xref: /linux-6.15/kernel/fork.c (revision d7851dc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 static struct kmem_cache *task_struct_cachep;
169 
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174 
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177 	kmem_cache_free(task_struct_cachep, tsk);
178 }
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #  ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 struct vm_stack {
195 	struct rcu_head rcu;
196 	struct vm_struct *stack_vm_area;
197 };
198 
199 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
200 {
201 	unsigned int i;
202 
203 	for (i = 0; i < NR_CACHED_STACKS; i++) {
204 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
205 			continue;
206 		return true;
207 	}
208 	return false;
209 }
210 
211 static void thread_stack_free_rcu(struct rcu_head *rh)
212 {
213 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
214 
215 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
216 		return;
217 
218 	vfree(vm_stack);
219 }
220 
221 static void thread_stack_delayed_free(struct task_struct *tsk)
222 {
223 	struct vm_stack *vm_stack = tsk->stack;
224 
225 	vm_stack->stack_vm_area = tsk->stack_vm_area;
226 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
227 }
228 
229 static int free_vm_stack_cache(unsigned int cpu)
230 {
231 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
232 	int i;
233 
234 	for (i = 0; i < NR_CACHED_STACKS; i++) {
235 		struct vm_struct *vm_stack = cached_vm_stacks[i];
236 
237 		if (!vm_stack)
238 			continue;
239 
240 		vfree(vm_stack->addr);
241 		cached_vm_stacks[i] = NULL;
242 	}
243 
244 	return 0;
245 }
246 
247 static int memcg_charge_kernel_stack(struct vm_struct *vm)
248 {
249 	int i;
250 	int ret;
251 	int nr_charged = 0;
252 
253 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
254 
255 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
256 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
257 		if (ret)
258 			goto err;
259 		nr_charged++;
260 	}
261 	return 0;
262 err:
263 	for (i = 0; i < nr_charged; i++)
264 		memcg_kmem_uncharge_page(vm->pages[i], 0);
265 	return ret;
266 }
267 
268 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
269 {
270 	struct vm_struct *vm;
271 	void *stack;
272 	int i;
273 
274 	for (i = 0; i < NR_CACHED_STACKS; i++) {
275 		struct vm_struct *s;
276 
277 		s = this_cpu_xchg(cached_stacks[i], NULL);
278 
279 		if (!s)
280 			continue;
281 
282 		/* Reset stack metadata. */
283 		kasan_unpoison_range(s->addr, THREAD_SIZE);
284 
285 		stack = kasan_reset_tag(s->addr);
286 
287 		/* Clear stale pointers from reused stack. */
288 		memset(stack, 0, THREAD_SIZE);
289 
290 		if (memcg_charge_kernel_stack(s)) {
291 			vfree(s->addr);
292 			return -ENOMEM;
293 		}
294 
295 		tsk->stack_vm_area = s;
296 		tsk->stack = stack;
297 		return 0;
298 	}
299 
300 	/*
301 	 * Allocated stacks are cached and later reused by new threads,
302 	 * so memcg accounting is performed manually on assigning/releasing
303 	 * stacks to tasks. Drop __GFP_ACCOUNT.
304 	 */
305 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
306 				     VMALLOC_START, VMALLOC_END,
307 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
308 				     PAGE_KERNEL,
309 				     0, node, __builtin_return_address(0));
310 	if (!stack)
311 		return -ENOMEM;
312 
313 	vm = find_vm_area(stack);
314 	if (memcg_charge_kernel_stack(vm)) {
315 		vfree(stack);
316 		return -ENOMEM;
317 	}
318 	/*
319 	 * We can't call find_vm_area() in interrupt context, and
320 	 * free_thread_stack() can be called in interrupt context,
321 	 * so cache the vm_struct.
322 	 */
323 	tsk->stack_vm_area = vm;
324 	stack = kasan_reset_tag(stack);
325 	tsk->stack = stack;
326 	return 0;
327 }
328 
329 static void free_thread_stack(struct task_struct *tsk)
330 {
331 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
332 		thread_stack_delayed_free(tsk);
333 
334 	tsk->stack = NULL;
335 	tsk->stack_vm_area = NULL;
336 }
337 
338 #  else /* !CONFIG_VMAP_STACK */
339 
340 static void thread_stack_free_rcu(struct rcu_head *rh)
341 {
342 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
343 }
344 
345 static void thread_stack_delayed_free(struct task_struct *tsk)
346 {
347 	struct rcu_head *rh = tsk->stack;
348 
349 	call_rcu(rh, thread_stack_free_rcu);
350 }
351 
352 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
353 {
354 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
355 					     THREAD_SIZE_ORDER);
356 
357 	if (likely(page)) {
358 		tsk->stack = kasan_reset_tag(page_address(page));
359 		return 0;
360 	}
361 	return -ENOMEM;
362 }
363 
364 static void free_thread_stack(struct task_struct *tsk)
365 {
366 	thread_stack_delayed_free(tsk);
367 	tsk->stack = NULL;
368 }
369 
370 #  endif /* CONFIG_VMAP_STACK */
371 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
372 
373 static struct kmem_cache *thread_stack_cache;
374 
375 static void thread_stack_free_rcu(struct rcu_head *rh)
376 {
377 	kmem_cache_free(thread_stack_cache, rh);
378 }
379 
380 static void thread_stack_delayed_free(struct task_struct *tsk)
381 {
382 	struct rcu_head *rh = tsk->stack;
383 
384 	call_rcu(rh, thread_stack_free_rcu);
385 }
386 
387 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
388 {
389 	unsigned long *stack;
390 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
391 	stack = kasan_reset_tag(stack);
392 	tsk->stack = stack;
393 	return stack ? 0 : -ENOMEM;
394 }
395 
396 static void free_thread_stack(struct task_struct *tsk)
397 {
398 	thread_stack_delayed_free(tsk);
399 	tsk->stack = NULL;
400 }
401 
402 void thread_stack_cache_init(void)
403 {
404 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
405 					THREAD_SIZE, THREAD_SIZE, 0, 0,
406 					THREAD_SIZE, NULL);
407 	BUG_ON(thread_stack_cache == NULL);
408 }
409 
410 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
411 
412 /* SLAB cache for signal_struct structures (tsk->signal) */
413 static struct kmem_cache *signal_cachep;
414 
415 /* SLAB cache for sighand_struct structures (tsk->sighand) */
416 struct kmem_cache *sighand_cachep;
417 
418 /* SLAB cache for files_struct structures (tsk->files) */
419 struct kmem_cache *files_cachep;
420 
421 /* SLAB cache for fs_struct structures (tsk->fs) */
422 struct kmem_cache *fs_cachep;
423 
424 /* SLAB cache for vm_area_struct structures */
425 static struct kmem_cache *vm_area_cachep;
426 
427 /* SLAB cache for mm_struct structures (tsk->mm) */
428 static struct kmem_cache *mm_cachep;
429 
430 #ifdef CONFIG_PER_VMA_LOCK
431 
432 /* SLAB cache for vm_area_struct.lock */
433 static struct kmem_cache *vma_lock_cachep;
434 
435 static bool vma_lock_alloc(struct vm_area_struct *vma)
436 {
437 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
438 	if (!vma->vm_lock)
439 		return false;
440 
441 	init_rwsem(&vma->vm_lock->lock);
442 	vma->vm_lock_seq = -1;
443 
444 	return true;
445 }
446 
447 static inline void vma_lock_free(struct vm_area_struct *vma)
448 {
449 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
450 }
451 
452 #else /* CONFIG_PER_VMA_LOCK */
453 
454 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
455 static inline void vma_lock_free(struct vm_area_struct *vma) {}
456 
457 #endif /* CONFIG_PER_VMA_LOCK */
458 
459 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
460 {
461 	struct vm_area_struct *vma;
462 
463 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
464 	if (!vma)
465 		return NULL;
466 
467 	vma_init(vma, mm);
468 	if (!vma_lock_alloc(vma)) {
469 		kmem_cache_free(vm_area_cachep, vma);
470 		return NULL;
471 	}
472 
473 	return vma;
474 }
475 
476 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
477 {
478 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
479 
480 	if (!new)
481 		return NULL;
482 
483 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
484 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
485 	/*
486 	 * orig->shared.rb may be modified concurrently, but the clone
487 	 * will be reinitialized.
488 	 */
489 	data_race(memcpy(new, orig, sizeof(*new)));
490 	if (!vma_lock_alloc(new)) {
491 		kmem_cache_free(vm_area_cachep, new);
492 		return NULL;
493 	}
494 	INIT_LIST_HEAD(&new->anon_vma_chain);
495 	vma_numab_state_init(new);
496 	dup_anon_vma_name(orig, new);
497 
498 	return new;
499 }
500 
501 void __vm_area_free(struct vm_area_struct *vma)
502 {
503 	vma_numab_state_free(vma);
504 	free_anon_vma_name(vma);
505 	vma_lock_free(vma);
506 	kmem_cache_free(vm_area_cachep, vma);
507 }
508 
509 #ifdef CONFIG_PER_VMA_LOCK
510 static void vm_area_free_rcu_cb(struct rcu_head *head)
511 {
512 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
513 						  vm_rcu);
514 
515 	/* The vma should not be locked while being destroyed. */
516 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
517 	__vm_area_free(vma);
518 }
519 #endif
520 
521 void vm_area_free(struct vm_area_struct *vma)
522 {
523 #ifdef CONFIG_PER_VMA_LOCK
524 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
525 #else
526 	__vm_area_free(vma);
527 #endif
528 }
529 
530 static void account_kernel_stack(struct task_struct *tsk, int account)
531 {
532 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
533 		struct vm_struct *vm = task_stack_vm_area(tsk);
534 		int i;
535 
536 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
537 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
538 					      account * (PAGE_SIZE / 1024));
539 	} else {
540 		void *stack = task_stack_page(tsk);
541 
542 		/* All stack pages are in the same node. */
543 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
544 				      account * (THREAD_SIZE / 1024));
545 	}
546 }
547 
548 void exit_task_stack_account(struct task_struct *tsk)
549 {
550 	account_kernel_stack(tsk, -1);
551 
552 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
553 		struct vm_struct *vm;
554 		int i;
555 
556 		vm = task_stack_vm_area(tsk);
557 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
558 			memcg_kmem_uncharge_page(vm->pages[i], 0);
559 	}
560 }
561 
562 static void release_task_stack(struct task_struct *tsk)
563 {
564 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
565 		return;  /* Better to leak the stack than to free prematurely */
566 
567 	free_thread_stack(tsk);
568 }
569 
570 #ifdef CONFIG_THREAD_INFO_IN_TASK
571 void put_task_stack(struct task_struct *tsk)
572 {
573 	if (refcount_dec_and_test(&tsk->stack_refcount))
574 		release_task_stack(tsk);
575 }
576 #endif
577 
578 void free_task(struct task_struct *tsk)
579 {
580 #ifdef CONFIG_SECCOMP
581 	WARN_ON_ONCE(tsk->seccomp.filter);
582 #endif
583 	release_user_cpus_ptr(tsk);
584 	scs_release(tsk);
585 
586 #ifndef CONFIG_THREAD_INFO_IN_TASK
587 	/*
588 	 * The task is finally done with both the stack and thread_info,
589 	 * so free both.
590 	 */
591 	release_task_stack(tsk);
592 #else
593 	/*
594 	 * If the task had a separate stack allocation, it should be gone
595 	 * by now.
596 	 */
597 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
598 #endif
599 	rt_mutex_debug_task_free(tsk);
600 	ftrace_graph_exit_task(tsk);
601 	arch_release_task_struct(tsk);
602 	if (tsk->flags & PF_KTHREAD)
603 		free_kthread_struct(tsk);
604 	bpf_task_storage_free(tsk);
605 	free_task_struct(tsk);
606 }
607 EXPORT_SYMBOL(free_task);
608 
609 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
610 {
611 	struct file *exe_file;
612 
613 	exe_file = get_mm_exe_file(oldmm);
614 	RCU_INIT_POINTER(mm->exe_file, exe_file);
615 	/*
616 	 * We depend on the oldmm having properly denied write access to the
617 	 * exe_file already.
618 	 */
619 	if (exe_file && deny_write_access(exe_file))
620 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
621 }
622 
623 #ifdef CONFIG_MMU
624 static __latent_entropy int dup_mmap(struct mm_struct *mm,
625 					struct mm_struct *oldmm)
626 {
627 	struct vm_area_struct *mpnt, *tmp;
628 	int retval;
629 	unsigned long charge = 0;
630 	LIST_HEAD(uf);
631 	VMA_ITERATOR(vmi, mm, 0);
632 
633 	uprobe_start_dup_mmap();
634 	if (mmap_write_lock_killable(oldmm)) {
635 		retval = -EINTR;
636 		goto fail_uprobe_end;
637 	}
638 	flush_cache_dup_mm(oldmm);
639 	uprobe_dup_mmap(oldmm, mm);
640 	/*
641 	 * Not linked in yet - no deadlock potential:
642 	 */
643 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
644 
645 	/* No ordering required: file already has been exposed. */
646 	dup_mm_exe_file(mm, oldmm);
647 
648 	mm->total_vm = oldmm->total_vm;
649 	mm->data_vm = oldmm->data_vm;
650 	mm->exec_vm = oldmm->exec_vm;
651 	mm->stack_vm = oldmm->stack_vm;
652 
653 	retval = ksm_fork(mm, oldmm);
654 	if (retval)
655 		goto out;
656 	khugepaged_fork(mm, oldmm);
657 
658 	/* Use __mt_dup() to efficiently build an identical maple tree. */
659 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
660 	if (unlikely(retval))
661 		goto out;
662 
663 	mt_clear_in_rcu(vmi.mas.tree);
664 	for_each_vma(vmi, mpnt) {
665 		struct file *file;
666 
667 		vma_start_write(mpnt);
668 		if (mpnt->vm_flags & VM_DONTCOPY) {
669 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
670 						    mpnt->vm_end, GFP_KERNEL);
671 			if (retval)
672 				goto loop_out;
673 
674 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
675 			continue;
676 		}
677 		charge = 0;
678 		/*
679 		 * Don't duplicate many vmas if we've been oom-killed (for
680 		 * example)
681 		 */
682 		if (fatal_signal_pending(current)) {
683 			retval = -EINTR;
684 			goto loop_out;
685 		}
686 		if (mpnt->vm_flags & VM_ACCOUNT) {
687 			unsigned long len = vma_pages(mpnt);
688 
689 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
690 				goto fail_nomem;
691 			charge = len;
692 		}
693 		tmp = vm_area_dup(mpnt);
694 		if (!tmp)
695 			goto fail_nomem;
696 		retval = vma_dup_policy(mpnt, tmp);
697 		if (retval)
698 			goto fail_nomem_policy;
699 		tmp->vm_mm = mm;
700 		retval = dup_userfaultfd(tmp, &uf);
701 		if (retval)
702 			goto fail_nomem_anon_vma_fork;
703 		if (tmp->vm_flags & VM_WIPEONFORK) {
704 			/*
705 			 * VM_WIPEONFORK gets a clean slate in the child.
706 			 * Don't prepare anon_vma until fault since we don't
707 			 * copy page for current vma.
708 			 */
709 			tmp->anon_vma = NULL;
710 		} else if (anon_vma_fork(tmp, mpnt))
711 			goto fail_nomem_anon_vma_fork;
712 		vm_flags_clear(tmp, VM_LOCKED_MASK);
713 		file = tmp->vm_file;
714 		if (file) {
715 			struct address_space *mapping = file->f_mapping;
716 
717 			get_file(file);
718 			i_mmap_lock_write(mapping);
719 			if (vma_is_shared_maywrite(tmp))
720 				mapping_allow_writable(mapping);
721 			flush_dcache_mmap_lock(mapping);
722 			/* insert tmp into the share list, just after mpnt */
723 			vma_interval_tree_insert_after(tmp, mpnt,
724 					&mapping->i_mmap);
725 			flush_dcache_mmap_unlock(mapping);
726 			i_mmap_unlock_write(mapping);
727 		}
728 
729 		/*
730 		 * Copy/update hugetlb private vma information.
731 		 */
732 		if (is_vm_hugetlb_page(tmp))
733 			hugetlb_dup_vma_private(tmp);
734 
735 		/*
736 		 * Link the vma into the MT. After using __mt_dup(), memory
737 		 * allocation is not necessary here, so it cannot fail.
738 		 */
739 		vma_iter_bulk_store(&vmi, tmp);
740 
741 		mm->map_count++;
742 		if (!(tmp->vm_flags & VM_WIPEONFORK))
743 			retval = copy_page_range(tmp, mpnt);
744 
745 		if (tmp->vm_ops && tmp->vm_ops->open)
746 			tmp->vm_ops->open(tmp);
747 
748 		if (retval) {
749 			mpnt = vma_next(&vmi);
750 			goto loop_out;
751 		}
752 	}
753 	/* a new mm has just been created */
754 	retval = arch_dup_mmap(oldmm, mm);
755 loop_out:
756 	vma_iter_free(&vmi);
757 	if (!retval) {
758 		mt_set_in_rcu(vmi.mas.tree);
759 	} else if (mpnt) {
760 		/*
761 		 * The entire maple tree has already been duplicated. If the
762 		 * mmap duplication fails, mark the failure point with
763 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
764 		 * stop releasing VMAs that have not been duplicated after this
765 		 * point.
766 		 */
767 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
768 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
769 	}
770 out:
771 	mmap_write_unlock(mm);
772 	flush_tlb_mm(oldmm);
773 	mmap_write_unlock(oldmm);
774 	dup_userfaultfd_complete(&uf);
775 fail_uprobe_end:
776 	uprobe_end_dup_mmap();
777 	return retval;
778 
779 fail_nomem_anon_vma_fork:
780 	mpol_put(vma_policy(tmp));
781 fail_nomem_policy:
782 	vm_area_free(tmp);
783 fail_nomem:
784 	retval = -ENOMEM;
785 	vm_unacct_memory(charge);
786 	goto loop_out;
787 }
788 
789 static inline int mm_alloc_pgd(struct mm_struct *mm)
790 {
791 	mm->pgd = pgd_alloc(mm);
792 	if (unlikely(!mm->pgd))
793 		return -ENOMEM;
794 	return 0;
795 }
796 
797 static inline void mm_free_pgd(struct mm_struct *mm)
798 {
799 	pgd_free(mm, mm->pgd);
800 }
801 #else
802 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
803 {
804 	mmap_write_lock(oldmm);
805 	dup_mm_exe_file(mm, oldmm);
806 	mmap_write_unlock(oldmm);
807 	return 0;
808 }
809 #define mm_alloc_pgd(mm)	(0)
810 #define mm_free_pgd(mm)
811 #endif /* CONFIG_MMU */
812 
813 static void check_mm(struct mm_struct *mm)
814 {
815 	int i;
816 
817 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
818 			 "Please make sure 'struct resident_page_types[]' is updated as well");
819 
820 	for (i = 0; i < NR_MM_COUNTERS; i++) {
821 		long x = percpu_counter_sum(&mm->rss_stat[i]);
822 
823 		if (unlikely(x))
824 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
825 				 mm, resident_page_types[i], x);
826 	}
827 
828 	if (mm_pgtables_bytes(mm))
829 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
830 				mm_pgtables_bytes(mm));
831 
832 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
833 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
834 #endif
835 }
836 
837 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
838 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
839 
840 static void do_check_lazy_tlb(void *arg)
841 {
842 	struct mm_struct *mm = arg;
843 
844 	WARN_ON_ONCE(current->active_mm == mm);
845 }
846 
847 static void do_shoot_lazy_tlb(void *arg)
848 {
849 	struct mm_struct *mm = arg;
850 
851 	if (current->active_mm == mm) {
852 		WARN_ON_ONCE(current->mm);
853 		current->active_mm = &init_mm;
854 		switch_mm(mm, &init_mm, current);
855 	}
856 }
857 
858 static void cleanup_lazy_tlbs(struct mm_struct *mm)
859 {
860 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
861 		/*
862 		 * In this case, lazy tlb mms are refounted and would not reach
863 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
864 		 */
865 		return;
866 	}
867 
868 	/*
869 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
870 	 * requires lazy mm users to switch to another mm when the refcount
871 	 * drops to zero, before the mm is freed. This requires IPIs here to
872 	 * switch kernel threads to init_mm.
873 	 *
874 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
875 	 * switch with the final userspace teardown TLB flush which leaves the
876 	 * mm lazy on this CPU but no others, reducing the need for additional
877 	 * IPIs here. There are cases where a final IPI is still required here,
878 	 * such as the final mmdrop being performed on a different CPU than the
879 	 * one exiting, or kernel threads using the mm when userspace exits.
880 	 *
881 	 * IPI overheads have not found to be expensive, but they could be
882 	 * reduced in a number of possible ways, for example (roughly
883 	 * increasing order of complexity):
884 	 * - The last lazy reference created by exit_mm() could instead switch
885 	 *   to init_mm, however it's probable this will run on the same CPU
886 	 *   immediately afterwards, so this may not reduce IPIs much.
887 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
888 	 * - CPUs store active_mm where it can be remotely checked without a
889 	 *   lock, to filter out false-positives in the cpumask.
890 	 * - After mm_users or mm_count reaches zero, switching away from the
891 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
892 	 *   with some batching or delaying of the final IPIs.
893 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
894 	 *   switching to avoid IPIs completely.
895 	 */
896 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
897 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
898 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
899 }
900 
901 /*
902  * Called when the last reference to the mm
903  * is dropped: either by a lazy thread or by
904  * mmput. Free the page directory and the mm.
905  */
906 void __mmdrop(struct mm_struct *mm)
907 {
908 	BUG_ON(mm == &init_mm);
909 	WARN_ON_ONCE(mm == current->mm);
910 
911 	/* Ensure no CPUs are using this as their lazy tlb mm */
912 	cleanup_lazy_tlbs(mm);
913 
914 	WARN_ON_ONCE(mm == current->active_mm);
915 	mm_free_pgd(mm);
916 	destroy_context(mm);
917 	mmu_notifier_subscriptions_destroy(mm);
918 	check_mm(mm);
919 	put_user_ns(mm->user_ns);
920 	mm_pasid_drop(mm);
921 	mm_destroy_cid(mm);
922 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
923 
924 	free_mm(mm);
925 }
926 EXPORT_SYMBOL_GPL(__mmdrop);
927 
928 static void mmdrop_async_fn(struct work_struct *work)
929 {
930 	struct mm_struct *mm;
931 
932 	mm = container_of(work, struct mm_struct, async_put_work);
933 	__mmdrop(mm);
934 }
935 
936 static void mmdrop_async(struct mm_struct *mm)
937 {
938 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
939 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
940 		schedule_work(&mm->async_put_work);
941 	}
942 }
943 
944 static inline void free_signal_struct(struct signal_struct *sig)
945 {
946 	taskstats_tgid_free(sig);
947 	sched_autogroup_exit(sig);
948 	/*
949 	 * __mmdrop is not safe to call from softirq context on x86 due to
950 	 * pgd_dtor so postpone it to the async context
951 	 */
952 	if (sig->oom_mm)
953 		mmdrop_async(sig->oom_mm);
954 	kmem_cache_free(signal_cachep, sig);
955 }
956 
957 static inline void put_signal_struct(struct signal_struct *sig)
958 {
959 	if (refcount_dec_and_test(&sig->sigcnt))
960 		free_signal_struct(sig);
961 }
962 
963 void __put_task_struct(struct task_struct *tsk)
964 {
965 	WARN_ON(!tsk->exit_state);
966 	WARN_ON(refcount_read(&tsk->usage));
967 	WARN_ON(tsk == current);
968 
969 	io_uring_free(tsk);
970 	cgroup_free(tsk);
971 	task_numa_free(tsk, true);
972 	security_task_free(tsk);
973 	exit_creds(tsk);
974 	delayacct_tsk_free(tsk);
975 	put_signal_struct(tsk->signal);
976 	sched_core_free(tsk);
977 	free_task(tsk);
978 }
979 EXPORT_SYMBOL_GPL(__put_task_struct);
980 
981 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
982 {
983 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
984 
985 	__put_task_struct(task);
986 }
987 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
988 
989 void __init __weak arch_task_cache_init(void) { }
990 
991 /*
992  * set_max_threads
993  */
994 static void set_max_threads(unsigned int max_threads_suggested)
995 {
996 	u64 threads;
997 	unsigned long nr_pages = totalram_pages();
998 
999 	/*
1000 	 * The number of threads shall be limited such that the thread
1001 	 * structures may only consume a small part of the available memory.
1002 	 */
1003 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1004 		threads = MAX_THREADS;
1005 	else
1006 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1007 				    (u64) THREAD_SIZE * 8UL);
1008 
1009 	if (threads > max_threads_suggested)
1010 		threads = max_threads_suggested;
1011 
1012 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1013 }
1014 
1015 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1016 /* Initialized by the architecture: */
1017 int arch_task_struct_size __read_mostly;
1018 #endif
1019 
1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1021 {
1022 	/* Fetch thread_struct whitelist for the architecture. */
1023 	arch_thread_struct_whitelist(offset, size);
1024 
1025 	/*
1026 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1027 	 * adjust offset to position of thread_struct in task_struct.
1028 	 */
1029 	if (unlikely(*size == 0))
1030 		*offset = 0;
1031 	else
1032 		*offset += offsetof(struct task_struct, thread);
1033 }
1034 
1035 void __init fork_init(void)
1036 {
1037 	int i;
1038 #ifndef ARCH_MIN_TASKALIGN
1039 #define ARCH_MIN_TASKALIGN	0
1040 #endif
1041 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1042 	unsigned long useroffset, usersize;
1043 
1044 	/* create a slab on which task_structs can be allocated */
1045 	task_struct_whitelist(&useroffset, &usersize);
1046 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1047 			arch_task_struct_size, align,
1048 			SLAB_PANIC|SLAB_ACCOUNT,
1049 			useroffset, usersize, NULL);
1050 
1051 	/* do the arch specific task caches init */
1052 	arch_task_cache_init();
1053 
1054 	set_max_threads(MAX_THREADS);
1055 
1056 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1057 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1058 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1059 		init_task.signal->rlim[RLIMIT_NPROC];
1060 
1061 	for (i = 0; i < UCOUNT_COUNTS; i++)
1062 		init_user_ns.ucount_max[i] = max_threads/2;
1063 
1064 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1065 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1066 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1067 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1068 
1069 #ifdef CONFIG_VMAP_STACK
1070 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1071 			  NULL, free_vm_stack_cache);
1072 #endif
1073 
1074 	scs_init();
1075 
1076 	lockdep_init_task(&init_task);
1077 	uprobes_init();
1078 }
1079 
1080 int __weak arch_dup_task_struct(struct task_struct *dst,
1081 					       struct task_struct *src)
1082 {
1083 	*dst = *src;
1084 	return 0;
1085 }
1086 
1087 void set_task_stack_end_magic(struct task_struct *tsk)
1088 {
1089 	unsigned long *stackend;
1090 
1091 	stackend = end_of_stack(tsk);
1092 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1093 }
1094 
1095 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1096 {
1097 	struct task_struct *tsk;
1098 	int err;
1099 
1100 	if (node == NUMA_NO_NODE)
1101 		node = tsk_fork_get_node(orig);
1102 	tsk = alloc_task_struct_node(node);
1103 	if (!tsk)
1104 		return NULL;
1105 
1106 	err = arch_dup_task_struct(tsk, orig);
1107 	if (err)
1108 		goto free_tsk;
1109 
1110 	err = alloc_thread_stack_node(tsk, node);
1111 	if (err)
1112 		goto free_tsk;
1113 
1114 #ifdef CONFIG_THREAD_INFO_IN_TASK
1115 	refcount_set(&tsk->stack_refcount, 1);
1116 #endif
1117 	account_kernel_stack(tsk, 1);
1118 
1119 	err = scs_prepare(tsk, node);
1120 	if (err)
1121 		goto free_stack;
1122 
1123 #ifdef CONFIG_SECCOMP
1124 	/*
1125 	 * We must handle setting up seccomp filters once we're under
1126 	 * the sighand lock in case orig has changed between now and
1127 	 * then. Until then, filter must be NULL to avoid messing up
1128 	 * the usage counts on the error path calling free_task.
1129 	 */
1130 	tsk->seccomp.filter = NULL;
1131 #endif
1132 
1133 	setup_thread_stack(tsk, orig);
1134 	clear_user_return_notifier(tsk);
1135 	clear_tsk_need_resched(tsk);
1136 	set_task_stack_end_magic(tsk);
1137 	clear_syscall_work_syscall_user_dispatch(tsk);
1138 
1139 #ifdef CONFIG_STACKPROTECTOR
1140 	tsk->stack_canary = get_random_canary();
1141 #endif
1142 	if (orig->cpus_ptr == &orig->cpus_mask)
1143 		tsk->cpus_ptr = &tsk->cpus_mask;
1144 	dup_user_cpus_ptr(tsk, orig, node);
1145 
1146 	/*
1147 	 * One for the user space visible state that goes away when reaped.
1148 	 * One for the scheduler.
1149 	 */
1150 	refcount_set(&tsk->rcu_users, 2);
1151 	/* One for the rcu users */
1152 	refcount_set(&tsk->usage, 1);
1153 #ifdef CONFIG_BLK_DEV_IO_TRACE
1154 	tsk->btrace_seq = 0;
1155 #endif
1156 	tsk->splice_pipe = NULL;
1157 	tsk->task_frag.page = NULL;
1158 	tsk->wake_q.next = NULL;
1159 	tsk->worker_private = NULL;
1160 
1161 	kcov_task_init(tsk);
1162 	kmsan_task_create(tsk);
1163 	kmap_local_fork(tsk);
1164 
1165 #ifdef CONFIG_FAULT_INJECTION
1166 	tsk->fail_nth = 0;
1167 #endif
1168 
1169 #ifdef CONFIG_BLK_CGROUP
1170 	tsk->throttle_disk = NULL;
1171 	tsk->use_memdelay = 0;
1172 #endif
1173 
1174 #ifdef CONFIG_IOMMU_SVA
1175 	tsk->pasid_activated = 0;
1176 #endif
1177 
1178 #ifdef CONFIG_MEMCG
1179 	tsk->active_memcg = NULL;
1180 #endif
1181 
1182 #ifdef CONFIG_CPU_SUP_INTEL
1183 	tsk->reported_split_lock = 0;
1184 #endif
1185 
1186 #ifdef CONFIG_SCHED_MM_CID
1187 	tsk->mm_cid = -1;
1188 	tsk->last_mm_cid = -1;
1189 	tsk->mm_cid_active = 0;
1190 	tsk->migrate_from_cpu = -1;
1191 #endif
1192 	return tsk;
1193 
1194 free_stack:
1195 	exit_task_stack_account(tsk);
1196 	free_thread_stack(tsk);
1197 free_tsk:
1198 	free_task_struct(tsk);
1199 	return NULL;
1200 }
1201 
1202 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1203 
1204 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1205 
1206 static int __init coredump_filter_setup(char *s)
1207 {
1208 	default_dump_filter =
1209 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1210 		MMF_DUMP_FILTER_MASK;
1211 	return 1;
1212 }
1213 
1214 __setup("coredump_filter=", coredump_filter_setup);
1215 
1216 #include <linux/init_task.h>
1217 
1218 static void mm_init_aio(struct mm_struct *mm)
1219 {
1220 #ifdef CONFIG_AIO
1221 	spin_lock_init(&mm->ioctx_lock);
1222 	mm->ioctx_table = NULL;
1223 #endif
1224 }
1225 
1226 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1227 					   struct task_struct *p)
1228 {
1229 #ifdef CONFIG_MEMCG
1230 	if (mm->owner == p)
1231 		WRITE_ONCE(mm->owner, NULL);
1232 #endif
1233 }
1234 
1235 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1236 {
1237 #ifdef CONFIG_MEMCG
1238 	mm->owner = p;
1239 #endif
1240 }
1241 
1242 static void mm_init_uprobes_state(struct mm_struct *mm)
1243 {
1244 #ifdef CONFIG_UPROBES
1245 	mm->uprobes_state.xol_area = NULL;
1246 #endif
1247 }
1248 
1249 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1250 	struct user_namespace *user_ns)
1251 {
1252 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1253 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1254 	atomic_set(&mm->mm_users, 1);
1255 	atomic_set(&mm->mm_count, 1);
1256 	seqcount_init(&mm->write_protect_seq);
1257 	mmap_init_lock(mm);
1258 	INIT_LIST_HEAD(&mm->mmlist);
1259 #ifdef CONFIG_PER_VMA_LOCK
1260 	mm->mm_lock_seq = 0;
1261 #endif
1262 	mm_pgtables_bytes_init(mm);
1263 	mm->map_count = 0;
1264 	mm->locked_vm = 0;
1265 	atomic64_set(&mm->pinned_vm, 0);
1266 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1267 	spin_lock_init(&mm->page_table_lock);
1268 	spin_lock_init(&mm->arg_lock);
1269 	mm_init_cpumask(mm);
1270 	mm_init_aio(mm);
1271 	mm_init_owner(mm, p);
1272 	mm_pasid_init(mm);
1273 	RCU_INIT_POINTER(mm->exe_file, NULL);
1274 	mmu_notifier_subscriptions_init(mm);
1275 	init_tlb_flush_pending(mm);
1276 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1277 	mm->pmd_huge_pte = NULL;
1278 #endif
1279 	mm_init_uprobes_state(mm);
1280 	hugetlb_count_init(mm);
1281 
1282 	if (current->mm) {
1283 		mm->flags = mmf_init_flags(current->mm->flags);
1284 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1285 	} else {
1286 		mm->flags = default_dump_filter;
1287 		mm->def_flags = 0;
1288 	}
1289 
1290 	if (mm_alloc_pgd(mm))
1291 		goto fail_nopgd;
1292 
1293 	if (init_new_context(p, mm))
1294 		goto fail_nocontext;
1295 
1296 	if (mm_alloc_cid(mm))
1297 		goto fail_cid;
1298 
1299 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1300 				     NR_MM_COUNTERS))
1301 		goto fail_pcpu;
1302 
1303 	mm->user_ns = get_user_ns(user_ns);
1304 	lru_gen_init_mm(mm);
1305 	return mm;
1306 
1307 fail_pcpu:
1308 	mm_destroy_cid(mm);
1309 fail_cid:
1310 	destroy_context(mm);
1311 fail_nocontext:
1312 	mm_free_pgd(mm);
1313 fail_nopgd:
1314 	free_mm(mm);
1315 	return NULL;
1316 }
1317 
1318 /*
1319  * Allocate and initialize an mm_struct.
1320  */
1321 struct mm_struct *mm_alloc(void)
1322 {
1323 	struct mm_struct *mm;
1324 
1325 	mm = allocate_mm();
1326 	if (!mm)
1327 		return NULL;
1328 
1329 	memset(mm, 0, sizeof(*mm));
1330 	return mm_init(mm, current, current_user_ns());
1331 }
1332 
1333 static inline void __mmput(struct mm_struct *mm)
1334 {
1335 	VM_BUG_ON(atomic_read(&mm->mm_users));
1336 
1337 	uprobe_clear_state(mm);
1338 	exit_aio(mm);
1339 	ksm_exit(mm);
1340 	khugepaged_exit(mm); /* must run before exit_mmap */
1341 	exit_mmap(mm);
1342 	mm_put_huge_zero_page(mm);
1343 	set_mm_exe_file(mm, NULL);
1344 	if (!list_empty(&mm->mmlist)) {
1345 		spin_lock(&mmlist_lock);
1346 		list_del(&mm->mmlist);
1347 		spin_unlock(&mmlist_lock);
1348 	}
1349 	if (mm->binfmt)
1350 		module_put(mm->binfmt->module);
1351 	lru_gen_del_mm(mm);
1352 	mmdrop(mm);
1353 }
1354 
1355 /*
1356  * Decrement the use count and release all resources for an mm.
1357  */
1358 void mmput(struct mm_struct *mm)
1359 {
1360 	might_sleep();
1361 
1362 	if (atomic_dec_and_test(&mm->mm_users))
1363 		__mmput(mm);
1364 }
1365 EXPORT_SYMBOL_GPL(mmput);
1366 
1367 #ifdef CONFIG_MMU
1368 static void mmput_async_fn(struct work_struct *work)
1369 {
1370 	struct mm_struct *mm = container_of(work, struct mm_struct,
1371 					    async_put_work);
1372 
1373 	__mmput(mm);
1374 }
1375 
1376 void mmput_async(struct mm_struct *mm)
1377 {
1378 	if (atomic_dec_and_test(&mm->mm_users)) {
1379 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1380 		schedule_work(&mm->async_put_work);
1381 	}
1382 }
1383 EXPORT_SYMBOL_GPL(mmput_async);
1384 #endif
1385 
1386 /**
1387  * set_mm_exe_file - change a reference to the mm's executable file
1388  * @mm: The mm to change.
1389  * @new_exe_file: The new file to use.
1390  *
1391  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1392  *
1393  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1394  * invocations: in mmput() nobody alive left, in execve it happens before
1395  * the new mm is made visible to anyone.
1396  *
1397  * Can only fail if new_exe_file != NULL.
1398  */
1399 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1400 {
1401 	struct file *old_exe_file;
1402 
1403 	/*
1404 	 * It is safe to dereference the exe_file without RCU as
1405 	 * this function is only called if nobody else can access
1406 	 * this mm -- see comment above for justification.
1407 	 */
1408 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1409 
1410 	if (new_exe_file) {
1411 		/*
1412 		 * We expect the caller (i.e., sys_execve) to already denied
1413 		 * write access, so this is unlikely to fail.
1414 		 */
1415 		if (unlikely(deny_write_access(new_exe_file)))
1416 			return -EACCES;
1417 		get_file(new_exe_file);
1418 	}
1419 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1420 	if (old_exe_file) {
1421 		allow_write_access(old_exe_file);
1422 		fput(old_exe_file);
1423 	}
1424 	return 0;
1425 }
1426 
1427 /**
1428  * replace_mm_exe_file - replace a reference to the mm's executable file
1429  * @mm: The mm to change.
1430  * @new_exe_file: The new file to use.
1431  *
1432  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1433  *
1434  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1435  */
1436 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1437 {
1438 	struct vm_area_struct *vma;
1439 	struct file *old_exe_file;
1440 	int ret = 0;
1441 
1442 	/* Forbid mm->exe_file change if old file still mapped. */
1443 	old_exe_file = get_mm_exe_file(mm);
1444 	if (old_exe_file) {
1445 		VMA_ITERATOR(vmi, mm, 0);
1446 		mmap_read_lock(mm);
1447 		for_each_vma(vmi, vma) {
1448 			if (!vma->vm_file)
1449 				continue;
1450 			if (path_equal(&vma->vm_file->f_path,
1451 				       &old_exe_file->f_path)) {
1452 				ret = -EBUSY;
1453 				break;
1454 			}
1455 		}
1456 		mmap_read_unlock(mm);
1457 		fput(old_exe_file);
1458 		if (ret)
1459 			return ret;
1460 	}
1461 
1462 	ret = deny_write_access(new_exe_file);
1463 	if (ret)
1464 		return -EACCES;
1465 	get_file(new_exe_file);
1466 
1467 	/* set the new file */
1468 	mmap_write_lock(mm);
1469 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1470 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1471 	mmap_write_unlock(mm);
1472 
1473 	if (old_exe_file) {
1474 		allow_write_access(old_exe_file);
1475 		fput(old_exe_file);
1476 	}
1477 	return 0;
1478 }
1479 
1480 /**
1481  * get_mm_exe_file - acquire a reference to the mm's executable file
1482  * @mm: The mm of interest.
1483  *
1484  * Returns %NULL if mm has no associated executable file.
1485  * User must release file via fput().
1486  */
1487 struct file *get_mm_exe_file(struct mm_struct *mm)
1488 {
1489 	struct file *exe_file;
1490 
1491 	rcu_read_lock();
1492 	exe_file = get_file_rcu(&mm->exe_file);
1493 	rcu_read_unlock();
1494 	return exe_file;
1495 }
1496 
1497 /**
1498  * get_task_exe_file - acquire a reference to the task's executable file
1499  * @task: The task.
1500  *
1501  * Returns %NULL if task's mm (if any) has no associated executable file or
1502  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1503  * User must release file via fput().
1504  */
1505 struct file *get_task_exe_file(struct task_struct *task)
1506 {
1507 	struct file *exe_file = NULL;
1508 	struct mm_struct *mm;
1509 
1510 	task_lock(task);
1511 	mm = task->mm;
1512 	if (mm) {
1513 		if (!(task->flags & PF_KTHREAD))
1514 			exe_file = get_mm_exe_file(mm);
1515 	}
1516 	task_unlock(task);
1517 	return exe_file;
1518 }
1519 
1520 /**
1521  * get_task_mm - acquire a reference to the task's mm
1522  * @task: The task.
1523  *
1524  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1525  * this kernel workthread has transiently adopted a user mm with use_mm,
1526  * to do its AIO) is not set and if so returns a reference to it, after
1527  * bumping up the use count.  User must release the mm via mmput()
1528  * after use.  Typically used by /proc and ptrace.
1529  */
1530 struct mm_struct *get_task_mm(struct task_struct *task)
1531 {
1532 	struct mm_struct *mm;
1533 
1534 	task_lock(task);
1535 	mm = task->mm;
1536 	if (mm) {
1537 		if (task->flags & PF_KTHREAD)
1538 			mm = NULL;
1539 		else
1540 			mmget(mm);
1541 	}
1542 	task_unlock(task);
1543 	return mm;
1544 }
1545 EXPORT_SYMBOL_GPL(get_task_mm);
1546 
1547 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1548 {
1549 	struct mm_struct *mm;
1550 	int err;
1551 
1552 	err =  down_read_killable(&task->signal->exec_update_lock);
1553 	if (err)
1554 		return ERR_PTR(err);
1555 
1556 	mm = get_task_mm(task);
1557 	if (mm && mm != current->mm &&
1558 			!ptrace_may_access(task, mode)) {
1559 		mmput(mm);
1560 		mm = ERR_PTR(-EACCES);
1561 	}
1562 	up_read(&task->signal->exec_update_lock);
1563 
1564 	return mm;
1565 }
1566 
1567 static void complete_vfork_done(struct task_struct *tsk)
1568 {
1569 	struct completion *vfork;
1570 
1571 	task_lock(tsk);
1572 	vfork = tsk->vfork_done;
1573 	if (likely(vfork)) {
1574 		tsk->vfork_done = NULL;
1575 		complete(vfork);
1576 	}
1577 	task_unlock(tsk);
1578 }
1579 
1580 static int wait_for_vfork_done(struct task_struct *child,
1581 				struct completion *vfork)
1582 {
1583 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1584 	int killed;
1585 
1586 	cgroup_enter_frozen();
1587 	killed = wait_for_completion_state(vfork, state);
1588 	cgroup_leave_frozen(false);
1589 
1590 	if (killed) {
1591 		task_lock(child);
1592 		child->vfork_done = NULL;
1593 		task_unlock(child);
1594 	}
1595 
1596 	put_task_struct(child);
1597 	return killed;
1598 }
1599 
1600 /* Please note the differences between mmput and mm_release.
1601  * mmput is called whenever we stop holding onto a mm_struct,
1602  * error success whatever.
1603  *
1604  * mm_release is called after a mm_struct has been removed
1605  * from the current process.
1606  *
1607  * This difference is important for error handling, when we
1608  * only half set up a mm_struct for a new process and need to restore
1609  * the old one.  Because we mmput the new mm_struct before
1610  * restoring the old one. . .
1611  * Eric Biederman 10 January 1998
1612  */
1613 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1614 {
1615 	uprobe_free_utask(tsk);
1616 
1617 	/* Get rid of any cached register state */
1618 	deactivate_mm(tsk, mm);
1619 
1620 	/*
1621 	 * Signal userspace if we're not exiting with a core dump
1622 	 * because we want to leave the value intact for debugging
1623 	 * purposes.
1624 	 */
1625 	if (tsk->clear_child_tid) {
1626 		if (atomic_read(&mm->mm_users) > 1) {
1627 			/*
1628 			 * We don't check the error code - if userspace has
1629 			 * not set up a proper pointer then tough luck.
1630 			 */
1631 			put_user(0, tsk->clear_child_tid);
1632 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1633 					1, NULL, NULL, 0, 0);
1634 		}
1635 		tsk->clear_child_tid = NULL;
1636 	}
1637 
1638 	/*
1639 	 * All done, finally we can wake up parent and return this mm to him.
1640 	 * Also kthread_stop() uses this completion for synchronization.
1641 	 */
1642 	if (tsk->vfork_done)
1643 		complete_vfork_done(tsk);
1644 }
1645 
1646 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1647 {
1648 	futex_exit_release(tsk);
1649 	mm_release(tsk, mm);
1650 }
1651 
1652 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1653 {
1654 	futex_exec_release(tsk);
1655 	mm_release(tsk, mm);
1656 }
1657 
1658 /**
1659  * dup_mm() - duplicates an existing mm structure
1660  * @tsk: the task_struct with which the new mm will be associated.
1661  * @oldmm: the mm to duplicate.
1662  *
1663  * Allocates a new mm structure and duplicates the provided @oldmm structure
1664  * content into it.
1665  *
1666  * Return: the duplicated mm or NULL on failure.
1667  */
1668 static struct mm_struct *dup_mm(struct task_struct *tsk,
1669 				struct mm_struct *oldmm)
1670 {
1671 	struct mm_struct *mm;
1672 	int err;
1673 
1674 	mm = allocate_mm();
1675 	if (!mm)
1676 		goto fail_nomem;
1677 
1678 	memcpy(mm, oldmm, sizeof(*mm));
1679 
1680 	if (!mm_init(mm, tsk, mm->user_ns))
1681 		goto fail_nomem;
1682 
1683 	err = dup_mmap(mm, oldmm);
1684 	if (err)
1685 		goto free_pt;
1686 
1687 	mm->hiwater_rss = get_mm_rss(mm);
1688 	mm->hiwater_vm = mm->total_vm;
1689 
1690 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1691 		goto free_pt;
1692 
1693 	return mm;
1694 
1695 free_pt:
1696 	/* don't put binfmt in mmput, we haven't got module yet */
1697 	mm->binfmt = NULL;
1698 	mm_init_owner(mm, NULL);
1699 	mmput(mm);
1700 
1701 fail_nomem:
1702 	return NULL;
1703 }
1704 
1705 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1706 {
1707 	struct mm_struct *mm, *oldmm;
1708 
1709 	tsk->min_flt = tsk->maj_flt = 0;
1710 	tsk->nvcsw = tsk->nivcsw = 0;
1711 #ifdef CONFIG_DETECT_HUNG_TASK
1712 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1713 	tsk->last_switch_time = 0;
1714 #endif
1715 
1716 	tsk->mm = NULL;
1717 	tsk->active_mm = NULL;
1718 
1719 	/*
1720 	 * Are we cloning a kernel thread?
1721 	 *
1722 	 * We need to steal a active VM for that..
1723 	 */
1724 	oldmm = current->mm;
1725 	if (!oldmm)
1726 		return 0;
1727 
1728 	if (clone_flags & CLONE_VM) {
1729 		mmget(oldmm);
1730 		mm = oldmm;
1731 	} else {
1732 		mm = dup_mm(tsk, current->mm);
1733 		if (!mm)
1734 			return -ENOMEM;
1735 	}
1736 
1737 	tsk->mm = mm;
1738 	tsk->active_mm = mm;
1739 	sched_mm_cid_fork(tsk);
1740 	return 0;
1741 }
1742 
1743 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1744 {
1745 	struct fs_struct *fs = current->fs;
1746 	if (clone_flags & CLONE_FS) {
1747 		/* tsk->fs is already what we want */
1748 		spin_lock(&fs->lock);
1749 		if (fs->in_exec) {
1750 			spin_unlock(&fs->lock);
1751 			return -EAGAIN;
1752 		}
1753 		fs->users++;
1754 		spin_unlock(&fs->lock);
1755 		return 0;
1756 	}
1757 	tsk->fs = copy_fs_struct(fs);
1758 	if (!tsk->fs)
1759 		return -ENOMEM;
1760 	return 0;
1761 }
1762 
1763 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1764 		      int no_files)
1765 {
1766 	struct files_struct *oldf, *newf;
1767 	int error = 0;
1768 
1769 	/*
1770 	 * A background process may not have any files ...
1771 	 */
1772 	oldf = current->files;
1773 	if (!oldf)
1774 		goto out;
1775 
1776 	if (no_files) {
1777 		tsk->files = NULL;
1778 		goto out;
1779 	}
1780 
1781 	if (clone_flags & CLONE_FILES) {
1782 		atomic_inc(&oldf->count);
1783 		goto out;
1784 	}
1785 
1786 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1787 	if (!newf)
1788 		goto out;
1789 
1790 	tsk->files = newf;
1791 	error = 0;
1792 out:
1793 	return error;
1794 }
1795 
1796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1797 {
1798 	struct sighand_struct *sig;
1799 
1800 	if (clone_flags & CLONE_SIGHAND) {
1801 		refcount_inc(&current->sighand->count);
1802 		return 0;
1803 	}
1804 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1805 	RCU_INIT_POINTER(tsk->sighand, sig);
1806 	if (!sig)
1807 		return -ENOMEM;
1808 
1809 	refcount_set(&sig->count, 1);
1810 	spin_lock_irq(&current->sighand->siglock);
1811 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1812 	spin_unlock_irq(&current->sighand->siglock);
1813 
1814 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1815 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1816 		flush_signal_handlers(tsk, 0);
1817 
1818 	return 0;
1819 }
1820 
1821 void __cleanup_sighand(struct sighand_struct *sighand)
1822 {
1823 	if (refcount_dec_and_test(&sighand->count)) {
1824 		signalfd_cleanup(sighand);
1825 		/*
1826 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1827 		 * without an RCU grace period, see __lock_task_sighand().
1828 		 */
1829 		kmem_cache_free(sighand_cachep, sighand);
1830 	}
1831 }
1832 
1833 /*
1834  * Initialize POSIX timer handling for a thread group.
1835  */
1836 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1837 {
1838 	struct posix_cputimers *pct = &sig->posix_cputimers;
1839 	unsigned long cpu_limit;
1840 
1841 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1842 	posix_cputimers_group_init(pct, cpu_limit);
1843 }
1844 
1845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1846 {
1847 	struct signal_struct *sig;
1848 
1849 	if (clone_flags & CLONE_THREAD)
1850 		return 0;
1851 
1852 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1853 	tsk->signal = sig;
1854 	if (!sig)
1855 		return -ENOMEM;
1856 
1857 	sig->nr_threads = 1;
1858 	sig->quick_threads = 1;
1859 	atomic_set(&sig->live, 1);
1860 	refcount_set(&sig->sigcnt, 1);
1861 
1862 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1863 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1864 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1865 
1866 	init_waitqueue_head(&sig->wait_chldexit);
1867 	sig->curr_target = tsk;
1868 	init_sigpending(&sig->shared_pending);
1869 	INIT_HLIST_HEAD(&sig->multiprocess);
1870 	seqlock_init(&sig->stats_lock);
1871 	prev_cputime_init(&sig->prev_cputime);
1872 
1873 #ifdef CONFIG_POSIX_TIMERS
1874 	INIT_LIST_HEAD(&sig->posix_timers);
1875 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1876 	sig->real_timer.function = it_real_fn;
1877 #endif
1878 
1879 	task_lock(current->group_leader);
1880 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1881 	task_unlock(current->group_leader);
1882 
1883 	posix_cpu_timers_init_group(sig);
1884 
1885 	tty_audit_fork(sig);
1886 	sched_autogroup_fork(sig);
1887 
1888 	sig->oom_score_adj = current->signal->oom_score_adj;
1889 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1890 
1891 	mutex_init(&sig->cred_guard_mutex);
1892 	init_rwsem(&sig->exec_update_lock);
1893 
1894 	return 0;
1895 }
1896 
1897 static void copy_seccomp(struct task_struct *p)
1898 {
1899 #ifdef CONFIG_SECCOMP
1900 	/*
1901 	 * Must be called with sighand->lock held, which is common to
1902 	 * all threads in the group. Holding cred_guard_mutex is not
1903 	 * needed because this new task is not yet running and cannot
1904 	 * be racing exec.
1905 	 */
1906 	assert_spin_locked(&current->sighand->siglock);
1907 
1908 	/* Ref-count the new filter user, and assign it. */
1909 	get_seccomp_filter(current);
1910 	p->seccomp = current->seccomp;
1911 
1912 	/*
1913 	 * Explicitly enable no_new_privs here in case it got set
1914 	 * between the task_struct being duplicated and holding the
1915 	 * sighand lock. The seccomp state and nnp must be in sync.
1916 	 */
1917 	if (task_no_new_privs(current))
1918 		task_set_no_new_privs(p);
1919 
1920 	/*
1921 	 * If the parent gained a seccomp mode after copying thread
1922 	 * flags and between before we held the sighand lock, we have
1923 	 * to manually enable the seccomp thread flag here.
1924 	 */
1925 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1926 		set_task_syscall_work(p, SECCOMP);
1927 #endif
1928 }
1929 
1930 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1931 {
1932 	current->clear_child_tid = tidptr;
1933 
1934 	return task_pid_vnr(current);
1935 }
1936 
1937 static void rt_mutex_init_task(struct task_struct *p)
1938 {
1939 	raw_spin_lock_init(&p->pi_lock);
1940 #ifdef CONFIG_RT_MUTEXES
1941 	p->pi_waiters = RB_ROOT_CACHED;
1942 	p->pi_top_task = NULL;
1943 	p->pi_blocked_on = NULL;
1944 #endif
1945 }
1946 
1947 static inline void init_task_pid_links(struct task_struct *task)
1948 {
1949 	enum pid_type type;
1950 
1951 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1952 		INIT_HLIST_NODE(&task->pid_links[type]);
1953 }
1954 
1955 static inline void
1956 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1957 {
1958 	if (type == PIDTYPE_PID)
1959 		task->thread_pid = pid;
1960 	else
1961 		task->signal->pids[type] = pid;
1962 }
1963 
1964 static inline void rcu_copy_process(struct task_struct *p)
1965 {
1966 #ifdef CONFIG_PREEMPT_RCU
1967 	p->rcu_read_lock_nesting = 0;
1968 	p->rcu_read_unlock_special.s = 0;
1969 	p->rcu_blocked_node = NULL;
1970 	INIT_LIST_HEAD(&p->rcu_node_entry);
1971 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1972 #ifdef CONFIG_TASKS_RCU
1973 	p->rcu_tasks_holdout = false;
1974 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1975 	p->rcu_tasks_idle_cpu = -1;
1976 #endif /* #ifdef CONFIG_TASKS_RCU */
1977 #ifdef CONFIG_TASKS_TRACE_RCU
1978 	p->trc_reader_nesting = 0;
1979 	p->trc_reader_special.s = 0;
1980 	INIT_LIST_HEAD(&p->trc_holdout_list);
1981 	INIT_LIST_HEAD(&p->trc_blkd_node);
1982 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1983 }
1984 
1985 struct pid *pidfd_pid(const struct file *file)
1986 {
1987 	if (file->f_op == &pidfd_fops)
1988 		return file->private_data;
1989 
1990 	return ERR_PTR(-EBADF);
1991 }
1992 
1993 static int pidfd_release(struct inode *inode, struct file *file)
1994 {
1995 	struct pid *pid = file->private_data;
1996 
1997 	file->private_data = NULL;
1998 	put_pid(pid);
1999 	return 0;
2000 }
2001 
2002 #ifdef CONFIG_PROC_FS
2003 /**
2004  * pidfd_show_fdinfo - print information about a pidfd
2005  * @m: proc fdinfo file
2006  * @f: file referencing a pidfd
2007  *
2008  * Pid:
2009  * This function will print the pid that a given pidfd refers to in the
2010  * pid namespace of the procfs instance.
2011  * If the pid namespace of the process is not a descendant of the pid
2012  * namespace of the procfs instance 0 will be shown as its pid. This is
2013  * similar to calling getppid() on a process whose parent is outside of
2014  * its pid namespace.
2015  *
2016  * NSpid:
2017  * If pid namespaces are supported then this function will also print
2018  * the pid of a given pidfd refers to for all descendant pid namespaces
2019  * starting from the current pid namespace of the instance, i.e. the
2020  * Pid field and the first entry in the NSpid field will be identical.
2021  * If the pid namespace of the process is not a descendant of the pid
2022  * namespace of the procfs instance 0 will be shown as its first NSpid
2023  * entry and no others will be shown.
2024  * Note that this differs from the Pid and NSpid fields in
2025  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2026  * the  pid namespace of the procfs instance. The difference becomes
2027  * obvious when sending around a pidfd between pid namespaces from a
2028  * different branch of the tree, i.e. where no ancestral relation is
2029  * present between the pid namespaces:
2030  * - create two new pid namespaces ns1 and ns2 in the initial pid
2031  *   namespace (also take care to create new mount namespaces in the
2032  *   new pid namespace and mount procfs)
2033  * - create a process with a pidfd in ns1
2034  * - send pidfd from ns1 to ns2
2035  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2036  *   have exactly one entry, which is 0
2037  */
2038 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2039 {
2040 	struct pid *pid = f->private_data;
2041 	struct pid_namespace *ns;
2042 	pid_t nr = -1;
2043 
2044 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2045 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2046 		nr = pid_nr_ns(pid, ns);
2047 	}
2048 
2049 	seq_put_decimal_ll(m, "Pid:\t", nr);
2050 
2051 #ifdef CONFIG_PID_NS
2052 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2053 	if (nr > 0) {
2054 		int i;
2055 
2056 		/* If nr is non-zero it means that 'pid' is valid and that
2057 		 * ns, i.e. the pid namespace associated with the procfs
2058 		 * instance, is in the pid namespace hierarchy of pid.
2059 		 * Start at one below the already printed level.
2060 		 */
2061 		for (i = ns->level + 1; i <= pid->level; i++)
2062 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2063 	}
2064 #endif
2065 	seq_putc(m, '\n');
2066 }
2067 #endif
2068 
2069 /*
2070  * Poll support for process exit notification.
2071  */
2072 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2073 {
2074 	struct pid *pid = file->private_data;
2075 	__poll_t poll_flags = 0;
2076 
2077 	poll_wait(file, &pid->wait_pidfd, pts);
2078 
2079 	/*
2080 	 * Inform pollers only when the whole thread group exits.
2081 	 * If the thread group leader exits before all other threads in the
2082 	 * group, then poll(2) should block, similar to the wait(2) family.
2083 	 */
2084 	if (thread_group_exited(pid))
2085 		poll_flags = EPOLLIN | EPOLLRDNORM;
2086 
2087 	return poll_flags;
2088 }
2089 
2090 const struct file_operations pidfd_fops = {
2091 	.release = pidfd_release,
2092 	.poll = pidfd_poll,
2093 #ifdef CONFIG_PROC_FS
2094 	.show_fdinfo = pidfd_show_fdinfo,
2095 #endif
2096 };
2097 
2098 /**
2099  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2100  * @pid:   the struct pid for which to create a pidfd
2101  * @flags: flags of the new @pidfd
2102  * @ret: Where to return the file for the pidfd.
2103  *
2104  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2105  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2106  *
2107  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2108  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2109  * pidfd file are prepared.
2110  *
2111  * If this function returns successfully the caller is responsible to either
2112  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2113  * order to install the pidfd into its file descriptor table or they must use
2114  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2115  * respectively.
2116  *
2117  * This function is useful when a pidfd must already be reserved but there
2118  * might still be points of failure afterwards and the caller wants to ensure
2119  * that no pidfd is leaked into its file descriptor table.
2120  *
2121  * Return: On success, a reserved pidfd is returned from the function and a new
2122  *         pidfd file is returned in the last argument to the function. On
2123  *         error, a negative error code is returned from the function and the
2124  *         last argument remains unchanged.
2125  */
2126 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2127 {
2128 	int pidfd;
2129 	struct file *pidfd_file;
2130 
2131 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2132 		return -EINVAL;
2133 
2134 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2135 	if (pidfd < 0)
2136 		return pidfd;
2137 
2138 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2139 					flags | O_RDWR | O_CLOEXEC);
2140 	if (IS_ERR(pidfd_file)) {
2141 		put_unused_fd(pidfd);
2142 		return PTR_ERR(pidfd_file);
2143 	}
2144 	get_pid(pid); /* held by pidfd_file now */
2145 	*ret = pidfd_file;
2146 	return pidfd;
2147 }
2148 
2149 /**
2150  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2151  * @pid:   the struct pid for which to create a pidfd
2152  * @flags: flags of the new @pidfd
2153  * @ret: Where to return the pidfd.
2154  *
2155  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2156  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2157  *
2158  * The helper verifies that @pid is used as a thread group leader.
2159  *
2160  * If this function returns successfully the caller is responsible to either
2161  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2162  * order to install the pidfd into its file descriptor table or they must use
2163  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2164  * respectively.
2165  *
2166  * This function is useful when a pidfd must already be reserved but there
2167  * might still be points of failure afterwards and the caller wants to ensure
2168  * that no pidfd is leaked into its file descriptor table.
2169  *
2170  * Return: On success, a reserved pidfd is returned from the function and a new
2171  *         pidfd file is returned in the last argument to the function. On
2172  *         error, a negative error code is returned from the function and the
2173  *         last argument remains unchanged.
2174  */
2175 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2176 {
2177 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2178 		return -EINVAL;
2179 
2180 	return __pidfd_prepare(pid, flags, ret);
2181 }
2182 
2183 static void __delayed_free_task(struct rcu_head *rhp)
2184 {
2185 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2186 
2187 	free_task(tsk);
2188 }
2189 
2190 static __always_inline void delayed_free_task(struct task_struct *tsk)
2191 {
2192 	if (IS_ENABLED(CONFIG_MEMCG))
2193 		call_rcu(&tsk->rcu, __delayed_free_task);
2194 	else
2195 		free_task(tsk);
2196 }
2197 
2198 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2199 {
2200 	/* Skip if kernel thread */
2201 	if (!tsk->mm)
2202 		return;
2203 
2204 	/* Skip if spawning a thread or using vfork */
2205 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2206 		return;
2207 
2208 	/* We need to synchronize with __set_oom_adj */
2209 	mutex_lock(&oom_adj_mutex);
2210 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2211 	/* Update the values in case they were changed after copy_signal */
2212 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2213 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2214 	mutex_unlock(&oom_adj_mutex);
2215 }
2216 
2217 #ifdef CONFIG_RV
2218 static void rv_task_fork(struct task_struct *p)
2219 {
2220 	int i;
2221 
2222 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2223 		p->rv[i].da_mon.monitoring = false;
2224 }
2225 #else
2226 #define rv_task_fork(p) do {} while (0)
2227 #endif
2228 
2229 /*
2230  * This creates a new process as a copy of the old one,
2231  * but does not actually start it yet.
2232  *
2233  * It copies the registers, and all the appropriate
2234  * parts of the process environment (as per the clone
2235  * flags). The actual kick-off is left to the caller.
2236  */
2237 __latent_entropy struct task_struct *copy_process(
2238 					struct pid *pid,
2239 					int trace,
2240 					int node,
2241 					struct kernel_clone_args *args)
2242 {
2243 	int pidfd = -1, retval;
2244 	struct task_struct *p;
2245 	struct multiprocess_signals delayed;
2246 	struct file *pidfile = NULL;
2247 	const u64 clone_flags = args->flags;
2248 	struct nsproxy *nsp = current->nsproxy;
2249 
2250 	/*
2251 	 * Don't allow sharing the root directory with processes in a different
2252 	 * namespace
2253 	 */
2254 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2255 		return ERR_PTR(-EINVAL);
2256 
2257 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2258 		return ERR_PTR(-EINVAL);
2259 
2260 	/*
2261 	 * Thread groups must share signals as well, and detached threads
2262 	 * can only be started up within the thread group.
2263 	 */
2264 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2265 		return ERR_PTR(-EINVAL);
2266 
2267 	/*
2268 	 * Shared signal handlers imply shared VM. By way of the above,
2269 	 * thread groups also imply shared VM. Blocking this case allows
2270 	 * for various simplifications in other code.
2271 	 */
2272 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2273 		return ERR_PTR(-EINVAL);
2274 
2275 	/*
2276 	 * Siblings of global init remain as zombies on exit since they are
2277 	 * not reaped by their parent (swapper). To solve this and to avoid
2278 	 * multi-rooted process trees, prevent global and container-inits
2279 	 * from creating siblings.
2280 	 */
2281 	if ((clone_flags & CLONE_PARENT) &&
2282 				current->signal->flags & SIGNAL_UNKILLABLE)
2283 		return ERR_PTR(-EINVAL);
2284 
2285 	/*
2286 	 * If the new process will be in a different pid or user namespace
2287 	 * do not allow it to share a thread group with the forking task.
2288 	 */
2289 	if (clone_flags & CLONE_THREAD) {
2290 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2291 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2292 			return ERR_PTR(-EINVAL);
2293 	}
2294 
2295 	if (clone_flags & CLONE_PIDFD) {
2296 		/*
2297 		 * - CLONE_DETACHED is blocked so that we can potentially
2298 		 *   reuse it later for CLONE_PIDFD.
2299 		 * - CLONE_THREAD is blocked until someone really needs it.
2300 		 */
2301 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2302 			return ERR_PTR(-EINVAL);
2303 	}
2304 
2305 	/*
2306 	 * Force any signals received before this point to be delivered
2307 	 * before the fork happens.  Collect up signals sent to multiple
2308 	 * processes that happen during the fork and delay them so that
2309 	 * they appear to happen after the fork.
2310 	 */
2311 	sigemptyset(&delayed.signal);
2312 	INIT_HLIST_NODE(&delayed.node);
2313 
2314 	spin_lock_irq(&current->sighand->siglock);
2315 	if (!(clone_flags & CLONE_THREAD))
2316 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2317 	recalc_sigpending();
2318 	spin_unlock_irq(&current->sighand->siglock);
2319 	retval = -ERESTARTNOINTR;
2320 	if (task_sigpending(current))
2321 		goto fork_out;
2322 
2323 	retval = -ENOMEM;
2324 	p = dup_task_struct(current, node);
2325 	if (!p)
2326 		goto fork_out;
2327 	p->flags &= ~PF_KTHREAD;
2328 	if (args->kthread)
2329 		p->flags |= PF_KTHREAD;
2330 	if (args->user_worker) {
2331 		/*
2332 		 * Mark us a user worker, and block any signal that isn't
2333 		 * fatal or STOP
2334 		 */
2335 		p->flags |= PF_USER_WORKER;
2336 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2337 	}
2338 	if (args->io_thread)
2339 		p->flags |= PF_IO_WORKER;
2340 
2341 	if (args->name)
2342 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2343 
2344 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2345 	/*
2346 	 * Clear TID on mm_release()?
2347 	 */
2348 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2349 
2350 	ftrace_graph_init_task(p);
2351 
2352 	rt_mutex_init_task(p);
2353 
2354 	lockdep_assert_irqs_enabled();
2355 #ifdef CONFIG_PROVE_LOCKING
2356 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2357 #endif
2358 	retval = copy_creds(p, clone_flags);
2359 	if (retval < 0)
2360 		goto bad_fork_free;
2361 
2362 	retval = -EAGAIN;
2363 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2364 		if (p->real_cred->user != INIT_USER &&
2365 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2366 			goto bad_fork_cleanup_count;
2367 	}
2368 	current->flags &= ~PF_NPROC_EXCEEDED;
2369 
2370 	/*
2371 	 * If multiple threads are within copy_process(), then this check
2372 	 * triggers too late. This doesn't hurt, the check is only there
2373 	 * to stop root fork bombs.
2374 	 */
2375 	retval = -EAGAIN;
2376 	if (data_race(nr_threads >= max_threads))
2377 		goto bad_fork_cleanup_count;
2378 
2379 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2380 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2381 	p->flags |= PF_FORKNOEXEC;
2382 	INIT_LIST_HEAD(&p->children);
2383 	INIT_LIST_HEAD(&p->sibling);
2384 	rcu_copy_process(p);
2385 	p->vfork_done = NULL;
2386 	spin_lock_init(&p->alloc_lock);
2387 
2388 	init_sigpending(&p->pending);
2389 
2390 	p->utime = p->stime = p->gtime = 0;
2391 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2392 	p->utimescaled = p->stimescaled = 0;
2393 #endif
2394 	prev_cputime_init(&p->prev_cputime);
2395 
2396 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2397 	seqcount_init(&p->vtime.seqcount);
2398 	p->vtime.starttime = 0;
2399 	p->vtime.state = VTIME_INACTIVE;
2400 #endif
2401 
2402 #ifdef CONFIG_IO_URING
2403 	p->io_uring = NULL;
2404 #endif
2405 
2406 	p->default_timer_slack_ns = current->timer_slack_ns;
2407 
2408 #ifdef CONFIG_PSI
2409 	p->psi_flags = 0;
2410 #endif
2411 
2412 	task_io_accounting_init(&p->ioac);
2413 	acct_clear_integrals(p);
2414 
2415 	posix_cputimers_init(&p->posix_cputimers);
2416 
2417 	p->io_context = NULL;
2418 	audit_set_context(p, NULL);
2419 	cgroup_fork(p);
2420 	if (args->kthread) {
2421 		if (!set_kthread_struct(p))
2422 			goto bad_fork_cleanup_delayacct;
2423 	}
2424 #ifdef CONFIG_NUMA
2425 	p->mempolicy = mpol_dup(p->mempolicy);
2426 	if (IS_ERR(p->mempolicy)) {
2427 		retval = PTR_ERR(p->mempolicy);
2428 		p->mempolicy = NULL;
2429 		goto bad_fork_cleanup_delayacct;
2430 	}
2431 #endif
2432 #ifdef CONFIG_CPUSETS
2433 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2434 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2435 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2436 #endif
2437 #ifdef CONFIG_TRACE_IRQFLAGS
2438 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2439 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2440 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2441 	p->softirqs_enabled		= 1;
2442 	p->softirq_context		= 0;
2443 #endif
2444 
2445 	p->pagefault_disabled = 0;
2446 
2447 #ifdef CONFIG_LOCKDEP
2448 	lockdep_init_task(p);
2449 #endif
2450 
2451 #ifdef CONFIG_DEBUG_MUTEXES
2452 	p->blocked_on = NULL; /* not blocked yet */
2453 #endif
2454 #ifdef CONFIG_BCACHE
2455 	p->sequential_io	= 0;
2456 	p->sequential_io_avg	= 0;
2457 #endif
2458 #ifdef CONFIG_BPF_SYSCALL
2459 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2460 	p->bpf_ctx = NULL;
2461 #endif
2462 
2463 	/* Perform scheduler related setup. Assign this task to a CPU. */
2464 	retval = sched_fork(clone_flags, p);
2465 	if (retval)
2466 		goto bad_fork_cleanup_policy;
2467 
2468 	retval = perf_event_init_task(p, clone_flags);
2469 	if (retval)
2470 		goto bad_fork_cleanup_policy;
2471 	retval = audit_alloc(p);
2472 	if (retval)
2473 		goto bad_fork_cleanup_perf;
2474 	/* copy all the process information */
2475 	shm_init_task(p);
2476 	retval = security_task_alloc(p, clone_flags);
2477 	if (retval)
2478 		goto bad_fork_cleanup_audit;
2479 	retval = copy_semundo(clone_flags, p);
2480 	if (retval)
2481 		goto bad_fork_cleanup_security;
2482 	retval = copy_files(clone_flags, p, args->no_files);
2483 	if (retval)
2484 		goto bad_fork_cleanup_semundo;
2485 	retval = copy_fs(clone_flags, p);
2486 	if (retval)
2487 		goto bad_fork_cleanup_files;
2488 	retval = copy_sighand(clone_flags, p);
2489 	if (retval)
2490 		goto bad_fork_cleanup_fs;
2491 	retval = copy_signal(clone_flags, p);
2492 	if (retval)
2493 		goto bad_fork_cleanup_sighand;
2494 	retval = copy_mm(clone_flags, p);
2495 	if (retval)
2496 		goto bad_fork_cleanup_signal;
2497 	retval = copy_namespaces(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_mm;
2500 	retval = copy_io(clone_flags, p);
2501 	if (retval)
2502 		goto bad_fork_cleanup_namespaces;
2503 	retval = copy_thread(p, args);
2504 	if (retval)
2505 		goto bad_fork_cleanup_io;
2506 
2507 	stackleak_task_init(p);
2508 
2509 	if (pid != &init_struct_pid) {
2510 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2511 				args->set_tid_size);
2512 		if (IS_ERR(pid)) {
2513 			retval = PTR_ERR(pid);
2514 			goto bad_fork_cleanup_thread;
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * This has to happen after we've potentially unshared the file
2520 	 * descriptor table (so that the pidfd doesn't leak into the child
2521 	 * if the fd table isn't shared).
2522 	 */
2523 	if (clone_flags & CLONE_PIDFD) {
2524 		/* Note that no task has been attached to @pid yet. */
2525 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2526 		if (retval < 0)
2527 			goto bad_fork_free_pid;
2528 		pidfd = retval;
2529 
2530 		retval = put_user(pidfd, args->pidfd);
2531 		if (retval)
2532 			goto bad_fork_put_pidfd;
2533 	}
2534 
2535 #ifdef CONFIG_BLOCK
2536 	p->plug = NULL;
2537 #endif
2538 	futex_init_task(p);
2539 
2540 	/*
2541 	 * sigaltstack should be cleared when sharing the same VM
2542 	 */
2543 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2544 		sas_ss_reset(p);
2545 
2546 	/*
2547 	 * Syscall tracing and stepping should be turned off in the
2548 	 * child regardless of CLONE_PTRACE.
2549 	 */
2550 	user_disable_single_step(p);
2551 	clear_task_syscall_work(p, SYSCALL_TRACE);
2552 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2553 	clear_task_syscall_work(p, SYSCALL_EMU);
2554 #endif
2555 	clear_tsk_latency_tracing(p);
2556 
2557 	/* ok, now we should be set up.. */
2558 	p->pid = pid_nr(pid);
2559 	if (clone_flags & CLONE_THREAD) {
2560 		p->group_leader = current->group_leader;
2561 		p->tgid = current->tgid;
2562 	} else {
2563 		p->group_leader = p;
2564 		p->tgid = p->pid;
2565 	}
2566 
2567 	p->nr_dirtied = 0;
2568 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2569 	p->dirty_paused_when = 0;
2570 
2571 	p->pdeath_signal = 0;
2572 	p->task_works = NULL;
2573 	clear_posix_cputimers_work(p);
2574 
2575 #ifdef CONFIG_KRETPROBES
2576 	p->kretprobe_instances.first = NULL;
2577 #endif
2578 #ifdef CONFIG_RETHOOK
2579 	p->rethooks.first = NULL;
2580 #endif
2581 
2582 	/*
2583 	 * Ensure that the cgroup subsystem policies allow the new process to be
2584 	 * forked. It should be noted that the new process's css_set can be changed
2585 	 * between here and cgroup_post_fork() if an organisation operation is in
2586 	 * progress.
2587 	 */
2588 	retval = cgroup_can_fork(p, args);
2589 	if (retval)
2590 		goto bad_fork_put_pidfd;
2591 
2592 	/*
2593 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2594 	 * the new task on the correct runqueue. All this *before* the task
2595 	 * becomes visible.
2596 	 *
2597 	 * This isn't part of ->can_fork() because while the re-cloning is
2598 	 * cgroup specific, it unconditionally needs to place the task on a
2599 	 * runqueue.
2600 	 */
2601 	sched_cgroup_fork(p, args);
2602 
2603 	/*
2604 	 * From this point on we must avoid any synchronous user-space
2605 	 * communication until we take the tasklist-lock. In particular, we do
2606 	 * not want user-space to be able to predict the process start-time by
2607 	 * stalling fork(2) after we recorded the start_time but before it is
2608 	 * visible to the system.
2609 	 */
2610 
2611 	p->start_time = ktime_get_ns();
2612 	p->start_boottime = ktime_get_boottime_ns();
2613 
2614 	/*
2615 	 * Make it visible to the rest of the system, but dont wake it up yet.
2616 	 * Need tasklist lock for parent etc handling!
2617 	 */
2618 	write_lock_irq(&tasklist_lock);
2619 
2620 	/* CLONE_PARENT re-uses the old parent */
2621 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2622 		p->real_parent = current->real_parent;
2623 		p->parent_exec_id = current->parent_exec_id;
2624 		if (clone_flags & CLONE_THREAD)
2625 			p->exit_signal = -1;
2626 		else
2627 			p->exit_signal = current->group_leader->exit_signal;
2628 	} else {
2629 		p->real_parent = current;
2630 		p->parent_exec_id = current->self_exec_id;
2631 		p->exit_signal = args->exit_signal;
2632 	}
2633 
2634 	klp_copy_process(p);
2635 
2636 	sched_core_fork(p);
2637 
2638 	spin_lock(&current->sighand->siglock);
2639 
2640 	rv_task_fork(p);
2641 
2642 	rseq_fork(p, clone_flags);
2643 
2644 	/* Don't start children in a dying pid namespace */
2645 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2646 		retval = -ENOMEM;
2647 		goto bad_fork_cancel_cgroup;
2648 	}
2649 
2650 	/* Let kill terminate clone/fork in the middle */
2651 	if (fatal_signal_pending(current)) {
2652 		retval = -EINTR;
2653 		goto bad_fork_cancel_cgroup;
2654 	}
2655 
2656 	/* No more failure paths after this point. */
2657 
2658 	/*
2659 	 * Copy seccomp details explicitly here, in case they were changed
2660 	 * before holding sighand lock.
2661 	 */
2662 	copy_seccomp(p);
2663 
2664 	init_task_pid_links(p);
2665 	if (likely(p->pid)) {
2666 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2667 
2668 		init_task_pid(p, PIDTYPE_PID, pid);
2669 		if (thread_group_leader(p)) {
2670 			init_task_pid(p, PIDTYPE_TGID, pid);
2671 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2672 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2673 
2674 			if (is_child_reaper(pid)) {
2675 				ns_of_pid(pid)->child_reaper = p;
2676 				p->signal->flags |= SIGNAL_UNKILLABLE;
2677 			}
2678 			p->signal->shared_pending.signal = delayed.signal;
2679 			p->signal->tty = tty_kref_get(current->signal->tty);
2680 			/*
2681 			 * Inherit has_child_subreaper flag under the same
2682 			 * tasklist_lock with adding child to the process tree
2683 			 * for propagate_has_child_subreaper optimization.
2684 			 */
2685 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2686 							 p->real_parent->signal->is_child_subreaper;
2687 			list_add_tail(&p->sibling, &p->real_parent->children);
2688 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2689 			attach_pid(p, PIDTYPE_TGID);
2690 			attach_pid(p, PIDTYPE_PGID);
2691 			attach_pid(p, PIDTYPE_SID);
2692 			__this_cpu_inc(process_counts);
2693 		} else {
2694 			current->signal->nr_threads++;
2695 			current->signal->quick_threads++;
2696 			atomic_inc(&current->signal->live);
2697 			refcount_inc(&current->signal->sigcnt);
2698 			task_join_group_stop(p);
2699 			list_add_tail_rcu(&p->thread_node,
2700 					  &p->signal->thread_head);
2701 		}
2702 		attach_pid(p, PIDTYPE_PID);
2703 		nr_threads++;
2704 	}
2705 	total_forks++;
2706 	hlist_del_init(&delayed.node);
2707 	spin_unlock(&current->sighand->siglock);
2708 	syscall_tracepoint_update(p);
2709 	write_unlock_irq(&tasklist_lock);
2710 
2711 	if (pidfile)
2712 		fd_install(pidfd, pidfile);
2713 
2714 	proc_fork_connector(p);
2715 	sched_post_fork(p);
2716 	cgroup_post_fork(p, args);
2717 	perf_event_fork(p);
2718 
2719 	trace_task_newtask(p, clone_flags);
2720 	uprobe_copy_process(p, clone_flags);
2721 	user_events_fork(p, clone_flags);
2722 
2723 	copy_oom_score_adj(clone_flags, p);
2724 
2725 	return p;
2726 
2727 bad_fork_cancel_cgroup:
2728 	sched_core_free(p);
2729 	spin_unlock(&current->sighand->siglock);
2730 	write_unlock_irq(&tasklist_lock);
2731 	cgroup_cancel_fork(p, args);
2732 bad_fork_put_pidfd:
2733 	if (clone_flags & CLONE_PIDFD) {
2734 		fput(pidfile);
2735 		put_unused_fd(pidfd);
2736 	}
2737 bad_fork_free_pid:
2738 	if (pid != &init_struct_pid)
2739 		free_pid(pid);
2740 bad_fork_cleanup_thread:
2741 	exit_thread(p);
2742 bad_fork_cleanup_io:
2743 	if (p->io_context)
2744 		exit_io_context(p);
2745 bad_fork_cleanup_namespaces:
2746 	exit_task_namespaces(p);
2747 bad_fork_cleanup_mm:
2748 	if (p->mm) {
2749 		mm_clear_owner(p->mm, p);
2750 		mmput(p->mm);
2751 	}
2752 bad_fork_cleanup_signal:
2753 	if (!(clone_flags & CLONE_THREAD))
2754 		free_signal_struct(p->signal);
2755 bad_fork_cleanup_sighand:
2756 	__cleanup_sighand(p->sighand);
2757 bad_fork_cleanup_fs:
2758 	exit_fs(p); /* blocking */
2759 bad_fork_cleanup_files:
2760 	exit_files(p); /* blocking */
2761 bad_fork_cleanup_semundo:
2762 	exit_sem(p);
2763 bad_fork_cleanup_security:
2764 	security_task_free(p);
2765 bad_fork_cleanup_audit:
2766 	audit_free(p);
2767 bad_fork_cleanup_perf:
2768 	perf_event_free_task(p);
2769 bad_fork_cleanup_policy:
2770 	lockdep_free_task(p);
2771 #ifdef CONFIG_NUMA
2772 	mpol_put(p->mempolicy);
2773 #endif
2774 bad_fork_cleanup_delayacct:
2775 	delayacct_tsk_free(p);
2776 bad_fork_cleanup_count:
2777 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2778 	exit_creds(p);
2779 bad_fork_free:
2780 	WRITE_ONCE(p->__state, TASK_DEAD);
2781 	exit_task_stack_account(p);
2782 	put_task_stack(p);
2783 	delayed_free_task(p);
2784 fork_out:
2785 	spin_lock_irq(&current->sighand->siglock);
2786 	hlist_del_init(&delayed.node);
2787 	spin_unlock_irq(&current->sighand->siglock);
2788 	return ERR_PTR(retval);
2789 }
2790 
2791 static inline void init_idle_pids(struct task_struct *idle)
2792 {
2793 	enum pid_type type;
2794 
2795 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2796 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2797 		init_task_pid(idle, type, &init_struct_pid);
2798 	}
2799 }
2800 
2801 static int idle_dummy(void *dummy)
2802 {
2803 	/* This function is never called */
2804 	return 0;
2805 }
2806 
2807 struct task_struct * __init fork_idle(int cpu)
2808 {
2809 	struct task_struct *task;
2810 	struct kernel_clone_args args = {
2811 		.flags		= CLONE_VM,
2812 		.fn		= &idle_dummy,
2813 		.fn_arg		= NULL,
2814 		.kthread	= 1,
2815 		.idle		= 1,
2816 	};
2817 
2818 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2819 	if (!IS_ERR(task)) {
2820 		init_idle_pids(task);
2821 		init_idle(task, cpu);
2822 	}
2823 
2824 	return task;
2825 }
2826 
2827 /*
2828  * This is like kernel_clone(), but shaved down and tailored to just
2829  * creating io_uring workers. It returns a created task, or an error pointer.
2830  * The returned task is inactive, and the caller must fire it up through
2831  * wake_up_new_task(p). All signals are blocked in the created task.
2832  */
2833 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2834 {
2835 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2836 				CLONE_IO;
2837 	struct kernel_clone_args args = {
2838 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2839 				    CLONE_UNTRACED) & ~CSIGNAL),
2840 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2841 		.fn		= fn,
2842 		.fn_arg		= arg,
2843 		.io_thread	= 1,
2844 		.user_worker	= 1,
2845 	};
2846 
2847 	return copy_process(NULL, 0, node, &args);
2848 }
2849 
2850 /*
2851  *  Ok, this is the main fork-routine.
2852  *
2853  * It copies the process, and if successful kick-starts
2854  * it and waits for it to finish using the VM if required.
2855  *
2856  * args->exit_signal is expected to be checked for sanity by the caller.
2857  */
2858 pid_t kernel_clone(struct kernel_clone_args *args)
2859 {
2860 	u64 clone_flags = args->flags;
2861 	struct completion vfork;
2862 	struct pid *pid;
2863 	struct task_struct *p;
2864 	int trace = 0;
2865 	pid_t nr;
2866 
2867 	/*
2868 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2869 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2870 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2871 	 * field in struct clone_args and it still doesn't make sense to have
2872 	 * them both point at the same memory location. Performing this check
2873 	 * here has the advantage that we don't need to have a separate helper
2874 	 * to check for legacy clone().
2875 	 */
2876 	if ((args->flags & CLONE_PIDFD) &&
2877 	    (args->flags & CLONE_PARENT_SETTID) &&
2878 	    (args->pidfd == args->parent_tid))
2879 		return -EINVAL;
2880 
2881 	/*
2882 	 * Determine whether and which event to report to ptracer.  When
2883 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2884 	 * requested, no event is reported; otherwise, report if the event
2885 	 * for the type of forking is enabled.
2886 	 */
2887 	if (!(clone_flags & CLONE_UNTRACED)) {
2888 		if (clone_flags & CLONE_VFORK)
2889 			trace = PTRACE_EVENT_VFORK;
2890 		else if (args->exit_signal != SIGCHLD)
2891 			trace = PTRACE_EVENT_CLONE;
2892 		else
2893 			trace = PTRACE_EVENT_FORK;
2894 
2895 		if (likely(!ptrace_event_enabled(current, trace)))
2896 			trace = 0;
2897 	}
2898 
2899 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2900 	add_latent_entropy();
2901 
2902 	if (IS_ERR(p))
2903 		return PTR_ERR(p);
2904 
2905 	/*
2906 	 * Do this prior waking up the new thread - the thread pointer
2907 	 * might get invalid after that point, if the thread exits quickly.
2908 	 */
2909 	trace_sched_process_fork(current, p);
2910 
2911 	pid = get_task_pid(p, PIDTYPE_PID);
2912 	nr = pid_vnr(pid);
2913 
2914 	if (clone_flags & CLONE_PARENT_SETTID)
2915 		put_user(nr, args->parent_tid);
2916 
2917 	if (clone_flags & CLONE_VFORK) {
2918 		p->vfork_done = &vfork;
2919 		init_completion(&vfork);
2920 		get_task_struct(p);
2921 	}
2922 
2923 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2924 		/* lock the task to synchronize with memcg migration */
2925 		task_lock(p);
2926 		lru_gen_add_mm(p->mm);
2927 		task_unlock(p);
2928 	}
2929 
2930 	wake_up_new_task(p);
2931 
2932 	/* forking complete and child started to run, tell ptracer */
2933 	if (unlikely(trace))
2934 		ptrace_event_pid(trace, pid);
2935 
2936 	if (clone_flags & CLONE_VFORK) {
2937 		if (!wait_for_vfork_done(p, &vfork))
2938 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2939 	}
2940 
2941 	put_pid(pid);
2942 	return nr;
2943 }
2944 
2945 /*
2946  * Create a kernel thread.
2947  */
2948 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2949 		    unsigned long flags)
2950 {
2951 	struct kernel_clone_args args = {
2952 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2953 				    CLONE_UNTRACED) & ~CSIGNAL),
2954 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2955 		.fn		= fn,
2956 		.fn_arg		= arg,
2957 		.name		= name,
2958 		.kthread	= 1,
2959 	};
2960 
2961 	return kernel_clone(&args);
2962 }
2963 
2964 /*
2965  * Create a user mode thread.
2966  */
2967 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2968 {
2969 	struct kernel_clone_args args = {
2970 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2971 				    CLONE_UNTRACED) & ~CSIGNAL),
2972 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2973 		.fn		= fn,
2974 		.fn_arg		= arg,
2975 	};
2976 
2977 	return kernel_clone(&args);
2978 }
2979 
2980 #ifdef __ARCH_WANT_SYS_FORK
2981 SYSCALL_DEFINE0(fork)
2982 {
2983 #ifdef CONFIG_MMU
2984 	struct kernel_clone_args args = {
2985 		.exit_signal = SIGCHLD,
2986 	};
2987 
2988 	return kernel_clone(&args);
2989 #else
2990 	/* can not support in nommu mode */
2991 	return -EINVAL;
2992 #endif
2993 }
2994 #endif
2995 
2996 #ifdef __ARCH_WANT_SYS_VFORK
2997 SYSCALL_DEFINE0(vfork)
2998 {
2999 	struct kernel_clone_args args = {
3000 		.flags		= CLONE_VFORK | CLONE_VM,
3001 		.exit_signal	= SIGCHLD,
3002 	};
3003 
3004 	return kernel_clone(&args);
3005 }
3006 #endif
3007 
3008 #ifdef __ARCH_WANT_SYS_CLONE
3009 #ifdef CONFIG_CLONE_BACKWARDS
3010 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3011 		 int __user *, parent_tidptr,
3012 		 unsigned long, tls,
3013 		 int __user *, child_tidptr)
3014 #elif defined(CONFIG_CLONE_BACKWARDS2)
3015 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3016 		 int __user *, parent_tidptr,
3017 		 int __user *, child_tidptr,
3018 		 unsigned long, tls)
3019 #elif defined(CONFIG_CLONE_BACKWARDS3)
3020 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3021 		int, stack_size,
3022 		int __user *, parent_tidptr,
3023 		int __user *, child_tidptr,
3024 		unsigned long, tls)
3025 #else
3026 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3027 		 int __user *, parent_tidptr,
3028 		 int __user *, child_tidptr,
3029 		 unsigned long, tls)
3030 #endif
3031 {
3032 	struct kernel_clone_args args = {
3033 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3034 		.pidfd		= parent_tidptr,
3035 		.child_tid	= child_tidptr,
3036 		.parent_tid	= parent_tidptr,
3037 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3038 		.stack		= newsp,
3039 		.tls		= tls,
3040 	};
3041 
3042 	return kernel_clone(&args);
3043 }
3044 #endif
3045 
3046 #ifdef __ARCH_WANT_SYS_CLONE3
3047 
3048 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3049 					      struct clone_args __user *uargs,
3050 					      size_t usize)
3051 {
3052 	int err;
3053 	struct clone_args args;
3054 	pid_t *kset_tid = kargs->set_tid;
3055 
3056 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3057 		     CLONE_ARGS_SIZE_VER0);
3058 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3059 		     CLONE_ARGS_SIZE_VER1);
3060 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3061 		     CLONE_ARGS_SIZE_VER2);
3062 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3063 
3064 	if (unlikely(usize > PAGE_SIZE))
3065 		return -E2BIG;
3066 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3067 		return -EINVAL;
3068 
3069 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3070 	if (err)
3071 		return err;
3072 
3073 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3074 		return -EINVAL;
3075 
3076 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3077 		return -EINVAL;
3078 
3079 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3080 		return -EINVAL;
3081 
3082 	/*
3083 	 * Verify that higher 32bits of exit_signal are unset and that
3084 	 * it is a valid signal
3085 	 */
3086 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3087 		     !valid_signal(args.exit_signal)))
3088 		return -EINVAL;
3089 
3090 	if ((args.flags & CLONE_INTO_CGROUP) &&
3091 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3092 		return -EINVAL;
3093 
3094 	*kargs = (struct kernel_clone_args){
3095 		.flags		= args.flags,
3096 		.pidfd		= u64_to_user_ptr(args.pidfd),
3097 		.child_tid	= u64_to_user_ptr(args.child_tid),
3098 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3099 		.exit_signal	= args.exit_signal,
3100 		.stack		= args.stack,
3101 		.stack_size	= args.stack_size,
3102 		.tls		= args.tls,
3103 		.set_tid_size	= args.set_tid_size,
3104 		.cgroup		= args.cgroup,
3105 	};
3106 
3107 	if (args.set_tid &&
3108 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3109 			(kargs->set_tid_size * sizeof(pid_t))))
3110 		return -EFAULT;
3111 
3112 	kargs->set_tid = kset_tid;
3113 
3114 	return 0;
3115 }
3116 
3117 /**
3118  * clone3_stack_valid - check and prepare stack
3119  * @kargs: kernel clone args
3120  *
3121  * Verify that the stack arguments userspace gave us are sane.
3122  * In addition, set the stack direction for userspace since it's easy for us to
3123  * determine.
3124  */
3125 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3126 {
3127 	if (kargs->stack == 0) {
3128 		if (kargs->stack_size > 0)
3129 			return false;
3130 	} else {
3131 		if (kargs->stack_size == 0)
3132 			return false;
3133 
3134 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3135 			return false;
3136 
3137 #if !defined(CONFIG_STACK_GROWSUP)
3138 		kargs->stack += kargs->stack_size;
3139 #endif
3140 	}
3141 
3142 	return true;
3143 }
3144 
3145 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3146 {
3147 	/* Verify that no unknown flags are passed along. */
3148 	if (kargs->flags &
3149 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3150 		return false;
3151 
3152 	/*
3153 	 * - make the CLONE_DETACHED bit reusable for clone3
3154 	 * - make the CSIGNAL bits reusable for clone3
3155 	 */
3156 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3157 		return false;
3158 
3159 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3160 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3161 		return false;
3162 
3163 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3164 	    kargs->exit_signal)
3165 		return false;
3166 
3167 	if (!clone3_stack_valid(kargs))
3168 		return false;
3169 
3170 	return true;
3171 }
3172 
3173 /**
3174  * sys_clone3 - create a new process with specific properties
3175  * @uargs: argument structure
3176  * @size:  size of @uargs
3177  *
3178  * clone3() is the extensible successor to clone()/clone2().
3179  * It takes a struct as argument that is versioned by its size.
3180  *
3181  * Return: On success, a positive PID for the child process.
3182  *         On error, a negative errno number.
3183  */
3184 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3185 {
3186 	int err;
3187 
3188 	struct kernel_clone_args kargs;
3189 	pid_t set_tid[MAX_PID_NS_LEVEL];
3190 
3191 	kargs.set_tid = set_tid;
3192 
3193 	err = copy_clone_args_from_user(&kargs, uargs, size);
3194 	if (err)
3195 		return err;
3196 
3197 	if (!clone3_args_valid(&kargs))
3198 		return -EINVAL;
3199 
3200 	return kernel_clone(&kargs);
3201 }
3202 #endif
3203 
3204 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3205 {
3206 	struct task_struct *leader, *parent, *child;
3207 	int res;
3208 
3209 	read_lock(&tasklist_lock);
3210 	leader = top = top->group_leader;
3211 down:
3212 	for_each_thread(leader, parent) {
3213 		list_for_each_entry(child, &parent->children, sibling) {
3214 			res = visitor(child, data);
3215 			if (res) {
3216 				if (res < 0)
3217 					goto out;
3218 				leader = child;
3219 				goto down;
3220 			}
3221 up:
3222 			;
3223 		}
3224 	}
3225 
3226 	if (leader != top) {
3227 		child = leader;
3228 		parent = child->real_parent;
3229 		leader = parent->group_leader;
3230 		goto up;
3231 	}
3232 out:
3233 	read_unlock(&tasklist_lock);
3234 }
3235 
3236 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3237 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3238 #endif
3239 
3240 static void sighand_ctor(void *data)
3241 {
3242 	struct sighand_struct *sighand = data;
3243 
3244 	spin_lock_init(&sighand->siglock);
3245 	init_waitqueue_head(&sighand->signalfd_wqh);
3246 }
3247 
3248 void __init mm_cache_init(void)
3249 {
3250 	unsigned int mm_size;
3251 
3252 	/*
3253 	 * The mm_cpumask is located at the end of mm_struct, and is
3254 	 * dynamically sized based on the maximum CPU number this system
3255 	 * can have, taking hotplug into account (nr_cpu_ids).
3256 	 */
3257 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3258 
3259 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3260 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3261 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3262 			offsetof(struct mm_struct, saved_auxv),
3263 			sizeof_field(struct mm_struct, saved_auxv),
3264 			NULL);
3265 }
3266 
3267 void __init proc_caches_init(void)
3268 {
3269 	sighand_cachep = kmem_cache_create("sighand_cache",
3270 			sizeof(struct sighand_struct), 0,
3271 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3272 			SLAB_ACCOUNT, sighand_ctor);
3273 	signal_cachep = kmem_cache_create("signal_cache",
3274 			sizeof(struct signal_struct), 0,
3275 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3276 			NULL);
3277 	files_cachep = kmem_cache_create("files_cache",
3278 			sizeof(struct files_struct), 0,
3279 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3280 			NULL);
3281 	fs_cachep = kmem_cache_create("fs_cache",
3282 			sizeof(struct fs_struct), 0,
3283 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3284 			NULL);
3285 
3286 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3287 #ifdef CONFIG_PER_VMA_LOCK
3288 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3289 #endif
3290 	mmap_init();
3291 	nsproxy_cache_init();
3292 }
3293 
3294 /*
3295  * Check constraints on flags passed to the unshare system call.
3296  */
3297 static int check_unshare_flags(unsigned long unshare_flags)
3298 {
3299 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3300 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3301 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3302 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3303 				CLONE_NEWTIME))
3304 		return -EINVAL;
3305 	/*
3306 	 * Not implemented, but pretend it works if there is nothing
3307 	 * to unshare.  Note that unsharing the address space or the
3308 	 * signal handlers also need to unshare the signal queues (aka
3309 	 * CLONE_THREAD).
3310 	 */
3311 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3312 		if (!thread_group_empty(current))
3313 			return -EINVAL;
3314 	}
3315 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3316 		if (refcount_read(&current->sighand->count) > 1)
3317 			return -EINVAL;
3318 	}
3319 	if (unshare_flags & CLONE_VM) {
3320 		if (!current_is_single_threaded())
3321 			return -EINVAL;
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 /*
3328  * Unshare the filesystem structure if it is being shared
3329  */
3330 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3331 {
3332 	struct fs_struct *fs = current->fs;
3333 
3334 	if (!(unshare_flags & CLONE_FS) || !fs)
3335 		return 0;
3336 
3337 	/* don't need lock here; in the worst case we'll do useless copy */
3338 	if (fs->users == 1)
3339 		return 0;
3340 
3341 	*new_fsp = copy_fs_struct(fs);
3342 	if (!*new_fsp)
3343 		return -ENOMEM;
3344 
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Unshare file descriptor table if it is being shared
3350  */
3351 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3352 	       struct files_struct **new_fdp)
3353 {
3354 	struct files_struct *fd = current->files;
3355 	int error = 0;
3356 
3357 	if ((unshare_flags & CLONE_FILES) &&
3358 	    (fd && atomic_read(&fd->count) > 1)) {
3359 		*new_fdp = dup_fd(fd, max_fds, &error);
3360 		if (!*new_fdp)
3361 			return error;
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 /*
3368  * unshare allows a process to 'unshare' part of the process
3369  * context which was originally shared using clone.  copy_*
3370  * functions used by kernel_clone() cannot be used here directly
3371  * because they modify an inactive task_struct that is being
3372  * constructed. Here we are modifying the current, active,
3373  * task_struct.
3374  */
3375 int ksys_unshare(unsigned long unshare_flags)
3376 {
3377 	struct fs_struct *fs, *new_fs = NULL;
3378 	struct files_struct *new_fd = NULL;
3379 	struct cred *new_cred = NULL;
3380 	struct nsproxy *new_nsproxy = NULL;
3381 	int do_sysvsem = 0;
3382 	int err;
3383 
3384 	/*
3385 	 * If unsharing a user namespace must also unshare the thread group
3386 	 * and unshare the filesystem root and working directories.
3387 	 */
3388 	if (unshare_flags & CLONE_NEWUSER)
3389 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3390 	/*
3391 	 * If unsharing vm, must also unshare signal handlers.
3392 	 */
3393 	if (unshare_flags & CLONE_VM)
3394 		unshare_flags |= CLONE_SIGHAND;
3395 	/*
3396 	 * If unsharing a signal handlers, must also unshare the signal queues.
3397 	 */
3398 	if (unshare_flags & CLONE_SIGHAND)
3399 		unshare_flags |= CLONE_THREAD;
3400 	/*
3401 	 * If unsharing namespace, must also unshare filesystem information.
3402 	 */
3403 	if (unshare_flags & CLONE_NEWNS)
3404 		unshare_flags |= CLONE_FS;
3405 
3406 	err = check_unshare_flags(unshare_flags);
3407 	if (err)
3408 		goto bad_unshare_out;
3409 	/*
3410 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3411 	 * to a new ipc namespace, the semaphore arrays from the old
3412 	 * namespace are unreachable.
3413 	 */
3414 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3415 		do_sysvsem = 1;
3416 	err = unshare_fs(unshare_flags, &new_fs);
3417 	if (err)
3418 		goto bad_unshare_out;
3419 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3420 	if (err)
3421 		goto bad_unshare_cleanup_fs;
3422 	err = unshare_userns(unshare_flags, &new_cred);
3423 	if (err)
3424 		goto bad_unshare_cleanup_fd;
3425 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3426 					 new_cred, new_fs);
3427 	if (err)
3428 		goto bad_unshare_cleanup_cred;
3429 
3430 	if (new_cred) {
3431 		err = set_cred_ucounts(new_cred);
3432 		if (err)
3433 			goto bad_unshare_cleanup_cred;
3434 	}
3435 
3436 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3437 		if (do_sysvsem) {
3438 			/*
3439 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3440 			 */
3441 			exit_sem(current);
3442 		}
3443 		if (unshare_flags & CLONE_NEWIPC) {
3444 			/* Orphan segments in old ns (see sem above). */
3445 			exit_shm(current);
3446 			shm_init_task(current);
3447 		}
3448 
3449 		if (new_nsproxy)
3450 			switch_task_namespaces(current, new_nsproxy);
3451 
3452 		task_lock(current);
3453 
3454 		if (new_fs) {
3455 			fs = current->fs;
3456 			spin_lock(&fs->lock);
3457 			current->fs = new_fs;
3458 			if (--fs->users)
3459 				new_fs = NULL;
3460 			else
3461 				new_fs = fs;
3462 			spin_unlock(&fs->lock);
3463 		}
3464 
3465 		if (new_fd)
3466 			swap(current->files, new_fd);
3467 
3468 		task_unlock(current);
3469 
3470 		if (new_cred) {
3471 			/* Install the new user namespace */
3472 			commit_creds(new_cred);
3473 			new_cred = NULL;
3474 		}
3475 	}
3476 
3477 	perf_event_namespaces(current);
3478 
3479 bad_unshare_cleanup_cred:
3480 	if (new_cred)
3481 		put_cred(new_cred);
3482 bad_unshare_cleanup_fd:
3483 	if (new_fd)
3484 		put_files_struct(new_fd);
3485 
3486 bad_unshare_cleanup_fs:
3487 	if (new_fs)
3488 		free_fs_struct(new_fs);
3489 
3490 bad_unshare_out:
3491 	return err;
3492 }
3493 
3494 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3495 {
3496 	return ksys_unshare(unshare_flags);
3497 }
3498 
3499 /*
3500  *	Helper to unshare the files of the current task.
3501  *	We don't want to expose copy_files internals to
3502  *	the exec layer of the kernel.
3503  */
3504 
3505 int unshare_files(void)
3506 {
3507 	struct task_struct *task = current;
3508 	struct files_struct *old, *copy = NULL;
3509 	int error;
3510 
3511 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3512 	if (error || !copy)
3513 		return error;
3514 
3515 	old = task->files;
3516 	task_lock(task);
3517 	task->files = copy;
3518 	task_unlock(task);
3519 	put_files_struct(old);
3520 	return 0;
3521 }
3522 
3523 int sysctl_max_threads(struct ctl_table *table, int write,
3524 		       void *buffer, size_t *lenp, loff_t *ppos)
3525 {
3526 	struct ctl_table t;
3527 	int ret;
3528 	int threads = max_threads;
3529 	int min = 1;
3530 	int max = MAX_THREADS;
3531 
3532 	t = *table;
3533 	t.data = &threads;
3534 	t.extra1 = &min;
3535 	t.extra2 = &max;
3536 
3537 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3538 	if (ret || !write)
3539 		return ret;
3540 
3541 	max_threads = threads;
3542 
3543 	return 0;
3544 }
3545