xref: /linux-6.15/kernel/fork.c (revision ce085396)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 				     VMALLOC_START, VMALLOC_END,
316 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317 				     PAGE_KERNEL,
318 				     0, node, __builtin_return_address(0));
319 	if (!stack)
320 		return -ENOMEM;
321 
322 	vm = find_vm_area(stack);
323 	if (memcg_charge_kernel_stack(vm)) {
324 		vfree(stack);
325 		return -ENOMEM;
326 	}
327 	/*
328 	 * We can't call find_vm_area() in interrupt context, and
329 	 * free_thread_stack() can be called in interrupt context,
330 	 * so cache the vm_struct.
331 	 */
332 	tsk->stack_vm_area = vm;
333 	stack = kasan_reset_tag(stack);
334 	tsk->stack = stack;
335 	return 0;
336 }
337 
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 		thread_stack_delayed_free(tsk);
342 
343 	tsk->stack = NULL;
344 	tsk->stack_vm_area = NULL;
345 }
346 
347 #  else /* !CONFIG_VMAP_STACK */
348 
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353 
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 	struct rcu_head *rh = tsk->stack;
357 
358 	call_rcu(rh, thread_stack_free_rcu);
359 }
360 
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 					     THREAD_SIZE_ORDER);
365 
366 	if (likely(page)) {
367 		tsk->stack = kasan_reset_tag(page_address(page));
368 		return 0;
369 	}
370 	return -ENOMEM;
371 }
372 
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 	thread_stack_delayed_free(tsk);
376 	tsk->stack = NULL;
377 }
378 
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423 
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426 
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429 
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432 
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435 
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438 
439 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
440 {
441 	struct vm_area_struct *vma;
442 
443 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
444 	if (!vma)
445 		return NULL;
446 
447 	vma_init(vma, mm);
448 
449 	return vma;
450 }
451 
452 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
453 {
454 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
455 
456 	if (!new)
457 		return NULL;
458 
459 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
460 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
461 	/*
462 	 * orig->shared.rb may be modified concurrently, but the clone
463 	 * will be reinitialized.
464 	 */
465 	data_race(memcpy(new, orig, sizeof(*new)));
466 	vma_lock_init(new);
467 	INIT_LIST_HEAD(&new->anon_vma_chain);
468 #ifdef CONFIG_PER_VMA_LOCK
469 	/* vma is not locked, can't use vma_mark_detached() */
470 	new->detached = true;
471 #endif
472 	vma_numab_state_init(new);
473 	dup_anon_vma_name(orig, new);
474 
475 	return new;
476 }
477 
478 void __vm_area_free(struct vm_area_struct *vma)
479 {
480 	vma_numab_state_free(vma);
481 	free_anon_vma_name(vma);
482 	kmem_cache_free(vm_area_cachep, vma);
483 }
484 
485 #ifdef CONFIG_PER_VMA_LOCK
486 static void vm_area_free_rcu_cb(struct rcu_head *head)
487 {
488 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
489 						  vm_rcu);
490 
491 	/* The vma should not be locked while being destroyed. */
492 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock.lock), vma);
493 	__vm_area_free(vma);
494 }
495 #endif
496 
497 void vm_area_free(struct vm_area_struct *vma)
498 {
499 #ifdef CONFIG_PER_VMA_LOCK
500 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
501 #else
502 	__vm_area_free(vma);
503 #endif
504 }
505 
506 static void account_kernel_stack(struct task_struct *tsk, int account)
507 {
508 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
509 		struct vm_struct *vm = task_stack_vm_area(tsk);
510 		int i;
511 
512 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
513 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
514 					      account * (PAGE_SIZE / 1024));
515 	} else {
516 		void *stack = task_stack_page(tsk);
517 
518 		/* All stack pages are in the same node. */
519 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
520 				      account * (THREAD_SIZE / 1024));
521 	}
522 }
523 
524 void exit_task_stack_account(struct task_struct *tsk)
525 {
526 	account_kernel_stack(tsk, -1);
527 
528 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
529 		struct vm_struct *vm;
530 		int i;
531 
532 		vm = task_stack_vm_area(tsk);
533 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
534 			memcg_kmem_uncharge_page(vm->pages[i], 0);
535 	}
536 }
537 
538 static void release_task_stack(struct task_struct *tsk)
539 {
540 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
541 		return;  /* Better to leak the stack than to free prematurely */
542 
543 	free_thread_stack(tsk);
544 }
545 
546 #ifdef CONFIG_THREAD_INFO_IN_TASK
547 void put_task_stack(struct task_struct *tsk)
548 {
549 	if (refcount_dec_and_test(&tsk->stack_refcount))
550 		release_task_stack(tsk);
551 }
552 #endif
553 
554 void free_task(struct task_struct *tsk)
555 {
556 #ifdef CONFIG_SECCOMP
557 	WARN_ON_ONCE(tsk->seccomp.filter);
558 #endif
559 	release_user_cpus_ptr(tsk);
560 	scs_release(tsk);
561 
562 #ifndef CONFIG_THREAD_INFO_IN_TASK
563 	/*
564 	 * The task is finally done with both the stack and thread_info,
565 	 * so free both.
566 	 */
567 	release_task_stack(tsk);
568 #else
569 	/*
570 	 * If the task had a separate stack allocation, it should be gone
571 	 * by now.
572 	 */
573 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
574 #endif
575 	rt_mutex_debug_task_free(tsk);
576 	ftrace_graph_exit_task(tsk);
577 	arch_release_task_struct(tsk);
578 	if (tsk->flags & PF_KTHREAD)
579 		free_kthread_struct(tsk);
580 	bpf_task_storage_free(tsk);
581 	free_task_struct(tsk);
582 }
583 EXPORT_SYMBOL(free_task);
584 
585 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
586 {
587 	struct file *exe_file;
588 
589 	exe_file = get_mm_exe_file(oldmm);
590 	RCU_INIT_POINTER(mm->exe_file, exe_file);
591 	/*
592 	 * We depend on the oldmm having properly denied write access to the
593 	 * exe_file already.
594 	 */
595 	if (exe_file && exe_file_deny_write_access(exe_file))
596 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
597 }
598 
599 #ifdef CONFIG_MMU
600 static __latent_entropy int dup_mmap(struct mm_struct *mm,
601 					struct mm_struct *oldmm)
602 {
603 	struct vm_area_struct *mpnt, *tmp;
604 	int retval;
605 	unsigned long charge = 0;
606 	LIST_HEAD(uf);
607 	VMA_ITERATOR(vmi, mm, 0);
608 
609 	if (mmap_write_lock_killable(oldmm))
610 		return -EINTR;
611 	flush_cache_dup_mm(oldmm);
612 	uprobe_dup_mmap(oldmm, mm);
613 	/*
614 	 * Not linked in yet - no deadlock potential:
615 	 */
616 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
617 
618 	/* No ordering required: file already has been exposed. */
619 	dup_mm_exe_file(mm, oldmm);
620 
621 	mm->total_vm = oldmm->total_vm;
622 	mm->data_vm = oldmm->data_vm;
623 	mm->exec_vm = oldmm->exec_vm;
624 	mm->stack_vm = oldmm->stack_vm;
625 
626 	/* Use __mt_dup() to efficiently build an identical maple tree. */
627 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
628 	if (unlikely(retval))
629 		goto out;
630 
631 	mt_clear_in_rcu(vmi.mas.tree);
632 	for_each_vma(vmi, mpnt) {
633 		struct file *file;
634 
635 		vma_start_write(mpnt);
636 		if (mpnt->vm_flags & VM_DONTCOPY) {
637 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
638 						    mpnt->vm_end, GFP_KERNEL);
639 			if (retval)
640 				goto loop_out;
641 
642 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
643 			continue;
644 		}
645 		charge = 0;
646 		/*
647 		 * Don't duplicate many vmas if we've been oom-killed (for
648 		 * example)
649 		 */
650 		if (fatal_signal_pending(current)) {
651 			retval = -EINTR;
652 			goto loop_out;
653 		}
654 		if (mpnt->vm_flags & VM_ACCOUNT) {
655 			unsigned long len = vma_pages(mpnt);
656 
657 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
658 				goto fail_nomem;
659 			charge = len;
660 		}
661 		tmp = vm_area_dup(mpnt);
662 		if (!tmp)
663 			goto fail_nomem;
664 		retval = vma_dup_policy(mpnt, tmp);
665 		if (retval)
666 			goto fail_nomem_policy;
667 		tmp->vm_mm = mm;
668 		retval = dup_userfaultfd(tmp, &uf);
669 		if (retval)
670 			goto fail_nomem_anon_vma_fork;
671 		if (tmp->vm_flags & VM_WIPEONFORK) {
672 			/*
673 			 * VM_WIPEONFORK gets a clean slate in the child.
674 			 * Don't prepare anon_vma until fault since we don't
675 			 * copy page for current vma.
676 			 */
677 			tmp->anon_vma = NULL;
678 		} else if (anon_vma_fork(tmp, mpnt))
679 			goto fail_nomem_anon_vma_fork;
680 		vm_flags_clear(tmp, VM_LOCKED_MASK);
681 		/*
682 		 * Copy/update hugetlb private vma information.
683 		 */
684 		if (is_vm_hugetlb_page(tmp))
685 			hugetlb_dup_vma_private(tmp);
686 
687 		/*
688 		 * Link the vma into the MT. After using __mt_dup(), memory
689 		 * allocation is not necessary here, so it cannot fail.
690 		 */
691 		vma_iter_bulk_store(&vmi, tmp);
692 
693 		mm->map_count++;
694 
695 		if (tmp->vm_ops && tmp->vm_ops->open)
696 			tmp->vm_ops->open(tmp);
697 
698 		file = tmp->vm_file;
699 		if (file) {
700 			struct address_space *mapping = file->f_mapping;
701 
702 			get_file(file);
703 			i_mmap_lock_write(mapping);
704 			if (vma_is_shared_maywrite(tmp))
705 				mapping_allow_writable(mapping);
706 			flush_dcache_mmap_lock(mapping);
707 			/* insert tmp into the share list, just after mpnt */
708 			vma_interval_tree_insert_after(tmp, mpnt,
709 					&mapping->i_mmap);
710 			flush_dcache_mmap_unlock(mapping);
711 			i_mmap_unlock_write(mapping);
712 		}
713 
714 		if (!(tmp->vm_flags & VM_WIPEONFORK))
715 			retval = copy_page_range(tmp, mpnt);
716 
717 		if (retval) {
718 			mpnt = vma_next(&vmi);
719 			goto loop_out;
720 		}
721 	}
722 	/* a new mm has just been created */
723 	retval = arch_dup_mmap(oldmm, mm);
724 loop_out:
725 	vma_iter_free(&vmi);
726 	if (!retval) {
727 		mt_set_in_rcu(vmi.mas.tree);
728 		ksm_fork(mm, oldmm);
729 		khugepaged_fork(mm, oldmm);
730 	} else {
731 
732 		/*
733 		 * The entire maple tree has already been duplicated. If the
734 		 * mmap duplication fails, mark the failure point with
735 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
736 		 * stop releasing VMAs that have not been duplicated after this
737 		 * point.
738 		 */
739 		if (mpnt) {
740 			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
741 			mas_store(&vmi.mas, XA_ZERO_ENTRY);
742 			/* Avoid OOM iterating a broken tree */
743 			set_bit(MMF_OOM_SKIP, &mm->flags);
744 		}
745 		/*
746 		 * The mm_struct is going to exit, but the locks will be dropped
747 		 * first.  Set the mm_struct as unstable is advisable as it is
748 		 * not fully initialised.
749 		 */
750 		set_bit(MMF_UNSTABLE, &mm->flags);
751 	}
752 out:
753 	mmap_write_unlock(mm);
754 	flush_tlb_mm(oldmm);
755 	mmap_write_unlock(oldmm);
756 	if (!retval)
757 		dup_userfaultfd_complete(&uf);
758 	else
759 		dup_userfaultfd_fail(&uf);
760 	return retval;
761 
762 fail_nomem_anon_vma_fork:
763 	mpol_put(vma_policy(tmp));
764 fail_nomem_policy:
765 	vm_area_free(tmp);
766 fail_nomem:
767 	retval = -ENOMEM;
768 	vm_unacct_memory(charge);
769 	goto loop_out;
770 }
771 
772 static inline int mm_alloc_pgd(struct mm_struct *mm)
773 {
774 	mm->pgd = pgd_alloc(mm);
775 	if (unlikely(!mm->pgd))
776 		return -ENOMEM;
777 	return 0;
778 }
779 
780 static inline void mm_free_pgd(struct mm_struct *mm)
781 {
782 	pgd_free(mm, mm->pgd);
783 }
784 #else
785 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
786 {
787 	mmap_write_lock(oldmm);
788 	dup_mm_exe_file(mm, oldmm);
789 	mmap_write_unlock(oldmm);
790 	return 0;
791 }
792 #define mm_alloc_pgd(mm)	(0)
793 #define mm_free_pgd(mm)
794 #endif /* CONFIG_MMU */
795 
796 static void check_mm(struct mm_struct *mm)
797 {
798 	int i;
799 
800 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
801 			 "Please make sure 'struct resident_page_types[]' is updated as well");
802 
803 	for (i = 0; i < NR_MM_COUNTERS; i++) {
804 		long x = percpu_counter_sum(&mm->rss_stat[i]);
805 
806 		if (unlikely(x))
807 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
808 				 mm, resident_page_types[i], x);
809 	}
810 
811 	if (mm_pgtables_bytes(mm))
812 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
813 				mm_pgtables_bytes(mm));
814 
815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
816 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
817 #endif
818 }
819 
820 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
821 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
822 
823 static void do_check_lazy_tlb(void *arg)
824 {
825 	struct mm_struct *mm = arg;
826 
827 	WARN_ON_ONCE(current->active_mm == mm);
828 }
829 
830 static void do_shoot_lazy_tlb(void *arg)
831 {
832 	struct mm_struct *mm = arg;
833 
834 	if (current->active_mm == mm) {
835 		WARN_ON_ONCE(current->mm);
836 		current->active_mm = &init_mm;
837 		switch_mm(mm, &init_mm, current);
838 	}
839 }
840 
841 static void cleanup_lazy_tlbs(struct mm_struct *mm)
842 {
843 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
844 		/*
845 		 * In this case, lazy tlb mms are refounted and would not reach
846 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
847 		 */
848 		return;
849 	}
850 
851 	/*
852 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
853 	 * requires lazy mm users to switch to another mm when the refcount
854 	 * drops to zero, before the mm is freed. This requires IPIs here to
855 	 * switch kernel threads to init_mm.
856 	 *
857 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
858 	 * switch with the final userspace teardown TLB flush which leaves the
859 	 * mm lazy on this CPU but no others, reducing the need for additional
860 	 * IPIs here. There are cases where a final IPI is still required here,
861 	 * such as the final mmdrop being performed on a different CPU than the
862 	 * one exiting, or kernel threads using the mm when userspace exits.
863 	 *
864 	 * IPI overheads have not found to be expensive, but they could be
865 	 * reduced in a number of possible ways, for example (roughly
866 	 * increasing order of complexity):
867 	 * - The last lazy reference created by exit_mm() could instead switch
868 	 *   to init_mm, however it's probable this will run on the same CPU
869 	 *   immediately afterwards, so this may not reduce IPIs much.
870 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
871 	 * - CPUs store active_mm where it can be remotely checked without a
872 	 *   lock, to filter out false-positives in the cpumask.
873 	 * - After mm_users or mm_count reaches zero, switching away from the
874 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
875 	 *   with some batching or delaying of the final IPIs.
876 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
877 	 *   switching to avoid IPIs completely.
878 	 */
879 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
880 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
881 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
882 }
883 
884 /*
885  * Called when the last reference to the mm
886  * is dropped: either by a lazy thread or by
887  * mmput. Free the page directory and the mm.
888  */
889 void __mmdrop(struct mm_struct *mm)
890 {
891 	BUG_ON(mm == &init_mm);
892 	WARN_ON_ONCE(mm == current->mm);
893 
894 	/* Ensure no CPUs are using this as their lazy tlb mm */
895 	cleanup_lazy_tlbs(mm);
896 
897 	WARN_ON_ONCE(mm == current->active_mm);
898 	mm_free_pgd(mm);
899 	destroy_context(mm);
900 	mmu_notifier_subscriptions_destroy(mm);
901 	check_mm(mm);
902 	put_user_ns(mm->user_ns);
903 	mm_pasid_drop(mm);
904 	mm_destroy_cid(mm);
905 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
906 
907 	free_mm(mm);
908 }
909 EXPORT_SYMBOL_GPL(__mmdrop);
910 
911 static void mmdrop_async_fn(struct work_struct *work)
912 {
913 	struct mm_struct *mm;
914 
915 	mm = container_of(work, struct mm_struct, async_put_work);
916 	__mmdrop(mm);
917 }
918 
919 static void mmdrop_async(struct mm_struct *mm)
920 {
921 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
922 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
923 		schedule_work(&mm->async_put_work);
924 	}
925 }
926 
927 static inline void free_signal_struct(struct signal_struct *sig)
928 {
929 	taskstats_tgid_free(sig);
930 	sched_autogroup_exit(sig);
931 	/*
932 	 * __mmdrop is not safe to call from softirq context on x86 due to
933 	 * pgd_dtor so postpone it to the async context
934 	 */
935 	if (sig->oom_mm)
936 		mmdrop_async(sig->oom_mm);
937 	kmem_cache_free(signal_cachep, sig);
938 }
939 
940 static inline void put_signal_struct(struct signal_struct *sig)
941 {
942 	if (refcount_dec_and_test(&sig->sigcnt))
943 		free_signal_struct(sig);
944 }
945 
946 void __put_task_struct(struct task_struct *tsk)
947 {
948 	WARN_ON(!tsk->exit_state);
949 	WARN_ON(refcount_read(&tsk->usage));
950 	WARN_ON(tsk == current);
951 
952 	sched_ext_free(tsk);
953 	io_uring_free(tsk);
954 	cgroup_free(tsk);
955 	task_numa_free(tsk, true);
956 	security_task_free(tsk);
957 	exit_creds(tsk);
958 	delayacct_tsk_free(tsk);
959 	put_signal_struct(tsk->signal);
960 	sched_core_free(tsk);
961 	free_task(tsk);
962 }
963 EXPORT_SYMBOL_GPL(__put_task_struct);
964 
965 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
966 {
967 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
968 
969 	__put_task_struct(task);
970 }
971 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
972 
973 void __init __weak arch_task_cache_init(void) { }
974 
975 /*
976  * set_max_threads
977  */
978 static void __init set_max_threads(unsigned int max_threads_suggested)
979 {
980 	u64 threads;
981 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
982 
983 	/*
984 	 * The number of threads shall be limited such that the thread
985 	 * structures may only consume a small part of the available memory.
986 	 */
987 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
988 		threads = MAX_THREADS;
989 	else
990 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
991 				    (u64) THREAD_SIZE * 8UL);
992 
993 	if (threads > max_threads_suggested)
994 		threads = max_threads_suggested;
995 
996 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
997 }
998 
999 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1000 /* Initialized by the architecture: */
1001 int arch_task_struct_size __read_mostly;
1002 #endif
1003 
1004 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1005 {
1006 	/* Fetch thread_struct whitelist for the architecture. */
1007 	arch_thread_struct_whitelist(offset, size);
1008 
1009 	/*
1010 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1011 	 * adjust offset to position of thread_struct in task_struct.
1012 	 */
1013 	if (unlikely(*size == 0))
1014 		*offset = 0;
1015 	else
1016 		*offset += offsetof(struct task_struct, thread);
1017 }
1018 
1019 void __init fork_init(void)
1020 {
1021 	int i;
1022 #ifndef ARCH_MIN_TASKALIGN
1023 #define ARCH_MIN_TASKALIGN	0
1024 #endif
1025 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1026 	unsigned long useroffset, usersize;
1027 
1028 	/* create a slab on which task_structs can be allocated */
1029 	task_struct_whitelist(&useroffset, &usersize);
1030 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1031 			arch_task_struct_size, align,
1032 			SLAB_PANIC|SLAB_ACCOUNT,
1033 			useroffset, usersize, NULL);
1034 
1035 	/* do the arch specific task caches init */
1036 	arch_task_cache_init();
1037 
1038 	set_max_threads(MAX_THREADS);
1039 
1040 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1041 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1042 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1043 		init_task.signal->rlim[RLIMIT_NPROC];
1044 
1045 	for (i = 0; i < UCOUNT_COUNTS; i++)
1046 		init_user_ns.ucount_max[i] = max_threads/2;
1047 
1048 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1049 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1050 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1051 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1052 
1053 #ifdef CONFIG_VMAP_STACK
1054 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1055 			  NULL, free_vm_stack_cache);
1056 #endif
1057 
1058 	scs_init();
1059 
1060 	lockdep_init_task(&init_task);
1061 	uprobes_init();
1062 }
1063 
1064 int __weak arch_dup_task_struct(struct task_struct *dst,
1065 					       struct task_struct *src)
1066 {
1067 	*dst = *src;
1068 	return 0;
1069 }
1070 
1071 void set_task_stack_end_magic(struct task_struct *tsk)
1072 {
1073 	unsigned long *stackend;
1074 
1075 	stackend = end_of_stack(tsk);
1076 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1077 }
1078 
1079 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1080 {
1081 	struct task_struct *tsk;
1082 	int err;
1083 
1084 	if (node == NUMA_NO_NODE)
1085 		node = tsk_fork_get_node(orig);
1086 	tsk = alloc_task_struct_node(node);
1087 	if (!tsk)
1088 		return NULL;
1089 
1090 	err = arch_dup_task_struct(tsk, orig);
1091 	if (err)
1092 		goto free_tsk;
1093 
1094 	err = alloc_thread_stack_node(tsk, node);
1095 	if (err)
1096 		goto free_tsk;
1097 
1098 #ifdef CONFIG_THREAD_INFO_IN_TASK
1099 	refcount_set(&tsk->stack_refcount, 1);
1100 #endif
1101 	account_kernel_stack(tsk, 1);
1102 
1103 	err = scs_prepare(tsk, node);
1104 	if (err)
1105 		goto free_stack;
1106 
1107 #ifdef CONFIG_SECCOMP
1108 	/*
1109 	 * We must handle setting up seccomp filters once we're under
1110 	 * the sighand lock in case orig has changed between now and
1111 	 * then. Until then, filter must be NULL to avoid messing up
1112 	 * the usage counts on the error path calling free_task.
1113 	 */
1114 	tsk->seccomp.filter = NULL;
1115 #endif
1116 
1117 	setup_thread_stack(tsk, orig);
1118 	clear_user_return_notifier(tsk);
1119 	clear_tsk_need_resched(tsk);
1120 	set_task_stack_end_magic(tsk);
1121 	clear_syscall_work_syscall_user_dispatch(tsk);
1122 
1123 #ifdef CONFIG_STACKPROTECTOR
1124 	tsk->stack_canary = get_random_canary();
1125 #endif
1126 	if (orig->cpus_ptr == &orig->cpus_mask)
1127 		tsk->cpus_ptr = &tsk->cpus_mask;
1128 	dup_user_cpus_ptr(tsk, orig, node);
1129 
1130 	/*
1131 	 * One for the user space visible state that goes away when reaped.
1132 	 * One for the scheduler.
1133 	 */
1134 	refcount_set(&tsk->rcu_users, 2);
1135 	/* One for the rcu users */
1136 	refcount_set(&tsk->usage, 1);
1137 #ifdef CONFIG_BLK_DEV_IO_TRACE
1138 	tsk->btrace_seq = 0;
1139 #endif
1140 	tsk->splice_pipe = NULL;
1141 	tsk->task_frag.page = NULL;
1142 	tsk->wake_q.next = NULL;
1143 	tsk->worker_private = NULL;
1144 
1145 	kcov_task_init(tsk);
1146 	kmsan_task_create(tsk);
1147 	kmap_local_fork(tsk);
1148 
1149 #ifdef CONFIG_FAULT_INJECTION
1150 	tsk->fail_nth = 0;
1151 #endif
1152 
1153 #ifdef CONFIG_BLK_CGROUP
1154 	tsk->throttle_disk = NULL;
1155 	tsk->use_memdelay = 0;
1156 #endif
1157 
1158 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1159 	tsk->pasid_activated = 0;
1160 #endif
1161 
1162 #ifdef CONFIG_MEMCG
1163 	tsk->active_memcg = NULL;
1164 #endif
1165 
1166 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1167 	tsk->reported_split_lock = 0;
1168 #endif
1169 
1170 #ifdef CONFIG_SCHED_MM_CID
1171 	tsk->mm_cid = -1;
1172 	tsk->last_mm_cid = -1;
1173 	tsk->mm_cid_active = 0;
1174 	tsk->migrate_from_cpu = -1;
1175 #endif
1176 	return tsk;
1177 
1178 free_stack:
1179 	exit_task_stack_account(tsk);
1180 	free_thread_stack(tsk);
1181 free_tsk:
1182 	free_task_struct(tsk);
1183 	return NULL;
1184 }
1185 
1186 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1187 
1188 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1189 
1190 static int __init coredump_filter_setup(char *s)
1191 {
1192 	default_dump_filter =
1193 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1194 		MMF_DUMP_FILTER_MASK;
1195 	return 1;
1196 }
1197 
1198 __setup("coredump_filter=", coredump_filter_setup);
1199 
1200 #include <linux/init_task.h>
1201 
1202 static void mm_init_aio(struct mm_struct *mm)
1203 {
1204 #ifdef CONFIG_AIO
1205 	spin_lock_init(&mm->ioctx_lock);
1206 	mm->ioctx_table = NULL;
1207 #endif
1208 }
1209 
1210 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1211 					   struct task_struct *p)
1212 {
1213 #ifdef CONFIG_MEMCG
1214 	if (mm->owner == p)
1215 		WRITE_ONCE(mm->owner, NULL);
1216 #endif
1217 }
1218 
1219 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1220 {
1221 #ifdef CONFIG_MEMCG
1222 	mm->owner = p;
1223 #endif
1224 }
1225 
1226 static void mm_init_uprobes_state(struct mm_struct *mm)
1227 {
1228 #ifdef CONFIG_UPROBES
1229 	mm->uprobes_state.xol_area = NULL;
1230 #endif
1231 }
1232 
1233 static void mmap_init_lock(struct mm_struct *mm)
1234 {
1235 	init_rwsem(&mm->mmap_lock);
1236 	mm_lock_seqcount_init(mm);
1237 }
1238 
1239 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1240 	struct user_namespace *user_ns)
1241 {
1242 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1243 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1244 	atomic_set(&mm->mm_users, 1);
1245 	atomic_set(&mm->mm_count, 1);
1246 	seqcount_init(&mm->write_protect_seq);
1247 	mmap_init_lock(mm);
1248 	INIT_LIST_HEAD(&mm->mmlist);
1249 	mm_pgtables_bytes_init(mm);
1250 	mm->map_count = 0;
1251 	mm->locked_vm = 0;
1252 	atomic64_set(&mm->pinned_vm, 0);
1253 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1254 	spin_lock_init(&mm->page_table_lock);
1255 	spin_lock_init(&mm->arg_lock);
1256 	mm_init_cpumask(mm);
1257 	mm_init_aio(mm);
1258 	mm_init_owner(mm, p);
1259 	mm_pasid_init(mm);
1260 	RCU_INIT_POINTER(mm->exe_file, NULL);
1261 	mmu_notifier_subscriptions_init(mm);
1262 	init_tlb_flush_pending(mm);
1263 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1264 	mm->pmd_huge_pte = NULL;
1265 #endif
1266 	mm_init_uprobes_state(mm);
1267 	hugetlb_count_init(mm);
1268 
1269 	if (current->mm) {
1270 		mm->flags = mmf_init_flags(current->mm->flags);
1271 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1272 	} else {
1273 		mm->flags = default_dump_filter;
1274 		mm->def_flags = 0;
1275 	}
1276 
1277 	if (mm_alloc_pgd(mm))
1278 		goto fail_nopgd;
1279 
1280 	if (init_new_context(p, mm))
1281 		goto fail_nocontext;
1282 
1283 	if (mm_alloc_cid(mm, p))
1284 		goto fail_cid;
1285 
1286 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1287 				     NR_MM_COUNTERS))
1288 		goto fail_pcpu;
1289 
1290 	mm->user_ns = get_user_ns(user_ns);
1291 	lru_gen_init_mm(mm);
1292 	return mm;
1293 
1294 fail_pcpu:
1295 	mm_destroy_cid(mm);
1296 fail_cid:
1297 	destroy_context(mm);
1298 fail_nocontext:
1299 	mm_free_pgd(mm);
1300 fail_nopgd:
1301 	free_mm(mm);
1302 	return NULL;
1303 }
1304 
1305 /*
1306  * Allocate and initialize an mm_struct.
1307  */
1308 struct mm_struct *mm_alloc(void)
1309 {
1310 	struct mm_struct *mm;
1311 
1312 	mm = allocate_mm();
1313 	if (!mm)
1314 		return NULL;
1315 
1316 	memset(mm, 0, sizeof(*mm));
1317 	return mm_init(mm, current, current_user_ns());
1318 }
1319 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1320 
1321 static inline void __mmput(struct mm_struct *mm)
1322 {
1323 	VM_BUG_ON(atomic_read(&mm->mm_users));
1324 
1325 	uprobe_clear_state(mm);
1326 	exit_aio(mm);
1327 	ksm_exit(mm);
1328 	khugepaged_exit(mm); /* must run before exit_mmap */
1329 	exit_mmap(mm);
1330 	mm_put_huge_zero_folio(mm);
1331 	set_mm_exe_file(mm, NULL);
1332 	if (!list_empty(&mm->mmlist)) {
1333 		spin_lock(&mmlist_lock);
1334 		list_del(&mm->mmlist);
1335 		spin_unlock(&mmlist_lock);
1336 	}
1337 	if (mm->binfmt)
1338 		module_put(mm->binfmt->module);
1339 	lru_gen_del_mm(mm);
1340 	mmdrop(mm);
1341 }
1342 
1343 /*
1344  * Decrement the use count and release all resources for an mm.
1345  */
1346 void mmput(struct mm_struct *mm)
1347 {
1348 	might_sleep();
1349 
1350 	if (atomic_dec_and_test(&mm->mm_users))
1351 		__mmput(mm);
1352 }
1353 EXPORT_SYMBOL_GPL(mmput);
1354 
1355 #ifdef CONFIG_MMU
1356 static void mmput_async_fn(struct work_struct *work)
1357 {
1358 	struct mm_struct *mm = container_of(work, struct mm_struct,
1359 					    async_put_work);
1360 
1361 	__mmput(mm);
1362 }
1363 
1364 void mmput_async(struct mm_struct *mm)
1365 {
1366 	if (atomic_dec_and_test(&mm->mm_users)) {
1367 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1368 		schedule_work(&mm->async_put_work);
1369 	}
1370 }
1371 EXPORT_SYMBOL_GPL(mmput_async);
1372 #endif
1373 
1374 /**
1375  * set_mm_exe_file - change a reference to the mm's executable file
1376  * @mm: The mm to change.
1377  * @new_exe_file: The new file to use.
1378  *
1379  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1380  *
1381  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1382  * invocations: in mmput() nobody alive left, in execve it happens before
1383  * the new mm is made visible to anyone.
1384  *
1385  * Can only fail if new_exe_file != NULL.
1386  */
1387 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1388 {
1389 	struct file *old_exe_file;
1390 
1391 	/*
1392 	 * It is safe to dereference the exe_file without RCU as
1393 	 * this function is only called if nobody else can access
1394 	 * this mm -- see comment above for justification.
1395 	 */
1396 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1397 
1398 	if (new_exe_file) {
1399 		/*
1400 		 * We expect the caller (i.e., sys_execve) to already denied
1401 		 * write access, so this is unlikely to fail.
1402 		 */
1403 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1404 			return -EACCES;
1405 		get_file(new_exe_file);
1406 	}
1407 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1408 	if (old_exe_file) {
1409 		exe_file_allow_write_access(old_exe_file);
1410 		fput(old_exe_file);
1411 	}
1412 	return 0;
1413 }
1414 
1415 /**
1416  * replace_mm_exe_file - replace a reference to the mm's executable file
1417  * @mm: The mm to change.
1418  * @new_exe_file: The new file to use.
1419  *
1420  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1421  *
1422  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1423  */
1424 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1425 {
1426 	struct vm_area_struct *vma;
1427 	struct file *old_exe_file;
1428 	int ret = 0;
1429 
1430 	/* Forbid mm->exe_file change if old file still mapped. */
1431 	old_exe_file = get_mm_exe_file(mm);
1432 	if (old_exe_file) {
1433 		VMA_ITERATOR(vmi, mm, 0);
1434 		mmap_read_lock(mm);
1435 		for_each_vma(vmi, vma) {
1436 			if (!vma->vm_file)
1437 				continue;
1438 			if (path_equal(&vma->vm_file->f_path,
1439 				       &old_exe_file->f_path)) {
1440 				ret = -EBUSY;
1441 				break;
1442 			}
1443 		}
1444 		mmap_read_unlock(mm);
1445 		fput(old_exe_file);
1446 		if (ret)
1447 			return ret;
1448 	}
1449 
1450 	ret = exe_file_deny_write_access(new_exe_file);
1451 	if (ret)
1452 		return -EACCES;
1453 	get_file(new_exe_file);
1454 
1455 	/* set the new file */
1456 	mmap_write_lock(mm);
1457 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1458 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1459 	mmap_write_unlock(mm);
1460 
1461 	if (old_exe_file) {
1462 		exe_file_allow_write_access(old_exe_file);
1463 		fput(old_exe_file);
1464 	}
1465 	return 0;
1466 }
1467 
1468 /**
1469  * get_mm_exe_file - acquire a reference to the mm's executable file
1470  * @mm: The mm of interest.
1471  *
1472  * Returns %NULL if mm has no associated executable file.
1473  * User must release file via fput().
1474  */
1475 struct file *get_mm_exe_file(struct mm_struct *mm)
1476 {
1477 	struct file *exe_file;
1478 
1479 	rcu_read_lock();
1480 	exe_file = get_file_rcu(&mm->exe_file);
1481 	rcu_read_unlock();
1482 	return exe_file;
1483 }
1484 
1485 /**
1486  * get_task_exe_file - acquire a reference to the task's executable file
1487  * @task: The task.
1488  *
1489  * Returns %NULL if task's mm (if any) has no associated executable file or
1490  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1491  * User must release file via fput().
1492  */
1493 struct file *get_task_exe_file(struct task_struct *task)
1494 {
1495 	struct file *exe_file = NULL;
1496 	struct mm_struct *mm;
1497 
1498 	if (task->flags & PF_KTHREAD)
1499 		return NULL;
1500 
1501 	task_lock(task);
1502 	mm = task->mm;
1503 	if (mm)
1504 		exe_file = get_mm_exe_file(mm);
1505 	task_unlock(task);
1506 	return exe_file;
1507 }
1508 
1509 /**
1510  * get_task_mm - acquire a reference to the task's mm
1511  * @task: The task.
1512  *
1513  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1514  * this kernel workthread has transiently adopted a user mm with use_mm,
1515  * to do its AIO) is not set and if so returns a reference to it, after
1516  * bumping up the use count.  User must release the mm via mmput()
1517  * after use.  Typically used by /proc and ptrace.
1518  */
1519 struct mm_struct *get_task_mm(struct task_struct *task)
1520 {
1521 	struct mm_struct *mm;
1522 
1523 	if (task->flags & PF_KTHREAD)
1524 		return NULL;
1525 
1526 	task_lock(task);
1527 	mm = task->mm;
1528 	if (mm)
1529 		mmget(mm);
1530 	task_unlock(task);
1531 	return mm;
1532 }
1533 EXPORT_SYMBOL_GPL(get_task_mm);
1534 
1535 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1536 {
1537 	struct mm_struct *mm;
1538 	int err;
1539 
1540 	err =  down_read_killable(&task->signal->exec_update_lock);
1541 	if (err)
1542 		return ERR_PTR(err);
1543 
1544 	mm = get_task_mm(task);
1545 	if (!mm) {
1546 		mm = ERR_PTR(-ESRCH);
1547 	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1548 		mmput(mm);
1549 		mm = ERR_PTR(-EACCES);
1550 	}
1551 	up_read(&task->signal->exec_update_lock);
1552 
1553 	return mm;
1554 }
1555 
1556 static void complete_vfork_done(struct task_struct *tsk)
1557 {
1558 	struct completion *vfork;
1559 
1560 	task_lock(tsk);
1561 	vfork = tsk->vfork_done;
1562 	if (likely(vfork)) {
1563 		tsk->vfork_done = NULL;
1564 		complete(vfork);
1565 	}
1566 	task_unlock(tsk);
1567 }
1568 
1569 static int wait_for_vfork_done(struct task_struct *child,
1570 				struct completion *vfork)
1571 {
1572 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1573 	int killed;
1574 
1575 	cgroup_enter_frozen();
1576 	killed = wait_for_completion_state(vfork, state);
1577 	cgroup_leave_frozen(false);
1578 
1579 	if (killed) {
1580 		task_lock(child);
1581 		child->vfork_done = NULL;
1582 		task_unlock(child);
1583 	}
1584 
1585 	put_task_struct(child);
1586 	return killed;
1587 }
1588 
1589 /* Please note the differences between mmput and mm_release.
1590  * mmput is called whenever we stop holding onto a mm_struct,
1591  * error success whatever.
1592  *
1593  * mm_release is called after a mm_struct has been removed
1594  * from the current process.
1595  *
1596  * This difference is important for error handling, when we
1597  * only half set up a mm_struct for a new process and need to restore
1598  * the old one.  Because we mmput the new mm_struct before
1599  * restoring the old one. . .
1600  * Eric Biederman 10 January 1998
1601  */
1602 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1603 {
1604 	uprobe_free_utask(tsk);
1605 
1606 	/* Get rid of any cached register state */
1607 	deactivate_mm(tsk, mm);
1608 
1609 	/*
1610 	 * Signal userspace if we're not exiting with a core dump
1611 	 * because we want to leave the value intact for debugging
1612 	 * purposes.
1613 	 */
1614 	if (tsk->clear_child_tid) {
1615 		if (atomic_read(&mm->mm_users) > 1) {
1616 			/*
1617 			 * We don't check the error code - if userspace has
1618 			 * not set up a proper pointer then tough luck.
1619 			 */
1620 			put_user(0, tsk->clear_child_tid);
1621 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1622 					1, NULL, NULL, 0, 0);
1623 		}
1624 		tsk->clear_child_tid = NULL;
1625 	}
1626 
1627 	/*
1628 	 * All done, finally we can wake up parent and return this mm to him.
1629 	 * Also kthread_stop() uses this completion for synchronization.
1630 	 */
1631 	if (tsk->vfork_done)
1632 		complete_vfork_done(tsk);
1633 }
1634 
1635 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1636 {
1637 	futex_exit_release(tsk);
1638 	mm_release(tsk, mm);
1639 }
1640 
1641 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1642 {
1643 	futex_exec_release(tsk);
1644 	mm_release(tsk, mm);
1645 }
1646 
1647 /**
1648  * dup_mm() - duplicates an existing mm structure
1649  * @tsk: the task_struct with which the new mm will be associated.
1650  * @oldmm: the mm to duplicate.
1651  *
1652  * Allocates a new mm structure and duplicates the provided @oldmm structure
1653  * content into it.
1654  *
1655  * Return: the duplicated mm or NULL on failure.
1656  */
1657 static struct mm_struct *dup_mm(struct task_struct *tsk,
1658 				struct mm_struct *oldmm)
1659 {
1660 	struct mm_struct *mm;
1661 	int err;
1662 
1663 	mm = allocate_mm();
1664 	if (!mm)
1665 		goto fail_nomem;
1666 
1667 	memcpy(mm, oldmm, sizeof(*mm));
1668 
1669 	if (!mm_init(mm, tsk, mm->user_ns))
1670 		goto fail_nomem;
1671 
1672 	uprobe_start_dup_mmap();
1673 	err = dup_mmap(mm, oldmm);
1674 	if (err)
1675 		goto free_pt;
1676 	uprobe_end_dup_mmap();
1677 
1678 	mm->hiwater_rss = get_mm_rss(mm);
1679 	mm->hiwater_vm = mm->total_vm;
1680 
1681 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1682 		goto free_pt;
1683 
1684 	return mm;
1685 
1686 free_pt:
1687 	/* don't put binfmt in mmput, we haven't got module yet */
1688 	mm->binfmt = NULL;
1689 	mm_init_owner(mm, NULL);
1690 	mmput(mm);
1691 	if (err)
1692 		uprobe_end_dup_mmap();
1693 
1694 fail_nomem:
1695 	return NULL;
1696 }
1697 
1698 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1699 {
1700 	struct mm_struct *mm, *oldmm;
1701 
1702 	tsk->min_flt = tsk->maj_flt = 0;
1703 	tsk->nvcsw = tsk->nivcsw = 0;
1704 #ifdef CONFIG_DETECT_HUNG_TASK
1705 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1706 	tsk->last_switch_time = 0;
1707 #endif
1708 
1709 	tsk->mm = NULL;
1710 	tsk->active_mm = NULL;
1711 
1712 	/*
1713 	 * Are we cloning a kernel thread?
1714 	 *
1715 	 * We need to steal a active VM for that..
1716 	 */
1717 	oldmm = current->mm;
1718 	if (!oldmm)
1719 		return 0;
1720 
1721 	if (clone_flags & CLONE_VM) {
1722 		mmget(oldmm);
1723 		mm = oldmm;
1724 	} else {
1725 		mm = dup_mm(tsk, current->mm);
1726 		if (!mm)
1727 			return -ENOMEM;
1728 	}
1729 
1730 	tsk->mm = mm;
1731 	tsk->active_mm = mm;
1732 	sched_mm_cid_fork(tsk);
1733 	return 0;
1734 }
1735 
1736 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1737 {
1738 	struct fs_struct *fs = current->fs;
1739 	if (clone_flags & CLONE_FS) {
1740 		/* tsk->fs is already what we want */
1741 		spin_lock(&fs->lock);
1742 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1743 		if (fs->in_exec) {
1744 			spin_unlock(&fs->lock);
1745 			return -EAGAIN;
1746 		}
1747 		fs->users++;
1748 		spin_unlock(&fs->lock);
1749 		return 0;
1750 	}
1751 	tsk->fs = copy_fs_struct(fs);
1752 	if (!tsk->fs)
1753 		return -ENOMEM;
1754 	return 0;
1755 }
1756 
1757 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1758 		      int no_files)
1759 {
1760 	struct files_struct *oldf, *newf;
1761 
1762 	/*
1763 	 * A background process may not have any files ...
1764 	 */
1765 	oldf = current->files;
1766 	if (!oldf)
1767 		return 0;
1768 
1769 	if (no_files) {
1770 		tsk->files = NULL;
1771 		return 0;
1772 	}
1773 
1774 	if (clone_flags & CLONE_FILES) {
1775 		atomic_inc(&oldf->count);
1776 		return 0;
1777 	}
1778 
1779 	newf = dup_fd(oldf, NULL);
1780 	if (IS_ERR(newf))
1781 		return PTR_ERR(newf);
1782 
1783 	tsk->files = newf;
1784 	return 0;
1785 }
1786 
1787 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1788 {
1789 	struct sighand_struct *sig;
1790 
1791 	if (clone_flags & CLONE_SIGHAND) {
1792 		refcount_inc(&current->sighand->count);
1793 		return 0;
1794 	}
1795 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1796 	RCU_INIT_POINTER(tsk->sighand, sig);
1797 	if (!sig)
1798 		return -ENOMEM;
1799 
1800 	refcount_set(&sig->count, 1);
1801 	spin_lock_irq(&current->sighand->siglock);
1802 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1803 	spin_unlock_irq(&current->sighand->siglock);
1804 
1805 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1806 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1807 		flush_signal_handlers(tsk, 0);
1808 
1809 	return 0;
1810 }
1811 
1812 void __cleanup_sighand(struct sighand_struct *sighand)
1813 {
1814 	if (refcount_dec_and_test(&sighand->count)) {
1815 		signalfd_cleanup(sighand);
1816 		/*
1817 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1818 		 * without an RCU grace period, see __lock_task_sighand().
1819 		 */
1820 		kmem_cache_free(sighand_cachep, sighand);
1821 	}
1822 }
1823 
1824 /*
1825  * Initialize POSIX timer handling for a thread group.
1826  */
1827 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1828 {
1829 	struct posix_cputimers *pct = &sig->posix_cputimers;
1830 	unsigned long cpu_limit;
1831 
1832 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1833 	posix_cputimers_group_init(pct, cpu_limit);
1834 }
1835 
1836 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1837 {
1838 	struct signal_struct *sig;
1839 
1840 	if (clone_flags & CLONE_THREAD)
1841 		return 0;
1842 
1843 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1844 	tsk->signal = sig;
1845 	if (!sig)
1846 		return -ENOMEM;
1847 
1848 	sig->nr_threads = 1;
1849 	sig->quick_threads = 1;
1850 	atomic_set(&sig->live, 1);
1851 	refcount_set(&sig->sigcnt, 1);
1852 
1853 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1854 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1855 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1856 
1857 	init_waitqueue_head(&sig->wait_chldexit);
1858 	sig->curr_target = tsk;
1859 	init_sigpending(&sig->shared_pending);
1860 	INIT_HLIST_HEAD(&sig->multiprocess);
1861 	seqlock_init(&sig->stats_lock);
1862 	prev_cputime_init(&sig->prev_cputime);
1863 
1864 #ifdef CONFIG_POSIX_TIMERS
1865 	INIT_HLIST_HEAD(&sig->posix_timers);
1866 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1867 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1868 	sig->real_timer.function = it_real_fn;
1869 #endif
1870 
1871 	task_lock(current->group_leader);
1872 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1873 	task_unlock(current->group_leader);
1874 
1875 	posix_cpu_timers_init_group(sig);
1876 
1877 	tty_audit_fork(sig);
1878 	sched_autogroup_fork(sig);
1879 
1880 	sig->oom_score_adj = current->signal->oom_score_adj;
1881 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1882 
1883 	mutex_init(&sig->cred_guard_mutex);
1884 	init_rwsem(&sig->exec_update_lock);
1885 
1886 	return 0;
1887 }
1888 
1889 static void copy_seccomp(struct task_struct *p)
1890 {
1891 #ifdef CONFIG_SECCOMP
1892 	/*
1893 	 * Must be called with sighand->lock held, which is common to
1894 	 * all threads in the group. Holding cred_guard_mutex is not
1895 	 * needed because this new task is not yet running and cannot
1896 	 * be racing exec.
1897 	 */
1898 	assert_spin_locked(&current->sighand->siglock);
1899 
1900 	/* Ref-count the new filter user, and assign it. */
1901 	get_seccomp_filter(current);
1902 	p->seccomp = current->seccomp;
1903 
1904 	/*
1905 	 * Explicitly enable no_new_privs here in case it got set
1906 	 * between the task_struct being duplicated and holding the
1907 	 * sighand lock. The seccomp state and nnp must be in sync.
1908 	 */
1909 	if (task_no_new_privs(current))
1910 		task_set_no_new_privs(p);
1911 
1912 	/*
1913 	 * If the parent gained a seccomp mode after copying thread
1914 	 * flags and between before we held the sighand lock, we have
1915 	 * to manually enable the seccomp thread flag here.
1916 	 */
1917 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1918 		set_task_syscall_work(p, SECCOMP);
1919 #endif
1920 }
1921 
1922 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1923 {
1924 	current->clear_child_tid = tidptr;
1925 
1926 	return task_pid_vnr(current);
1927 }
1928 
1929 static void rt_mutex_init_task(struct task_struct *p)
1930 {
1931 	raw_spin_lock_init(&p->pi_lock);
1932 #ifdef CONFIG_RT_MUTEXES
1933 	p->pi_waiters = RB_ROOT_CACHED;
1934 	p->pi_top_task = NULL;
1935 	p->pi_blocked_on = NULL;
1936 #endif
1937 }
1938 
1939 static inline void init_task_pid_links(struct task_struct *task)
1940 {
1941 	enum pid_type type;
1942 
1943 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1944 		INIT_HLIST_NODE(&task->pid_links[type]);
1945 }
1946 
1947 static inline void
1948 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1949 {
1950 	if (type == PIDTYPE_PID)
1951 		task->thread_pid = pid;
1952 	else
1953 		task->signal->pids[type] = pid;
1954 }
1955 
1956 static inline void rcu_copy_process(struct task_struct *p)
1957 {
1958 #ifdef CONFIG_PREEMPT_RCU
1959 	p->rcu_read_lock_nesting = 0;
1960 	p->rcu_read_unlock_special.s = 0;
1961 	p->rcu_blocked_node = NULL;
1962 	INIT_LIST_HEAD(&p->rcu_node_entry);
1963 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1964 #ifdef CONFIG_TASKS_RCU
1965 	p->rcu_tasks_holdout = false;
1966 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1967 	p->rcu_tasks_idle_cpu = -1;
1968 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1969 #endif /* #ifdef CONFIG_TASKS_RCU */
1970 #ifdef CONFIG_TASKS_TRACE_RCU
1971 	p->trc_reader_nesting = 0;
1972 	p->trc_reader_special.s = 0;
1973 	INIT_LIST_HEAD(&p->trc_holdout_list);
1974 	INIT_LIST_HEAD(&p->trc_blkd_node);
1975 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1976 }
1977 
1978 /**
1979  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1980  * @pid:   the struct pid for which to create a pidfd
1981  * @flags: flags of the new @pidfd
1982  * @ret: Where to return the file for the pidfd.
1983  *
1984  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1985  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1986  *
1987  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1988  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1989  * pidfd file are prepared.
1990  *
1991  * If this function returns successfully the caller is responsible to either
1992  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1993  * order to install the pidfd into its file descriptor table or they must use
1994  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1995  * respectively.
1996  *
1997  * This function is useful when a pidfd must already be reserved but there
1998  * might still be points of failure afterwards and the caller wants to ensure
1999  * that no pidfd is leaked into its file descriptor table.
2000  *
2001  * Return: On success, a reserved pidfd is returned from the function and a new
2002  *         pidfd file is returned in the last argument to the function. On
2003  *         error, a negative error code is returned from the function and the
2004  *         last argument remains unchanged.
2005  */
2006 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2007 {
2008 	int pidfd;
2009 	struct file *pidfd_file;
2010 
2011 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2012 	if (pidfd < 0)
2013 		return pidfd;
2014 
2015 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2016 	if (IS_ERR(pidfd_file)) {
2017 		put_unused_fd(pidfd);
2018 		return PTR_ERR(pidfd_file);
2019 	}
2020 	/*
2021 	 * anon_inode_getfile() ignores everything outside of the
2022 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2023 	 */
2024 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2025 	*ret = pidfd_file;
2026 	return pidfd;
2027 }
2028 
2029 /**
2030  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2031  * @pid:   the struct pid for which to create a pidfd
2032  * @flags: flags of the new @pidfd
2033  * @ret: Where to return the pidfd.
2034  *
2035  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2036  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2037  *
2038  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2039  * task identified by @pid must be a thread-group leader.
2040  *
2041  * If this function returns successfully the caller is responsible to either
2042  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2043  * order to install the pidfd into its file descriptor table or they must use
2044  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2045  * respectively.
2046  *
2047  * This function is useful when a pidfd must already be reserved but there
2048  * might still be points of failure afterwards and the caller wants to ensure
2049  * that no pidfd is leaked into its file descriptor table.
2050  *
2051  * Return: On success, a reserved pidfd is returned from the function and a new
2052  *         pidfd file is returned in the last argument to the function. On
2053  *         error, a negative error code is returned from the function and the
2054  *         last argument remains unchanged.
2055  */
2056 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2057 {
2058 	bool thread = flags & PIDFD_THREAD;
2059 
2060 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2061 		return -EINVAL;
2062 
2063 	return __pidfd_prepare(pid, flags, ret);
2064 }
2065 
2066 static void __delayed_free_task(struct rcu_head *rhp)
2067 {
2068 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2069 
2070 	free_task(tsk);
2071 }
2072 
2073 static __always_inline void delayed_free_task(struct task_struct *tsk)
2074 {
2075 	if (IS_ENABLED(CONFIG_MEMCG))
2076 		call_rcu(&tsk->rcu, __delayed_free_task);
2077 	else
2078 		free_task(tsk);
2079 }
2080 
2081 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2082 {
2083 	/* Skip if kernel thread */
2084 	if (!tsk->mm)
2085 		return;
2086 
2087 	/* Skip if spawning a thread or using vfork */
2088 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2089 		return;
2090 
2091 	/* We need to synchronize with __set_oom_adj */
2092 	mutex_lock(&oom_adj_mutex);
2093 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2094 	/* Update the values in case they were changed after copy_signal */
2095 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2096 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2097 	mutex_unlock(&oom_adj_mutex);
2098 }
2099 
2100 #ifdef CONFIG_RV
2101 static void rv_task_fork(struct task_struct *p)
2102 {
2103 	int i;
2104 
2105 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2106 		p->rv[i].da_mon.monitoring = false;
2107 }
2108 #else
2109 #define rv_task_fork(p) do {} while (0)
2110 #endif
2111 
2112 /*
2113  * This creates a new process as a copy of the old one,
2114  * but does not actually start it yet.
2115  *
2116  * It copies the registers, and all the appropriate
2117  * parts of the process environment (as per the clone
2118  * flags). The actual kick-off is left to the caller.
2119  */
2120 __latent_entropy struct task_struct *copy_process(
2121 					struct pid *pid,
2122 					int trace,
2123 					int node,
2124 					struct kernel_clone_args *args)
2125 {
2126 	int pidfd = -1, retval;
2127 	struct task_struct *p;
2128 	struct multiprocess_signals delayed;
2129 	struct file *pidfile = NULL;
2130 	const u64 clone_flags = args->flags;
2131 	struct nsproxy *nsp = current->nsproxy;
2132 
2133 	/*
2134 	 * Don't allow sharing the root directory with processes in a different
2135 	 * namespace
2136 	 */
2137 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2138 		return ERR_PTR(-EINVAL);
2139 
2140 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2141 		return ERR_PTR(-EINVAL);
2142 
2143 	/*
2144 	 * Thread groups must share signals as well, and detached threads
2145 	 * can only be started up within the thread group.
2146 	 */
2147 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2148 		return ERR_PTR(-EINVAL);
2149 
2150 	/*
2151 	 * Shared signal handlers imply shared VM. By way of the above,
2152 	 * thread groups also imply shared VM. Blocking this case allows
2153 	 * for various simplifications in other code.
2154 	 */
2155 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2156 		return ERR_PTR(-EINVAL);
2157 
2158 	/*
2159 	 * Siblings of global init remain as zombies on exit since they are
2160 	 * not reaped by their parent (swapper). To solve this and to avoid
2161 	 * multi-rooted process trees, prevent global and container-inits
2162 	 * from creating siblings.
2163 	 */
2164 	if ((clone_flags & CLONE_PARENT) &&
2165 				current->signal->flags & SIGNAL_UNKILLABLE)
2166 		return ERR_PTR(-EINVAL);
2167 
2168 	/*
2169 	 * If the new process will be in a different pid or user namespace
2170 	 * do not allow it to share a thread group with the forking task.
2171 	 */
2172 	if (clone_flags & CLONE_THREAD) {
2173 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2174 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2175 			return ERR_PTR(-EINVAL);
2176 	}
2177 
2178 	if (clone_flags & CLONE_PIDFD) {
2179 		/*
2180 		 * - CLONE_DETACHED is blocked so that we can potentially
2181 		 *   reuse it later for CLONE_PIDFD.
2182 		 */
2183 		if (clone_flags & CLONE_DETACHED)
2184 			return ERR_PTR(-EINVAL);
2185 	}
2186 
2187 	/*
2188 	 * Force any signals received before this point to be delivered
2189 	 * before the fork happens.  Collect up signals sent to multiple
2190 	 * processes that happen during the fork and delay them so that
2191 	 * they appear to happen after the fork.
2192 	 */
2193 	sigemptyset(&delayed.signal);
2194 	INIT_HLIST_NODE(&delayed.node);
2195 
2196 	spin_lock_irq(&current->sighand->siglock);
2197 	if (!(clone_flags & CLONE_THREAD))
2198 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2199 	recalc_sigpending();
2200 	spin_unlock_irq(&current->sighand->siglock);
2201 	retval = -ERESTARTNOINTR;
2202 	if (task_sigpending(current))
2203 		goto fork_out;
2204 
2205 	retval = -ENOMEM;
2206 	p = dup_task_struct(current, node);
2207 	if (!p)
2208 		goto fork_out;
2209 	p->flags &= ~PF_KTHREAD;
2210 	if (args->kthread)
2211 		p->flags |= PF_KTHREAD;
2212 	if (args->user_worker) {
2213 		/*
2214 		 * Mark us a user worker, and block any signal that isn't
2215 		 * fatal or STOP
2216 		 */
2217 		p->flags |= PF_USER_WORKER;
2218 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2219 	}
2220 	if (args->io_thread)
2221 		p->flags |= PF_IO_WORKER;
2222 
2223 	if (args->name)
2224 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2225 
2226 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2227 	/*
2228 	 * Clear TID on mm_release()?
2229 	 */
2230 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2231 
2232 	ftrace_graph_init_task(p);
2233 
2234 	rt_mutex_init_task(p);
2235 
2236 	lockdep_assert_irqs_enabled();
2237 #ifdef CONFIG_PROVE_LOCKING
2238 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2239 #endif
2240 	retval = copy_creds(p, clone_flags);
2241 	if (retval < 0)
2242 		goto bad_fork_free;
2243 
2244 	retval = -EAGAIN;
2245 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2246 		if (p->real_cred->user != INIT_USER &&
2247 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2248 			goto bad_fork_cleanup_count;
2249 	}
2250 	current->flags &= ~PF_NPROC_EXCEEDED;
2251 
2252 	/*
2253 	 * If multiple threads are within copy_process(), then this check
2254 	 * triggers too late. This doesn't hurt, the check is only there
2255 	 * to stop root fork bombs.
2256 	 */
2257 	retval = -EAGAIN;
2258 	if (data_race(nr_threads >= max_threads))
2259 		goto bad_fork_cleanup_count;
2260 
2261 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2262 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2263 	p->flags |= PF_FORKNOEXEC;
2264 	INIT_LIST_HEAD(&p->children);
2265 	INIT_LIST_HEAD(&p->sibling);
2266 	rcu_copy_process(p);
2267 	p->vfork_done = NULL;
2268 	spin_lock_init(&p->alloc_lock);
2269 
2270 	init_sigpending(&p->pending);
2271 
2272 	p->utime = p->stime = p->gtime = 0;
2273 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2274 	p->utimescaled = p->stimescaled = 0;
2275 #endif
2276 	prev_cputime_init(&p->prev_cputime);
2277 
2278 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2279 	seqcount_init(&p->vtime.seqcount);
2280 	p->vtime.starttime = 0;
2281 	p->vtime.state = VTIME_INACTIVE;
2282 #endif
2283 
2284 #ifdef CONFIG_IO_URING
2285 	p->io_uring = NULL;
2286 #endif
2287 
2288 	p->default_timer_slack_ns = current->timer_slack_ns;
2289 
2290 #ifdef CONFIG_PSI
2291 	p->psi_flags = 0;
2292 #endif
2293 
2294 	task_io_accounting_init(&p->ioac);
2295 	acct_clear_integrals(p);
2296 
2297 	posix_cputimers_init(&p->posix_cputimers);
2298 	tick_dep_init_task(p);
2299 
2300 	p->io_context = NULL;
2301 	audit_set_context(p, NULL);
2302 	cgroup_fork(p);
2303 	if (args->kthread) {
2304 		if (!set_kthread_struct(p))
2305 			goto bad_fork_cleanup_delayacct;
2306 	}
2307 #ifdef CONFIG_NUMA
2308 	p->mempolicy = mpol_dup(p->mempolicy);
2309 	if (IS_ERR(p->mempolicy)) {
2310 		retval = PTR_ERR(p->mempolicy);
2311 		p->mempolicy = NULL;
2312 		goto bad_fork_cleanup_delayacct;
2313 	}
2314 #endif
2315 #ifdef CONFIG_CPUSETS
2316 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2317 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2318 #endif
2319 #ifdef CONFIG_TRACE_IRQFLAGS
2320 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2321 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2322 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2323 	p->softirqs_enabled		= 1;
2324 	p->softirq_context		= 0;
2325 #endif
2326 
2327 	p->pagefault_disabled = 0;
2328 
2329 #ifdef CONFIG_LOCKDEP
2330 	lockdep_init_task(p);
2331 #endif
2332 
2333 #ifdef CONFIG_DEBUG_MUTEXES
2334 	p->blocked_on = NULL; /* not blocked yet */
2335 #endif
2336 #ifdef CONFIG_BCACHE
2337 	p->sequential_io	= 0;
2338 	p->sequential_io_avg	= 0;
2339 #endif
2340 #ifdef CONFIG_BPF_SYSCALL
2341 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2342 	p->bpf_ctx = NULL;
2343 #endif
2344 
2345 	/* Perform scheduler related setup. Assign this task to a CPU. */
2346 	retval = sched_fork(clone_flags, p);
2347 	if (retval)
2348 		goto bad_fork_cleanup_policy;
2349 
2350 	retval = perf_event_init_task(p, clone_flags);
2351 	if (retval)
2352 		goto bad_fork_sched_cancel_fork;
2353 	retval = audit_alloc(p);
2354 	if (retval)
2355 		goto bad_fork_cleanup_perf;
2356 	/* copy all the process information */
2357 	shm_init_task(p);
2358 	retval = security_task_alloc(p, clone_flags);
2359 	if (retval)
2360 		goto bad_fork_cleanup_audit;
2361 	retval = copy_semundo(clone_flags, p);
2362 	if (retval)
2363 		goto bad_fork_cleanup_security;
2364 	retval = copy_files(clone_flags, p, args->no_files);
2365 	if (retval)
2366 		goto bad_fork_cleanup_semundo;
2367 	retval = copy_fs(clone_flags, p);
2368 	if (retval)
2369 		goto bad_fork_cleanup_files;
2370 	retval = copy_sighand(clone_flags, p);
2371 	if (retval)
2372 		goto bad_fork_cleanup_fs;
2373 	retval = copy_signal(clone_flags, p);
2374 	if (retval)
2375 		goto bad_fork_cleanup_sighand;
2376 	retval = copy_mm(clone_flags, p);
2377 	if (retval)
2378 		goto bad_fork_cleanup_signal;
2379 	retval = copy_namespaces(clone_flags, p);
2380 	if (retval)
2381 		goto bad_fork_cleanup_mm;
2382 	retval = copy_io(clone_flags, p);
2383 	if (retval)
2384 		goto bad_fork_cleanup_namespaces;
2385 	retval = copy_thread(p, args);
2386 	if (retval)
2387 		goto bad_fork_cleanup_io;
2388 
2389 	stackleak_task_init(p);
2390 
2391 	if (pid != &init_struct_pid) {
2392 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2393 				args->set_tid_size);
2394 		if (IS_ERR(pid)) {
2395 			retval = PTR_ERR(pid);
2396 			goto bad_fork_cleanup_thread;
2397 		}
2398 	}
2399 
2400 	/*
2401 	 * This has to happen after we've potentially unshared the file
2402 	 * descriptor table (so that the pidfd doesn't leak into the child
2403 	 * if the fd table isn't shared).
2404 	 */
2405 	if (clone_flags & CLONE_PIDFD) {
2406 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2407 
2408 		/* Note that no task has been attached to @pid yet. */
2409 		retval = __pidfd_prepare(pid, flags, &pidfile);
2410 		if (retval < 0)
2411 			goto bad_fork_free_pid;
2412 		pidfd = retval;
2413 
2414 		retval = put_user(pidfd, args->pidfd);
2415 		if (retval)
2416 			goto bad_fork_put_pidfd;
2417 	}
2418 
2419 #ifdef CONFIG_BLOCK
2420 	p->plug = NULL;
2421 #endif
2422 	futex_init_task(p);
2423 
2424 	/*
2425 	 * sigaltstack should be cleared when sharing the same VM
2426 	 */
2427 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2428 		sas_ss_reset(p);
2429 
2430 	/*
2431 	 * Syscall tracing and stepping should be turned off in the
2432 	 * child regardless of CLONE_PTRACE.
2433 	 */
2434 	user_disable_single_step(p);
2435 	clear_task_syscall_work(p, SYSCALL_TRACE);
2436 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2437 	clear_task_syscall_work(p, SYSCALL_EMU);
2438 #endif
2439 	clear_tsk_latency_tracing(p);
2440 
2441 	/* ok, now we should be set up.. */
2442 	p->pid = pid_nr(pid);
2443 	if (clone_flags & CLONE_THREAD) {
2444 		p->group_leader = current->group_leader;
2445 		p->tgid = current->tgid;
2446 	} else {
2447 		p->group_leader = p;
2448 		p->tgid = p->pid;
2449 	}
2450 
2451 	p->nr_dirtied = 0;
2452 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2453 	p->dirty_paused_when = 0;
2454 
2455 	p->pdeath_signal = 0;
2456 	p->task_works = NULL;
2457 	clear_posix_cputimers_work(p);
2458 
2459 #ifdef CONFIG_KRETPROBES
2460 	p->kretprobe_instances.first = NULL;
2461 #endif
2462 #ifdef CONFIG_RETHOOK
2463 	p->rethooks.first = NULL;
2464 #endif
2465 
2466 	/*
2467 	 * Ensure that the cgroup subsystem policies allow the new process to be
2468 	 * forked. It should be noted that the new process's css_set can be changed
2469 	 * between here and cgroup_post_fork() if an organisation operation is in
2470 	 * progress.
2471 	 */
2472 	retval = cgroup_can_fork(p, args);
2473 	if (retval)
2474 		goto bad_fork_put_pidfd;
2475 
2476 	/*
2477 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2478 	 * the new task on the correct runqueue. All this *before* the task
2479 	 * becomes visible.
2480 	 *
2481 	 * This isn't part of ->can_fork() because while the re-cloning is
2482 	 * cgroup specific, it unconditionally needs to place the task on a
2483 	 * runqueue.
2484 	 */
2485 	retval = sched_cgroup_fork(p, args);
2486 	if (retval)
2487 		goto bad_fork_cancel_cgroup;
2488 
2489 	/*
2490 	 * From this point on we must avoid any synchronous user-space
2491 	 * communication until we take the tasklist-lock. In particular, we do
2492 	 * not want user-space to be able to predict the process start-time by
2493 	 * stalling fork(2) after we recorded the start_time but before it is
2494 	 * visible to the system.
2495 	 */
2496 
2497 	p->start_time = ktime_get_ns();
2498 	p->start_boottime = ktime_get_boottime_ns();
2499 
2500 	/*
2501 	 * Make it visible to the rest of the system, but dont wake it up yet.
2502 	 * Need tasklist lock for parent etc handling!
2503 	 */
2504 	write_lock_irq(&tasklist_lock);
2505 
2506 	/* CLONE_PARENT re-uses the old parent */
2507 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2508 		p->real_parent = current->real_parent;
2509 		p->parent_exec_id = current->parent_exec_id;
2510 		if (clone_flags & CLONE_THREAD)
2511 			p->exit_signal = -1;
2512 		else
2513 			p->exit_signal = current->group_leader->exit_signal;
2514 	} else {
2515 		p->real_parent = current;
2516 		p->parent_exec_id = current->self_exec_id;
2517 		p->exit_signal = args->exit_signal;
2518 	}
2519 
2520 	klp_copy_process(p);
2521 
2522 	sched_core_fork(p);
2523 
2524 	spin_lock(&current->sighand->siglock);
2525 
2526 	rv_task_fork(p);
2527 
2528 	rseq_fork(p, clone_flags);
2529 
2530 	/* Don't start children in a dying pid namespace */
2531 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2532 		retval = -ENOMEM;
2533 		goto bad_fork_core_free;
2534 	}
2535 
2536 	/* Let kill terminate clone/fork in the middle */
2537 	if (fatal_signal_pending(current)) {
2538 		retval = -EINTR;
2539 		goto bad_fork_core_free;
2540 	}
2541 
2542 	/* No more failure paths after this point. */
2543 
2544 	/*
2545 	 * Copy seccomp details explicitly here, in case they were changed
2546 	 * before holding sighand lock.
2547 	 */
2548 	copy_seccomp(p);
2549 
2550 	init_task_pid_links(p);
2551 	if (likely(p->pid)) {
2552 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2553 
2554 		init_task_pid(p, PIDTYPE_PID, pid);
2555 		if (thread_group_leader(p)) {
2556 			init_task_pid(p, PIDTYPE_TGID, pid);
2557 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2558 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2559 
2560 			if (is_child_reaper(pid)) {
2561 				ns_of_pid(pid)->child_reaper = p;
2562 				p->signal->flags |= SIGNAL_UNKILLABLE;
2563 			}
2564 			p->signal->shared_pending.signal = delayed.signal;
2565 			p->signal->tty = tty_kref_get(current->signal->tty);
2566 			/*
2567 			 * Inherit has_child_subreaper flag under the same
2568 			 * tasklist_lock with adding child to the process tree
2569 			 * for propagate_has_child_subreaper optimization.
2570 			 */
2571 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2572 							 p->real_parent->signal->is_child_subreaper;
2573 			list_add_tail(&p->sibling, &p->real_parent->children);
2574 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2575 			attach_pid(p, PIDTYPE_TGID);
2576 			attach_pid(p, PIDTYPE_PGID);
2577 			attach_pid(p, PIDTYPE_SID);
2578 			__this_cpu_inc(process_counts);
2579 		} else {
2580 			current->signal->nr_threads++;
2581 			current->signal->quick_threads++;
2582 			atomic_inc(&current->signal->live);
2583 			refcount_inc(&current->signal->sigcnt);
2584 			task_join_group_stop(p);
2585 			list_add_tail_rcu(&p->thread_node,
2586 					  &p->signal->thread_head);
2587 		}
2588 		attach_pid(p, PIDTYPE_PID);
2589 		nr_threads++;
2590 	}
2591 	total_forks++;
2592 	hlist_del_init(&delayed.node);
2593 	spin_unlock(&current->sighand->siglock);
2594 	syscall_tracepoint_update(p);
2595 	write_unlock_irq(&tasklist_lock);
2596 
2597 	if (pidfile)
2598 		fd_install(pidfd, pidfile);
2599 
2600 	proc_fork_connector(p);
2601 	sched_post_fork(p);
2602 	cgroup_post_fork(p, args);
2603 	perf_event_fork(p);
2604 
2605 	trace_task_newtask(p, clone_flags);
2606 	uprobe_copy_process(p, clone_flags);
2607 	user_events_fork(p, clone_flags);
2608 
2609 	copy_oom_score_adj(clone_flags, p);
2610 
2611 	return p;
2612 
2613 bad_fork_core_free:
2614 	sched_core_free(p);
2615 	spin_unlock(&current->sighand->siglock);
2616 	write_unlock_irq(&tasklist_lock);
2617 bad_fork_cancel_cgroup:
2618 	cgroup_cancel_fork(p, args);
2619 bad_fork_put_pidfd:
2620 	if (clone_flags & CLONE_PIDFD) {
2621 		fput(pidfile);
2622 		put_unused_fd(pidfd);
2623 	}
2624 bad_fork_free_pid:
2625 	if (pid != &init_struct_pid)
2626 		free_pid(pid);
2627 bad_fork_cleanup_thread:
2628 	exit_thread(p);
2629 bad_fork_cleanup_io:
2630 	if (p->io_context)
2631 		exit_io_context(p);
2632 bad_fork_cleanup_namespaces:
2633 	exit_task_namespaces(p);
2634 bad_fork_cleanup_mm:
2635 	if (p->mm) {
2636 		mm_clear_owner(p->mm, p);
2637 		mmput(p->mm);
2638 	}
2639 bad_fork_cleanup_signal:
2640 	if (!(clone_flags & CLONE_THREAD))
2641 		free_signal_struct(p->signal);
2642 bad_fork_cleanup_sighand:
2643 	__cleanup_sighand(p->sighand);
2644 bad_fork_cleanup_fs:
2645 	exit_fs(p); /* blocking */
2646 bad_fork_cleanup_files:
2647 	exit_files(p); /* blocking */
2648 bad_fork_cleanup_semundo:
2649 	exit_sem(p);
2650 bad_fork_cleanup_security:
2651 	security_task_free(p);
2652 bad_fork_cleanup_audit:
2653 	audit_free(p);
2654 bad_fork_cleanup_perf:
2655 	perf_event_free_task(p);
2656 bad_fork_sched_cancel_fork:
2657 	sched_cancel_fork(p);
2658 bad_fork_cleanup_policy:
2659 	lockdep_free_task(p);
2660 #ifdef CONFIG_NUMA
2661 	mpol_put(p->mempolicy);
2662 #endif
2663 bad_fork_cleanup_delayacct:
2664 	delayacct_tsk_free(p);
2665 bad_fork_cleanup_count:
2666 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2667 	exit_creds(p);
2668 bad_fork_free:
2669 	WRITE_ONCE(p->__state, TASK_DEAD);
2670 	exit_task_stack_account(p);
2671 	put_task_stack(p);
2672 	delayed_free_task(p);
2673 fork_out:
2674 	spin_lock_irq(&current->sighand->siglock);
2675 	hlist_del_init(&delayed.node);
2676 	spin_unlock_irq(&current->sighand->siglock);
2677 	return ERR_PTR(retval);
2678 }
2679 
2680 static inline void init_idle_pids(struct task_struct *idle)
2681 {
2682 	enum pid_type type;
2683 
2684 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2685 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2686 		init_task_pid(idle, type, &init_struct_pid);
2687 	}
2688 }
2689 
2690 static int idle_dummy(void *dummy)
2691 {
2692 	/* This function is never called */
2693 	return 0;
2694 }
2695 
2696 struct task_struct * __init fork_idle(int cpu)
2697 {
2698 	struct task_struct *task;
2699 	struct kernel_clone_args args = {
2700 		.flags		= CLONE_VM,
2701 		.fn		= &idle_dummy,
2702 		.fn_arg		= NULL,
2703 		.kthread	= 1,
2704 		.idle		= 1,
2705 	};
2706 
2707 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2708 	if (!IS_ERR(task)) {
2709 		init_idle_pids(task);
2710 		init_idle(task, cpu);
2711 	}
2712 
2713 	return task;
2714 }
2715 
2716 /*
2717  * This is like kernel_clone(), but shaved down and tailored to just
2718  * creating io_uring workers. It returns a created task, or an error pointer.
2719  * The returned task is inactive, and the caller must fire it up through
2720  * wake_up_new_task(p). All signals are blocked in the created task.
2721  */
2722 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2723 {
2724 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2725 				CLONE_IO;
2726 	struct kernel_clone_args args = {
2727 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2728 				    CLONE_UNTRACED) & ~CSIGNAL),
2729 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2730 		.fn		= fn,
2731 		.fn_arg		= arg,
2732 		.io_thread	= 1,
2733 		.user_worker	= 1,
2734 	};
2735 
2736 	return copy_process(NULL, 0, node, &args);
2737 }
2738 
2739 /*
2740  *  Ok, this is the main fork-routine.
2741  *
2742  * It copies the process, and if successful kick-starts
2743  * it and waits for it to finish using the VM if required.
2744  *
2745  * args->exit_signal is expected to be checked for sanity by the caller.
2746  */
2747 pid_t kernel_clone(struct kernel_clone_args *args)
2748 {
2749 	u64 clone_flags = args->flags;
2750 	struct completion vfork;
2751 	struct pid *pid;
2752 	struct task_struct *p;
2753 	int trace = 0;
2754 	pid_t nr;
2755 
2756 	/*
2757 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2758 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2759 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2760 	 * field in struct clone_args and it still doesn't make sense to have
2761 	 * them both point at the same memory location. Performing this check
2762 	 * here has the advantage that we don't need to have a separate helper
2763 	 * to check for legacy clone().
2764 	 */
2765 	if ((clone_flags & CLONE_PIDFD) &&
2766 	    (clone_flags & CLONE_PARENT_SETTID) &&
2767 	    (args->pidfd == args->parent_tid))
2768 		return -EINVAL;
2769 
2770 	/*
2771 	 * Determine whether and which event to report to ptracer.  When
2772 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2773 	 * requested, no event is reported; otherwise, report if the event
2774 	 * for the type of forking is enabled.
2775 	 */
2776 	if (!(clone_flags & CLONE_UNTRACED)) {
2777 		if (clone_flags & CLONE_VFORK)
2778 			trace = PTRACE_EVENT_VFORK;
2779 		else if (args->exit_signal != SIGCHLD)
2780 			trace = PTRACE_EVENT_CLONE;
2781 		else
2782 			trace = PTRACE_EVENT_FORK;
2783 
2784 		if (likely(!ptrace_event_enabled(current, trace)))
2785 			trace = 0;
2786 	}
2787 
2788 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2789 	add_latent_entropy();
2790 
2791 	if (IS_ERR(p))
2792 		return PTR_ERR(p);
2793 
2794 	/*
2795 	 * Do this prior waking up the new thread - the thread pointer
2796 	 * might get invalid after that point, if the thread exits quickly.
2797 	 */
2798 	trace_sched_process_fork(current, p);
2799 
2800 	pid = get_task_pid(p, PIDTYPE_PID);
2801 	nr = pid_vnr(pid);
2802 
2803 	if (clone_flags & CLONE_PARENT_SETTID)
2804 		put_user(nr, args->parent_tid);
2805 
2806 	if (clone_flags & CLONE_VFORK) {
2807 		p->vfork_done = &vfork;
2808 		init_completion(&vfork);
2809 		get_task_struct(p);
2810 	}
2811 
2812 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2813 		/* lock the task to synchronize with memcg migration */
2814 		task_lock(p);
2815 		lru_gen_add_mm(p->mm);
2816 		task_unlock(p);
2817 	}
2818 
2819 	wake_up_new_task(p);
2820 
2821 	/* forking complete and child started to run, tell ptracer */
2822 	if (unlikely(trace))
2823 		ptrace_event_pid(trace, pid);
2824 
2825 	if (clone_flags & CLONE_VFORK) {
2826 		if (!wait_for_vfork_done(p, &vfork))
2827 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2828 	}
2829 
2830 	put_pid(pid);
2831 	return nr;
2832 }
2833 
2834 /*
2835  * Create a kernel thread.
2836  */
2837 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2838 		    unsigned long flags)
2839 {
2840 	struct kernel_clone_args args = {
2841 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2842 				    CLONE_UNTRACED) & ~CSIGNAL),
2843 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2844 		.fn		= fn,
2845 		.fn_arg		= arg,
2846 		.name		= name,
2847 		.kthread	= 1,
2848 	};
2849 
2850 	return kernel_clone(&args);
2851 }
2852 
2853 /*
2854  * Create a user mode thread.
2855  */
2856 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2857 {
2858 	struct kernel_clone_args args = {
2859 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2860 				    CLONE_UNTRACED) & ~CSIGNAL),
2861 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2862 		.fn		= fn,
2863 		.fn_arg		= arg,
2864 	};
2865 
2866 	return kernel_clone(&args);
2867 }
2868 
2869 #ifdef __ARCH_WANT_SYS_FORK
2870 SYSCALL_DEFINE0(fork)
2871 {
2872 #ifdef CONFIG_MMU
2873 	struct kernel_clone_args args = {
2874 		.exit_signal = SIGCHLD,
2875 	};
2876 
2877 	return kernel_clone(&args);
2878 #else
2879 	/* can not support in nommu mode */
2880 	return -EINVAL;
2881 #endif
2882 }
2883 #endif
2884 
2885 #ifdef __ARCH_WANT_SYS_VFORK
2886 SYSCALL_DEFINE0(vfork)
2887 {
2888 	struct kernel_clone_args args = {
2889 		.flags		= CLONE_VFORK | CLONE_VM,
2890 		.exit_signal	= SIGCHLD,
2891 	};
2892 
2893 	return kernel_clone(&args);
2894 }
2895 #endif
2896 
2897 #ifdef __ARCH_WANT_SYS_CLONE
2898 #ifdef CONFIG_CLONE_BACKWARDS
2899 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2900 		 int __user *, parent_tidptr,
2901 		 unsigned long, tls,
2902 		 int __user *, child_tidptr)
2903 #elif defined(CONFIG_CLONE_BACKWARDS2)
2904 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2905 		 int __user *, parent_tidptr,
2906 		 int __user *, child_tidptr,
2907 		 unsigned long, tls)
2908 #elif defined(CONFIG_CLONE_BACKWARDS3)
2909 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2910 		int, stack_size,
2911 		int __user *, parent_tidptr,
2912 		int __user *, child_tidptr,
2913 		unsigned long, tls)
2914 #else
2915 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2916 		 int __user *, parent_tidptr,
2917 		 int __user *, child_tidptr,
2918 		 unsigned long, tls)
2919 #endif
2920 {
2921 	struct kernel_clone_args args = {
2922 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2923 		.pidfd		= parent_tidptr,
2924 		.child_tid	= child_tidptr,
2925 		.parent_tid	= parent_tidptr,
2926 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2927 		.stack		= newsp,
2928 		.tls		= tls,
2929 	};
2930 
2931 	return kernel_clone(&args);
2932 }
2933 #endif
2934 
2935 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2936 					      struct clone_args __user *uargs,
2937 					      size_t usize)
2938 {
2939 	int err;
2940 	struct clone_args args;
2941 	pid_t *kset_tid = kargs->set_tid;
2942 
2943 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2944 		     CLONE_ARGS_SIZE_VER0);
2945 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2946 		     CLONE_ARGS_SIZE_VER1);
2947 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2948 		     CLONE_ARGS_SIZE_VER2);
2949 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2950 
2951 	if (unlikely(usize > PAGE_SIZE))
2952 		return -E2BIG;
2953 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2954 		return -EINVAL;
2955 
2956 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2957 	if (err)
2958 		return err;
2959 
2960 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2961 		return -EINVAL;
2962 
2963 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2964 		return -EINVAL;
2965 
2966 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2967 		return -EINVAL;
2968 
2969 	/*
2970 	 * Verify that higher 32bits of exit_signal are unset and that
2971 	 * it is a valid signal
2972 	 */
2973 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2974 		     !valid_signal(args.exit_signal)))
2975 		return -EINVAL;
2976 
2977 	if ((args.flags & CLONE_INTO_CGROUP) &&
2978 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2979 		return -EINVAL;
2980 
2981 	*kargs = (struct kernel_clone_args){
2982 		.flags		= args.flags,
2983 		.pidfd		= u64_to_user_ptr(args.pidfd),
2984 		.child_tid	= u64_to_user_ptr(args.child_tid),
2985 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2986 		.exit_signal	= args.exit_signal,
2987 		.stack		= args.stack,
2988 		.stack_size	= args.stack_size,
2989 		.tls		= args.tls,
2990 		.set_tid_size	= args.set_tid_size,
2991 		.cgroup		= args.cgroup,
2992 	};
2993 
2994 	if (args.set_tid &&
2995 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2996 			(kargs->set_tid_size * sizeof(pid_t))))
2997 		return -EFAULT;
2998 
2999 	kargs->set_tid = kset_tid;
3000 
3001 	return 0;
3002 }
3003 
3004 /**
3005  * clone3_stack_valid - check and prepare stack
3006  * @kargs: kernel clone args
3007  *
3008  * Verify that the stack arguments userspace gave us are sane.
3009  * In addition, set the stack direction for userspace since it's easy for us to
3010  * determine.
3011  */
3012 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3013 {
3014 	if (kargs->stack == 0) {
3015 		if (kargs->stack_size > 0)
3016 			return false;
3017 	} else {
3018 		if (kargs->stack_size == 0)
3019 			return false;
3020 
3021 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3022 			return false;
3023 
3024 #if !defined(CONFIG_STACK_GROWSUP)
3025 		kargs->stack += kargs->stack_size;
3026 #endif
3027 	}
3028 
3029 	return true;
3030 }
3031 
3032 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3033 {
3034 	/* Verify that no unknown flags are passed along. */
3035 	if (kargs->flags &
3036 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3037 		return false;
3038 
3039 	/*
3040 	 * - make the CLONE_DETACHED bit reusable for clone3
3041 	 * - make the CSIGNAL bits reusable for clone3
3042 	 */
3043 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3044 		return false;
3045 
3046 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3047 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3048 		return false;
3049 
3050 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3051 	    kargs->exit_signal)
3052 		return false;
3053 
3054 	if (!clone3_stack_valid(kargs))
3055 		return false;
3056 
3057 	return true;
3058 }
3059 
3060 /**
3061  * sys_clone3 - create a new process with specific properties
3062  * @uargs: argument structure
3063  * @size:  size of @uargs
3064  *
3065  * clone3() is the extensible successor to clone()/clone2().
3066  * It takes a struct as argument that is versioned by its size.
3067  *
3068  * Return: On success, a positive PID for the child process.
3069  *         On error, a negative errno number.
3070  */
3071 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3072 {
3073 	int err;
3074 
3075 	struct kernel_clone_args kargs;
3076 	pid_t set_tid[MAX_PID_NS_LEVEL];
3077 
3078 #ifdef __ARCH_BROKEN_SYS_CLONE3
3079 #warning clone3() entry point is missing, please fix
3080 	return -ENOSYS;
3081 #endif
3082 
3083 	kargs.set_tid = set_tid;
3084 
3085 	err = copy_clone_args_from_user(&kargs, uargs, size);
3086 	if (err)
3087 		return err;
3088 
3089 	if (!clone3_args_valid(&kargs))
3090 		return -EINVAL;
3091 
3092 	return kernel_clone(&kargs);
3093 }
3094 
3095 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3096 {
3097 	struct task_struct *leader, *parent, *child;
3098 	int res;
3099 
3100 	read_lock(&tasklist_lock);
3101 	leader = top = top->group_leader;
3102 down:
3103 	for_each_thread(leader, parent) {
3104 		list_for_each_entry(child, &parent->children, sibling) {
3105 			res = visitor(child, data);
3106 			if (res) {
3107 				if (res < 0)
3108 					goto out;
3109 				leader = child;
3110 				goto down;
3111 			}
3112 up:
3113 			;
3114 		}
3115 	}
3116 
3117 	if (leader != top) {
3118 		child = leader;
3119 		parent = child->real_parent;
3120 		leader = parent->group_leader;
3121 		goto up;
3122 	}
3123 out:
3124 	read_unlock(&tasklist_lock);
3125 }
3126 
3127 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3128 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3129 #endif
3130 
3131 static void sighand_ctor(void *data)
3132 {
3133 	struct sighand_struct *sighand = data;
3134 
3135 	spin_lock_init(&sighand->siglock);
3136 	init_waitqueue_head(&sighand->signalfd_wqh);
3137 }
3138 
3139 void __init mm_cache_init(void)
3140 {
3141 	unsigned int mm_size;
3142 
3143 	/*
3144 	 * The mm_cpumask is located at the end of mm_struct, and is
3145 	 * dynamically sized based on the maximum CPU number this system
3146 	 * can have, taking hotplug into account (nr_cpu_ids).
3147 	 */
3148 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3149 
3150 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3151 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3152 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3153 			offsetof(struct mm_struct, saved_auxv),
3154 			sizeof_field(struct mm_struct, saved_auxv),
3155 			NULL);
3156 }
3157 
3158 void __init proc_caches_init(void)
3159 {
3160 	sighand_cachep = kmem_cache_create("sighand_cache",
3161 			sizeof(struct sighand_struct), 0,
3162 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3163 			SLAB_ACCOUNT, sighand_ctor);
3164 	signal_cachep = kmem_cache_create("signal_cache",
3165 			sizeof(struct signal_struct), 0,
3166 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3167 			NULL);
3168 	files_cachep = kmem_cache_create("files_cache",
3169 			sizeof(struct files_struct), 0,
3170 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3171 			NULL);
3172 	fs_cachep = kmem_cache_create("fs_cache",
3173 			sizeof(struct fs_struct), 0,
3174 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3175 			NULL);
3176 	vm_area_cachep = KMEM_CACHE(vm_area_struct,
3177 			SLAB_HWCACHE_ALIGN|SLAB_NO_MERGE|SLAB_PANIC|
3178 			SLAB_ACCOUNT);
3179 	mmap_init();
3180 	nsproxy_cache_init();
3181 }
3182 
3183 /*
3184  * Check constraints on flags passed to the unshare system call.
3185  */
3186 static int check_unshare_flags(unsigned long unshare_flags)
3187 {
3188 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3189 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3190 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3191 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3192 				CLONE_NEWTIME))
3193 		return -EINVAL;
3194 	/*
3195 	 * Not implemented, but pretend it works if there is nothing
3196 	 * to unshare.  Note that unsharing the address space or the
3197 	 * signal handlers also need to unshare the signal queues (aka
3198 	 * CLONE_THREAD).
3199 	 */
3200 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3201 		if (!thread_group_empty(current))
3202 			return -EINVAL;
3203 	}
3204 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3205 		if (refcount_read(&current->sighand->count) > 1)
3206 			return -EINVAL;
3207 	}
3208 	if (unshare_flags & CLONE_VM) {
3209 		if (!current_is_single_threaded())
3210 			return -EINVAL;
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 /*
3217  * Unshare the filesystem structure if it is being shared
3218  */
3219 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3220 {
3221 	struct fs_struct *fs = current->fs;
3222 
3223 	if (!(unshare_flags & CLONE_FS) || !fs)
3224 		return 0;
3225 
3226 	/* don't need lock here; in the worst case we'll do useless copy */
3227 	if (fs->users == 1)
3228 		return 0;
3229 
3230 	*new_fsp = copy_fs_struct(fs);
3231 	if (!*new_fsp)
3232 		return -ENOMEM;
3233 
3234 	return 0;
3235 }
3236 
3237 /*
3238  * Unshare file descriptor table if it is being shared
3239  */
3240 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3241 {
3242 	struct files_struct *fd = current->files;
3243 
3244 	if ((unshare_flags & CLONE_FILES) &&
3245 	    (fd && atomic_read(&fd->count) > 1)) {
3246 		fd = dup_fd(fd, NULL);
3247 		if (IS_ERR(fd))
3248 			return PTR_ERR(fd);
3249 		*new_fdp = fd;
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * unshare allows a process to 'unshare' part of the process
3257  * context which was originally shared using clone.  copy_*
3258  * functions used by kernel_clone() cannot be used here directly
3259  * because they modify an inactive task_struct that is being
3260  * constructed. Here we are modifying the current, active,
3261  * task_struct.
3262  */
3263 int ksys_unshare(unsigned long unshare_flags)
3264 {
3265 	struct fs_struct *fs, *new_fs = NULL;
3266 	struct files_struct *new_fd = NULL;
3267 	struct cred *new_cred = NULL;
3268 	struct nsproxy *new_nsproxy = NULL;
3269 	int do_sysvsem = 0;
3270 	int err;
3271 
3272 	/*
3273 	 * If unsharing a user namespace must also unshare the thread group
3274 	 * and unshare the filesystem root and working directories.
3275 	 */
3276 	if (unshare_flags & CLONE_NEWUSER)
3277 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3278 	/*
3279 	 * If unsharing vm, must also unshare signal handlers.
3280 	 */
3281 	if (unshare_flags & CLONE_VM)
3282 		unshare_flags |= CLONE_SIGHAND;
3283 	/*
3284 	 * If unsharing a signal handlers, must also unshare the signal queues.
3285 	 */
3286 	if (unshare_flags & CLONE_SIGHAND)
3287 		unshare_flags |= CLONE_THREAD;
3288 	/*
3289 	 * If unsharing namespace, must also unshare filesystem information.
3290 	 */
3291 	if (unshare_flags & CLONE_NEWNS)
3292 		unshare_flags |= CLONE_FS;
3293 
3294 	err = check_unshare_flags(unshare_flags);
3295 	if (err)
3296 		goto bad_unshare_out;
3297 	/*
3298 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3299 	 * to a new ipc namespace, the semaphore arrays from the old
3300 	 * namespace are unreachable.
3301 	 */
3302 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3303 		do_sysvsem = 1;
3304 	err = unshare_fs(unshare_flags, &new_fs);
3305 	if (err)
3306 		goto bad_unshare_out;
3307 	err = unshare_fd(unshare_flags, &new_fd);
3308 	if (err)
3309 		goto bad_unshare_cleanup_fs;
3310 	err = unshare_userns(unshare_flags, &new_cred);
3311 	if (err)
3312 		goto bad_unshare_cleanup_fd;
3313 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3314 					 new_cred, new_fs);
3315 	if (err)
3316 		goto bad_unshare_cleanup_cred;
3317 
3318 	if (new_cred) {
3319 		err = set_cred_ucounts(new_cred);
3320 		if (err)
3321 			goto bad_unshare_cleanup_cred;
3322 	}
3323 
3324 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3325 		if (do_sysvsem) {
3326 			/*
3327 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3328 			 */
3329 			exit_sem(current);
3330 		}
3331 		if (unshare_flags & CLONE_NEWIPC) {
3332 			/* Orphan segments in old ns (see sem above). */
3333 			exit_shm(current);
3334 			shm_init_task(current);
3335 		}
3336 
3337 		if (new_nsproxy)
3338 			switch_task_namespaces(current, new_nsproxy);
3339 
3340 		task_lock(current);
3341 
3342 		if (new_fs) {
3343 			fs = current->fs;
3344 			spin_lock(&fs->lock);
3345 			current->fs = new_fs;
3346 			if (--fs->users)
3347 				new_fs = NULL;
3348 			else
3349 				new_fs = fs;
3350 			spin_unlock(&fs->lock);
3351 		}
3352 
3353 		if (new_fd)
3354 			swap(current->files, new_fd);
3355 
3356 		task_unlock(current);
3357 
3358 		if (new_cred) {
3359 			/* Install the new user namespace */
3360 			commit_creds(new_cred);
3361 			new_cred = NULL;
3362 		}
3363 	}
3364 
3365 	perf_event_namespaces(current);
3366 
3367 bad_unshare_cleanup_cred:
3368 	if (new_cred)
3369 		put_cred(new_cred);
3370 bad_unshare_cleanup_fd:
3371 	if (new_fd)
3372 		put_files_struct(new_fd);
3373 
3374 bad_unshare_cleanup_fs:
3375 	if (new_fs)
3376 		free_fs_struct(new_fs);
3377 
3378 bad_unshare_out:
3379 	return err;
3380 }
3381 
3382 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3383 {
3384 	return ksys_unshare(unshare_flags);
3385 }
3386 
3387 /*
3388  *	Helper to unshare the files of the current task.
3389  *	We don't want to expose copy_files internals to
3390  *	the exec layer of the kernel.
3391  */
3392 
3393 int unshare_files(void)
3394 {
3395 	struct task_struct *task = current;
3396 	struct files_struct *old, *copy = NULL;
3397 	int error;
3398 
3399 	error = unshare_fd(CLONE_FILES, &copy);
3400 	if (error || !copy)
3401 		return error;
3402 
3403 	old = task->files;
3404 	task_lock(task);
3405 	task->files = copy;
3406 	task_unlock(task);
3407 	put_files_struct(old);
3408 	return 0;
3409 }
3410 
3411 int sysctl_max_threads(const struct ctl_table *table, int write,
3412 		       void *buffer, size_t *lenp, loff_t *ppos)
3413 {
3414 	struct ctl_table t;
3415 	int ret;
3416 	int threads = max_threads;
3417 	int min = 1;
3418 	int max = MAX_THREADS;
3419 
3420 	t = *table;
3421 	t.data = &threads;
3422 	t.extra1 = &min;
3423 	t.extra2 = &max;
3424 
3425 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3426 	if (ret || !write)
3427 		return ret;
3428 
3429 	max_threads = threads;
3430 
3431 	return 0;
3432 }
3433