1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 # ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 struct vm_stack { 195 struct rcu_head rcu; 196 struct vm_struct *stack_vm_area; 197 }; 198 199 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 200 { 201 unsigned int i; 202 203 for (i = 0; i < NR_CACHED_STACKS; i++) { 204 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 205 continue; 206 return true; 207 } 208 return false; 209 } 210 211 static void thread_stack_free_rcu(struct rcu_head *rh) 212 { 213 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 214 215 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 216 return; 217 218 vfree(vm_stack); 219 } 220 221 static void thread_stack_delayed_free(struct task_struct *tsk) 222 { 223 struct vm_stack *vm_stack = tsk->stack; 224 225 vm_stack->stack_vm_area = tsk->stack_vm_area; 226 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 227 } 228 229 static int free_vm_stack_cache(unsigned int cpu) 230 { 231 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 232 int i; 233 234 for (i = 0; i < NR_CACHED_STACKS; i++) { 235 struct vm_struct *vm_stack = cached_vm_stacks[i]; 236 237 if (!vm_stack) 238 continue; 239 240 vfree(vm_stack->addr); 241 cached_vm_stacks[i] = NULL; 242 } 243 244 return 0; 245 } 246 247 static int memcg_charge_kernel_stack(struct vm_struct *vm) 248 { 249 int i; 250 int ret; 251 int nr_charged = 0; 252 253 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 254 255 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 256 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 257 if (ret) 258 goto err; 259 nr_charged++; 260 } 261 return 0; 262 err: 263 for (i = 0; i < nr_charged; i++) 264 memcg_kmem_uncharge_page(vm->pages[i], 0); 265 return ret; 266 } 267 268 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 269 { 270 struct vm_struct *vm; 271 void *stack; 272 int i; 273 274 for (i = 0; i < NR_CACHED_STACKS; i++) { 275 struct vm_struct *s; 276 277 s = this_cpu_xchg(cached_stacks[i], NULL); 278 279 if (!s) 280 continue; 281 282 /* Reset stack metadata. */ 283 kasan_unpoison_range(s->addr, THREAD_SIZE); 284 285 stack = kasan_reset_tag(s->addr); 286 287 /* Clear stale pointers from reused stack. */ 288 memset(stack, 0, THREAD_SIZE); 289 290 if (memcg_charge_kernel_stack(s)) { 291 vfree(s->addr); 292 return -ENOMEM; 293 } 294 295 tsk->stack_vm_area = s; 296 tsk->stack = stack; 297 return 0; 298 } 299 300 /* 301 * Allocated stacks are cached and later reused by new threads, 302 * so memcg accounting is performed manually on assigning/releasing 303 * stacks to tasks. Drop __GFP_ACCOUNT. 304 */ 305 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 306 VMALLOC_START, VMALLOC_END, 307 THREADINFO_GFP & ~__GFP_ACCOUNT, 308 PAGE_KERNEL, 309 0, node, __builtin_return_address(0)); 310 if (!stack) 311 return -ENOMEM; 312 313 vm = find_vm_area(stack); 314 if (memcg_charge_kernel_stack(vm)) { 315 vfree(stack); 316 return -ENOMEM; 317 } 318 /* 319 * We can't call find_vm_area() in interrupt context, and 320 * free_thread_stack() can be called in interrupt context, 321 * so cache the vm_struct. 322 */ 323 tsk->stack_vm_area = vm; 324 stack = kasan_reset_tag(stack); 325 tsk->stack = stack; 326 return 0; 327 } 328 329 static void free_thread_stack(struct task_struct *tsk) 330 { 331 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 332 thread_stack_delayed_free(tsk); 333 334 tsk->stack = NULL; 335 tsk->stack_vm_area = NULL; 336 } 337 338 # else /* !CONFIG_VMAP_STACK */ 339 340 static void thread_stack_free_rcu(struct rcu_head *rh) 341 { 342 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 343 } 344 345 static void thread_stack_delayed_free(struct task_struct *tsk) 346 { 347 struct rcu_head *rh = tsk->stack; 348 349 call_rcu(rh, thread_stack_free_rcu); 350 } 351 352 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 353 { 354 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 355 THREAD_SIZE_ORDER); 356 357 if (likely(page)) { 358 tsk->stack = kasan_reset_tag(page_address(page)); 359 return 0; 360 } 361 return -ENOMEM; 362 } 363 364 static void free_thread_stack(struct task_struct *tsk) 365 { 366 thread_stack_delayed_free(tsk); 367 tsk->stack = NULL; 368 } 369 370 # endif /* CONFIG_VMAP_STACK */ 371 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 372 373 static struct kmem_cache *thread_stack_cache; 374 375 static void thread_stack_free_rcu(struct rcu_head *rh) 376 { 377 kmem_cache_free(thread_stack_cache, rh); 378 } 379 380 static void thread_stack_delayed_free(struct task_struct *tsk) 381 { 382 struct rcu_head *rh = tsk->stack; 383 384 call_rcu(rh, thread_stack_free_rcu); 385 } 386 387 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 388 { 389 unsigned long *stack; 390 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 391 stack = kasan_reset_tag(stack); 392 tsk->stack = stack; 393 return stack ? 0 : -ENOMEM; 394 } 395 396 static void free_thread_stack(struct task_struct *tsk) 397 { 398 thread_stack_delayed_free(tsk); 399 tsk->stack = NULL; 400 } 401 402 void thread_stack_cache_init(void) 403 { 404 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 405 THREAD_SIZE, THREAD_SIZE, 0, 0, 406 THREAD_SIZE, NULL); 407 BUG_ON(thread_stack_cache == NULL); 408 } 409 410 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 411 412 /* SLAB cache for signal_struct structures (tsk->signal) */ 413 static struct kmem_cache *signal_cachep; 414 415 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 416 struct kmem_cache *sighand_cachep; 417 418 /* SLAB cache for files_struct structures (tsk->files) */ 419 struct kmem_cache *files_cachep; 420 421 /* SLAB cache for fs_struct structures (tsk->fs) */ 422 struct kmem_cache *fs_cachep; 423 424 /* SLAB cache for vm_area_struct structures */ 425 static struct kmem_cache *vm_area_cachep; 426 427 /* SLAB cache for mm_struct structures (tsk->mm) */ 428 static struct kmem_cache *mm_cachep; 429 430 #ifdef CONFIG_PER_VMA_LOCK 431 432 /* SLAB cache for vm_area_struct.lock */ 433 static struct kmem_cache *vma_lock_cachep; 434 435 static bool vma_lock_alloc(struct vm_area_struct *vma) 436 { 437 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 438 if (!vma->vm_lock) 439 return false; 440 441 init_rwsem(&vma->vm_lock->lock); 442 vma->vm_lock_seq = -1; 443 444 return true; 445 } 446 447 static inline void vma_lock_free(struct vm_area_struct *vma) 448 { 449 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 450 } 451 452 #else /* CONFIG_PER_VMA_LOCK */ 453 454 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 455 static inline void vma_lock_free(struct vm_area_struct *vma) {} 456 457 #endif /* CONFIG_PER_VMA_LOCK */ 458 459 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 460 { 461 struct vm_area_struct *vma; 462 463 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 464 if (!vma) 465 return NULL; 466 467 vma_init(vma, mm); 468 if (!vma_lock_alloc(vma)) { 469 kmem_cache_free(vm_area_cachep, vma); 470 return NULL; 471 } 472 473 return vma; 474 } 475 476 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 477 { 478 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 479 480 if (!new) 481 return NULL; 482 483 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 484 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 485 /* 486 * orig->shared.rb may be modified concurrently, but the clone 487 * will be reinitialized. 488 */ 489 data_race(memcpy(new, orig, sizeof(*new))); 490 if (!vma_lock_alloc(new)) { 491 kmem_cache_free(vm_area_cachep, new); 492 return NULL; 493 } 494 INIT_LIST_HEAD(&new->anon_vma_chain); 495 vma_numab_state_init(new); 496 dup_anon_vma_name(orig, new); 497 498 return new; 499 } 500 501 void __vm_area_free(struct vm_area_struct *vma) 502 { 503 vma_numab_state_free(vma); 504 free_anon_vma_name(vma); 505 vma_lock_free(vma); 506 kmem_cache_free(vm_area_cachep, vma); 507 } 508 509 #ifdef CONFIG_PER_VMA_LOCK 510 static void vm_area_free_rcu_cb(struct rcu_head *head) 511 { 512 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 513 vm_rcu); 514 515 /* The vma should not be locked while being destroyed. */ 516 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 517 __vm_area_free(vma); 518 } 519 #endif 520 521 void vm_area_free(struct vm_area_struct *vma) 522 { 523 #ifdef CONFIG_PER_VMA_LOCK 524 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 525 #else 526 __vm_area_free(vma); 527 #endif 528 } 529 530 static void account_kernel_stack(struct task_struct *tsk, int account) 531 { 532 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 533 struct vm_struct *vm = task_stack_vm_area(tsk); 534 int i; 535 536 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 537 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 538 account * (PAGE_SIZE / 1024)); 539 } else { 540 void *stack = task_stack_page(tsk); 541 542 /* All stack pages are in the same node. */ 543 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 544 account * (THREAD_SIZE / 1024)); 545 } 546 } 547 548 void exit_task_stack_account(struct task_struct *tsk) 549 { 550 account_kernel_stack(tsk, -1); 551 552 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 553 struct vm_struct *vm; 554 int i; 555 556 vm = task_stack_vm_area(tsk); 557 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 558 memcg_kmem_uncharge_page(vm->pages[i], 0); 559 } 560 } 561 562 static void release_task_stack(struct task_struct *tsk) 563 { 564 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 565 return; /* Better to leak the stack than to free prematurely */ 566 567 free_thread_stack(tsk); 568 } 569 570 #ifdef CONFIG_THREAD_INFO_IN_TASK 571 void put_task_stack(struct task_struct *tsk) 572 { 573 if (refcount_dec_and_test(&tsk->stack_refcount)) 574 release_task_stack(tsk); 575 } 576 #endif 577 578 void free_task(struct task_struct *tsk) 579 { 580 #ifdef CONFIG_SECCOMP 581 WARN_ON_ONCE(tsk->seccomp.filter); 582 #endif 583 release_user_cpus_ptr(tsk); 584 scs_release(tsk); 585 586 #ifndef CONFIG_THREAD_INFO_IN_TASK 587 /* 588 * The task is finally done with both the stack and thread_info, 589 * so free both. 590 */ 591 release_task_stack(tsk); 592 #else 593 /* 594 * If the task had a separate stack allocation, it should be gone 595 * by now. 596 */ 597 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 598 #endif 599 rt_mutex_debug_task_free(tsk); 600 ftrace_graph_exit_task(tsk); 601 arch_release_task_struct(tsk); 602 if (tsk->flags & PF_KTHREAD) 603 free_kthread_struct(tsk); 604 bpf_task_storage_free(tsk); 605 free_task_struct(tsk); 606 } 607 EXPORT_SYMBOL(free_task); 608 609 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 610 { 611 struct file *exe_file; 612 613 exe_file = get_mm_exe_file(oldmm); 614 RCU_INIT_POINTER(mm->exe_file, exe_file); 615 /* 616 * We depend on the oldmm having properly denied write access to the 617 * exe_file already. 618 */ 619 if (exe_file && deny_write_access(exe_file)) 620 pr_warn_once("deny_write_access() failed in %s\n", __func__); 621 } 622 623 #ifdef CONFIG_MMU 624 static __latent_entropy int dup_mmap(struct mm_struct *mm, 625 struct mm_struct *oldmm) 626 { 627 struct vm_area_struct *mpnt, *tmp; 628 int retval; 629 unsigned long charge = 0; 630 LIST_HEAD(uf); 631 VMA_ITERATOR(vmi, mm, 0); 632 633 uprobe_start_dup_mmap(); 634 if (mmap_write_lock_killable(oldmm)) { 635 retval = -EINTR; 636 goto fail_uprobe_end; 637 } 638 flush_cache_dup_mm(oldmm); 639 uprobe_dup_mmap(oldmm, mm); 640 /* 641 * Not linked in yet - no deadlock potential: 642 */ 643 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 644 645 /* No ordering required: file already has been exposed. */ 646 dup_mm_exe_file(mm, oldmm); 647 648 mm->total_vm = oldmm->total_vm; 649 mm->data_vm = oldmm->data_vm; 650 mm->exec_vm = oldmm->exec_vm; 651 mm->stack_vm = oldmm->stack_vm; 652 653 retval = ksm_fork(mm, oldmm); 654 if (retval) 655 goto out; 656 khugepaged_fork(mm, oldmm); 657 658 /* Use __mt_dup() to efficiently build an identical maple tree. */ 659 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 660 if (unlikely(retval)) 661 goto out; 662 663 mt_clear_in_rcu(vmi.mas.tree); 664 for_each_vma(vmi, mpnt) { 665 struct file *file; 666 667 vma_start_write(mpnt); 668 if (mpnt->vm_flags & VM_DONTCOPY) { 669 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 670 mpnt->vm_end, GFP_KERNEL); 671 if (retval) 672 goto loop_out; 673 674 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 675 continue; 676 } 677 charge = 0; 678 /* 679 * Don't duplicate many vmas if we've been oom-killed (for 680 * example) 681 */ 682 if (fatal_signal_pending(current)) { 683 retval = -EINTR; 684 goto loop_out; 685 } 686 if (mpnt->vm_flags & VM_ACCOUNT) { 687 unsigned long len = vma_pages(mpnt); 688 689 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 690 goto fail_nomem; 691 charge = len; 692 } 693 tmp = vm_area_dup(mpnt); 694 if (!tmp) 695 goto fail_nomem; 696 retval = vma_dup_policy(mpnt, tmp); 697 if (retval) 698 goto fail_nomem_policy; 699 tmp->vm_mm = mm; 700 retval = dup_userfaultfd(tmp, &uf); 701 if (retval) 702 goto fail_nomem_anon_vma_fork; 703 if (tmp->vm_flags & VM_WIPEONFORK) { 704 /* 705 * VM_WIPEONFORK gets a clean slate in the child. 706 * Don't prepare anon_vma until fault since we don't 707 * copy page for current vma. 708 */ 709 tmp->anon_vma = NULL; 710 } else if (anon_vma_fork(tmp, mpnt)) 711 goto fail_nomem_anon_vma_fork; 712 vm_flags_clear(tmp, VM_LOCKED_MASK); 713 file = tmp->vm_file; 714 if (file) { 715 struct address_space *mapping = file->f_mapping; 716 717 get_file(file); 718 i_mmap_lock_write(mapping); 719 if (vma_is_shared_maywrite(tmp)) 720 mapping_allow_writable(mapping); 721 flush_dcache_mmap_lock(mapping); 722 /* insert tmp into the share list, just after mpnt */ 723 vma_interval_tree_insert_after(tmp, mpnt, 724 &mapping->i_mmap); 725 flush_dcache_mmap_unlock(mapping); 726 i_mmap_unlock_write(mapping); 727 } 728 729 /* 730 * Copy/update hugetlb private vma information. 731 */ 732 if (is_vm_hugetlb_page(tmp)) 733 hugetlb_dup_vma_private(tmp); 734 735 /* 736 * Link the vma into the MT. After using __mt_dup(), memory 737 * allocation is not necessary here, so it cannot fail. 738 */ 739 vma_iter_bulk_store(&vmi, tmp); 740 741 mm->map_count++; 742 if (!(tmp->vm_flags & VM_WIPEONFORK)) 743 retval = copy_page_range(tmp, mpnt); 744 745 if (tmp->vm_ops && tmp->vm_ops->open) 746 tmp->vm_ops->open(tmp); 747 748 if (retval) { 749 mpnt = vma_next(&vmi); 750 goto loop_out; 751 } 752 } 753 /* a new mm has just been created */ 754 retval = arch_dup_mmap(oldmm, mm); 755 loop_out: 756 vma_iter_free(&vmi); 757 if (!retval) { 758 mt_set_in_rcu(vmi.mas.tree); 759 } else if (mpnt) { 760 /* 761 * The entire maple tree has already been duplicated. If the 762 * mmap duplication fails, mark the failure point with 763 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 764 * stop releasing VMAs that have not been duplicated after this 765 * point. 766 */ 767 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 768 mas_store(&vmi.mas, XA_ZERO_ENTRY); 769 } 770 out: 771 mmap_write_unlock(mm); 772 flush_tlb_mm(oldmm); 773 mmap_write_unlock(oldmm); 774 dup_userfaultfd_complete(&uf); 775 fail_uprobe_end: 776 uprobe_end_dup_mmap(); 777 return retval; 778 779 fail_nomem_anon_vma_fork: 780 mpol_put(vma_policy(tmp)); 781 fail_nomem_policy: 782 vm_area_free(tmp); 783 fail_nomem: 784 retval = -ENOMEM; 785 vm_unacct_memory(charge); 786 goto loop_out; 787 } 788 789 static inline int mm_alloc_pgd(struct mm_struct *mm) 790 { 791 mm->pgd = pgd_alloc(mm); 792 if (unlikely(!mm->pgd)) 793 return -ENOMEM; 794 return 0; 795 } 796 797 static inline void mm_free_pgd(struct mm_struct *mm) 798 { 799 pgd_free(mm, mm->pgd); 800 } 801 #else 802 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 803 { 804 mmap_write_lock(oldmm); 805 dup_mm_exe_file(mm, oldmm); 806 mmap_write_unlock(oldmm); 807 return 0; 808 } 809 #define mm_alloc_pgd(mm) (0) 810 #define mm_free_pgd(mm) 811 #endif /* CONFIG_MMU */ 812 813 static void check_mm(struct mm_struct *mm) 814 { 815 int i; 816 817 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 818 "Please make sure 'struct resident_page_types[]' is updated as well"); 819 820 for (i = 0; i < NR_MM_COUNTERS; i++) { 821 long x = percpu_counter_sum(&mm->rss_stat[i]); 822 823 if (unlikely(x)) 824 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 825 mm, resident_page_types[i], x); 826 } 827 828 if (mm_pgtables_bytes(mm)) 829 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 830 mm_pgtables_bytes(mm)); 831 832 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 833 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 834 #endif 835 } 836 837 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 838 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 839 840 static void do_check_lazy_tlb(void *arg) 841 { 842 struct mm_struct *mm = arg; 843 844 WARN_ON_ONCE(current->active_mm == mm); 845 } 846 847 static void do_shoot_lazy_tlb(void *arg) 848 { 849 struct mm_struct *mm = arg; 850 851 if (current->active_mm == mm) { 852 WARN_ON_ONCE(current->mm); 853 current->active_mm = &init_mm; 854 switch_mm(mm, &init_mm, current); 855 } 856 } 857 858 static void cleanup_lazy_tlbs(struct mm_struct *mm) 859 { 860 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 861 /* 862 * In this case, lazy tlb mms are refounted and would not reach 863 * __mmdrop until all CPUs have switched away and mmdrop()ed. 864 */ 865 return; 866 } 867 868 /* 869 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 870 * requires lazy mm users to switch to another mm when the refcount 871 * drops to zero, before the mm is freed. This requires IPIs here to 872 * switch kernel threads to init_mm. 873 * 874 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 875 * switch with the final userspace teardown TLB flush which leaves the 876 * mm lazy on this CPU but no others, reducing the need for additional 877 * IPIs here. There are cases where a final IPI is still required here, 878 * such as the final mmdrop being performed on a different CPU than the 879 * one exiting, or kernel threads using the mm when userspace exits. 880 * 881 * IPI overheads have not found to be expensive, but they could be 882 * reduced in a number of possible ways, for example (roughly 883 * increasing order of complexity): 884 * - The last lazy reference created by exit_mm() could instead switch 885 * to init_mm, however it's probable this will run on the same CPU 886 * immediately afterwards, so this may not reduce IPIs much. 887 * - A batch of mms requiring IPIs could be gathered and freed at once. 888 * - CPUs store active_mm where it can be remotely checked without a 889 * lock, to filter out false-positives in the cpumask. 890 * - After mm_users or mm_count reaches zero, switching away from the 891 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 892 * with some batching or delaying of the final IPIs. 893 * - A delayed freeing and RCU-like quiescing sequence based on mm 894 * switching to avoid IPIs completely. 895 */ 896 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 897 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 898 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 899 } 900 901 /* 902 * Called when the last reference to the mm 903 * is dropped: either by a lazy thread or by 904 * mmput. Free the page directory and the mm. 905 */ 906 void __mmdrop(struct mm_struct *mm) 907 { 908 BUG_ON(mm == &init_mm); 909 WARN_ON_ONCE(mm == current->mm); 910 911 /* Ensure no CPUs are using this as their lazy tlb mm */ 912 cleanup_lazy_tlbs(mm); 913 914 WARN_ON_ONCE(mm == current->active_mm); 915 mm_free_pgd(mm); 916 destroy_context(mm); 917 mmu_notifier_subscriptions_destroy(mm); 918 check_mm(mm); 919 put_user_ns(mm->user_ns); 920 mm_pasid_drop(mm); 921 mm_destroy_cid(mm); 922 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 923 924 free_mm(mm); 925 } 926 EXPORT_SYMBOL_GPL(__mmdrop); 927 928 static void mmdrop_async_fn(struct work_struct *work) 929 { 930 struct mm_struct *mm; 931 932 mm = container_of(work, struct mm_struct, async_put_work); 933 __mmdrop(mm); 934 } 935 936 static void mmdrop_async(struct mm_struct *mm) 937 { 938 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 939 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 940 schedule_work(&mm->async_put_work); 941 } 942 } 943 944 static inline void free_signal_struct(struct signal_struct *sig) 945 { 946 taskstats_tgid_free(sig); 947 sched_autogroup_exit(sig); 948 /* 949 * __mmdrop is not safe to call from softirq context on x86 due to 950 * pgd_dtor so postpone it to the async context 951 */ 952 if (sig->oom_mm) 953 mmdrop_async(sig->oom_mm); 954 kmem_cache_free(signal_cachep, sig); 955 } 956 957 static inline void put_signal_struct(struct signal_struct *sig) 958 { 959 if (refcount_dec_and_test(&sig->sigcnt)) 960 free_signal_struct(sig); 961 } 962 963 void __put_task_struct(struct task_struct *tsk) 964 { 965 WARN_ON(!tsk->exit_state); 966 WARN_ON(refcount_read(&tsk->usage)); 967 WARN_ON(tsk == current); 968 969 io_uring_free(tsk); 970 cgroup_free(tsk); 971 task_numa_free(tsk, true); 972 security_task_free(tsk); 973 exit_creds(tsk); 974 delayacct_tsk_free(tsk); 975 put_signal_struct(tsk->signal); 976 sched_core_free(tsk); 977 free_task(tsk); 978 } 979 EXPORT_SYMBOL_GPL(__put_task_struct); 980 981 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 982 { 983 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 984 985 __put_task_struct(task); 986 } 987 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 988 989 void __init __weak arch_task_cache_init(void) { } 990 991 /* 992 * set_max_threads 993 */ 994 static void set_max_threads(unsigned int max_threads_suggested) 995 { 996 u64 threads; 997 unsigned long nr_pages = totalram_pages(); 998 999 /* 1000 * The number of threads shall be limited such that the thread 1001 * structures may only consume a small part of the available memory. 1002 */ 1003 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1004 threads = MAX_THREADS; 1005 else 1006 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1007 (u64) THREAD_SIZE * 8UL); 1008 1009 if (threads > max_threads_suggested) 1010 threads = max_threads_suggested; 1011 1012 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1013 } 1014 1015 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1016 /* Initialized by the architecture: */ 1017 int arch_task_struct_size __read_mostly; 1018 #endif 1019 1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1021 { 1022 /* Fetch thread_struct whitelist for the architecture. */ 1023 arch_thread_struct_whitelist(offset, size); 1024 1025 /* 1026 * Handle zero-sized whitelist or empty thread_struct, otherwise 1027 * adjust offset to position of thread_struct in task_struct. 1028 */ 1029 if (unlikely(*size == 0)) 1030 *offset = 0; 1031 else 1032 *offset += offsetof(struct task_struct, thread); 1033 } 1034 1035 void __init fork_init(void) 1036 { 1037 int i; 1038 #ifndef ARCH_MIN_TASKALIGN 1039 #define ARCH_MIN_TASKALIGN 0 1040 #endif 1041 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1042 unsigned long useroffset, usersize; 1043 1044 /* create a slab on which task_structs can be allocated */ 1045 task_struct_whitelist(&useroffset, &usersize); 1046 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1047 arch_task_struct_size, align, 1048 SLAB_PANIC|SLAB_ACCOUNT, 1049 useroffset, usersize, NULL); 1050 1051 /* do the arch specific task caches init */ 1052 arch_task_cache_init(); 1053 1054 set_max_threads(MAX_THREADS); 1055 1056 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1057 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1058 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1059 init_task.signal->rlim[RLIMIT_NPROC]; 1060 1061 for (i = 0; i < UCOUNT_COUNTS; i++) 1062 init_user_ns.ucount_max[i] = max_threads/2; 1063 1064 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1065 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1068 1069 #ifdef CONFIG_VMAP_STACK 1070 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1071 NULL, free_vm_stack_cache); 1072 #endif 1073 1074 scs_init(); 1075 1076 lockdep_init_task(&init_task); 1077 uprobes_init(); 1078 } 1079 1080 int __weak arch_dup_task_struct(struct task_struct *dst, 1081 struct task_struct *src) 1082 { 1083 *dst = *src; 1084 return 0; 1085 } 1086 1087 void set_task_stack_end_magic(struct task_struct *tsk) 1088 { 1089 unsigned long *stackend; 1090 1091 stackend = end_of_stack(tsk); 1092 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1093 } 1094 1095 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1096 { 1097 struct task_struct *tsk; 1098 int err; 1099 1100 if (node == NUMA_NO_NODE) 1101 node = tsk_fork_get_node(orig); 1102 tsk = alloc_task_struct_node(node); 1103 if (!tsk) 1104 return NULL; 1105 1106 err = arch_dup_task_struct(tsk, orig); 1107 if (err) 1108 goto free_tsk; 1109 1110 err = alloc_thread_stack_node(tsk, node); 1111 if (err) 1112 goto free_tsk; 1113 1114 #ifdef CONFIG_THREAD_INFO_IN_TASK 1115 refcount_set(&tsk->stack_refcount, 1); 1116 #endif 1117 account_kernel_stack(tsk, 1); 1118 1119 err = scs_prepare(tsk, node); 1120 if (err) 1121 goto free_stack; 1122 1123 #ifdef CONFIG_SECCOMP 1124 /* 1125 * We must handle setting up seccomp filters once we're under 1126 * the sighand lock in case orig has changed between now and 1127 * then. Until then, filter must be NULL to avoid messing up 1128 * the usage counts on the error path calling free_task. 1129 */ 1130 tsk->seccomp.filter = NULL; 1131 #endif 1132 1133 setup_thread_stack(tsk, orig); 1134 clear_user_return_notifier(tsk); 1135 clear_tsk_need_resched(tsk); 1136 set_task_stack_end_magic(tsk); 1137 clear_syscall_work_syscall_user_dispatch(tsk); 1138 1139 #ifdef CONFIG_STACKPROTECTOR 1140 tsk->stack_canary = get_random_canary(); 1141 #endif 1142 if (orig->cpus_ptr == &orig->cpus_mask) 1143 tsk->cpus_ptr = &tsk->cpus_mask; 1144 dup_user_cpus_ptr(tsk, orig, node); 1145 1146 /* 1147 * One for the user space visible state that goes away when reaped. 1148 * One for the scheduler. 1149 */ 1150 refcount_set(&tsk->rcu_users, 2); 1151 /* One for the rcu users */ 1152 refcount_set(&tsk->usage, 1); 1153 #ifdef CONFIG_BLK_DEV_IO_TRACE 1154 tsk->btrace_seq = 0; 1155 #endif 1156 tsk->splice_pipe = NULL; 1157 tsk->task_frag.page = NULL; 1158 tsk->wake_q.next = NULL; 1159 tsk->worker_private = NULL; 1160 1161 kcov_task_init(tsk); 1162 kmsan_task_create(tsk); 1163 kmap_local_fork(tsk); 1164 1165 #ifdef CONFIG_FAULT_INJECTION 1166 tsk->fail_nth = 0; 1167 #endif 1168 1169 #ifdef CONFIG_BLK_CGROUP 1170 tsk->throttle_disk = NULL; 1171 tsk->use_memdelay = 0; 1172 #endif 1173 1174 #ifdef CONFIG_IOMMU_SVA 1175 tsk->pasid_activated = 0; 1176 #endif 1177 1178 #ifdef CONFIG_MEMCG 1179 tsk->active_memcg = NULL; 1180 #endif 1181 1182 #ifdef CONFIG_CPU_SUP_INTEL 1183 tsk->reported_split_lock = 0; 1184 #endif 1185 1186 #ifdef CONFIG_SCHED_MM_CID 1187 tsk->mm_cid = -1; 1188 tsk->last_mm_cid = -1; 1189 tsk->mm_cid_active = 0; 1190 tsk->migrate_from_cpu = -1; 1191 #endif 1192 return tsk; 1193 1194 free_stack: 1195 exit_task_stack_account(tsk); 1196 free_thread_stack(tsk); 1197 free_tsk: 1198 free_task_struct(tsk); 1199 return NULL; 1200 } 1201 1202 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1203 1204 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1205 1206 static int __init coredump_filter_setup(char *s) 1207 { 1208 default_dump_filter = 1209 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1210 MMF_DUMP_FILTER_MASK; 1211 return 1; 1212 } 1213 1214 __setup("coredump_filter=", coredump_filter_setup); 1215 1216 #include <linux/init_task.h> 1217 1218 static void mm_init_aio(struct mm_struct *mm) 1219 { 1220 #ifdef CONFIG_AIO 1221 spin_lock_init(&mm->ioctx_lock); 1222 mm->ioctx_table = NULL; 1223 #endif 1224 } 1225 1226 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1227 struct task_struct *p) 1228 { 1229 #ifdef CONFIG_MEMCG 1230 if (mm->owner == p) 1231 WRITE_ONCE(mm->owner, NULL); 1232 #endif 1233 } 1234 1235 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1236 { 1237 #ifdef CONFIG_MEMCG 1238 mm->owner = p; 1239 #endif 1240 } 1241 1242 static void mm_init_uprobes_state(struct mm_struct *mm) 1243 { 1244 #ifdef CONFIG_UPROBES 1245 mm->uprobes_state.xol_area = NULL; 1246 #endif 1247 } 1248 1249 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1250 struct user_namespace *user_ns) 1251 { 1252 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1253 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1254 atomic_set(&mm->mm_users, 1); 1255 atomic_set(&mm->mm_count, 1); 1256 seqcount_init(&mm->write_protect_seq); 1257 mmap_init_lock(mm); 1258 INIT_LIST_HEAD(&mm->mmlist); 1259 #ifdef CONFIG_PER_VMA_LOCK 1260 mm->mm_lock_seq = 0; 1261 #endif 1262 mm_pgtables_bytes_init(mm); 1263 mm->map_count = 0; 1264 mm->locked_vm = 0; 1265 atomic64_set(&mm->pinned_vm, 0); 1266 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1267 spin_lock_init(&mm->page_table_lock); 1268 spin_lock_init(&mm->arg_lock); 1269 mm_init_cpumask(mm); 1270 mm_init_aio(mm); 1271 mm_init_owner(mm, p); 1272 mm_pasid_init(mm); 1273 RCU_INIT_POINTER(mm->exe_file, NULL); 1274 mmu_notifier_subscriptions_init(mm); 1275 init_tlb_flush_pending(mm); 1276 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1277 mm->pmd_huge_pte = NULL; 1278 #endif 1279 mm_init_uprobes_state(mm); 1280 hugetlb_count_init(mm); 1281 1282 if (current->mm) { 1283 mm->flags = mmf_init_flags(current->mm->flags); 1284 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1285 } else { 1286 mm->flags = default_dump_filter; 1287 mm->def_flags = 0; 1288 } 1289 1290 if (mm_alloc_pgd(mm)) 1291 goto fail_nopgd; 1292 1293 if (init_new_context(p, mm)) 1294 goto fail_nocontext; 1295 1296 if (mm_alloc_cid(mm)) 1297 goto fail_cid; 1298 1299 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1300 NR_MM_COUNTERS)) 1301 goto fail_pcpu; 1302 1303 mm->user_ns = get_user_ns(user_ns); 1304 lru_gen_init_mm(mm); 1305 return mm; 1306 1307 fail_pcpu: 1308 mm_destroy_cid(mm); 1309 fail_cid: 1310 destroy_context(mm); 1311 fail_nocontext: 1312 mm_free_pgd(mm); 1313 fail_nopgd: 1314 free_mm(mm); 1315 return NULL; 1316 } 1317 1318 /* 1319 * Allocate and initialize an mm_struct. 1320 */ 1321 struct mm_struct *mm_alloc(void) 1322 { 1323 struct mm_struct *mm; 1324 1325 mm = allocate_mm(); 1326 if (!mm) 1327 return NULL; 1328 1329 memset(mm, 0, sizeof(*mm)); 1330 return mm_init(mm, current, current_user_ns()); 1331 } 1332 1333 static inline void __mmput(struct mm_struct *mm) 1334 { 1335 VM_BUG_ON(atomic_read(&mm->mm_users)); 1336 1337 uprobe_clear_state(mm); 1338 exit_aio(mm); 1339 ksm_exit(mm); 1340 khugepaged_exit(mm); /* must run before exit_mmap */ 1341 exit_mmap(mm); 1342 mm_put_huge_zero_page(mm); 1343 set_mm_exe_file(mm, NULL); 1344 if (!list_empty(&mm->mmlist)) { 1345 spin_lock(&mmlist_lock); 1346 list_del(&mm->mmlist); 1347 spin_unlock(&mmlist_lock); 1348 } 1349 if (mm->binfmt) 1350 module_put(mm->binfmt->module); 1351 lru_gen_del_mm(mm); 1352 mmdrop(mm); 1353 } 1354 1355 /* 1356 * Decrement the use count and release all resources for an mm. 1357 */ 1358 void mmput(struct mm_struct *mm) 1359 { 1360 might_sleep(); 1361 1362 if (atomic_dec_and_test(&mm->mm_users)) 1363 __mmput(mm); 1364 } 1365 EXPORT_SYMBOL_GPL(mmput); 1366 1367 #ifdef CONFIG_MMU 1368 static void mmput_async_fn(struct work_struct *work) 1369 { 1370 struct mm_struct *mm = container_of(work, struct mm_struct, 1371 async_put_work); 1372 1373 __mmput(mm); 1374 } 1375 1376 void mmput_async(struct mm_struct *mm) 1377 { 1378 if (atomic_dec_and_test(&mm->mm_users)) { 1379 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1380 schedule_work(&mm->async_put_work); 1381 } 1382 } 1383 EXPORT_SYMBOL_GPL(mmput_async); 1384 #endif 1385 1386 /** 1387 * set_mm_exe_file - change a reference to the mm's executable file 1388 * @mm: The mm to change. 1389 * @new_exe_file: The new file to use. 1390 * 1391 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1392 * 1393 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1394 * invocations: in mmput() nobody alive left, in execve it happens before 1395 * the new mm is made visible to anyone. 1396 * 1397 * Can only fail if new_exe_file != NULL. 1398 */ 1399 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1400 { 1401 struct file *old_exe_file; 1402 1403 /* 1404 * It is safe to dereference the exe_file without RCU as 1405 * this function is only called if nobody else can access 1406 * this mm -- see comment above for justification. 1407 */ 1408 old_exe_file = rcu_dereference_raw(mm->exe_file); 1409 1410 if (new_exe_file) { 1411 /* 1412 * We expect the caller (i.e., sys_execve) to already denied 1413 * write access, so this is unlikely to fail. 1414 */ 1415 if (unlikely(deny_write_access(new_exe_file))) 1416 return -EACCES; 1417 get_file(new_exe_file); 1418 } 1419 rcu_assign_pointer(mm->exe_file, new_exe_file); 1420 if (old_exe_file) { 1421 allow_write_access(old_exe_file); 1422 fput(old_exe_file); 1423 } 1424 return 0; 1425 } 1426 1427 /** 1428 * replace_mm_exe_file - replace a reference to the mm's executable file 1429 * @mm: The mm to change. 1430 * @new_exe_file: The new file to use. 1431 * 1432 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1433 * 1434 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1435 */ 1436 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1437 { 1438 struct vm_area_struct *vma; 1439 struct file *old_exe_file; 1440 int ret = 0; 1441 1442 /* Forbid mm->exe_file change if old file still mapped. */ 1443 old_exe_file = get_mm_exe_file(mm); 1444 if (old_exe_file) { 1445 VMA_ITERATOR(vmi, mm, 0); 1446 mmap_read_lock(mm); 1447 for_each_vma(vmi, vma) { 1448 if (!vma->vm_file) 1449 continue; 1450 if (path_equal(&vma->vm_file->f_path, 1451 &old_exe_file->f_path)) { 1452 ret = -EBUSY; 1453 break; 1454 } 1455 } 1456 mmap_read_unlock(mm); 1457 fput(old_exe_file); 1458 if (ret) 1459 return ret; 1460 } 1461 1462 ret = deny_write_access(new_exe_file); 1463 if (ret) 1464 return -EACCES; 1465 get_file(new_exe_file); 1466 1467 /* set the new file */ 1468 mmap_write_lock(mm); 1469 old_exe_file = rcu_dereference_raw(mm->exe_file); 1470 rcu_assign_pointer(mm->exe_file, new_exe_file); 1471 mmap_write_unlock(mm); 1472 1473 if (old_exe_file) { 1474 allow_write_access(old_exe_file); 1475 fput(old_exe_file); 1476 } 1477 return 0; 1478 } 1479 1480 /** 1481 * get_mm_exe_file - acquire a reference to the mm's executable file 1482 * @mm: The mm of interest. 1483 * 1484 * Returns %NULL if mm has no associated executable file. 1485 * User must release file via fput(). 1486 */ 1487 struct file *get_mm_exe_file(struct mm_struct *mm) 1488 { 1489 struct file *exe_file; 1490 1491 rcu_read_lock(); 1492 exe_file = get_file_rcu(&mm->exe_file); 1493 rcu_read_unlock(); 1494 return exe_file; 1495 } 1496 1497 /** 1498 * get_task_exe_file - acquire a reference to the task's executable file 1499 * @task: The task. 1500 * 1501 * Returns %NULL if task's mm (if any) has no associated executable file or 1502 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1503 * User must release file via fput(). 1504 */ 1505 struct file *get_task_exe_file(struct task_struct *task) 1506 { 1507 struct file *exe_file = NULL; 1508 struct mm_struct *mm; 1509 1510 task_lock(task); 1511 mm = task->mm; 1512 if (mm) { 1513 if (!(task->flags & PF_KTHREAD)) 1514 exe_file = get_mm_exe_file(mm); 1515 } 1516 task_unlock(task); 1517 return exe_file; 1518 } 1519 1520 /** 1521 * get_task_mm - acquire a reference to the task's mm 1522 * @task: The task. 1523 * 1524 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1525 * this kernel workthread has transiently adopted a user mm with use_mm, 1526 * to do its AIO) is not set and if so returns a reference to it, after 1527 * bumping up the use count. User must release the mm via mmput() 1528 * after use. Typically used by /proc and ptrace. 1529 */ 1530 struct mm_struct *get_task_mm(struct task_struct *task) 1531 { 1532 struct mm_struct *mm; 1533 1534 task_lock(task); 1535 mm = task->mm; 1536 if (mm) { 1537 if (task->flags & PF_KTHREAD) 1538 mm = NULL; 1539 else 1540 mmget(mm); 1541 } 1542 task_unlock(task); 1543 return mm; 1544 } 1545 EXPORT_SYMBOL_GPL(get_task_mm); 1546 1547 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1548 { 1549 struct mm_struct *mm; 1550 int err; 1551 1552 err = down_read_killable(&task->signal->exec_update_lock); 1553 if (err) 1554 return ERR_PTR(err); 1555 1556 mm = get_task_mm(task); 1557 if (mm && mm != current->mm && 1558 !ptrace_may_access(task, mode)) { 1559 mmput(mm); 1560 mm = ERR_PTR(-EACCES); 1561 } 1562 up_read(&task->signal->exec_update_lock); 1563 1564 return mm; 1565 } 1566 1567 static void complete_vfork_done(struct task_struct *tsk) 1568 { 1569 struct completion *vfork; 1570 1571 task_lock(tsk); 1572 vfork = tsk->vfork_done; 1573 if (likely(vfork)) { 1574 tsk->vfork_done = NULL; 1575 complete(vfork); 1576 } 1577 task_unlock(tsk); 1578 } 1579 1580 static int wait_for_vfork_done(struct task_struct *child, 1581 struct completion *vfork) 1582 { 1583 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1584 int killed; 1585 1586 cgroup_enter_frozen(); 1587 killed = wait_for_completion_state(vfork, state); 1588 cgroup_leave_frozen(false); 1589 1590 if (killed) { 1591 task_lock(child); 1592 child->vfork_done = NULL; 1593 task_unlock(child); 1594 } 1595 1596 put_task_struct(child); 1597 return killed; 1598 } 1599 1600 /* Please note the differences between mmput and mm_release. 1601 * mmput is called whenever we stop holding onto a mm_struct, 1602 * error success whatever. 1603 * 1604 * mm_release is called after a mm_struct has been removed 1605 * from the current process. 1606 * 1607 * This difference is important for error handling, when we 1608 * only half set up a mm_struct for a new process and need to restore 1609 * the old one. Because we mmput the new mm_struct before 1610 * restoring the old one. . . 1611 * Eric Biederman 10 January 1998 1612 */ 1613 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1614 { 1615 uprobe_free_utask(tsk); 1616 1617 /* Get rid of any cached register state */ 1618 deactivate_mm(tsk, mm); 1619 1620 /* 1621 * Signal userspace if we're not exiting with a core dump 1622 * because we want to leave the value intact for debugging 1623 * purposes. 1624 */ 1625 if (tsk->clear_child_tid) { 1626 if (atomic_read(&mm->mm_users) > 1) { 1627 /* 1628 * We don't check the error code - if userspace has 1629 * not set up a proper pointer then tough luck. 1630 */ 1631 put_user(0, tsk->clear_child_tid); 1632 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1633 1, NULL, NULL, 0, 0); 1634 } 1635 tsk->clear_child_tid = NULL; 1636 } 1637 1638 /* 1639 * All done, finally we can wake up parent and return this mm to him. 1640 * Also kthread_stop() uses this completion for synchronization. 1641 */ 1642 if (tsk->vfork_done) 1643 complete_vfork_done(tsk); 1644 } 1645 1646 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1647 { 1648 futex_exit_release(tsk); 1649 mm_release(tsk, mm); 1650 } 1651 1652 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1653 { 1654 futex_exec_release(tsk); 1655 mm_release(tsk, mm); 1656 } 1657 1658 /** 1659 * dup_mm() - duplicates an existing mm structure 1660 * @tsk: the task_struct with which the new mm will be associated. 1661 * @oldmm: the mm to duplicate. 1662 * 1663 * Allocates a new mm structure and duplicates the provided @oldmm structure 1664 * content into it. 1665 * 1666 * Return: the duplicated mm or NULL on failure. 1667 */ 1668 static struct mm_struct *dup_mm(struct task_struct *tsk, 1669 struct mm_struct *oldmm) 1670 { 1671 struct mm_struct *mm; 1672 int err; 1673 1674 mm = allocate_mm(); 1675 if (!mm) 1676 goto fail_nomem; 1677 1678 memcpy(mm, oldmm, sizeof(*mm)); 1679 1680 if (!mm_init(mm, tsk, mm->user_ns)) 1681 goto fail_nomem; 1682 1683 err = dup_mmap(mm, oldmm); 1684 if (err) 1685 goto free_pt; 1686 1687 mm->hiwater_rss = get_mm_rss(mm); 1688 mm->hiwater_vm = mm->total_vm; 1689 1690 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1691 goto free_pt; 1692 1693 return mm; 1694 1695 free_pt: 1696 /* don't put binfmt in mmput, we haven't got module yet */ 1697 mm->binfmt = NULL; 1698 mm_init_owner(mm, NULL); 1699 mmput(mm); 1700 1701 fail_nomem: 1702 return NULL; 1703 } 1704 1705 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1706 { 1707 struct mm_struct *mm, *oldmm; 1708 1709 tsk->min_flt = tsk->maj_flt = 0; 1710 tsk->nvcsw = tsk->nivcsw = 0; 1711 #ifdef CONFIG_DETECT_HUNG_TASK 1712 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1713 tsk->last_switch_time = 0; 1714 #endif 1715 1716 tsk->mm = NULL; 1717 tsk->active_mm = NULL; 1718 1719 /* 1720 * Are we cloning a kernel thread? 1721 * 1722 * We need to steal a active VM for that.. 1723 */ 1724 oldmm = current->mm; 1725 if (!oldmm) 1726 return 0; 1727 1728 if (clone_flags & CLONE_VM) { 1729 mmget(oldmm); 1730 mm = oldmm; 1731 } else { 1732 mm = dup_mm(tsk, current->mm); 1733 if (!mm) 1734 return -ENOMEM; 1735 } 1736 1737 tsk->mm = mm; 1738 tsk->active_mm = mm; 1739 sched_mm_cid_fork(tsk); 1740 return 0; 1741 } 1742 1743 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1744 { 1745 struct fs_struct *fs = current->fs; 1746 if (clone_flags & CLONE_FS) { 1747 /* tsk->fs is already what we want */ 1748 spin_lock(&fs->lock); 1749 if (fs->in_exec) { 1750 spin_unlock(&fs->lock); 1751 return -EAGAIN; 1752 } 1753 fs->users++; 1754 spin_unlock(&fs->lock); 1755 return 0; 1756 } 1757 tsk->fs = copy_fs_struct(fs); 1758 if (!tsk->fs) 1759 return -ENOMEM; 1760 return 0; 1761 } 1762 1763 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1764 int no_files) 1765 { 1766 struct files_struct *oldf, *newf; 1767 int error = 0; 1768 1769 /* 1770 * A background process may not have any files ... 1771 */ 1772 oldf = current->files; 1773 if (!oldf) 1774 goto out; 1775 1776 if (no_files) { 1777 tsk->files = NULL; 1778 goto out; 1779 } 1780 1781 if (clone_flags & CLONE_FILES) { 1782 atomic_inc(&oldf->count); 1783 goto out; 1784 } 1785 1786 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1787 if (!newf) 1788 goto out; 1789 1790 tsk->files = newf; 1791 error = 0; 1792 out: 1793 return error; 1794 } 1795 1796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1797 { 1798 struct sighand_struct *sig; 1799 1800 if (clone_flags & CLONE_SIGHAND) { 1801 refcount_inc(¤t->sighand->count); 1802 return 0; 1803 } 1804 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1805 RCU_INIT_POINTER(tsk->sighand, sig); 1806 if (!sig) 1807 return -ENOMEM; 1808 1809 refcount_set(&sig->count, 1); 1810 spin_lock_irq(¤t->sighand->siglock); 1811 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1812 spin_unlock_irq(¤t->sighand->siglock); 1813 1814 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1815 if (clone_flags & CLONE_CLEAR_SIGHAND) 1816 flush_signal_handlers(tsk, 0); 1817 1818 return 0; 1819 } 1820 1821 void __cleanup_sighand(struct sighand_struct *sighand) 1822 { 1823 if (refcount_dec_and_test(&sighand->count)) { 1824 signalfd_cleanup(sighand); 1825 /* 1826 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1827 * without an RCU grace period, see __lock_task_sighand(). 1828 */ 1829 kmem_cache_free(sighand_cachep, sighand); 1830 } 1831 } 1832 1833 /* 1834 * Initialize POSIX timer handling for a thread group. 1835 */ 1836 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1837 { 1838 struct posix_cputimers *pct = &sig->posix_cputimers; 1839 unsigned long cpu_limit; 1840 1841 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1842 posix_cputimers_group_init(pct, cpu_limit); 1843 } 1844 1845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1846 { 1847 struct signal_struct *sig; 1848 1849 if (clone_flags & CLONE_THREAD) 1850 return 0; 1851 1852 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1853 tsk->signal = sig; 1854 if (!sig) 1855 return -ENOMEM; 1856 1857 sig->nr_threads = 1; 1858 sig->quick_threads = 1; 1859 atomic_set(&sig->live, 1); 1860 refcount_set(&sig->sigcnt, 1); 1861 1862 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1863 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1864 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1865 1866 init_waitqueue_head(&sig->wait_chldexit); 1867 sig->curr_target = tsk; 1868 init_sigpending(&sig->shared_pending); 1869 INIT_HLIST_HEAD(&sig->multiprocess); 1870 seqlock_init(&sig->stats_lock); 1871 prev_cputime_init(&sig->prev_cputime); 1872 1873 #ifdef CONFIG_POSIX_TIMERS 1874 INIT_LIST_HEAD(&sig->posix_timers); 1875 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1876 sig->real_timer.function = it_real_fn; 1877 #endif 1878 1879 task_lock(current->group_leader); 1880 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1881 task_unlock(current->group_leader); 1882 1883 posix_cpu_timers_init_group(sig); 1884 1885 tty_audit_fork(sig); 1886 sched_autogroup_fork(sig); 1887 1888 sig->oom_score_adj = current->signal->oom_score_adj; 1889 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1890 1891 mutex_init(&sig->cred_guard_mutex); 1892 init_rwsem(&sig->exec_update_lock); 1893 1894 return 0; 1895 } 1896 1897 static void copy_seccomp(struct task_struct *p) 1898 { 1899 #ifdef CONFIG_SECCOMP 1900 /* 1901 * Must be called with sighand->lock held, which is common to 1902 * all threads in the group. Holding cred_guard_mutex is not 1903 * needed because this new task is not yet running and cannot 1904 * be racing exec. 1905 */ 1906 assert_spin_locked(¤t->sighand->siglock); 1907 1908 /* Ref-count the new filter user, and assign it. */ 1909 get_seccomp_filter(current); 1910 p->seccomp = current->seccomp; 1911 1912 /* 1913 * Explicitly enable no_new_privs here in case it got set 1914 * between the task_struct being duplicated and holding the 1915 * sighand lock. The seccomp state and nnp must be in sync. 1916 */ 1917 if (task_no_new_privs(current)) 1918 task_set_no_new_privs(p); 1919 1920 /* 1921 * If the parent gained a seccomp mode after copying thread 1922 * flags and between before we held the sighand lock, we have 1923 * to manually enable the seccomp thread flag here. 1924 */ 1925 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1926 set_task_syscall_work(p, SECCOMP); 1927 #endif 1928 } 1929 1930 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1931 { 1932 current->clear_child_tid = tidptr; 1933 1934 return task_pid_vnr(current); 1935 } 1936 1937 static void rt_mutex_init_task(struct task_struct *p) 1938 { 1939 raw_spin_lock_init(&p->pi_lock); 1940 #ifdef CONFIG_RT_MUTEXES 1941 p->pi_waiters = RB_ROOT_CACHED; 1942 p->pi_top_task = NULL; 1943 p->pi_blocked_on = NULL; 1944 #endif 1945 } 1946 1947 static inline void init_task_pid_links(struct task_struct *task) 1948 { 1949 enum pid_type type; 1950 1951 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1952 INIT_HLIST_NODE(&task->pid_links[type]); 1953 } 1954 1955 static inline void 1956 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1957 { 1958 if (type == PIDTYPE_PID) 1959 task->thread_pid = pid; 1960 else 1961 task->signal->pids[type] = pid; 1962 } 1963 1964 static inline void rcu_copy_process(struct task_struct *p) 1965 { 1966 #ifdef CONFIG_PREEMPT_RCU 1967 p->rcu_read_lock_nesting = 0; 1968 p->rcu_read_unlock_special.s = 0; 1969 p->rcu_blocked_node = NULL; 1970 INIT_LIST_HEAD(&p->rcu_node_entry); 1971 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1972 #ifdef CONFIG_TASKS_RCU 1973 p->rcu_tasks_holdout = false; 1974 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1975 p->rcu_tasks_idle_cpu = -1; 1976 #endif /* #ifdef CONFIG_TASKS_RCU */ 1977 #ifdef CONFIG_TASKS_TRACE_RCU 1978 p->trc_reader_nesting = 0; 1979 p->trc_reader_special.s = 0; 1980 INIT_LIST_HEAD(&p->trc_holdout_list); 1981 INIT_LIST_HEAD(&p->trc_blkd_node); 1982 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1983 } 1984 1985 struct pid *pidfd_pid(const struct file *file) 1986 { 1987 if (file->f_op == &pidfd_fops) 1988 return file->private_data; 1989 1990 return ERR_PTR(-EBADF); 1991 } 1992 1993 static int pidfd_release(struct inode *inode, struct file *file) 1994 { 1995 struct pid *pid = file->private_data; 1996 1997 file->private_data = NULL; 1998 put_pid(pid); 1999 return 0; 2000 } 2001 2002 #ifdef CONFIG_PROC_FS 2003 /** 2004 * pidfd_show_fdinfo - print information about a pidfd 2005 * @m: proc fdinfo file 2006 * @f: file referencing a pidfd 2007 * 2008 * Pid: 2009 * This function will print the pid that a given pidfd refers to in the 2010 * pid namespace of the procfs instance. 2011 * If the pid namespace of the process is not a descendant of the pid 2012 * namespace of the procfs instance 0 will be shown as its pid. This is 2013 * similar to calling getppid() on a process whose parent is outside of 2014 * its pid namespace. 2015 * 2016 * NSpid: 2017 * If pid namespaces are supported then this function will also print 2018 * the pid of a given pidfd refers to for all descendant pid namespaces 2019 * starting from the current pid namespace of the instance, i.e. the 2020 * Pid field and the first entry in the NSpid field will be identical. 2021 * If the pid namespace of the process is not a descendant of the pid 2022 * namespace of the procfs instance 0 will be shown as its first NSpid 2023 * entry and no others will be shown. 2024 * Note that this differs from the Pid and NSpid fields in 2025 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2026 * the pid namespace of the procfs instance. The difference becomes 2027 * obvious when sending around a pidfd between pid namespaces from a 2028 * different branch of the tree, i.e. where no ancestral relation is 2029 * present between the pid namespaces: 2030 * - create two new pid namespaces ns1 and ns2 in the initial pid 2031 * namespace (also take care to create new mount namespaces in the 2032 * new pid namespace and mount procfs) 2033 * - create a process with a pidfd in ns1 2034 * - send pidfd from ns1 to ns2 2035 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2036 * have exactly one entry, which is 0 2037 */ 2038 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2039 { 2040 struct pid *pid = f->private_data; 2041 struct pid_namespace *ns; 2042 pid_t nr = -1; 2043 2044 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2045 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2046 nr = pid_nr_ns(pid, ns); 2047 } 2048 2049 seq_put_decimal_ll(m, "Pid:\t", nr); 2050 2051 #ifdef CONFIG_PID_NS 2052 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2053 if (nr > 0) { 2054 int i; 2055 2056 /* If nr is non-zero it means that 'pid' is valid and that 2057 * ns, i.e. the pid namespace associated with the procfs 2058 * instance, is in the pid namespace hierarchy of pid. 2059 * Start at one below the already printed level. 2060 */ 2061 for (i = ns->level + 1; i <= pid->level; i++) 2062 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2063 } 2064 #endif 2065 seq_putc(m, '\n'); 2066 } 2067 #endif 2068 2069 /* 2070 * Poll support for process exit notification. 2071 */ 2072 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2073 { 2074 struct pid *pid = file->private_data; 2075 __poll_t poll_flags = 0; 2076 2077 poll_wait(file, &pid->wait_pidfd, pts); 2078 2079 /* 2080 * Inform pollers only when the whole thread group exits. 2081 * If the thread group leader exits before all other threads in the 2082 * group, then poll(2) should block, similar to the wait(2) family. 2083 */ 2084 if (thread_group_exited(pid)) 2085 poll_flags = EPOLLIN | EPOLLRDNORM; 2086 2087 return poll_flags; 2088 } 2089 2090 const struct file_operations pidfd_fops = { 2091 .release = pidfd_release, 2092 .poll = pidfd_poll, 2093 #ifdef CONFIG_PROC_FS 2094 .show_fdinfo = pidfd_show_fdinfo, 2095 #endif 2096 }; 2097 2098 /** 2099 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2100 * @pid: the struct pid for which to create a pidfd 2101 * @flags: flags of the new @pidfd 2102 * @ret: Where to return the file for the pidfd. 2103 * 2104 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2105 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2106 * 2107 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2108 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2109 * pidfd file are prepared. 2110 * 2111 * If this function returns successfully the caller is responsible to either 2112 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2113 * order to install the pidfd into its file descriptor table or they must use 2114 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2115 * respectively. 2116 * 2117 * This function is useful when a pidfd must already be reserved but there 2118 * might still be points of failure afterwards and the caller wants to ensure 2119 * that no pidfd is leaked into its file descriptor table. 2120 * 2121 * Return: On success, a reserved pidfd is returned from the function and a new 2122 * pidfd file is returned in the last argument to the function. On 2123 * error, a negative error code is returned from the function and the 2124 * last argument remains unchanged. 2125 */ 2126 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2127 { 2128 int pidfd; 2129 struct file *pidfd_file; 2130 2131 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2132 return -EINVAL; 2133 2134 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2135 if (pidfd < 0) 2136 return pidfd; 2137 2138 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2139 flags | O_RDWR | O_CLOEXEC); 2140 if (IS_ERR(pidfd_file)) { 2141 put_unused_fd(pidfd); 2142 return PTR_ERR(pidfd_file); 2143 } 2144 get_pid(pid); /* held by pidfd_file now */ 2145 *ret = pidfd_file; 2146 return pidfd; 2147 } 2148 2149 /** 2150 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2151 * @pid: the struct pid for which to create a pidfd 2152 * @flags: flags of the new @pidfd 2153 * @ret: Where to return the pidfd. 2154 * 2155 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2156 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2157 * 2158 * The helper verifies that @pid is used as a thread group leader. 2159 * 2160 * If this function returns successfully the caller is responsible to either 2161 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2162 * order to install the pidfd into its file descriptor table or they must use 2163 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2164 * respectively. 2165 * 2166 * This function is useful when a pidfd must already be reserved but there 2167 * might still be points of failure afterwards and the caller wants to ensure 2168 * that no pidfd is leaked into its file descriptor table. 2169 * 2170 * Return: On success, a reserved pidfd is returned from the function and a new 2171 * pidfd file is returned in the last argument to the function. On 2172 * error, a negative error code is returned from the function and the 2173 * last argument remains unchanged. 2174 */ 2175 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2176 { 2177 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2178 return -EINVAL; 2179 2180 return __pidfd_prepare(pid, flags, ret); 2181 } 2182 2183 static void __delayed_free_task(struct rcu_head *rhp) 2184 { 2185 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2186 2187 free_task(tsk); 2188 } 2189 2190 static __always_inline void delayed_free_task(struct task_struct *tsk) 2191 { 2192 if (IS_ENABLED(CONFIG_MEMCG)) 2193 call_rcu(&tsk->rcu, __delayed_free_task); 2194 else 2195 free_task(tsk); 2196 } 2197 2198 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2199 { 2200 /* Skip if kernel thread */ 2201 if (!tsk->mm) 2202 return; 2203 2204 /* Skip if spawning a thread or using vfork */ 2205 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2206 return; 2207 2208 /* We need to synchronize with __set_oom_adj */ 2209 mutex_lock(&oom_adj_mutex); 2210 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2211 /* Update the values in case they were changed after copy_signal */ 2212 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2213 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2214 mutex_unlock(&oom_adj_mutex); 2215 } 2216 2217 #ifdef CONFIG_RV 2218 static void rv_task_fork(struct task_struct *p) 2219 { 2220 int i; 2221 2222 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2223 p->rv[i].da_mon.monitoring = false; 2224 } 2225 #else 2226 #define rv_task_fork(p) do {} while (0) 2227 #endif 2228 2229 /* 2230 * This creates a new process as a copy of the old one, 2231 * but does not actually start it yet. 2232 * 2233 * It copies the registers, and all the appropriate 2234 * parts of the process environment (as per the clone 2235 * flags). The actual kick-off is left to the caller. 2236 */ 2237 __latent_entropy struct task_struct *copy_process( 2238 struct pid *pid, 2239 int trace, 2240 int node, 2241 struct kernel_clone_args *args) 2242 { 2243 int pidfd = -1, retval; 2244 struct task_struct *p; 2245 struct multiprocess_signals delayed; 2246 struct file *pidfile = NULL; 2247 const u64 clone_flags = args->flags; 2248 struct nsproxy *nsp = current->nsproxy; 2249 2250 /* 2251 * Don't allow sharing the root directory with processes in a different 2252 * namespace 2253 */ 2254 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2255 return ERR_PTR(-EINVAL); 2256 2257 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2258 return ERR_PTR(-EINVAL); 2259 2260 /* 2261 * Thread groups must share signals as well, and detached threads 2262 * can only be started up within the thread group. 2263 */ 2264 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2265 return ERR_PTR(-EINVAL); 2266 2267 /* 2268 * Shared signal handlers imply shared VM. By way of the above, 2269 * thread groups also imply shared VM. Blocking this case allows 2270 * for various simplifications in other code. 2271 */ 2272 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2273 return ERR_PTR(-EINVAL); 2274 2275 /* 2276 * Siblings of global init remain as zombies on exit since they are 2277 * not reaped by their parent (swapper). To solve this and to avoid 2278 * multi-rooted process trees, prevent global and container-inits 2279 * from creating siblings. 2280 */ 2281 if ((clone_flags & CLONE_PARENT) && 2282 current->signal->flags & SIGNAL_UNKILLABLE) 2283 return ERR_PTR(-EINVAL); 2284 2285 /* 2286 * If the new process will be in a different pid or user namespace 2287 * do not allow it to share a thread group with the forking task. 2288 */ 2289 if (clone_flags & CLONE_THREAD) { 2290 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2291 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2292 return ERR_PTR(-EINVAL); 2293 } 2294 2295 if (clone_flags & CLONE_PIDFD) { 2296 /* 2297 * - CLONE_DETACHED is blocked so that we can potentially 2298 * reuse it later for CLONE_PIDFD. 2299 * - CLONE_THREAD is blocked until someone really needs it. 2300 */ 2301 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2302 return ERR_PTR(-EINVAL); 2303 } 2304 2305 /* 2306 * Force any signals received before this point to be delivered 2307 * before the fork happens. Collect up signals sent to multiple 2308 * processes that happen during the fork and delay them so that 2309 * they appear to happen after the fork. 2310 */ 2311 sigemptyset(&delayed.signal); 2312 INIT_HLIST_NODE(&delayed.node); 2313 2314 spin_lock_irq(¤t->sighand->siglock); 2315 if (!(clone_flags & CLONE_THREAD)) 2316 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2317 recalc_sigpending(); 2318 spin_unlock_irq(¤t->sighand->siglock); 2319 retval = -ERESTARTNOINTR; 2320 if (task_sigpending(current)) 2321 goto fork_out; 2322 2323 retval = -ENOMEM; 2324 p = dup_task_struct(current, node); 2325 if (!p) 2326 goto fork_out; 2327 p->flags &= ~PF_KTHREAD; 2328 if (args->kthread) 2329 p->flags |= PF_KTHREAD; 2330 if (args->user_worker) { 2331 /* 2332 * Mark us a user worker, and block any signal that isn't 2333 * fatal or STOP 2334 */ 2335 p->flags |= PF_USER_WORKER; 2336 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2337 } 2338 if (args->io_thread) 2339 p->flags |= PF_IO_WORKER; 2340 2341 if (args->name) 2342 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2343 2344 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2345 /* 2346 * Clear TID on mm_release()? 2347 */ 2348 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2349 2350 ftrace_graph_init_task(p); 2351 2352 rt_mutex_init_task(p); 2353 2354 lockdep_assert_irqs_enabled(); 2355 #ifdef CONFIG_PROVE_LOCKING 2356 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2357 #endif 2358 retval = copy_creds(p, clone_flags); 2359 if (retval < 0) 2360 goto bad_fork_free; 2361 2362 retval = -EAGAIN; 2363 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2364 if (p->real_cred->user != INIT_USER && 2365 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2366 goto bad_fork_cleanup_count; 2367 } 2368 current->flags &= ~PF_NPROC_EXCEEDED; 2369 2370 /* 2371 * If multiple threads are within copy_process(), then this check 2372 * triggers too late. This doesn't hurt, the check is only there 2373 * to stop root fork bombs. 2374 */ 2375 retval = -EAGAIN; 2376 if (data_race(nr_threads >= max_threads)) 2377 goto bad_fork_cleanup_count; 2378 2379 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2380 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2381 p->flags |= PF_FORKNOEXEC; 2382 INIT_LIST_HEAD(&p->children); 2383 INIT_LIST_HEAD(&p->sibling); 2384 rcu_copy_process(p); 2385 p->vfork_done = NULL; 2386 spin_lock_init(&p->alloc_lock); 2387 2388 init_sigpending(&p->pending); 2389 2390 p->utime = p->stime = p->gtime = 0; 2391 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2392 p->utimescaled = p->stimescaled = 0; 2393 #endif 2394 prev_cputime_init(&p->prev_cputime); 2395 2396 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2397 seqcount_init(&p->vtime.seqcount); 2398 p->vtime.starttime = 0; 2399 p->vtime.state = VTIME_INACTIVE; 2400 #endif 2401 2402 #ifdef CONFIG_IO_URING 2403 p->io_uring = NULL; 2404 #endif 2405 2406 p->default_timer_slack_ns = current->timer_slack_ns; 2407 2408 #ifdef CONFIG_PSI 2409 p->psi_flags = 0; 2410 #endif 2411 2412 task_io_accounting_init(&p->ioac); 2413 acct_clear_integrals(p); 2414 2415 posix_cputimers_init(&p->posix_cputimers); 2416 2417 p->io_context = NULL; 2418 audit_set_context(p, NULL); 2419 cgroup_fork(p); 2420 if (args->kthread) { 2421 if (!set_kthread_struct(p)) 2422 goto bad_fork_cleanup_delayacct; 2423 } 2424 #ifdef CONFIG_NUMA 2425 p->mempolicy = mpol_dup(p->mempolicy); 2426 if (IS_ERR(p->mempolicy)) { 2427 retval = PTR_ERR(p->mempolicy); 2428 p->mempolicy = NULL; 2429 goto bad_fork_cleanup_delayacct; 2430 } 2431 #endif 2432 #ifdef CONFIG_CPUSETS 2433 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2434 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2435 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2436 #endif 2437 #ifdef CONFIG_TRACE_IRQFLAGS 2438 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2439 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2440 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2441 p->softirqs_enabled = 1; 2442 p->softirq_context = 0; 2443 #endif 2444 2445 p->pagefault_disabled = 0; 2446 2447 #ifdef CONFIG_LOCKDEP 2448 lockdep_init_task(p); 2449 #endif 2450 2451 #ifdef CONFIG_DEBUG_MUTEXES 2452 p->blocked_on = NULL; /* not blocked yet */ 2453 #endif 2454 #ifdef CONFIG_BCACHE 2455 p->sequential_io = 0; 2456 p->sequential_io_avg = 0; 2457 #endif 2458 #ifdef CONFIG_BPF_SYSCALL 2459 RCU_INIT_POINTER(p->bpf_storage, NULL); 2460 p->bpf_ctx = NULL; 2461 #endif 2462 2463 /* Perform scheduler related setup. Assign this task to a CPU. */ 2464 retval = sched_fork(clone_flags, p); 2465 if (retval) 2466 goto bad_fork_cleanup_policy; 2467 2468 retval = perf_event_init_task(p, clone_flags); 2469 if (retval) 2470 goto bad_fork_cleanup_policy; 2471 retval = audit_alloc(p); 2472 if (retval) 2473 goto bad_fork_cleanup_perf; 2474 /* copy all the process information */ 2475 shm_init_task(p); 2476 retval = security_task_alloc(p, clone_flags); 2477 if (retval) 2478 goto bad_fork_cleanup_audit; 2479 retval = copy_semundo(clone_flags, p); 2480 if (retval) 2481 goto bad_fork_cleanup_security; 2482 retval = copy_files(clone_flags, p, args->no_files); 2483 if (retval) 2484 goto bad_fork_cleanup_semundo; 2485 retval = copy_fs(clone_flags, p); 2486 if (retval) 2487 goto bad_fork_cleanup_files; 2488 retval = copy_sighand(clone_flags, p); 2489 if (retval) 2490 goto bad_fork_cleanup_fs; 2491 retval = copy_signal(clone_flags, p); 2492 if (retval) 2493 goto bad_fork_cleanup_sighand; 2494 retval = copy_mm(clone_flags, p); 2495 if (retval) 2496 goto bad_fork_cleanup_signal; 2497 retval = copy_namespaces(clone_flags, p); 2498 if (retval) 2499 goto bad_fork_cleanup_mm; 2500 retval = copy_io(clone_flags, p); 2501 if (retval) 2502 goto bad_fork_cleanup_namespaces; 2503 retval = copy_thread(p, args); 2504 if (retval) 2505 goto bad_fork_cleanup_io; 2506 2507 stackleak_task_init(p); 2508 2509 if (pid != &init_struct_pid) { 2510 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2511 args->set_tid_size); 2512 if (IS_ERR(pid)) { 2513 retval = PTR_ERR(pid); 2514 goto bad_fork_cleanup_thread; 2515 } 2516 } 2517 2518 /* 2519 * This has to happen after we've potentially unshared the file 2520 * descriptor table (so that the pidfd doesn't leak into the child 2521 * if the fd table isn't shared). 2522 */ 2523 if (clone_flags & CLONE_PIDFD) { 2524 /* Note that no task has been attached to @pid yet. */ 2525 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2526 if (retval < 0) 2527 goto bad_fork_free_pid; 2528 pidfd = retval; 2529 2530 retval = put_user(pidfd, args->pidfd); 2531 if (retval) 2532 goto bad_fork_put_pidfd; 2533 } 2534 2535 #ifdef CONFIG_BLOCK 2536 p->plug = NULL; 2537 #endif 2538 futex_init_task(p); 2539 2540 /* 2541 * sigaltstack should be cleared when sharing the same VM 2542 */ 2543 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2544 sas_ss_reset(p); 2545 2546 /* 2547 * Syscall tracing and stepping should be turned off in the 2548 * child regardless of CLONE_PTRACE. 2549 */ 2550 user_disable_single_step(p); 2551 clear_task_syscall_work(p, SYSCALL_TRACE); 2552 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2553 clear_task_syscall_work(p, SYSCALL_EMU); 2554 #endif 2555 clear_tsk_latency_tracing(p); 2556 2557 /* ok, now we should be set up.. */ 2558 p->pid = pid_nr(pid); 2559 if (clone_flags & CLONE_THREAD) { 2560 p->group_leader = current->group_leader; 2561 p->tgid = current->tgid; 2562 } else { 2563 p->group_leader = p; 2564 p->tgid = p->pid; 2565 } 2566 2567 p->nr_dirtied = 0; 2568 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2569 p->dirty_paused_when = 0; 2570 2571 p->pdeath_signal = 0; 2572 p->task_works = NULL; 2573 clear_posix_cputimers_work(p); 2574 2575 #ifdef CONFIG_KRETPROBES 2576 p->kretprobe_instances.first = NULL; 2577 #endif 2578 #ifdef CONFIG_RETHOOK 2579 p->rethooks.first = NULL; 2580 #endif 2581 2582 /* 2583 * Ensure that the cgroup subsystem policies allow the new process to be 2584 * forked. It should be noted that the new process's css_set can be changed 2585 * between here and cgroup_post_fork() if an organisation operation is in 2586 * progress. 2587 */ 2588 retval = cgroup_can_fork(p, args); 2589 if (retval) 2590 goto bad_fork_put_pidfd; 2591 2592 /* 2593 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2594 * the new task on the correct runqueue. All this *before* the task 2595 * becomes visible. 2596 * 2597 * This isn't part of ->can_fork() because while the re-cloning is 2598 * cgroup specific, it unconditionally needs to place the task on a 2599 * runqueue. 2600 */ 2601 sched_cgroup_fork(p, args); 2602 2603 /* 2604 * From this point on we must avoid any synchronous user-space 2605 * communication until we take the tasklist-lock. In particular, we do 2606 * not want user-space to be able to predict the process start-time by 2607 * stalling fork(2) after we recorded the start_time but before it is 2608 * visible to the system. 2609 */ 2610 2611 p->start_time = ktime_get_ns(); 2612 p->start_boottime = ktime_get_boottime_ns(); 2613 2614 /* 2615 * Make it visible to the rest of the system, but dont wake it up yet. 2616 * Need tasklist lock for parent etc handling! 2617 */ 2618 write_lock_irq(&tasklist_lock); 2619 2620 /* CLONE_PARENT re-uses the old parent */ 2621 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2622 p->real_parent = current->real_parent; 2623 p->parent_exec_id = current->parent_exec_id; 2624 if (clone_flags & CLONE_THREAD) 2625 p->exit_signal = -1; 2626 else 2627 p->exit_signal = current->group_leader->exit_signal; 2628 } else { 2629 p->real_parent = current; 2630 p->parent_exec_id = current->self_exec_id; 2631 p->exit_signal = args->exit_signal; 2632 } 2633 2634 klp_copy_process(p); 2635 2636 sched_core_fork(p); 2637 2638 spin_lock(¤t->sighand->siglock); 2639 2640 rv_task_fork(p); 2641 2642 rseq_fork(p, clone_flags); 2643 2644 /* Don't start children in a dying pid namespace */ 2645 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2646 retval = -ENOMEM; 2647 goto bad_fork_cancel_cgroup; 2648 } 2649 2650 /* Let kill terminate clone/fork in the middle */ 2651 if (fatal_signal_pending(current)) { 2652 retval = -EINTR; 2653 goto bad_fork_cancel_cgroup; 2654 } 2655 2656 /* No more failure paths after this point. */ 2657 2658 /* 2659 * Copy seccomp details explicitly here, in case they were changed 2660 * before holding sighand lock. 2661 */ 2662 copy_seccomp(p); 2663 2664 init_task_pid_links(p); 2665 if (likely(p->pid)) { 2666 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2667 2668 init_task_pid(p, PIDTYPE_PID, pid); 2669 if (thread_group_leader(p)) { 2670 init_task_pid(p, PIDTYPE_TGID, pid); 2671 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2672 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2673 2674 if (is_child_reaper(pid)) { 2675 ns_of_pid(pid)->child_reaper = p; 2676 p->signal->flags |= SIGNAL_UNKILLABLE; 2677 } 2678 p->signal->shared_pending.signal = delayed.signal; 2679 p->signal->tty = tty_kref_get(current->signal->tty); 2680 /* 2681 * Inherit has_child_subreaper flag under the same 2682 * tasklist_lock with adding child to the process tree 2683 * for propagate_has_child_subreaper optimization. 2684 */ 2685 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2686 p->real_parent->signal->is_child_subreaper; 2687 list_add_tail(&p->sibling, &p->real_parent->children); 2688 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2689 attach_pid(p, PIDTYPE_TGID); 2690 attach_pid(p, PIDTYPE_PGID); 2691 attach_pid(p, PIDTYPE_SID); 2692 __this_cpu_inc(process_counts); 2693 } else { 2694 current->signal->nr_threads++; 2695 current->signal->quick_threads++; 2696 atomic_inc(¤t->signal->live); 2697 refcount_inc(¤t->signal->sigcnt); 2698 task_join_group_stop(p); 2699 list_add_tail_rcu(&p->thread_node, 2700 &p->signal->thread_head); 2701 } 2702 attach_pid(p, PIDTYPE_PID); 2703 nr_threads++; 2704 } 2705 total_forks++; 2706 hlist_del_init(&delayed.node); 2707 spin_unlock(¤t->sighand->siglock); 2708 syscall_tracepoint_update(p); 2709 write_unlock_irq(&tasklist_lock); 2710 2711 if (pidfile) 2712 fd_install(pidfd, pidfile); 2713 2714 proc_fork_connector(p); 2715 sched_post_fork(p); 2716 cgroup_post_fork(p, args); 2717 perf_event_fork(p); 2718 2719 trace_task_newtask(p, clone_flags); 2720 uprobe_copy_process(p, clone_flags); 2721 user_events_fork(p, clone_flags); 2722 2723 copy_oom_score_adj(clone_flags, p); 2724 2725 return p; 2726 2727 bad_fork_cancel_cgroup: 2728 sched_core_free(p); 2729 spin_unlock(¤t->sighand->siglock); 2730 write_unlock_irq(&tasklist_lock); 2731 cgroup_cancel_fork(p, args); 2732 bad_fork_put_pidfd: 2733 if (clone_flags & CLONE_PIDFD) { 2734 fput(pidfile); 2735 put_unused_fd(pidfd); 2736 } 2737 bad_fork_free_pid: 2738 if (pid != &init_struct_pid) 2739 free_pid(pid); 2740 bad_fork_cleanup_thread: 2741 exit_thread(p); 2742 bad_fork_cleanup_io: 2743 if (p->io_context) 2744 exit_io_context(p); 2745 bad_fork_cleanup_namespaces: 2746 exit_task_namespaces(p); 2747 bad_fork_cleanup_mm: 2748 if (p->mm) { 2749 mm_clear_owner(p->mm, p); 2750 mmput(p->mm); 2751 } 2752 bad_fork_cleanup_signal: 2753 if (!(clone_flags & CLONE_THREAD)) 2754 free_signal_struct(p->signal); 2755 bad_fork_cleanup_sighand: 2756 __cleanup_sighand(p->sighand); 2757 bad_fork_cleanup_fs: 2758 exit_fs(p); /* blocking */ 2759 bad_fork_cleanup_files: 2760 exit_files(p); /* blocking */ 2761 bad_fork_cleanup_semundo: 2762 exit_sem(p); 2763 bad_fork_cleanup_security: 2764 security_task_free(p); 2765 bad_fork_cleanup_audit: 2766 audit_free(p); 2767 bad_fork_cleanup_perf: 2768 perf_event_free_task(p); 2769 bad_fork_cleanup_policy: 2770 lockdep_free_task(p); 2771 #ifdef CONFIG_NUMA 2772 mpol_put(p->mempolicy); 2773 #endif 2774 bad_fork_cleanup_delayacct: 2775 delayacct_tsk_free(p); 2776 bad_fork_cleanup_count: 2777 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2778 exit_creds(p); 2779 bad_fork_free: 2780 WRITE_ONCE(p->__state, TASK_DEAD); 2781 exit_task_stack_account(p); 2782 put_task_stack(p); 2783 delayed_free_task(p); 2784 fork_out: 2785 spin_lock_irq(¤t->sighand->siglock); 2786 hlist_del_init(&delayed.node); 2787 spin_unlock_irq(¤t->sighand->siglock); 2788 return ERR_PTR(retval); 2789 } 2790 2791 static inline void init_idle_pids(struct task_struct *idle) 2792 { 2793 enum pid_type type; 2794 2795 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2796 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2797 init_task_pid(idle, type, &init_struct_pid); 2798 } 2799 } 2800 2801 static int idle_dummy(void *dummy) 2802 { 2803 /* This function is never called */ 2804 return 0; 2805 } 2806 2807 struct task_struct * __init fork_idle(int cpu) 2808 { 2809 struct task_struct *task; 2810 struct kernel_clone_args args = { 2811 .flags = CLONE_VM, 2812 .fn = &idle_dummy, 2813 .fn_arg = NULL, 2814 .kthread = 1, 2815 .idle = 1, 2816 }; 2817 2818 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2819 if (!IS_ERR(task)) { 2820 init_idle_pids(task); 2821 init_idle(task, cpu); 2822 } 2823 2824 return task; 2825 } 2826 2827 /* 2828 * This is like kernel_clone(), but shaved down and tailored to just 2829 * creating io_uring workers. It returns a created task, or an error pointer. 2830 * The returned task is inactive, and the caller must fire it up through 2831 * wake_up_new_task(p). All signals are blocked in the created task. 2832 */ 2833 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2834 { 2835 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2836 CLONE_IO; 2837 struct kernel_clone_args args = { 2838 .flags = ((lower_32_bits(flags) | CLONE_VM | 2839 CLONE_UNTRACED) & ~CSIGNAL), 2840 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2841 .fn = fn, 2842 .fn_arg = arg, 2843 .io_thread = 1, 2844 .user_worker = 1, 2845 }; 2846 2847 return copy_process(NULL, 0, node, &args); 2848 } 2849 2850 /* 2851 * Ok, this is the main fork-routine. 2852 * 2853 * It copies the process, and if successful kick-starts 2854 * it and waits for it to finish using the VM if required. 2855 * 2856 * args->exit_signal is expected to be checked for sanity by the caller. 2857 */ 2858 pid_t kernel_clone(struct kernel_clone_args *args) 2859 { 2860 u64 clone_flags = args->flags; 2861 struct completion vfork; 2862 struct pid *pid; 2863 struct task_struct *p; 2864 int trace = 0; 2865 pid_t nr; 2866 2867 /* 2868 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2869 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2870 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2871 * field in struct clone_args and it still doesn't make sense to have 2872 * them both point at the same memory location. Performing this check 2873 * here has the advantage that we don't need to have a separate helper 2874 * to check for legacy clone(). 2875 */ 2876 if ((args->flags & CLONE_PIDFD) && 2877 (args->flags & CLONE_PARENT_SETTID) && 2878 (args->pidfd == args->parent_tid)) 2879 return -EINVAL; 2880 2881 /* 2882 * Determine whether and which event to report to ptracer. When 2883 * called from kernel_thread or CLONE_UNTRACED is explicitly 2884 * requested, no event is reported; otherwise, report if the event 2885 * for the type of forking is enabled. 2886 */ 2887 if (!(clone_flags & CLONE_UNTRACED)) { 2888 if (clone_flags & CLONE_VFORK) 2889 trace = PTRACE_EVENT_VFORK; 2890 else if (args->exit_signal != SIGCHLD) 2891 trace = PTRACE_EVENT_CLONE; 2892 else 2893 trace = PTRACE_EVENT_FORK; 2894 2895 if (likely(!ptrace_event_enabled(current, trace))) 2896 trace = 0; 2897 } 2898 2899 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2900 add_latent_entropy(); 2901 2902 if (IS_ERR(p)) 2903 return PTR_ERR(p); 2904 2905 /* 2906 * Do this prior waking up the new thread - the thread pointer 2907 * might get invalid after that point, if the thread exits quickly. 2908 */ 2909 trace_sched_process_fork(current, p); 2910 2911 pid = get_task_pid(p, PIDTYPE_PID); 2912 nr = pid_vnr(pid); 2913 2914 if (clone_flags & CLONE_PARENT_SETTID) 2915 put_user(nr, args->parent_tid); 2916 2917 if (clone_flags & CLONE_VFORK) { 2918 p->vfork_done = &vfork; 2919 init_completion(&vfork); 2920 get_task_struct(p); 2921 } 2922 2923 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2924 /* lock the task to synchronize with memcg migration */ 2925 task_lock(p); 2926 lru_gen_add_mm(p->mm); 2927 task_unlock(p); 2928 } 2929 2930 wake_up_new_task(p); 2931 2932 /* forking complete and child started to run, tell ptracer */ 2933 if (unlikely(trace)) 2934 ptrace_event_pid(trace, pid); 2935 2936 if (clone_flags & CLONE_VFORK) { 2937 if (!wait_for_vfork_done(p, &vfork)) 2938 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2939 } 2940 2941 put_pid(pid); 2942 return nr; 2943 } 2944 2945 /* 2946 * Create a kernel thread. 2947 */ 2948 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2949 unsigned long flags) 2950 { 2951 struct kernel_clone_args args = { 2952 .flags = ((lower_32_bits(flags) | CLONE_VM | 2953 CLONE_UNTRACED) & ~CSIGNAL), 2954 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2955 .fn = fn, 2956 .fn_arg = arg, 2957 .name = name, 2958 .kthread = 1, 2959 }; 2960 2961 return kernel_clone(&args); 2962 } 2963 2964 /* 2965 * Create a user mode thread. 2966 */ 2967 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2968 { 2969 struct kernel_clone_args args = { 2970 .flags = ((lower_32_bits(flags) | CLONE_VM | 2971 CLONE_UNTRACED) & ~CSIGNAL), 2972 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2973 .fn = fn, 2974 .fn_arg = arg, 2975 }; 2976 2977 return kernel_clone(&args); 2978 } 2979 2980 #ifdef __ARCH_WANT_SYS_FORK 2981 SYSCALL_DEFINE0(fork) 2982 { 2983 #ifdef CONFIG_MMU 2984 struct kernel_clone_args args = { 2985 .exit_signal = SIGCHLD, 2986 }; 2987 2988 return kernel_clone(&args); 2989 #else 2990 /* can not support in nommu mode */ 2991 return -EINVAL; 2992 #endif 2993 } 2994 #endif 2995 2996 #ifdef __ARCH_WANT_SYS_VFORK 2997 SYSCALL_DEFINE0(vfork) 2998 { 2999 struct kernel_clone_args args = { 3000 .flags = CLONE_VFORK | CLONE_VM, 3001 .exit_signal = SIGCHLD, 3002 }; 3003 3004 return kernel_clone(&args); 3005 } 3006 #endif 3007 3008 #ifdef __ARCH_WANT_SYS_CLONE 3009 #ifdef CONFIG_CLONE_BACKWARDS 3010 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3011 int __user *, parent_tidptr, 3012 unsigned long, tls, 3013 int __user *, child_tidptr) 3014 #elif defined(CONFIG_CLONE_BACKWARDS2) 3015 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3016 int __user *, parent_tidptr, 3017 int __user *, child_tidptr, 3018 unsigned long, tls) 3019 #elif defined(CONFIG_CLONE_BACKWARDS3) 3020 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3021 int, stack_size, 3022 int __user *, parent_tidptr, 3023 int __user *, child_tidptr, 3024 unsigned long, tls) 3025 #else 3026 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3027 int __user *, parent_tidptr, 3028 int __user *, child_tidptr, 3029 unsigned long, tls) 3030 #endif 3031 { 3032 struct kernel_clone_args args = { 3033 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3034 .pidfd = parent_tidptr, 3035 .child_tid = child_tidptr, 3036 .parent_tid = parent_tidptr, 3037 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3038 .stack = newsp, 3039 .tls = tls, 3040 }; 3041 3042 return kernel_clone(&args); 3043 } 3044 #endif 3045 3046 #ifdef __ARCH_WANT_SYS_CLONE3 3047 3048 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3049 struct clone_args __user *uargs, 3050 size_t usize) 3051 { 3052 int err; 3053 struct clone_args args; 3054 pid_t *kset_tid = kargs->set_tid; 3055 3056 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3057 CLONE_ARGS_SIZE_VER0); 3058 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3059 CLONE_ARGS_SIZE_VER1); 3060 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3061 CLONE_ARGS_SIZE_VER2); 3062 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3063 3064 if (unlikely(usize > PAGE_SIZE)) 3065 return -E2BIG; 3066 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3067 return -EINVAL; 3068 3069 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3070 if (err) 3071 return err; 3072 3073 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3074 return -EINVAL; 3075 3076 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3077 return -EINVAL; 3078 3079 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3080 return -EINVAL; 3081 3082 /* 3083 * Verify that higher 32bits of exit_signal are unset and that 3084 * it is a valid signal 3085 */ 3086 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3087 !valid_signal(args.exit_signal))) 3088 return -EINVAL; 3089 3090 if ((args.flags & CLONE_INTO_CGROUP) && 3091 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3092 return -EINVAL; 3093 3094 *kargs = (struct kernel_clone_args){ 3095 .flags = args.flags, 3096 .pidfd = u64_to_user_ptr(args.pidfd), 3097 .child_tid = u64_to_user_ptr(args.child_tid), 3098 .parent_tid = u64_to_user_ptr(args.parent_tid), 3099 .exit_signal = args.exit_signal, 3100 .stack = args.stack, 3101 .stack_size = args.stack_size, 3102 .tls = args.tls, 3103 .set_tid_size = args.set_tid_size, 3104 .cgroup = args.cgroup, 3105 }; 3106 3107 if (args.set_tid && 3108 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3109 (kargs->set_tid_size * sizeof(pid_t)))) 3110 return -EFAULT; 3111 3112 kargs->set_tid = kset_tid; 3113 3114 return 0; 3115 } 3116 3117 /** 3118 * clone3_stack_valid - check and prepare stack 3119 * @kargs: kernel clone args 3120 * 3121 * Verify that the stack arguments userspace gave us are sane. 3122 * In addition, set the stack direction for userspace since it's easy for us to 3123 * determine. 3124 */ 3125 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3126 { 3127 if (kargs->stack == 0) { 3128 if (kargs->stack_size > 0) 3129 return false; 3130 } else { 3131 if (kargs->stack_size == 0) 3132 return false; 3133 3134 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3135 return false; 3136 3137 #if !defined(CONFIG_STACK_GROWSUP) 3138 kargs->stack += kargs->stack_size; 3139 #endif 3140 } 3141 3142 return true; 3143 } 3144 3145 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3146 { 3147 /* Verify that no unknown flags are passed along. */ 3148 if (kargs->flags & 3149 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3150 return false; 3151 3152 /* 3153 * - make the CLONE_DETACHED bit reusable for clone3 3154 * - make the CSIGNAL bits reusable for clone3 3155 */ 3156 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3157 return false; 3158 3159 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3160 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3161 return false; 3162 3163 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3164 kargs->exit_signal) 3165 return false; 3166 3167 if (!clone3_stack_valid(kargs)) 3168 return false; 3169 3170 return true; 3171 } 3172 3173 /** 3174 * sys_clone3 - create a new process with specific properties 3175 * @uargs: argument structure 3176 * @size: size of @uargs 3177 * 3178 * clone3() is the extensible successor to clone()/clone2(). 3179 * It takes a struct as argument that is versioned by its size. 3180 * 3181 * Return: On success, a positive PID for the child process. 3182 * On error, a negative errno number. 3183 */ 3184 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3185 { 3186 int err; 3187 3188 struct kernel_clone_args kargs; 3189 pid_t set_tid[MAX_PID_NS_LEVEL]; 3190 3191 kargs.set_tid = set_tid; 3192 3193 err = copy_clone_args_from_user(&kargs, uargs, size); 3194 if (err) 3195 return err; 3196 3197 if (!clone3_args_valid(&kargs)) 3198 return -EINVAL; 3199 3200 return kernel_clone(&kargs); 3201 } 3202 #endif 3203 3204 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3205 { 3206 struct task_struct *leader, *parent, *child; 3207 int res; 3208 3209 read_lock(&tasklist_lock); 3210 leader = top = top->group_leader; 3211 down: 3212 for_each_thread(leader, parent) { 3213 list_for_each_entry(child, &parent->children, sibling) { 3214 res = visitor(child, data); 3215 if (res) { 3216 if (res < 0) 3217 goto out; 3218 leader = child; 3219 goto down; 3220 } 3221 up: 3222 ; 3223 } 3224 } 3225 3226 if (leader != top) { 3227 child = leader; 3228 parent = child->real_parent; 3229 leader = parent->group_leader; 3230 goto up; 3231 } 3232 out: 3233 read_unlock(&tasklist_lock); 3234 } 3235 3236 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3237 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3238 #endif 3239 3240 static void sighand_ctor(void *data) 3241 { 3242 struct sighand_struct *sighand = data; 3243 3244 spin_lock_init(&sighand->siglock); 3245 init_waitqueue_head(&sighand->signalfd_wqh); 3246 } 3247 3248 void __init mm_cache_init(void) 3249 { 3250 unsigned int mm_size; 3251 3252 /* 3253 * The mm_cpumask is located at the end of mm_struct, and is 3254 * dynamically sized based on the maximum CPU number this system 3255 * can have, taking hotplug into account (nr_cpu_ids). 3256 */ 3257 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3258 3259 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3260 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3261 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3262 offsetof(struct mm_struct, saved_auxv), 3263 sizeof_field(struct mm_struct, saved_auxv), 3264 NULL); 3265 } 3266 3267 void __init proc_caches_init(void) 3268 { 3269 sighand_cachep = kmem_cache_create("sighand_cache", 3270 sizeof(struct sighand_struct), 0, 3271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3272 SLAB_ACCOUNT, sighand_ctor); 3273 signal_cachep = kmem_cache_create("signal_cache", 3274 sizeof(struct signal_struct), 0, 3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3276 NULL); 3277 files_cachep = kmem_cache_create("files_cache", 3278 sizeof(struct files_struct), 0, 3279 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3280 NULL); 3281 fs_cachep = kmem_cache_create("fs_cache", 3282 sizeof(struct fs_struct), 0, 3283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3284 NULL); 3285 3286 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3287 #ifdef CONFIG_PER_VMA_LOCK 3288 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3289 #endif 3290 mmap_init(); 3291 nsproxy_cache_init(); 3292 } 3293 3294 /* 3295 * Check constraints on flags passed to the unshare system call. 3296 */ 3297 static int check_unshare_flags(unsigned long unshare_flags) 3298 { 3299 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3300 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3301 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3302 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3303 CLONE_NEWTIME)) 3304 return -EINVAL; 3305 /* 3306 * Not implemented, but pretend it works if there is nothing 3307 * to unshare. Note that unsharing the address space or the 3308 * signal handlers also need to unshare the signal queues (aka 3309 * CLONE_THREAD). 3310 */ 3311 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3312 if (!thread_group_empty(current)) 3313 return -EINVAL; 3314 } 3315 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3316 if (refcount_read(¤t->sighand->count) > 1) 3317 return -EINVAL; 3318 } 3319 if (unshare_flags & CLONE_VM) { 3320 if (!current_is_single_threaded()) 3321 return -EINVAL; 3322 } 3323 3324 return 0; 3325 } 3326 3327 /* 3328 * Unshare the filesystem structure if it is being shared 3329 */ 3330 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3331 { 3332 struct fs_struct *fs = current->fs; 3333 3334 if (!(unshare_flags & CLONE_FS) || !fs) 3335 return 0; 3336 3337 /* don't need lock here; in the worst case we'll do useless copy */ 3338 if (fs->users == 1) 3339 return 0; 3340 3341 *new_fsp = copy_fs_struct(fs); 3342 if (!*new_fsp) 3343 return -ENOMEM; 3344 3345 return 0; 3346 } 3347 3348 /* 3349 * Unshare file descriptor table if it is being shared 3350 */ 3351 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3352 struct files_struct **new_fdp) 3353 { 3354 struct files_struct *fd = current->files; 3355 int error = 0; 3356 3357 if ((unshare_flags & CLONE_FILES) && 3358 (fd && atomic_read(&fd->count) > 1)) { 3359 *new_fdp = dup_fd(fd, max_fds, &error); 3360 if (!*new_fdp) 3361 return error; 3362 } 3363 3364 return 0; 3365 } 3366 3367 /* 3368 * unshare allows a process to 'unshare' part of the process 3369 * context which was originally shared using clone. copy_* 3370 * functions used by kernel_clone() cannot be used here directly 3371 * because they modify an inactive task_struct that is being 3372 * constructed. Here we are modifying the current, active, 3373 * task_struct. 3374 */ 3375 int ksys_unshare(unsigned long unshare_flags) 3376 { 3377 struct fs_struct *fs, *new_fs = NULL; 3378 struct files_struct *new_fd = NULL; 3379 struct cred *new_cred = NULL; 3380 struct nsproxy *new_nsproxy = NULL; 3381 int do_sysvsem = 0; 3382 int err; 3383 3384 /* 3385 * If unsharing a user namespace must also unshare the thread group 3386 * and unshare the filesystem root and working directories. 3387 */ 3388 if (unshare_flags & CLONE_NEWUSER) 3389 unshare_flags |= CLONE_THREAD | CLONE_FS; 3390 /* 3391 * If unsharing vm, must also unshare signal handlers. 3392 */ 3393 if (unshare_flags & CLONE_VM) 3394 unshare_flags |= CLONE_SIGHAND; 3395 /* 3396 * If unsharing a signal handlers, must also unshare the signal queues. 3397 */ 3398 if (unshare_flags & CLONE_SIGHAND) 3399 unshare_flags |= CLONE_THREAD; 3400 /* 3401 * If unsharing namespace, must also unshare filesystem information. 3402 */ 3403 if (unshare_flags & CLONE_NEWNS) 3404 unshare_flags |= CLONE_FS; 3405 3406 err = check_unshare_flags(unshare_flags); 3407 if (err) 3408 goto bad_unshare_out; 3409 /* 3410 * CLONE_NEWIPC must also detach from the undolist: after switching 3411 * to a new ipc namespace, the semaphore arrays from the old 3412 * namespace are unreachable. 3413 */ 3414 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3415 do_sysvsem = 1; 3416 err = unshare_fs(unshare_flags, &new_fs); 3417 if (err) 3418 goto bad_unshare_out; 3419 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3420 if (err) 3421 goto bad_unshare_cleanup_fs; 3422 err = unshare_userns(unshare_flags, &new_cred); 3423 if (err) 3424 goto bad_unshare_cleanup_fd; 3425 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3426 new_cred, new_fs); 3427 if (err) 3428 goto bad_unshare_cleanup_cred; 3429 3430 if (new_cred) { 3431 err = set_cred_ucounts(new_cred); 3432 if (err) 3433 goto bad_unshare_cleanup_cred; 3434 } 3435 3436 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3437 if (do_sysvsem) { 3438 /* 3439 * CLONE_SYSVSEM is equivalent to sys_exit(). 3440 */ 3441 exit_sem(current); 3442 } 3443 if (unshare_flags & CLONE_NEWIPC) { 3444 /* Orphan segments in old ns (see sem above). */ 3445 exit_shm(current); 3446 shm_init_task(current); 3447 } 3448 3449 if (new_nsproxy) 3450 switch_task_namespaces(current, new_nsproxy); 3451 3452 task_lock(current); 3453 3454 if (new_fs) { 3455 fs = current->fs; 3456 spin_lock(&fs->lock); 3457 current->fs = new_fs; 3458 if (--fs->users) 3459 new_fs = NULL; 3460 else 3461 new_fs = fs; 3462 spin_unlock(&fs->lock); 3463 } 3464 3465 if (new_fd) 3466 swap(current->files, new_fd); 3467 3468 task_unlock(current); 3469 3470 if (new_cred) { 3471 /* Install the new user namespace */ 3472 commit_creds(new_cred); 3473 new_cred = NULL; 3474 } 3475 } 3476 3477 perf_event_namespaces(current); 3478 3479 bad_unshare_cleanup_cred: 3480 if (new_cred) 3481 put_cred(new_cred); 3482 bad_unshare_cleanup_fd: 3483 if (new_fd) 3484 put_files_struct(new_fd); 3485 3486 bad_unshare_cleanup_fs: 3487 if (new_fs) 3488 free_fs_struct(new_fs); 3489 3490 bad_unshare_out: 3491 return err; 3492 } 3493 3494 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3495 { 3496 return ksys_unshare(unshare_flags); 3497 } 3498 3499 /* 3500 * Helper to unshare the files of the current task. 3501 * We don't want to expose copy_files internals to 3502 * the exec layer of the kernel. 3503 */ 3504 3505 int unshare_files(void) 3506 { 3507 struct task_struct *task = current; 3508 struct files_struct *old, *copy = NULL; 3509 int error; 3510 3511 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3512 if (error || !copy) 3513 return error; 3514 3515 old = task->files; 3516 task_lock(task); 3517 task->files = copy; 3518 task_unlock(task); 3519 put_files_struct(old); 3520 return 0; 3521 } 3522 3523 int sysctl_max_threads(struct ctl_table *table, int write, 3524 void *buffer, size_t *lenp, loff_t *ppos) 3525 { 3526 struct ctl_table t; 3527 int ret; 3528 int threads = max_threads; 3529 int min = 1; 3530 int max = MAX_THREADS; 3531 3532 t = *table; 3533 t.data = &threads; 3534 t.extra1 = &min; 3535 t.extra2 = &max; 3536 3537 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3538 if (ret || !write) 3539 return ret; 3540 3541 max_threads = threads; 3542 3543 return 0; 3544 } 3545