof(*mm));
854 	return mm_init(mm, current, current_user_ns());
855 }
856 
857 /*
858  * Called when the last reference to the mm
859  * is dropped: either by a lazy thread or by
860  * mmput. Free the page directory and the mm.
861  */
862 void __mmdrop(struct mm_struct *mm)
863 {
864 	BUG_ON(mm == &init_mm);
865 	mm_free_pgd(mm);
866 	destroy_context(mm);
867 	mmu_notifier_mm_destroy(mm);
868 	check_mm(mm);
869 	put_user_ns(mm->user_ns);
870 	free_mm(mm);
871 }
872 EXPORT_SYMBOL_GPL(__mmdrop);
873 
874 static inline void __mmput(struct mm_struct *mm)
875 {
876 	VM_BUG_ON(atomic_read(&mm->mm_users));
877 
878 	uprobe_clear_state(mm);
879 	exit_aio(mm);
880 	ksm_exit(mm);
881 	khugepaged_exit(mm); /* must run before exit_mmap */
882 	exit_mmap(mm);
883 	mm_put_huge_zero_page(mm);
884 	set_mm_exe_file(mm, NULL);
885 	if (!list_empty(&mm->mmlist)) {
886 		spin_lock(&mmlist_lock);
887 		list_del(&mm->mmlist);
888 		spin_unlock(&mmlist_lock);
889 	}
890 	if (mm->binfmt)
891 		module_put(mm->binfmt->module);
892 	set_bit(MMF_OOM_SKIP, &mm->flags);
893 	mmdrop(mm);
894 }
895 
896 /*
897  * Decrement the use count and release all resources for an mm.
898  */
899 void mmput(struct mm_struct *mm)
900 {
901 	might_sleep();
902 
903 	if (atomic_dec_and_test(&mm->mm_users))
904 		__mmput(mm);
905 }
906 EXPORT_SYMBOL_GPL(mmput);
907 
908 #ifdef CONFIG_MMU
909 static void mmput_async_fn(struct work_struct *work)
910 {
911 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
912 	__mmput(mm);
913 }
914 
915 void mmput_async(struct mm_struct *mm)
916 {
917 	if (atomic_dec_and_test(&mm->mm_users)) {
918 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
919 		schedule_work(&mm->async_put_work);
920 	}
921 }
922 #endif
923 
924 /**
925  * set_mm_exe_file - change a reference to the mm's executable file
926  *
927  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
928  *
929  * Main users are mmput() and sys_execve(). Callers prevent concurrent
930  * invocations: in mmput() nobody alive left, in execve task is single
931  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
932  * mm->exe_file, but does so without using set_mm_exe_file() in order
933  * to do avoid the need for any locks.
934  */
935 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
936 {
937 	struct file *old_exe_file;
938 
939 	/*
940 	 * It is safe to dereference the exe_file without RCU as
941 	 * this function is only called if nobody else can access
942 	 * this mm -- see comment above for justification.
943 	 */
944 	old_exe_file = rcu_dereference_raw(mm->exe_file);
945 
946 	if (new_exe_file)
947 		get_file(new_exe_file);
948 	rcu_assign_pointer(mm->exe_file, new_exe_file);
949 	if (old_exe_file)
950 		fput(old_exe_file);
951 }
952 
953 /**
954  * get_mm_exe_file - acquire a reference to the mm's executable file
955  *
956  * Returns %NULL if mm has no associated executable file.
957  * User must release file via fput().
958  */
959 struct file *get_mm_exe_file(struct mm_struct *mm)
960 {
961 	struct file *exe_file;
962 
963 	rcu_read_lock();
964 	exe_file = rcu_dereference(mm->exe_file);
965 	if (exe_file && !get_file_rcu(exe_file))
966 		exe_file = NULL;
967 	rcu_read_unlock();
968 	return exe_file;
969 }
970 EXPORT_SYMBOL(get_mm_exe_file);
971 
972 /**
973  * get_task_exe_file - acquire a reference to the task's executable file
974  *
975  * Returns %NULL if task's mm (if any) has no associated executable file or
976  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
977  * User must release file via fput().
978  */
979 struct file *get_task_exe_file(struct task_struct *task)
980 {
981 	struct file *exe_file = NULL;
982 	struct mm_struct *mm;
983 
984 	task_lock(task);
985 	mm = task->mm;
986 	if (mm) {
987 		if (!(task->flags & PF_KTHREAD))
988 			exe_file = get_mm_exe_file(mm);
989 	}
990 	task_unlock(task);
991 	return exe_file;
992 }
993 EXPORT_SYMBOL(get_task_exe_file);
994 
995 /**
996  * get_task_mm - acquire a reference to the task's mm
997  *
998  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
999  * this kernel workthread has transiently adopted a user mm with use_mm,
1000  * to do its AIO) is not set and if so returns a reference to it, after
1001  * bumping up the use count.  User must release the mm via mmput()
1002  * after use.  Typically used by /proc and ptrace.
1003  */
1004 struct mm_struct *get_task_mm(struct task_struct *task)
1005 {
1006 	struct mm_struct *mm;
1007 
1008 	task_lock(task);
1009 	mm = task->mm;
1010 	if (mm) {
1011 		if (task->flags & PF_KTHREAD)
1012 			mm = NULL;
1013 		else
1014 			mmget(mm);
1015 	}
1016 	task_unlock(task);
1017 	return mm;
1018 }
1019 EXPORT_SYMBOL_GPL(get_task_mm);
1020 
1021 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1022 {
1023 	struct mm_struct *mm;
1024 	int err;
1025 
1026 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1027 	if (err)
1028 		return ERR_PTR(err);
1029 
1030 	mm = get_task_mm(task);
1031 	if (mm && mm != current->mm &&
1032 			!ptrace_may_access(task, mode)) {
1033 		mmput(mm);
1034 		mm = ERR_PTR(-EACCES);
1035 	}
1036 	mutex_unlock(&task->signal->cred_guard_mutex);
1037 
1038 	return mm;
1039 }
1040 
1041 static void complete_vfork_done(struct task_struct *tsk)
1042 {
1043 	struct completion *vfork;
1044 
1045 	task_lock(tsk);
1046 	vfork = tsk->vfork_done;
1047 	if (likely(vfork)) {
1048 		tsk->vfork_done = NULL;
1049 		complete(vfork);
1050 	}
1051 	task_unlock(tsk);
1052 }
1053 
1054 static int wait_for_vfork_done(struct task_struct *child,
1055 				struct completion *vfork)
1056 {
1057 	int killed;
1058 
1059 	freezer_do_not_count();
1060 	killed = wait_for_completion_killable(vfork);
1061 	freezer_count();
1062 
1063 	if (killed) {
1064 		task_lock(child);
1065 		child->vfork_done = NULL;
1066 		task_unlock(child);
1067 	}
1068 
1069 	put_task_struct(child);
1070 	return killed;
1071 }
1072 
1073 /* Please note the differences between mmput and mm_release.
1074  * mmput is called whenever we stop holding onto a mm_struct,
1075  * error success whatever.
1076  *
1077  * mm_release is called after a mm_struct has been removed
1078  * from the current process.
1079  *
1080  * This difference is important for error handling, when we
1081  * only half set up a mm_struct for a new process and need to restore
1082  * the old one.  Because we mmput the new mm_struct before
1083  * restoring the old one. . .
1084  * Eric Biederman 10 January 1998
1085  */
1086 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1087 {
1088 	/* Get rid of any futexes when releasing the mm */
1089 #ifdef CONFIG_FUTEX
1090 	if (unlikely(tsk->robust_list)) {
1091 		exit_robust_list(tsk);
1092 		tsk->robust_list = NULL;
1093 	}
1094 #ifdef CONFIG_COMPAT
1095 	if (unlikely(tsk->compat_robust_list)) {
1096 		compat_exit_robust_list(tsk);
1097 		tsk->compat_robust_list = NULL;
1098 	}
1099 #endif
1100 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1101 		exit_pi_state_list(tsk);
1102 #endif
1103 
1104 	uprobe_free_utask(tsk);
1105 
1106 	/* Get rid of any cached register state */
1107 	deactivate_mm(tsk, mm);
1108 
1109 	/*
1110 	 * Signal userspace if we're not exiting with a core dump
1111 	 * because we want to leave the value intact for debugging
1112 	 * purposes.
1113 	 */
1114 	if (tsk->clear_child_tid) {
1115 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1116 		    atomic_read(&mm->mm_users) > 1) {
1117 			/*
1118 			 * We don't check the error code - if userspace has
1119 			 * not set up a proper pointer then tough luck.
1120 			 */
1121 			put_user(0, tsk->clear_child_tid);
1122 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1123 					1, NULL, NULL, 0);
1124 		}
1125 		tsk->clear_child_tid = NULL;
1126 	}
1127 
1128 	/*
1129 	 * All done, finally we can wake up parent and return this mm to him.
1130 	 * Also kthread_stop() uses this completion for synchronization.
1131 	 */
1132 	if (tsk->vfork_done)
1133 		complete_vfork_done(tsk);
1134 }
1135 
1136 /*
1137  * Allocate a new mm structure and copy contents from the
1138  * mm structure of the passed in task structure.
1139  */
1140 static struct mm_struct *dup_mm(struct task_struct *tsk)
1141 {
1142 	struct mm_struct *mm, *oldmm = current->mm;
1143 	int err;
1144 
1145 	mm = allocate_mm();
1146 	if (!mm)
1147 		goto fail_nomem;
1148 
1149 	memcpy(mm, oldmm, sizeof(*mm));
1150 
1151 	if (!mm_init(mm, tsk, mm->user_ns))
1152 		goto fail_nomem;
1153 
1154 	err = dup_mmap(mm, oldmm);
1155 	if (err)
1156 		goto free_pt;
1157 
1158 	mm->hiwater_rss = get_mm_rss(mm);
1159 	mm->hiwater_vm = mm->total_vm;
1160 
1161 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1162 		goto free_pt;
1163 
1164 	return mm;
1165 
1166 free_pt:
1167 	/* don't put binfmt in mmput, we haven't got module yet */
1168 	mm->binfmt = NULL;
1169 	mmput(mm);
1170 
1171 fail_nomem:
1172 	return NULL;
1173 }
1174 
1175 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1176 {
1177 	struct mm_struct *mm, *oldmm;
1178 	int retval;
1179 
1180 	tsk->min_flt = tsk->maj_flt = 0;
1181 	tsk->nvcsw = tsk->nivcsw = 0;
1182 #ifdef CONFIG_DETECT_HUNG_TASK
1183 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1184 #endif
1185 
1186 	tsk->mm = NULL;
1187 	tsk->active_mm = NULL;
1188 
1189 	/*
1190 	 * Are we cloning a kernel thread?
1191 	 *
1192 	 * We need to steal a active VM for that..
1193 	 */
1194 	oldmm = current->mm;
1195 	if (!oldmm)
1196 		return 0;
1197 
1198 	/* initialize the new vmacache entries */
1199 	vmacache_flush(tsk);
1200 
1201 	if (clone_flags & CLONE_VM) {
1202 		mmget(oldmm);
1203 		mm = oldmm;
1204 		goto good_mm;
1205 	}
1206 
1207 	retval = -ENOMEM;
1208 	mm = dup_mm(tsk);
1209 	if (!mm)
1210 		goto fail_nomem;
1211 
1212 good_mm:
1213 	tsk->mm = mm;
1214 	tsk->active_mm = mm;
1215 	return 0;
1216 
1217 fail_nomem:
1218 	return retval;
1219 }
1220 
1221 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1222 {
1223 	struct fs_struct *fs = current->fs;
1224 	if (clone_flags & CLONE_FS) {
1225 		/* tsk->fs is already what we want */
1226 		spin_lock(&fs->lock);
1227 		if (fs->in_exec) {
1228 			spin_unlock(&fs->lock);
1229 			return -EAGAIN;
1230 		}
1231 		fs->users++;
1232 		spin_unlock(&fs->lock);
1233 		return 0;
1234 	}
1235 	tsk->fs = copy_fs_struct(fs);
1236 	if (!tsk->fs)
1237 		return -ENOMEM;
1238 	return 0;
1239 }
1240 
1241 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1242 {
1243 	struct files_struct *oldf, *newf;
1244 	int error = 0;
1245 
1246 	/*
1247 	 * A background process may not have any files ...
1248 	 */
1249 	oldf = current->files;
1250 	if (!oldf)
1251 		goto out;
1252 
1253 	if (clone_flags & CLONE_FILES) {
1254 		atomic_inc(&oldf->count);
1255 		goto out;
1256 	}
1257 
1258 	newf = dup_fd(oldf, &error);
1259 	if (!newf)
1260 		goto out;
1261 
1262 	tsk->files = newf;
1263 	error = 0;
1264 out:
1265 	return error;
1266 }
1267 
1268 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1269 {
1270 #ifdef CONFIG_BLOCK
1271 	struct io_context *ioc = current->io_context;
1272 	struct io_context *new_ioc;
1273 
1274 	if (!ioc)
1275 		return 0;
1276 	/*
1277 	 * Share io context with parent, if CLONE_IO is set
1278 	 */
1279 	if (clone_flags & CLONE_IO) {
1280 		ioc_task_link(ioc);
1281 		tsk->io_context = ioc;
1282 	} else if (ioprio_valid(ioc->ioprio)) {
1283 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1284 		if (unlikely(!new_ioc))
1285 			return -ENOMEM;
1286 
1287 		new_ioc->ioprio = ioc->ioprio;
1288 		put_io_context(new_ioc);
1289 	}
1290 #endif
1291 	return 0;
1292 }
1293 
1294 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1295 {
1296 	struct sighand_struct *sig;
1297 
1298 	if (clone_flags & CLONE_SIGHAND) {
1299 		atomic_inc(&current->sighand->count);
1300 		return 0;
1301 	}
1302 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1303 	rcu_assign_pointer(tsk->sighand, sig);
1304 	if (!sig)
1305 		return -ENOMEM;
1306 
1307 	atomic_set(&sig->count, 1);
1308 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1309 	return 0;
1310 }
1311 
1312 void __cleanup_sighand(struct sighand_struct *sighand)
1313 {
1314 	if (atomic_dec_and_test(&sighand->count)) {
1315 		signalfd_cleanup(sighand);
1316 		/*
1317 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1318 		 * without an RCU grace period, see __lock_task_sighand().
1319 		 */
1320 		kmem_cache_free(sighand_cachep, sighand);
1321 	}
1322 }
1323 
1324 #ifdef CONFIG_POSIX_TIMERS
1325 /*
1326  * Initialize POSIX timer handling for a thread group.
1327  */
1328 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1329 {
1330 	unsigned long cpu_limit;
1331 
1332 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1333 	if (cpu_limit != RLIM_INFINITY) {
1334 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1335 		sig->cputimer.running = true;
1336 	}
1337 
1338 	/* The timer lists. */
1339 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1340 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1341 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1342 }
1343 #else
1344 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1345 #endif
1346 
1347 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1348 {
1349 	struct signal_struct *sig;
1350 
1351 	if (clone_flags & CLONE_THREAD)
1352 		return 0;
1353 
1354 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1355 	tsk->signal = sig;
1356 	if (!sig)
1357 		return -ENOMEM;
1358 
1359 	sig->nr_threads = 1;
1360 	atomic_set(&sig->live, 1);
1361 	atomic_set(&sig->sigcnt, 1);
1362 
1363 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1364 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1365 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1366 
1367 	init_waitqueue_head(&sig->wait_chldexit);
1368 	sig->curr_target = tsk;
1369 	init_sigpending(&sig->shared_pending);
1370 	seqlock_init(&sig->stats_lock);
1371 	prev_cputime_init(&sig->prev_cputime);
1372 
1373 #ifdef CONFIG_POSIX_TIMERS
1374 	INIT_LIST_HEAD(&sig->posix_timers);
1375 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1376 	sig->real_timer.function = it_real_fn;
1377 #endif
1378 
1379 	task_lock(current->group_leader);
1380 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1381 	task_unlock(current->group_leader);
1382 
1383 	posix_cpu_timers_init_group(sig);
1384 
1385 	tty_audit_fork(sig);
1386 	sched_autogroup_fork(sig);
1387 
1388 	sig->oom_score_adj = current->signal->oom_score_adj;
1389 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1390 
1391 	mutex_init(&sig->cred_guard_mutex);
1392 
1393 	return 0;
1394 }
1395 
1396 static void copy_seccomp(struct task_struct *p)
1397 {
1398 #ifdef CONFIG_SECCOMP
1399 	/*
1400 	 * Must be called with sighand->lock held, which is common to
1401 	 * all threads in the group. Holding cred_guard_mutex is not
1402 	 * needed because this new task is not yet running and cannot
1403 	 * be racing exec.
1404 	 */
1405 	assert_spin_locked(&current->sighand->siglock);
1406 
1407 	/* Ref-count the new filter user, and assign it. */
1408 	get_seccomp_filter(current);
1409 	p->seccomp = current->seccomp;
1410 
1411 	/*
1412 	 * Explicitly enable no_new_privs here in case it got set
1413 	 * between the task_struct being duplicated and holding the
1414 	 * sighand lock. The seccomp state and nnp must be in sync.
1415 	 */
1416 	if (task_no_new_privs(current))
1417 		task_set_no_new_privs(p);
1418 
1419 	/*
1420 	 * If the parent gained a seccomp mode after copying thread
1421 	 * flags and between before we held the sighand lock, we have
1422 	 * to manually enable the seccomp thread flag here.
1423 	 */
1424 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1425 		set_tsk_thread_flag(p, TIF_SECCOMP);
1426 #endif
1427 }
1428 
1429 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1430 {
1431 	current->clear_child_tid = tidptr;
1432 
1433 	return task_pid_vnr(current);
1434 }
1435 
1436 static void rt_mutex_init_task(struct task_struct *p)
1437 {
1438 	raw_spin_lock_init(&p->pi_lock);
1439 #ifdef CONFIG_RT_MUTEXES
1440 	p->pi_waiters = RB_ROOT;
1441 	p->pi_waiters_leftmost = NULL;
1442 	p->pi_blocked_on = NULL;
1443 #endif
1444 }
1445 
1446 #ifdef CONFIG_POSIX_TIMERS
1447 /*
1448  * Initialize POSIX timer handling for a single task.
1449  */
1450 static void posix_cpu_timers_init(struct task_struct *tsk)
1451 {
1452 	tsk->cputime_expires.prof_exp = 0;
1453 	tsk->cputime_expires.virt_exp = 0;
1454 	tsk->cputime_expires.sched_exp = 0;
1455 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1456 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1457 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1458 }
1459 #else
1460 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1461 #endif
1462 
1463 static inline void
1464 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1465 {
1466 	 task->pids[type].pid = pid;
1467 }
1468 
1469 static inline void rcu_copy_process(struct task_struct *p)
1470 {
1471 #ifdef CONFIG_PREEMPT_RCU
1472 	p->rcu_read_lock_nesting = 0;
1473 	p->rcu_read_unlock_special.s = 0;
1474 	p->rcu_blocked_node = NULL;
1475 	INIT_LIST_HEAD(&p->rcu_node_entry);
1476 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1477 #ifdef CONFIG_TASKS_RCU
1478 	p->rcu_tasks_holdout = false;
1479 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1480 	p->rcu_tasks_idle_cpu = -1;
1481 #endif /* #ifdef CONFIG_TASKS_RCU */
1482 }
1483 
1484 /*
1485  * This creates a new process as a copy of the old one,
1486  * but does not actually start it yet.
1487  *
1488  * It copies the registers, and all the appropriate
1489  * parts of the process environment (as per the clone
1490  * flags). The actual kick-off is left to the caller.
1491  */
1492 static __latent_entropy struct task_struct *copy_process(
1493 					unsigned long clone_flags,
1494 					unsigned long stack_start,
1495 					unsigned long stack_size,
1496 					int __user *child_tidptr,
1497 					struct pid *pid,
1498 					int trace,
1499 					unsigned long tls,
1500 					int node)
1501 {
1502 	int retval;
1503 	struct task_struct *p;
1504 
1505 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1506 		return ERR_PTR(-EINVAL);
1507 
1508 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1509 		return ERR_PTR(-EINVAL);
1510 
1511 	/*
1512 	 * Thread groups must share signals as well, and detached threads
1513 	 * can only be started up within the thread group.
1514 	 */
1515 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1516 		return ERR_PTR(-EINVAL);
1517 
1518 	/*
1519 	 * Shared signal handlers imply shared VM. By way of the above,
1520 	 * thread groups also imply shared VM. Blocking this case allows
1521 	 * for various simplifications in other code.
1522 	 */
1523 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1524 		return ERR_PTR(-EINVAL);
1525 
1526 	/*
1527 	 * Siblings of global init remain as zombies on exit since they are
1528 	 * not reaped by their parent (swapper). To solve this and to avoid
1529 	 * multi-rooted process trees, prevent global and container-inits
1530 	 * from creating siblings.
1531 	 */
1532 	if ((clone_flags & CLONE_PARENT) &&
1533 				current->signal->flags & SIGNAL_UNKILLABLE)
1534 		return ERR_PTR(-EINVAL);
1535 
1536 	/*
1537 	 * If the new process will be in a different pid or user namespace
1538 	 * do not allow it to share a thread group with the forking task.
1539 	 */
1540 	if (clone_flags & CLONE_THREAD) {
1541 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1542 		    (task_active_pid_ns(current) !=
1543 				current->nsproxy->pid_ns_for_children))
1544 			return ERR_PTR(-EINVAL);
1545 	}
1546 
1547 	retval = security_task_create(clone_flags);
1548 	if (retval)
1549 		goto fork_out;
1550 
1551 	retval = -ENOMEM;
1552 	p = dup_task_struct(current, node);
1553 	if (!p)
1554 		goto fork_out;
1555 
1556 	ftrace_graph_init_task(p);
1557 
1558 	rt_mutex_init_task(p);
1559 
1560 #ifdef CONFIG_PROVE_LOCKING
1561 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1562 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1563 #endif
1564 	retval = -EAGAIN;
1565 	if (atomic_read(&p->real_cred->user->processes) >=
1566 			task_rlimit(p, RLIMIT_NPROC)) {
1567 		if (p->real_cred->user != INIT_USER &&
1568 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1569 			goto bad_fork_free;
1570 	}
1571 	current->flags &= ~PF_NPROC_EXCEEDED;
1572 
1573 	retval = copy_creds(p, clone_flags);
1574 	if (retval < 0)
1575 		goto bad_fork_free;
1576 
1577 	/*
1578 	 * If multiple threads are within copy_process(), then this check
1579 	 * triggers too late. This doesn't hurt, the check is only there
1580 	 * to stop root fork bombs.
1581 	 */
1582 	retval = -EAGAIN;
1583 	if (nr_threads >= max_threads)
1584 		goto bad_fork_cleanup_count;
1585 
1586 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1587 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1588 	p->flags |= PF_FORKNOEXEC;
1589 	INIT_LIST_HEAD(&p->children);
1590 	INIT_LIST_HEAD(&p->sibling);
1591 	rcu_copy_process(p);
1592 	p->vfork_done = NULL;
1593 	spin_lock_init(&p->alloc_lock);
1594 
1595 	init_sigpending(&p->pending);
1596 
1597 	p->utime = p->stime = p->gtime = 0;
1598 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1599 	p->utimescaled = p->stimescaled = 0;
1600 #endif
1601 	prev_cputime_init(&p->prev_cputime);
1602 
1603 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1604 	seqcount_init(&p->vtime_seqcount);
1605 	p->vtime_snap = 0;
1606 	p->vtime_snap_whence = VTIME_INACTIVE;
1607 #endif
1608 
1609 #if defined(SPLIT_RSS_COUNTING)
1610 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1611 #endif
1612 
1613 	p->default_timer_slack_ns = current->timer_slack_ns;
1614 
1615 	task_io_accounting_init(&p->ioac);
1616 	acct_clear_integrals(p);
1617 
1618 	posix_cpu_timers_init(p);
1619 
1620 	p->start_time = ktime_get_ns();
1621 	p->real_start_time = ktime_get_boot_ns();
1622 	p->io_context = NULL;
1623 	p->audit_context = NULL;
1624 	cgroup_fork(p);
1625 #ifdef CONFIG_NUMA
1626 	p->mempolicy = mpol_dup(p->mempolicy);
1627 	if (IS_ERR(p->mempolicy)) {
1628 		retval = PTR_ERR(p->mempolicy);
1629 		p->mempolicy = NULL;
1630 		goto bad_fork_cleanup_threadgroup_lock;
1631 	}
1632 #endif
1633 #ifdef CONFIG_CPUSETS
1634 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1635 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1636 	seqcount_init(&p->mems_allowed_seq);
1637 #endif
1638 #ifdef CONFIG_TRACE_IRQFLAGS
1639 	p->irq_events = 0;
1640 	p->hardirqs_enabled = 0;
1641 	p->hardirq_enable_ip = 0;
1642 	p->hardirq_enable_event = 0;
1643 	p->hardirq_disable_ip = _THIS_IP_;
1644 	p->hardirq_disable_event = 0;
1645 	p->softirqs_enabled = 1;
1646 	p->softirq_enable_ip = _THIS_IP_;
1647 	p->softirq_enable_event = 0;
1648 	p->softirq_disable_ip = 0;
1649 	p->softirq_disable_event = 0;
1650 	p->hardirq_context = 0;
1651 	p->softirq_context = 0;
1652 #endif
1653 
1654 	p->pagefault_disabled = 0;
1655 
1656 #ifdef CONFIG_LOCKDEP
1657 	p->lockdep_depth = 0; /* no locks held yet */
1658 	p->curr_chain_key = 0;
1659 	p->lockdep_recursion = 0;
1660 #endif
1661 
1662 #ifdef CONFIG_DEBUG_MUTEXES
1663 	p->blocked_on = NULL; /* not blocked yet */
1664 #endif
1665 #ifdef CONFIG_BCACHE
1666 	p->sequential_io	= 0;
1667 	p->sequential_io_avg	= 0;
1668 #endif
1669 
1670 	/* Perform scheduler related setup. Assign this task to a CPU. */
1671 	retval = sched_fork(clone_flags, p);
1672 	if (retval)
1673 		goto bad_fork_cleanup_policy;
1674 
1675 	retval = perf_event_init_task(p);
1676 	if (retval)
1677 		goto bad_fork_cleanup_policy;
1678 	retval = audit_alloc(p);
1679 	if (retval)
1680 		goto bad_fork_cleanup_perf;
1681 	/* copy all the process information */
1682 	shm_init_task(p);
1683 	retval = copy_semundo(clone_flags, p);
1684 	if (retval)
1685 		goto bad_fork_cleanup_audit;
1686 	retval = copy_files(clone_flags, p);
1687 	if (retval)
1688 		goto bad_fork_cleanup_semundo;
1689 	retval = copy_fs(clone_flags, p);
1690 	if (retval)
1691 		goto bad_fork_cleanup_files;
1692 	retval = copy_sighand(clone_flags, p);
1693 	if (retval)
1694 		goto bad_fork_cleanup_fs;
1695 	retval = copy_signal(clone_flags, p);
1696 	if (retval)
1697 		goto bad_fork_cleanup_sighand;
1698 	retval = copy_mm(clone_flags, p);
1699 	if (retval)
1700 		goto bad_fork_cleanup_signal;
1701 	retval = copy_namespaces(clone_flags, p);
1702 	if (retval)
1703 		goto bad_fork_cleanup_mm;
1704 	retval = copy_io(clone_flags, p);
1705 	if (retval)
1706 		goto bad_fork_cleanup_namespaces;
1707 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1708 	if (retval)
1709 		goto bad_fork_cleanup_io;
1710 
1711 	if (pid != &init_struct_pid) {
1712 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1713 		if (IS_ERR(pid)) {
1714 			retval = PTR_ERR(pid);
1715 			goto bad_fork_cleanup_thread;
1716 		}
1717 	}
1718 
1719 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1720 	/*
1721 	 * Clear TID on mm_release()?
1722 	 */
1723 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1724 #ifdef CONFIG_BLOCK
1725 	p->plug = NULL;
1726 #endif
1727 #ifdef CONFIG_FUTEX
1728 	p->robust_list = NULL;
1729 #ifdef CONFIG_COMPAT
1730 	p->compat_robust_list = NULL;
1731 #endif
1732 	INIT_LIST_HEAD(&p->pi_state_list);
1733 	p->pi_state_cache = NULL;
1734 #endif
1735 	/*
1736 	 * sigaltstack should be cleared when sharing the same VM
1737 	 */
1738 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1739 		sas_ss_reset(p);
1740 
1741 	/*
1742 	 * Syscall tracing and stepping should be turned off in the
1743 	 * child regardless of CLONE_PTRACE.
1744 	 */
1745 	user_disable_single_step(p);
1746 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1747 #ifdef TIF_SYSCALL_EMU
1748 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1749 #endif
1750 	clear_all_latency_tracing(p);
1751 
1752 	/* ok, now we should be set up.. */
1753 	p->pid = pid_nr(pid);
1754 	if (clone_flags & CLONE_THREAD) {
1755 		p->exit_signal = -1;
1756 		p->group_leader = current->group_leader;
1757 		p->tgid = current->tgid;
1758 	} else {
1759 		if (clone_flags & CLONE_PARENT)
1760 			p->exit_signal = current->group_leader->exit_signal;
1761 		else
1762 			p->exit_signal = (clone_flags & CSIGNAL);
1763 		p->group_leader = p;
1764 		p->tgid = p->pid;
1765 	}
1766 
1767 	p->nr_dirtied = 0;
1768 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1769 	p->dirty_paused_when = 0;
1770 
1771 	p->pdeath_signal = 0;
1772 	INIT_LIST_HEAD(&p->thread_group);
1773 	p->task_works = NULL;
1774 
1775 	cgroup_threadgroup_change_begin(current);
1776 	/*
1777 	 * Ensure that the cgroup subsystem policies allow the new process to be
1778 	 * forked. It should be noted the the new process's css_set can be changed
1779 	 * between here and cgroup_post_fork() if an organisation operation is in
1780 	 * progress.
1781 	 */
1782 	retval = cgroup_can_fork(p);
1783 	if (retval)
1784 		goto bad_fork_free_pid;
1785 
1786 	/*
1787 	 * Make it visible to the rest of the system, but dont wake it up yet.
1788 	 * Need tasklist lock for parent etc handling!
1789 	 */
1790 	write_lock_irq(&tasklist_lock);
1791 
1792 	/* CLONE_PARENT re-uses the old parent */
1793 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1794 		p->real_parent = current->real_parent;
1795 		p->parent_exec_id = current->parent_exec_id;
1796 	} else {
1797 		p->real_parent = current;
1798 		p->parent_exec_id = current->self_exec_id;
1799 	}
1800 
1801 	klp_copy_process(p);
1802 
1803 	spin_lock(&current->sighand->siglock);
1804 
1805 	/*
1806 	 * Copy seccomp details explicitly here, in case they were changed
1807 	 * before holding sighand lock.
1808 	 */
1809 	copy_seccomp(p);
1810 
1811 	/*
1812 	 * Process group and session signals need to be delivered to just the
1813 	 * parent before the fork or both the parent and the child after the
1814 	 * fork. Restart if a signal comes in before we add the new process to
1815 	 * it's process group.
1816 	 * A fatal signal pending means that current will exit, so the new
1817 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1818 	*/
1819 	recalc_sigpending();
1820 	if (signal_pending(current)) {
1821 		spin_unlock(&current->sighand->siglock);
1822 		write_unlock_irq(&tasklist_lock);
1823 		retval = -ERESTARTNOINTR;
1824 		goto bad_fork_cancel_cgroup;
1825 	}
1826 
1827 	if (likely(p->pid)) {
1828 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1829 
1830 		init_task_pid(p, PIDTYPE_PID, pid);
1831 		if (thread_group_leader(p)) {
1832 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1833 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1834 
1835 			if (is_child_reaper(pid)) {
1836 				ns_of_pid(pid)->child_reaper = p;
1837 				p->signal->flags |= SIGNAL_UNKILLABLE;
1838 			}
1839 
1840 			p->signal->leader_pid = pid;
1841 			p->signal->tty = tty_kref_get(current->signal->tty);
1842 			/*
1843 			 * Inherit has_child_subreaper flag under the same
1844 			 * tasklist_lock with adding child to the process tree
1845 			 * for propagate_has_child_subreaper optimization.
1846 			 */
1847 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1848 							 p->real_parent->signal->is_child_subreaper;
1849 			list_add_tail(&p->sibling, &p->real_parent->children);
1850 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1851 			attach_pid(p, PIDTYPE_PGID);
1852 			attach_pid(p, PIDTYPE_SID);
1853 			__this_cpu_inc(process_counts);
1854 		} else {
1855 			current->signal->nr_threads++;
1856 			atomic_inc(&current->signal->live);
1857 			atomic_inc(&current->signal->sigcnt);
1858 			list_add_tail_rcu(&p->thread_group,
1859 					  &p->group_leader->thread_group);
1860 			list_add_tail_rcu(&p->thread_node,
1861 					  &p->signal->thread_head);
1862 		}
1863 		attach_pid(p, PIDTYPE_PID);
1864 		nr_threads++;
1865 	}
1866 
1867 	total_forks++;
1868 	spin_unlock(&current->sighand->siglock);
1869 	syscall_tracepoint_update(p);
1870 	write_unlock_irq(&tasklist_lock);
1871 
1872 	proc_fork_connector(p);
1873 	cgroup_post_fork(p);
1874 	cgroup_threadgroup_change_end(current);
1875 	perf_event_fork(p);
1876 
1877 	trace_task_newtask(p, clone_flags);
1878 	uprobe_copy_process(p, clone_flags);
1879 
1880 	return p;
1881 
1882 bad_fork_cancel_cgroup:
1883 	cgroup_cancel_fork(p);
1884 bad_fork_free_pid:
1885 	cgroup_threadgroup_change_end(current);
1886 	if (pid != &init_struct_pid)
1887 		free_pid(pid);
1888 bad_fork_cleanup_thread:
1889 	exit_thread(p);
1890 bad_fork_cleanup_io:
1891 	if (p->io_context)
1892 		exit_io_context(p);
1893 bad_fork_cleanup_namespaces:
1894 	exit_task_namespaces(p);
1895 bad_fork_cleanup_mm:
1896 	if (p->mm)
1897 		mmput(p->mm);
1898 bad_fork_cleanup_signal:
1899 	if (!(clone_flags & CLONE_THREAD))
1900 		free_signal_struct(p->signal);
1901 bad_fork_cleanup_sighand:
1902 	__cleanup_sighand(p->sighand);
1903 bad_fork_cleanup_fs:
1904 	exit_fs(p); /* blocking */
1905 bad_fork_cleanup_files:
1906 	exit_files(p); /* blocking */
1907 bad_fork_cleanup_semundo:
1908 	exit_sem(p);
1909 bad_fork_cleanup_audit:
1910 	audit_free(p);
1911 bad_fork_cleanup_perf:
1912 	perf_event_free_task(p);
1913 bad_fork_cleanup_policy:
1914 #ifdef CONFIG_NUMA
1915 	mpol_put(p->mempolicy);
1916 bad_fork_cleanup_threadgroup_lock:
1917 #endif
1918 	delayacct_tsk_free(p);
1919 bad_fork_cleanup_count:
1920 	atomic_dec(&p->cred->user->processes);
1921 	exit_creds(p);
1922 bad_fork_free:
1923 	p->state = TASK_DEAD;
1924 	put_task_stack(p);
1925 	free_task(p);
1926 fork_out:
1927 	return ERR_PTR(retval);
1928 }
1929 
1930 static inline void init_idle_pids(struct pid_link *links)
1931 {
1932 	enum pid_type type;
1933 
1934 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1935 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1936 		links[type].pid = &init_struct_pid;
1937 	}
1938 }
1939 
1940 struct task_struct *fork_idle(int cpu)
1941 {
1942 	struct task_struct *task;
1943 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1944 			    cpu_to_node(cpu));
1945 	if (!IS_ERR(task)) {
1946 		init_idle_pids(task->pids);
1947 		init_idle(task, cpu);
1948 	}
1949 
1950 	return task;
1951 }
1952 
1953 /*
1954  *  Ok, this is the main fork-routine.
1955  *
1956  * It copies the process, and if successful kick-starts
1957  * it and waits for it to finish using the VM if required.
1958  */
1959 long _do_fork(unsigned long clone_flags,
1960 	      unsigned long stack_start,
1961 	      unsigned long stack_size,
1962 	      int __user *parent_tidptr,
1963 	      int __user *child_tidptr,
1964 	      unsigned long tls)
1965 {
1966 	struct task_struct *p;
1967 	int trace = 0;
1968 	long nr;
1969 
1970 	/*
1971 	 * Determine whether and which event to report to ptracer.  When
1972 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1973 	 * requested, no event is reported; otherwise, report if the event
1974 	 * for the type of forking is enabled.
1975 	 */
1976 	if (!(clone_flags & CLONE_UNTRACED)) {
1977 		if (clone_flags & CLONE_VFORK)
1978 			trace = PTRACE_EVENT_VFORK;
1979 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1980 			trace = PTRACE_EVENT_CLONE;
1981 		else
1982 			trace = PTRACE_EVENT_FORK;
1983 
1984 		if (likely(!ptrace_event_enabled(current, trace)))
1985 			trace = 0;
1986 	}
1987 
1988 	p = copy_process(clone_flags, stack_start, stack_size,
1989 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1990 	add_latent_entropy();
1991 	/*
1992 	 * Do this prior waking up the new thread - the thread pointer
1993 	 * might get invalid after that point, if the thread exits quickly.
1994 	 */
1995 	if (!IS_ERR(p)) {
1996 		struct completion vfork;
1997 		struct pid *pid;
1998 
1999 		trace_sched_process_fork(current, p);
2000 
2001 		pid = get_task_pid(p, PIDTYPE_PID);
2002 		nr = pid_vnr(pid);
2003 
2004 		if (clone_flags & CLONE_PARENT_SETTID)
2005 			put_user(nr, parent_tidptr);
2006 
2007 		if (clone_flags & CLONE_VFORK) {
2008 			p->vfork_done = &vfork;
2009 			init_completion(&vfork);
2010 			get_task_struct(p);
2011 		}
2012 
2013 		wake_up_new_task(p);
2014 
2015 		/* forking complete and child started to run, tell ptracer */
2016 		if (unlikely(trace))
2017 			ptrace_event_pid(trace, pid);
2018 
2019 		if (clone_flags & CLONE_VFORK) {
2020 			if (!wait_for_vfork_done(p, &vfork))
2021 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2022 		}
2023 
2024 		put_pid(pid);
2025 	} else {
2026 		nr = PTR_ERR(p);
2027 	}
2028 	return nr;
2029 }
2030 
2031 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2032 /* For compatibility with architectures that call do_fork directly rather than
2033  * using the syscall entry points below. */
2034 long do_fork(unsigned long clone_flags,
2035 	      unsigned long stack_start,
2036 	      unsigned long stack_size,
2037 	      int __user *parent_tidptr,
2038 	      int __user *child_tidptr)
2039 {
2040 	return _do_fork(clone_flags, stack_start, stack_size,
2041 			parent_tidptr, child_tidptr, 0);
2042 }
2043 #endif
2044 
2045 /*
2046  * Create a kernel thread.
2047  */
2048 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2049 {
2050 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2051 		(unsigned long)arg, NULL, NULL, 0);
2052 }
2053 
2054 #ifdef __ARCH_WANT_SYS_FORK
2055 SYSCALL_DEFINE0(fork)
2056 {
2057 #ifdef CONFIG_MMU
2058 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2059 #else
2060 	/* can not support in nommu mode */
2061 	return -EINVAL;
2062 #endif
2063 }
2064 #endif
2065 
2066 #ifdef __ARCH_WANT_SYS_VFORK
2067 SYSCALL_DEFINE0(vfork)
2068 {
2069 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2070 			0, NULL, NULL, 0);
2071 }
2072 #endif
2073 
2074 #ifdef __ARCH_WANT_SYS_CLONE
2075 #ifdef CONFIG_CLONE_BACKWARDS
2076 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2077 		 int __user *, parent_tidptr,
2078 		 unsigned long, tls,
2079 		 int __user *, child_tidptr)
2080 #elif defined(CONFIG_CLONE_BACKWARDS2)
2081 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2082 		 int __user *, parent_tidptr,
2083 		 int __user *, child_tidptr,
2084 		 unsigned long, tls)
2085 #elif defined(CONFIG_CLONE_BACKWARDS3)
2086 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2087 		int, stack_size,
2088 		int __user *, parent_tidptr,
2089 		int __user *, child_tidptr,
2090 		unsigned long, tls)
2091 #else
2092 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2093 		 int __user *, parent_tidptr,
2094 		 int __user *, child_tidptr,
2095 		 unsigned long, tls)
2096 #endif
2097 {
2098 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2099 }
2100 #endif
2101 
2102 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2103 {
2104 	struct task_struct *leader, *parent, *child;
2105 	int res;
2106 
2107 	read_lock(&tasklist_lock);
2108 	leader = top = top->group_leader;
2109 down:
2110 	for_each_thread(leader, parent) {
2111 		list_for_each_entry(child, &parent->children, sibling) {
2112 			res = visitor(child, data);
2113 			if (res) {
2114 				if (res < 0)
2115 					goto out;
2116 				leader = child;
2117 				goto down;
2118 			}
2119 up:
2120 			;
2121 		}
2122 	}
2123 
2124 	if (leader != top) {
2125 		child = leader;
2126 		parent = child->real_parent;
2127 		leader = parent->group_leader;
2128 		goto up;
2129 	}
2130 out:
2131 	read_unlock(&tasklist_lock);
2132 }
2133 
2134 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2135 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2136 #endif
2137 
2138 static void sighand_ctor(void *data)
2139 {
2140 	struct sighand_struct *sighand = data;
2141 
2142 	spin_lock_init(&sighand->siglock);
2143 	init_waitqueue_head(&sighand->signalfd_wqh);
2144 }
2145 
2146 void __init proc_caches_init(void)
2147 {
2148 	sighand_cachep = kmem_cache_create("sighand_cache",
2149 			sizeof(struct sighand_struct), 0,
2150 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2151 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2152 	signal_cachep = kmem_cache_create("signal_cache",
2153 			sizeof(struct signal_struct), 0,
2154 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2155 			NULL);
2156 	files_cachep = kmem_cache_create("files_cache",
2157 			sizeof(struct files_struct), 0,
2158 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2159 			NULL);
2160 	fs_cachep = kmem_cache_create("fs_cache",
2161 			sizeof(struct fs_struct), 0,
2162 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2163 			NULL);
2164 	/*
2165 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2166 	 * whole struct cpumask for the OFFSTACK case. We could change
2167 	 * this to *only* allocate as much of it as required by the
2168 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2169 	 * is at the end of the structure, exactly for that reason.
2170 	 */
2171 	mm_cachep = kmem_cache_create("mm_struct",
2172 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2173 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2174 			NULL);
2175 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2176 	mmap_init();
2177 	nsproxy_cache_init();
2178 }
2179 
2180 /*
2181  * Check constraints on flags passed to the unshare system call.
2182  */
2183 static int check_unshare_flags(unsigned long unshare_flags)
2184 {
2185 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2186 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2187 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2188 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2189 		return -EINVAL;
2190 	/*
2191 	 * Not implemented, but pretend it works if there is nothing
2192 	 * to unshare.  Note that unsharing the address space or the
2193 	 * signal handlers also need to unshare the signal queues (aka
2194 	 * CLONE_THREAD).
2195 	 */
2196 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2197 		if (!thread_group_empty(current))
2198 			return -EINVAL;
2199 	}
2200 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2201 		if (atomic_read(&current->sighand->count) > 1)
2202 			return -EINVAL;
2203 	}
2204 	if (unshare_flags & CLONE_VM) {
2205 		if (!current_is_single_threaded())
2206 			return -EINVAL;
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 /*
2213  * Unshare the filesystem structure if it is being shared
2214  */
2215 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2216 {
2217 	struct fs_struct *fs = current->fs;
2218 
2219 	if (!(unshare_flags & CLONE_FS) || !fs)
2220 		return 0;
2221 
2222 	/* don't need lock here; in the worst case we'll do useless copy */
2223 	if (fs->users == 1)
2224 		return 0;
2225 
2226 	*new_fsp = copy_fs_struct(fs);
2227 	if (!*new_fsp)
2228 		return -ENOMEM;
2229 
2230 	return 0;
2231 }
2232 
2233 /*
2234  * Unshare file descriptor table if it is being shared
2235  */
2236 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2237 {
2238 	struct files_struct *fd = current->files;
2239 	int error = 0;
2240 
2241 	if ((unshare_flags & CLONE_FILES) &&
2242 	    (fd && atomic_read(&fd->count) > 1)) {
2243 		*new_fdp = dup_fd(fd, &error);
2244 		if (!*new_fdp)
2245 			return error;
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 /*
2252  * unshare allows a process to 'unshare' part of the process
2253  * context which was originally shared using clone.  copy_*
2254  * functions used by do_fork() cannot be used here directly
2255  * because they modify an inactive task_struct that is being
2256  * constructed. Here we are modifying the current, active,
2257  * task_struct.
2258  */
2259 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2260 {
2261 	struct fs_struct *fs, *new_fs = NULL;
2262 	struct files_struct *fd, *new_fd = NULL;
2263 	struct cred *new_cred = NULL;
2264 	struct nsproxy *new_nsproxy = NULL;
2265 	int do_sysvsem = 0;
2266 	int err;
2267 
2268 	/*
2269 	 * If unsharing a user namespace must also unshare the thread group
2270 	 * and unshare the filesystem root and working directories.
2271 	 */
2272 	if (unshare_flags & CLONE_NEWUSER)
2273 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2274 	/*
2275 	 * If unsharing vm, must also unshare signal handlers.
2276 	 */
2277 	if (unshare_flags & CLONE_VM)
2278 		unshare_flags |= CLONE_SIGHAND;
2279 	/*
2280 	 * If unsharing a signal handlers, must also unshare the signal queues.
2281 	 */
2282 	if (unshare_flags & CLONE_SIGHAND)
2283 		unshare_flags |= CLONE_THREAD;
2284 	/*
2285 	 * If unsharing namespace, must also unshare filesystem information.
2286 	 */
2287 	if (unshare_flags & CLONE_NEWNS)
2288 		unshare_flags |= CLONE_FS;
2289 
2290 	err = check_unshare_flags(unshare_flags);
2291 	if (err)
2292 		goto bad_unshare_out;
2293 	/*
2294 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2295 	 * to a new ipc namespace, the semaphore arrays from the old
2296 	 * namespace are unreachable.
2297 	 */
2298 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2299 		do_sysvsem = 1;
2300 	err = unshare_fs(unshare_flags, &new_fs);
2301 	if (err)
2302 		goto bad_unshare_out;
2303 	err = unshare_fd(unshare_flags, &new_fd);
2304 	if (err)
2305 		goto bad_unshare_cleanup_fs;
2306 	err = unshare_userns(unshare_flags, &new_cred);
2307 	if (err)
2308 		goto bad_unshare_cleanup_fd;
2309 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2310 					 new_cred, new_fs);
2311 	if (err)
2312 		goto bad_unshare_cleanup_cred;
2313 
2314 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2315 		if (do_sysvsem) {
2316 			/*
2317 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2318 			 */
2319 			exit_sem(current);
2320 		}
2321 		if (unshare_flags & CLONE_NEWIPC) {
2322 			/* Orphan segments in old ns (see sem above). */
2323 			exit_shm(current);
2324 			shm_init_task(current);
2325 		}
2326 
2327 		if (new_nsproxy)
2328 			switch_task_namespaces(current, new_nsproxy);
2329 
2330 		task_lock(current);
2331 
2332 		if (new_fs) {
2333 			fs = current->fs;
2334 			spin_lock(&fs->lock);
2335 			current->fs = new_fs;
2336 			if (--fs->users)
2337 				new_fs = NULL;
2338 			else
2339 				new_fs = fs;
2340 			spin_unlock(&fs->lock);
2341 		}
2342 
2343 		if (new_fd) {
2344 			fd = current->files;
2345 			current->files = new_fd;
2346 			new_fd = fd;
2347 		}
2348 
2349 		task_unlock(current);
2350 
2351 		if (new_cred) {
2352 			/* Install the new user namespace */
2353 			commit_creds(new_cred);
2354 			new_cred = NULL;
2355 		}
2356 	}
2357 
2358 bad_unshare_cleanup_cred:
2359 	if (new_cred)
2360 		put_cred(new_cred);
2361 bad_unshare_cleanup_fd:
2362 	if (new_fd)
2363 		put_files_struct(new_fd);
2364 
2365 bad_unshare_cleanup_fs:
2366 	if (new_fs)
2367 		free_fs_struct(new_fs);
2368 
2369 bad_unshare_out:
2370 	return err;
2371 }
2372 
2373 /*
2374  *	Helper to unshare the files of the current task.
2375  *	We don't want to expose copy_files internals to
2376  *	the exec layer of the kernel.
2377  */
2378 
2379 int unshare_files(struct files_struct **displaced)
2380 {
2381 	struct task_struct *task = current;
2382 	struct files_struct *copy = NULL;
2383 	int error;
2384 
2385 	error = unshare_fd(CLONE_FILES, &copy);
2386 	if (error || !copy) {
2387 		*displaced = NULL;
2388 		return error;
2389 	}
2390 	*displaced = task->files;
2391 	task_lock(task);
2392 	task->files = copy;
2393 	task_unlock(task);
2394 	return 0;
2395 }
2396 
2397 int sysctl_max_threads(struct ctl_table *table, int write,
2398 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2399 {
2400 	struct ctl_table t;
2401 	int ret;
2402 	int threads = max_threads;
2403 	int min = MIN_THREADS;
2404 	int max = MAX_THREADS;
2405 
2406 	t = *table;
2407 	t.data = &threads;
2408 	t.extra1 = &min;
2409 	t.extra2 = &max;
2410 
2411 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2412 	if (ret || !write)
2413 		return ret;
2414 
2415 	set_max_threads(threads);
2416 
2417 	return 0;
2418 }
2419