1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 dup_vma_anon_name(orig, new); 370 } 371 return new; 372 } 373 374 void vm_area_free(struct vm_area_struct *vma) 375 { 376 free_vma_anon_name(vma); 377 kmem_cache_free(vm_area_cachep, vma); 378 } 379 380 static void account_kernel_stack(struct task_struct *tsk, int account) 381 { 382 void *stack = task_stack_page(tsk); 383 struct vm_struct *vm = task_stack_vm_area(tsk); 384 385 if (vm) { 386 int i; 387 388 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 389 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 390 account * (PAGE_SIZE / 1024)); 391 } else { 392 /* All stack pages are in the same node. */ 393 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 394 account * (THREAD_SIZE / 1024)); 395 } 396 } 397 398 static int memcg_charge_kernel_stack(struct task_struct *tsk) 399 { 400 #ifdef CONFIG_VMAP_STACK 401 struct vm_struct *vm = task_stack_vm_area(tsk); 402 int ret; 403 404 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 405 406 if (vm) { 407 int i; 408 409 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 410 411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 412 /* 413 * If memcg_kmem_charge_page() fails, page's 414 * memory cgroup pointer is NULL, and 415 * memcg_kmem_uncharge_page() in free_thread_stack() 416 * will ignore this page. 417 */ 418 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 419 0); 420 if (ret) 421 return ret; 422 } 423 } 424 #endif 425 return 0; 426 } 427 428 static void release_task_stack(struct task_struct *tsk) 429 { 430 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 431 return; /* Better to leak the stack than to free prematurely */ 432 433 account_kernel_stack(tsk, -1); 434 free_thread_stack(tsk); 435 tsk->stack = NULL; 436 #ifdef CONFIG_VMAP_STACK 437 tsk->stack_vm_area = NULL; 438 #endif 439 } 440 441 #ifdef CONFIG_THREAD_INFO_IN_TASK 442 void put_task_stack(struct task_struct *tsk) 443 { 444 if (refcount_dec_and_test(&tsk->stack_refcount)) 445 release_task_stack(tsk); 446 } 447 #endif 448 449 void free_task(struct task_struct *tsk) 450 { 451 release_user_cpus_ptr(tsk); 452 scs_release(tsk); 453 454 #ifndef CONFIG_THREAD_INFO_IN_TASK 455 /* 456 * The task is finally done with both the stack and thread_info, 457 * so free both. 458 */ 459 release_task_stack(tsk); 460 #else 461 /* 462 * If the task had a separate stack allocation, it should be gone 463 * by now. 464 */ 465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 466 #endif 467 rt_mutex_debug_task_free(tsk); 468 ftrace_graph_exit_task(tsk); 469 arch_release_task_struct(tsk); 470 if (tsk->flags & PF_KTHREAD) 471 free_kthread_struct(tsk); 472 free_task_struct(tsk); 473 } 474 EXPORT_SYMBOL(free_task); 475 476 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 477 { 478 struct file *exe_file; 479 480 exe_file = get_mm_exe_file(oldmm); 481 RCU_INIT_POINTER(mm->exe_file, exe_file); 482 /* 483 * We depend on the oldmm having properly denied write access to the 484 * exe_file already. 485 */ 486 if (exe_file && deny_write_access(exe_file)) 487 pr_warn_once("deny_write_access() failed in %s\n", __func__); 488 } 489 490 #ifdef CONFIG_MMU 491 static __latent_entropy int dup_mmap(struct mm_struct *mm, 492 struct mm_struct *oldmm) 493 { 494 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 495 struct rb_node **rb_link, *rb_parent; 496 int retval; 497 unsigned long charge; 498 LIST_HEAD(uf); 499 500 uprobe_start_dup_mmap(); 501 if (mmap_write_lock_killable(oldmm)) { 502 retval = -EINTR; 503 goto fail_uprobe_end; 504 } 505 flush_cache_dup_mm(oldmm); 506 uprobe_dup_mmap(oldmm, mm); 507 /* 508 * Not linked in yet - no deadlock potential: 509 */ 510 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 511 512 /* No ordering required: file already has been exposed. */ 513 dup_mm_exe_file(mm, oldmm); 514 515 mm->total_vm = oldmm->total_vm; 516 mm->data_vm = oldmm->data_vm; 517 mm->exec_vm = oldmm->exec_vm; 518 mm->stack_vm = oldmm->stack_vm; 519 520 rb_link = &mm->mm_rb.rb_node; 521 rb_parent = NULL; 522 pprev = &mm->mmap; 523 retval = ksm_fork(mm, oldmm); 524 if (retval) 525 goto out; 526 retval = khugepaged_fork(mm, oldmm); 527 if (retval) 528 goto out; 529 530 prev = NULL; 531 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 532 struct file *file; 533 534 if (mpnt->vm_flags & VM_DONTCOPY) { 535 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 536 continue; 537 } 538 charge = 0; 539 /* 540 * Don't duplicate many vmas if we've been oom-killed (for 541 * example) 542 */ 543 if (fatal_signal_pending(current)) { 544 retval = -EINTR; 545 goto out; 546 } 547 if (mpnt->vm_flags & VM_ACCOUNT) { 548 unsigned long len = vma_pages(mpnt); 549 550 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 551 goto fail_nomem; 552 charge = len; 553 } 554 tmp = vm_area_dup(mpnt); 555 if (!tmp) 556 goto fail_nomem; 557 retval = vma_dup_policy(mpnt, tmp); 558 if (retval) 559 goto fail_nomem_policy; 560 tmp->vm_mm = mm; 561 retval = dup_userfaultfd(tmp, &uf); 562 if (retval) 563 goto fail_nomem_anon_vma_fork; 564 if (tmp->vm_flags & VM_WIPEONFORK) { 565 /* 566 * VM_WIPEONFORK gets a clean slate in the child. 567 * Don't prepare anon_vma until fault since we don't 568 * copy page for current vma. 569 */ 570 tmp->anon_vma = NULL; 571 } else if (anon_vma_fork(tmp, mpnt)) 572 goto fail_nomem_anon_vma_fork; 573 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 574 file = tmp->vm_file; 575 if (file) { 576 struct address_space *mapping = file->f_mapping; 577 578 get_file(file); 579 i_mmap_lock_write(mapping); 580 if (tmp->vm_flags & VM_SHARED) 581 mapping_allow_writable(mapping); 582 flush_dcache_mmap_lock(mapping); 583 /* insert tmp into the share list, just after mpnt */ 584 vma_interval_tree_insert_after(tmp, mpnt, 585 &mapping->i_mmap); 586 flush_dcache_mmap_unlock(mapping); 587 i_mmap_unlock_write(mapping); 588 } 589 590 /* 591 * Clear hugetlb-related page reserves for children. This only 592 * affects MAP_PRIVATE mappings. Faults generated by the child 593 * are not guaranteed to succeed, even if read-only 594 */ 595 if (is_vm_hugetlb_page(tmp)) 596 reset_vma_resv_huge_pages(tmp); 597 598 /* 599 * Link in the new vma and copy the page table entries. 600 */ 601 *pprev = tmp; 602 pprev = &tmp->vm_next; 603 tmp->vm_prev = prev; 604 prev = tmp; 605 606 __vma_link_rb(mm, tmp, rb_link, rb_parent); 607 rb_link = &tmp->vm_rb.rb_right; 608 rb_parent = &tmp->vm_rb; 609 610 mm->map_count++; 611 if (!(tmp->vm_flags & VM_WIPEONFORK)) 612 retval = copy_page_range(tmp, mpnt); 613 614 if (tmp->vm_ops && tmp->vm_ops->open) 615 tmp->vm_ops->open(tmp); 616 617 if (retval) 618 goto out; 619 } 620 /* a new mm has just been created */ 621 retval = arch_dup_mmap(oldmm, mm); 622 out: 623 mmap_write_unlock(mm); 624 flush_tlb_mm(oldmm); 625 mmap_write_unlock(oldmm); 626 dup_userfaultfd_complete(&uf); 627 fail_uprobe_end: 628 uprobe_end_dup_mmap(); 629 return retval; 630 fail_nomem_anon_vma_fork: 631 mpol_put(vma_policy(tmp)); 632 fail_nomem_policy: 633 vm_area_free(tmp); 634 fail_nomem: 635 retval = -ENOMEM; 636 vm_unacct_memory(charge); 637 goto out; 638 } 639 640 static inline int mm_alloc_pgd(struct mm_struct *mm) 641 { 642 mm->pgd = pgd_alloc(mm); 643 if (unlikely(!mm->pgd)) 644 return -ENOMEM; 645 return 0; 646 } 647 648 static inline void mm_free_pgd(struct mm_struct *mm) 649 { 650 pgd_free(mm, mm->pgd); 651 } 652 #else 653 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 654 { 655 mmap_write_lock(oldmm); 656 dup_mm_exe_file(mm, oldmm); 657 mmap_write_unlock(oldmm); 658 return 0; 659 } 660 #define mm_alloc_pgd(mm) (0) 661 #define mm_free_pgd(mm) 662 #endif /* CONFIG_MMU */ 663 664 static void check_mm(struct mm_struct *mm) 665 { 666 int i; 667 668 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 669 "Please make sure 'struct resident_page_types[]' is updated as well"); 670 671 for (i = 0; i < NR_MM_COUNTERS; i++) { 672 long x = atomic_long_read(&mm->rss_stat.count[i]); 673 674 if (unlikely(x)) 675 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 676 mm, resident_page_types[i], x); 677 } 678 679 if (mm_pgtables_bytes(mm)) 680 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 681 mm_pgtables_bytes(mm)); 682 683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 684 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 685 #endif 686 } 687 688 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 689 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 690 691 /* 692 * Called when the last reference to the mm 693 * is dropped: either by a lazy thread or by 694 * mmput. Free the page directory and the mm. 695 */ 696 void __mmdrop(struct mm_struct *mm) 697 { 698 BUG_ON(mm == &init_mm); 699 WARN_ON_ONCE(mm == current->mm); 700 WARN_ON_ONCE(mm == current->active_mm); 701 mm_free_pgd(mm); 702 destroy_context(mm); 703 mmu_notifier_subscriptions_destroy(mm); 704 check_mm(mm); 705 put_user_ns(mm->user_ns); 706 free_mm(mm); 707 } 708 EXPORT_SYMBOL_GPL(__mmdrop); 709 710 static void mmdrop_async_fn(struct work_struct *work) 711 { 712 struct mm_struct *mm; 713 714 mm = container_of(work, struct mm_struct, async_put_work); 715 __mmdrop(mm); 716 } 717 718 static void mmdrop_async(struct mm_struct *mm) 719 { 720 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 721 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 722 schedule_work(&mm->async_put_work); 723 } 724 } 725 726 static inline void free_signal_struct(struct signal_struct *sig) 727 { 728 taskstats_tgid_free(sig); 729 sched_autogroup_exit(sig); 730 /* 731 * __mmdrop is not safe to call from softirq context on x86 due to 732 * pgd_dtor so postpone it to the async context 733 */ 734 if (sig->oom_mm) 735 mmdrop_async(sig->oom_mm); 736 kmem_cache_free(signal_cachep, sig); 737 } 738 739 static inline void put_signal_struct(struct signal_struct *sig) 740 { 741 if (refcount_dec_and_test(&sig->sigcnt)) 742 free_signal_struct(sig); 743 } 744 745 void __put_task_struct(struct task_struct *tsk) 746 { 747 WARN_ON(!tsk->exit_state); 748 WARN_ON(refcount_read(&tsk->usage)); 749 WARN_ON(tsk == current); 750 751 io_uring_free(tsk); 752 cgroup_free(tsk); 753 task_numa_free(tsk, true); 754 security_task_free(tsk); 755 bpf_task_storage_free(tsk); 756 exit_creds(tsk); 757 delayacct_tsk_free(tsk); 758 put_signal_struct(tsk->signal); 759 sched_core_free(tsk); 760 761 if (!profile_handoff_task(tsk)) 762 free_task(tsk); 763 } 764 EXPORT_SYMBOL_GPL(__put_task_struct); 765 766 void __init __weak arch_task_cache_init(void) { } 767 768 /* 769 * set_max_threads 770 */ 771 static void set_max_threads(unsigned int max_threads_suggested) 772 { 773 u64 threads; 774 unsigned long nr_pages = totalram_pages(); 775 776 /* 777 * The number of threads shall be limited such that the thread 778 * structures may only consume a small part of the available memory. 779 */ 780 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 781 threads = MAX_THREADS; 782 else 783 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 784 (u64) THREAD_SIZE * 8UL); 785 786 if (threads > max_threads_suggested) 787 threads = max_threads_suggested; 788 789 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 790 } 791 792 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 793 /* Initialized by the architecture: */ 794 int arch_task_struct_size __read_mostly; 795 #endif 796 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 799 { 800 /* Fetch thread_struct whitelist for the architecture. */ 801 arch_thread_struct_whitelist(offset, size); 802 803 /* 804 * Handle zero-sized whitelist or empty thread_struct, otherwise 805 * adjust offset to position of thread_struct in task_struct. 806 */ 807 if (unlikely(*size == 0)) 808 *offset = 0; 809 else 810 *offset += offsetof(struct task_struct, thread); 811 } 812 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 813 814 void __init fork_init(void) 815 { 816 int i; 817 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 818 #ifndef ARCH_MIN_TASKALIGN 819 #define ARCH_MIN_TASKALIGN 0 820 #endif 821 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 822 unsigned long useroffset, usersize; 823 824 /* create a slab on which task_structs can be allocated */ 825 task_struct_whitelist(&useroffset, &usersize); 826 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 827 arch_task_struct_size, align, 828 SLAB_PANIC|SLAB_ACCOUNT, 829 useroffset, usersize, NULL); 830 #endif 831 832 /* do the arch specific task caches init */ 833 arch_task_cache_init(); 834 835 set_max_threads(MAX_THREADS); 836 837 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 838 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 839 init_task.signal->rlim[RLIMIT_SIGPENDING] = 840 init_task.signal->rlim[RLIMIT_NPROC]; 841 842 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 843 init_user_ns.ucount_max[i] = max_threads/2; 844 845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 846 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 847 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 848 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 849 850 #ifdef CONFIG_VMAP_STACK 851 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 852 NULL, free_vm_stack_cache); 853 #endif 854 855 scs_init(); 856 857 lockdep_init_task(&init_task); 858 uprobes_init(); 859 } 860 861 int __weak arch_dup_task_struct(struct task_struct *dst, 862 struct task_struct *src) 863 { 864 *dst = *src; 865 return 0; 866 } 867 868 void set_task_stack_end_magic(struct task_struct *tsk) 869 { 870 unsigned long *stackend; 871 872 stackend = end_of_stack(tsk); 873 *stackend = STACK_END_MAGIC; /* for overflow detection */ 874 } 875 876 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 877 { 878 struct task_struct *tsk; 879 unsigned long *stack; 880 struct vm_struct *stack_vm_area __maybe_unused; 881 int err; 882 883 if (node == NUMA_NO_NODE) 884 node = tsk_fork_get_node(orig); 885 tsk = alloc_task_struct_node(node); 886 if (!tsk) 887 return NULL; 888 889 stack = alloc_thread_stack_node(tsk, node); 890 if (!stack) 891 goto free_tsk; 892 893 if (memcg_charge_kernel_stack(tsk)) 894 goto free_stack; 895 896 stack_vm_area = task_stack_vm_area(tsk); 897 898 err = arch_dup_task_struct(tsk, orig); 899 900 /* 901 * arch_dup_task_struct() clobbers the stack-related fields. Make 902 * sure they're properly initialized before using any stack-related 903 * functions again. 904 */ 905 tsk->stack = stack; 906 #ifdef CONFIG_VMAP_STACK 907 tsk->stack_vm_area = stack_vm_area; 908 #endif 909 #ifdef CONFIG_THREAD_INFO_IN_TASK 910 refcount_set(&tsk->stack_refcount, 1); 911 #endif 912 913 if (err) 914 goto free_stack; 915 916 err = scs_prepare(tsk, node); 917 if (err) 918 goto free_stack; 919 920 #ifdef CONFIG_SECCOMP 921 /* 922 * We must handle setting up seccomp filters once we're under 923 * the sighand lock in case orig has changed between now and 924 * then. Until then, filter must be NULL to avoid messing up 925 * the usage counts on the error path calling free_task. 926 */ 927 tsk->seccomp.filter = NULL; 928 #endif 929 930 setup_thread_stack(tsk, orig); 931 clear_user_return_notifier(tsk); 932 clear_tsk_need_resched(tsk); 933 set_task_stack_end_magic(tsk); 934 clear_syscall_work_syscall_user_dispatch(tsk); 935 936 #ifdef CONFIG_STACKPROTECTOR 937 tsk->stack_canary = get_random_canary(); 938 #endif 939 if (orig->cpus_ptr == &orig->cpus_mask) 940 tsk->cpus_ptr = &tsk->cpus_mask; 941 dup_user_cpus_ptr(tsk, orig, node); 942 943 /* 944 * One for the user space visible state that goes away when reaped. 945 * One for the scheduler. 946 */ 947 refcount_set(&tsk->rcu_users, 2); 948 /* One for the rcu users */ 949 refcount_set(&tsk->usage, 1); 950 #ifdef CONFIG_BLK_DEV_IO_TRACE 951 tsk->btrace_seq = 0; 952 #endif 953 tsk->splice_pipe = NULL; 954 tsk->task_frag.page = NULL; 955 tsk->wake_q.next = NULL; 956 tsk->pf_io_worker = NULL; 957 958 account_kernel_stack(tsk, 1); 959 960 kcov_task_init(tsk); 961 kmap_local_fork(tsk); 962 963 #ifdef CONFIG_FAULT_INJECTION 964 tsk->fail_nth = 0; 965 #endif 966 967 #ifdef CONFIG_BLK_CGROUP 968 tsk->throttle_queue = NULL; 969 tsk->use_memdelay = 0; 970 #endif 971 972 #ifdef CONFIG_MEMCG 973 tsk->active_memcg = NULL; 974 #endif 975 return tsk; 976 977 free_stack: 978 free_thread_stack(tsk); 979 free_tsk: 980 free_task_struct(tsk); 981 return NULL; 982 } 983 984 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 985 986 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 987 988 static int __init coredump_filter_setup(char *s) 989 { 990 default_dump_filter = 991 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 992 MMF_DUMP_FILTER_MASK; 993 return 1; 994 } 995 996 __setup("coredump_filter=", coredump_filter_setup); 997 998 #include <linux/init_task.h> 999 1000 static void mm_init_aio(struct mm_struct *mm) 1001 { 1002 #ifdef CONFIG_AIO 1003 spin_lock_init(&mm->ioctx_lock); 1004 mm->ioctx_table = NULL; 1005 #endif 1006 } 1007 1008 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1009 struct task_struct *p) 1010 { 1011 #ifdef CONFIG_MEMCG 1012 if (mm->owner == p) 1013 WRITE_ONCE(mm->owner, NULL); 1014 #endif 1015 } 1016 1017 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1018 { 1019 #ifdef CONFIG_MEMCG 1020 mm->owner = p; 1021 #endif 1022 } 1023 1024 static void mm_init_pasid(struct mm_struct *mm) 1025 { 1026 #ifdef CONFIG_IOMMU_SUPPORT 1027 mm->pasid = INIT_PASID; 1028 #endif 1029 } 1030 1031 static void mm_init_uprobes_state(struct mm_struct *mm) 1032 { 1033 #ifdef CONFIG_UPROBES 1034 mm->uprobes_state.xol_area = NULL; 1035 #endif 1036 } 1037 1038 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1039 struct user_namespace *user_ns) 1040 { 1041 mm->mmap = NULL; 1042 mm->mm_rb = RB_ROOT; 1043 mm->vmacache_seqnum = 0; 1044 atomic_set(&mm->mm_users, 1); 1045 atomic_set(&mm->mm_count, 1); 1046 seqcount_init(&mm->write_protect_seq); 1047 mmap_init_lock(mm); 1048 INIT_LIST_HEAD(&mm->mmlist); 1049 mm_pgtables_bytes_init(mm); 1050 mm->map_count = 0; 1051 mm->locked_vm = 0; 1052 atomic64_set(&mm->pinned_vm, 0); 1053 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1054 spin_lock_init(&mm->page_table_lock); 1055 spin_lock_init(&mm->arg_lock); 1056 mm_init_cpumask(mm); 1057 mm_init_aio(mm); 1058 mm_init_owner(mm, p); 1059 mm_init_pasid(mm); 1060 RCU_INIT_POINTER(mm->exe_file, NULL); 1061 mmu_notifier_subscriptions_init(mm); 1062 init_tlb_flush_pending(mm); 1063 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1064 mm->pmd_huge_pte = NULL; 1065 #endif 1066 mm_init_uprobes_state(mm); 1067 hugetlb_count_init(mm); 1068 1069 if (current->mm) { 1070 mm->flags = current->mm->flags & MMF_INIT_MASK; 1071 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1072 } else { 1073 mm->flags = default_dump_filter; 1074 mm->def_flags = 0; 1075 } 1076 1077 if (mm_alloc_pgd(mm)) 1078 goto fail_nopgd; 1079 1080 if (init_new_context(p, mm)) 1081 goto fail_nocontext; 1082 1083 mm->user_ns = get_user_ns(user_ns); 1084 return mm; 1085 1086 fail_nocontext: 1087 mm_free_pgd(mm); 1088 fail_nopgd: 1089 free_mm(mm); 1090 return NULL; 1091 } 1092 1093 /* 1094 * Allocate and initialize an mm_struct. 1095 */ 1096 struct mm_struct *mm_alloc(void) 1097 { 1098 struct mm_struct *mm; 1099 1100 mm = allocate_mm(); 1101 if (!mm) 1102 return NULL; 1103 1104 memset(mm, 0, sizeof(*mm)); 1105 return mm_init(mm, current, current_user_ns()); 1106 } 1107 1108 static inline void __mmput(struct mm_struct *mm) 1109 { 1110 VM_BUG_ON(atomic_read(&mm->mm_users)); 1111 1112 uprobe_clear_state(mm); 1113 exit_aio(mm); 1114 ksm_exit(mm); 1115 khugepaged_exit(mm); /* must run before exit_mmap */ 1116 exit_mmap(mm); 1117 mm_put_huge_zero_page(mm); 1118 set_mm_exe_file(mm, NULL); 1119 if (!list_empty(&mm->mmlist)) { 1120 spin_lock(&mmlist_lock); 1121 list_del(&mm->mmlist); 1122 spin_unlock(&mmlist_lock); 1123 } 1124 if (mm->binfmt) 1125 module_put(mm->binfmt->module); 1126 mmdrop(mm); 1127 } 1128 1129 /* 1130 * Decrement the use count and release all resources for an mm. 1131 */ 1132 void mmput(struct mm_struct *mm) 1133 { 1134 might_sleep(); 1135 1136 if (atomic_dec_and_test(&mm->mm_users)) 1137 __mmput(mm); 1138 } 1139 EXPORT_SYMBOL_GPL(mmput); 1140 1141 #ifdef CONFIG_MMU 1142 static void mmput_async_fn(struct work_struct *work) 1143 { 1144 struct mm_struct *mm = container_of(work, struct mm_struct, 1145 async_put_work); 1146 1147 __mmput(mm); 1148 } 1149 1150 void mmput_async(struct mm_struct *mm) 1151 { 1152 if (atomic_dec_and_test(&mm->mm_users)) { 1153 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1154 schedule_work(&mm->async_put_work); 1155 } 1156 } 1157 #endif 1158 1159 /** 1160 * set_mm_exe_file - change a reference to the mm's executable file 1161 * 1162 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1163 * 1164 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1165 * invocations: in mmput() nobody alive left, in execve task is single 1166 * threaded. 1167 * 1168 * Can only fail if new_exe_file != NULL. 1169 */ 1170 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1171 { 1172 struct file *old_exe_file; 1173 1174 /* 1175 * It is safe to dereference the exe_file without RCU as 1176 * this function is only called if nobody else can access 1177 * this mm -- see comment above for justification. 1178 */ 1179 old_exe_file = rcu_dereference_raw(mm->exe_file); 1180 1181 if (new_exe_file) { 1182 /* 1183 * We expect the caller (i.e., sys_execve) to already denied 1184 * write access, so this is unlikely to fail. 1185 */ 1186 if (unlikely(deny_write_access(new_exe_file))) 1187 return -EACCES; 1188 get_file(new_exe_file); 1189 } 1190 rcu_assign_pointer(mm->exe_file, new_exe_file); 1191 if (old_exe_file) { 1192 allow_write_access(old_exe_file); 1193 fput(old_exe_file); 1194 } 1195 return 0; 1196 } 1197 1198 /** 1199 * replace_mm_exe_file - replace a reference to the mm's executable file 1200 * 1201 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1202 * dealing with concurrent invocation and without grabbing the mmap lock in 1203 * write mode. 1204 * 1205 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1206 */ 1207 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1208 { 1209 struct vm_area_struct *vma; 1210 struct file *old_exe_file; 1211 int ret = 0; 1212 1213 /* Forbid mm->exe_file change if old file still mapped. */ 1214 old_exe_file = get_mm_exe_file(mm); 1215 if (old_exe_file) { 1216 mmap_read_lock(mm); 1217 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1218 if (!vma->vm_file) 1219 continue; 1220 if (path_equal(&vma->vm_file->f_path, 1221 &old_exe_file->f_path)) 1222 ret = -EBUSY; 1223 } 1224 mmap_read_unlock(mm); 1225 fput(old_exe_file); 1226 if (ret) 1227 return ret; 1228 } 1229 1230 /* set the new file, lockless */ 1231 ret = deny_write_access(new_exe_file); 1232 if (ret) 1233 return -EACCES; 1234 get_file(new_exe_file); 1235 1236 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1237 if (old_exe_file) { 1238 /* 1239 * Don't race with dup_mmap() getting the file and disallowing 1240 * write access while someone might open the file writable. 1241 */ 1242 mmap_read_lock(mm); 1243 allow_write_access(old_exe_file); 1244 fput(old_exe_file); 1245 mmap_read_unlock(mm); 1246 } 1247 return 0; 1248 } 1249 1250 /** 1251 * get_mm_exe_file - acquire a reference to the mm's executable file 1252 * 1253 * Returns %NULL if mm has no associated executable file. 1254 * User must release file via fput(). 1255 */ 1256 struct file *get_mm_exe_file(struct mm_struct *mm) 1257 { 1258 struct file *exe_file; 1259 1260 rcu_read_lock(); 1261 exe_file = rcu_dereference(mm->exe_file); 1262 if (exe_file && !get_file_rcu(exe_file)) 1263 exe_file = NULL; 1264 rcu_read_unlock(); 1265 return exe_file; 1266 } 1267 1268 /** 1269 * get_task_exe_file - acquire a reference to the task's executable file 1270 * 1271 * Returns %NULL if task's mm (if any) has no associated executable file or 1272 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1273 * User must release file via fput(). 1274 */ 1275 struct file *get_task_exe_file(struct task_struct *task) 1276 { 1277 struct file *exe_file = NULL; 1278 struct mm_struct *mm; 1279 1280 task_lock(task); 1281 mm = task->mm; 1282 if (mm) { 1283 if (!(task->flags & PF_KTHREAD)) 1284 exe_file = get_mm_exe_file(mm); 1285 } 1286 task_unlock(task); 1287 return exe_file; 1288 } 1289 1290 /** 1291 * get_task_mm - acquire a reference to the task's mm 1292 * 1293 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1294 * this kernel workthread has transiently adopted a user mm with use_mm, 1295 * to do its AIO) is not set and if so returns a reference to it, after 1296 * bumping up the use count. User must release the mm via mmput() 1297 * after use. Typically used by /proc and ptrace. 1298 */ 1299 struct mm_struct *get_task_mm(struct task_struct *task) 1300 { 1301 struct mm_struct *mm; 1302 1303 task_lock(task); 1304 mm = task->mm; 1305 if (mm) { 1306 if (task->flags & PF_KTHREAD) 1307 mm = NULL; 1308 else 1309 mmget(mm); 1310 } 1311 task_unlock(task); 1312 return mm; 1313 } 1314 EXPORT_SYMBOL_GPL(get_task_mm); 1315 1316 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1317 { 1318 struct mm_struct *mm; 1319 int err; 1320 1321 err = down_read_killable(&task->signal->exec_update_lock); 1322 if (err) 1323 return ERR_PTR(err); 1324 1325 mm = get_task_mm(task); 1326 if (mm && mm != current->mm && 1327 !ptrace_may_access(task, mode)) { 1328 mmput(mm); 1329 mm = ERR_PTR(-EACCES); 1330 } 1331 up_read(&task->signal->exec_update_lock); 1332 1333 return mm; 1334 } 1335 1336 static void complete_vfork_done(struct task_struct *tsk) 1337 { 1338 struct completion *vfork; 1339 1340 task_lock(tsk); 1341 vfork = tsk->vfork_done; 1342 if (likely(vfork)) { 1343 tsk->vfork_done = NULL; 1344 complete(vfork); 1345 } 1346 task_unlock(tsk); 1347 } 1348 1349 static int wait_for_vfork_done(struct task_struct *child, 1350 struct completion *vfork) 1351 { 1352 int killed; 1353 1354 freezer_do_not_count(); 1355 cgroup_enter_frozen(); 1356 killed = wait_for_completion_killable(vfork); 1357 cgroup_leave_frozen(false); 1358 freezer_count(); 1359 1360 if (killed) { 1361 task_lock(child); 1362 child->vfork_done = NULL; 1363 task_unlock(child); 1364 } 1365 1366 put_task_struct(child); 1367 return killed; 1368 } 1369 1370 /* Please note the differences between mmput and mm_release. 1371 * mmput is called whenever we stop holding onto a mm_struct, 1372 * error success whatever. 1373 * 1374 * mm_release is called after a mm_struct has been removed 1375 * from the current process. 1376 * 1377 * This difference is important for error handling, when we 1378 * only half set up a mm_struct for a new process and need to restore 1379 * the old one. Because we mmput the new mm_struct before 1380 * restoring the old one. . . 1381 * Eric Biederman 10 January 1998 1382 */ 1383 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1384 { 1385 uprobe_free_utask(tsk); 1386 1387 /* Get rid of any cached register state */ 1388 deactivate_mm(tsk, mm); 1389 1390 /* 1391 * Signal userspace if we're not exiting with a core dump 1392 * because we want to leave the value intact for debugging 1393 * purposes. 1394 */ 1395 if (tsk->clear_child_tid) { 1396 if (atomic_read(&mm->mm_users) > 1) { 1397 /* 1398 * We don't check the error code - if userspace has 1399 * not set up a proper pointer then tough luck. 1400 */ 1401 put_user(0, tsk->clear_child_tid); 1402 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1403 1, NULL, NULL, 0, 0); 1404 } 1405 tsk->clear_child_tid = NULL; 1406 } 1407 1408 /* 1409 * All done, finally we can wake up parent and return this mm to him. 1410 * Also kthread_stop() uses this completion for synchronization. 1411 */ 1412 if (tsk->vfork_done) 1413 complete_vfork_done(tsk); 1414 } 1415 1416 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1417 { 1418 futex_exit_release(tsk); 1419 mm_release(tsk, mm); 1420 } 1421 1422 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1423 { 1424 futex_exec_release(tsk); 1425 mm_release(tsk, mm); 1426 } 1427 1428 /** 1429 * dup_mm() - duplicates an existing mm structure 1430 * @tsk: the task_struct with which the new mm will be associated. 1431 * @oldmm: the mm to duplicate. 1432 * 1433 * Allocates a new mm structure and duplicates the provided @oldmm structure 1434 * content into it. 1435 * 1436 * Return: the duplicated mm or NULL on failure. 1437 */ 1438 static struct mm_struct *dup_mm(struct task_struct *tsk, 1439 struct mm_struct *oldmm) 1440 { 1441 struct mm_struct *mm; 1442 int err; 1443 1444 mm = allocate_mm(); 1445 if (!mm) 1446 goto fail_nomem; 1447 1448 memcpy(mm, oldmm, sizeof(*mm)); 1449 1450 if (!mm_init(mm, tsk, mm->user_ns)) 1451 goto fail_nomem; 1452 1453 err = dup_mmap(mm, oldmm); 1454 if (err) 1455 goto free_pt; 1456 1457 mm->hiwater_rss = get_mm_rss(mm); 1458 mm->hiwater_vm = mm->total_vm; 1459 1460 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1461 goto free_pt; 1462 1463 return mm; 1464 1465 free_pt: 1466 /* don't put binfmt in mmput, we haven't got module yet */ 1467 mm->binfmt = NULL; 1468 mm_init_owner(mm, NULL); 1469 mmput(mm); 1470 1471 fail_nomem: 1472 return NULL; 1473 } 1474 1475 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1476 { 1477 struct mm_struct *mm, *oldmm; 1478 1479 tsk->min_flt = tsk->maj_flt = 0; 1480 tsk->nvcsw = tsk->nivcsw = 0; 1481 #ifdef CONFIG_DETECT_HUNG_TASK 1482 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1483 tsk->last_switch_time = 0; 1484 #endif 1485 1486 tsk->mm = NULL; 1487 tsk->active_mm = NULL; 1488 1489 /* 1490 * Are we cloning a kernel thread? 1491 * 1492 * We need to steal a active VM for that.. 1493 */ 1494 oldmm = current->mm; 1495 if (!oldmm) 1496 return 0; 1497 1498 /* initialize the new vmacache entries */ 1499 vmacache_flush(tsk); 1500 1501 if (clone_flags & CLONE_VM) { 1502 mmget(oldmm); 1503 mm = oldmm; 1504 } else { 1505 mm = dup_mm(tsk, current->mm); 1506 if (!mm) 1507 return -ENOMEM; 1508 } 1509 1510 tsk->mm = mm; 1511 tsk->active_mm = mm; 1512 return 0; 1513 } 1514 1515 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1516 { 1517 struct fs_struct *fs = current->fs; 1518 if (clone_flags & CLONE_FS) { 1519 /* tsk->fs is already what we want */ 1520 spin_lock(&fs->lock); 1521 if (fs->in_exec) { 1522 spin_unlock(&fs->lock); 1523 return -EAGAIN; 1524 } 1525 fs->users++; 1526 spin_unlock(&fs->lock); 1527 return 0; 1528 } 1529 tsk->fs = copy_fs_struct(fs); 1530 if (!tsk->fs) 1531 return -ENOMEM; 1532 return 0; 1533 } 1534 1535 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1536 { 1537 struct files_struct *oldf, *newf; 1538 int error = 0; 1539 1540 /* 1541 * A background process may not have any files ... 1542 */ 1543 oldf = current->files; 1544 if (!oldf) 1545 goto out; 1546 1547 if (clone_flags & CLONE_FILES) { 1548 atomic_inc(&oldf->count); 1549 goto out; 1550 } 1551 1552 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1553 if (!newf) 1554 goto out; 1555 1556 tsk->files = newf; 1557 error = 0; 1558 out: 1559 return error; 1560 } 1561 1562 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1563 { 1564 #ifdef CONFIG_BLOCK 1565 struct io_context *ioc = current->io_context; 1566 struct io_context *new_ioc; 1567 1568 if (!ioc) 1569 return 0; 1570 /* 1571 * Share io context with parent, if CLONE_IO is set 1572 */ 1573 if (clone_flags & CLONE_IO) { 1574 ioc_task_link(ioc); 1575 tsk->io_context = ioc; 1576 } else if (ioprio_valid(ioc->ioprio)) { 1577 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1578 if (unlikely(!new_ioc)) 1579 return -ENOMEM; 1580 1581 new_ioc->ioprio = ioc->ioprio; 1582 put_io_context(new_ioc); 1583 } 1584 #endif 1585 return 0; 1586 } 1587 1588 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1589 { 1590 struct sighand_struct *sig; 1591 1592 if (clone_flags & CLONE_SIGHAND) { 1593 refcount_inc(¤t->sighand->count); 1594 return 0; 1595 } 1596 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1597 RCU_INIT_POINTER(tsk->sighand, sig); 1598 if (!sig) 1599 return -ENOMEM; 1600 1601 refcount_set(&sig->count, 1); 1602 spin_lock_irq(¤t->sighand->siglock); 1603 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1604 spin_unlock_irq(¤t->sighand->siglock); 1605 1606 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1607 if (clone_flags & CLONE_CLEAR_SIGHAND) 1608 flush_signal_handlers(tsk, 0); 1609 1610 return 0; 1611 } 1612 1613 void __cleanup_sighand(struct sighand_struct *sighand) 1614 { 1615 if (refcount_dec_and_test(&sighand->count)) { 1616 signalfd_cleanup(sighand); 1617 /* 1618 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1619 * without an RCU grace period, see __lock_task_sighand(). 1620 */ 1621 kmem_cache_free(sighand_cachep, sighand); 1622 } 1623 } 1624 1625 /* 1626 * Initialize POSIX timer handling for a thread group. 1627 */ 1628 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1629 { 1630 struct posix_cputimers *pct = &sig->posix_cputimers; 1631 unsigned long cpu_limit; 1632 1633 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1634 posix_cputimers_group_init(pct, cpu_limit); 1635 } 1636 1637 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1638 { 1639 struct signal_struct *sig; 1640 1641 if (clone_flags & CLONE_THREAD) 1642 return 0; 1643 1644 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1645 tsk->signal = sig; 1646 if (!sig) 1647 return -ENOMEM; 1648 1649 sig->nr_threads = 1; 1650 atomic_set(&sig->live, 1); 1651 refcount_set(&sig->sigcnt, 1); 1652 1653 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1654 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1655 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1656 1657 init_waitqueue_head(&sig->wait_chldexit); 1658 sig->curr_target = tsk; 1659 init_sigpending(&sig->shared_pending); 1660 INIT_HLIST_HEAD(&sig->multiprocess); 1661 seqlock_init(&sig->stats_lock); 1662 prev_cputime_init(&sig->prev_cputime); 1663 1664 #ifdef CONFIG_POSIX_TIMERS 1665 INIT_LIST_HEAD(&sig->posix_timers); 1666 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1667 sig->real_timer.function = it_real_fn; 1668 #endif 1669 1670 task_lock(current->group_leader); 1671 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1672 task_unlock(current->group_leader); 1673 1674 posix_cpu_timers_init_group(sig); 1675 1676 tty_audit_fork(sig); 1677 sched_autogroup_fork(sig); 1678 1679 sig->oom_score_adj = current->signal->oom_score_adj; 1680 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1681 1682 mutex_init(&sig->cred_guard_mutex); 1683 init_rwsem(&sig->exec_update_lock); 1684 1685 return 0; 1686 } 1687 1688 static void copy_seccomp(struct task_struct *p) 1689 { 1690 #ifdef CONFIG_SECCOMP 1691 /* 1692 * Must be called with sighand->lock held, which is common to 1693 * all threads in the group. Holding cred_guard_mutex is not 1694 * needed because this new task is not yet running and cannot 1695 * be racing exec. 1696 */ 1697 assert_spin_locked(¤t->sighand->siglock); 1698 1699 /* Ref-count the new filter user, and assign it. */ 1700 get_seccomp_filter(current); 1701 p->seccomp = current->seccomp; 1702 1703 /* 1704 * Explicitly enable no_new_privs here in case it got set 1705 * between the task_struct being duplicated and holding the 1706 * sighand lock. The seccomp state and nnp must be in sync. 1707 */ 1708 if (task_no_new_privs(current)) 1709 task_set_no_new_privs(p); 1710 1711 /* 1712 * If the parent gained a seccomp mode after copying thread 1713 * flags and between before we held the sighand lock, we have 1714 * to manually enable the seccomp thread flag here. 1715 */ 1716 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1717 set_task_syscall_work(p, SECCOMP); 1718 #endif 1719 } 1720 1721 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1722 { 1723 current->clear_child_tid = tidptr; 1724 1725 return task_pid_vnr(current); 1726 } 1727 1728 static void rt_mutex_init_task(struct task_struct *p) 1729 { 1730 raw_spin_lock_init(&p->pi_lock); 1731 #ifdef CONFIG_RT_MUTEXES 1732 p->pi_waiters = RB_ROOT_CACHED; 1733 p->pi_top_task = NULL; 1734 p->pi_blocked_on = NULL; 1735 #endif 1736 } 1737 1738 static inline void init_task_pid_links(struct task_struct *task) 1739 { 1740 enum pid_type type; 1741 1742 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1743 INIT_HLIST_NODE(&task->pid_links[type]); 1744 } 1745 1746 static inline void 1747 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1748 { 1749 if (type == PIDTYPE_PID) 1750 task->thread_pid = pid; 1751 else 1752 task->signal->pids[type] = pid; 1753 } 1754 1755 static inline void rcu_copy_process(struct task_struct *p) 1756 { 1757 #ifdef CONFIG_PREEMPT_RCU 1758 p->rcu_read_lock_nesting = 0; 1759 p->rcu_read_unlock_special.s = 0; 1760 p->rcu_blocked_node = NULL; 1761 INIT_LIST_HEAD(&p->rcu_node_entry); 1762 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1763 #ifdef CONFIG_TASKS_RCU 1764 p->rcu_tasks_holdout = false; 1765 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1766 p->rcu_tasks_idle_cpu = -1; 1767 #endif /* #ifdef CONFIG_TASKS_RCU */ 1768 #ifdef CONFIG_TASKS_TRACE_RCU 1769 p->trc_reader_nesting = 0; 1770 p->trc_reader_special.s = 0; 1771 INIT_LIST_HEAD(&p->trc_holdout_list); 1772 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1773 } 1774 1775 struct pid *pidfd_pid(const struct file *file) 1776 { 1777 if (file->f_op == &pidfd_fops) 1778 return file->private_data; 1779 1780 return ERR_PTR(-EBADF); 1781 } 1782 1783 static int pidfd_release(struct inode *inode, struct file *file) 1784 { 1785 struct pid *pid = file->private_data; 1786 1787 file->private_data = NULL; 1788 put_pid(pid); 1789 return 0; 1790 } 1791 1792 #ifdef CONFIG_PROC_FS 1793 /** 1794 * pidfd_show_fdinfo - print information about a pidfd 1795 * @m: proc fdinfo file 1796 * @f: file referencing a pidfd 1797 * 1798 * Pid: 1799 * This function will print the pid that a given pidfd refers to in the 1800 * pid namespace of the procfs instance. 1801 * If the pid namespace of the process is not a descendant of the pid 1802 * namespace of the procfs instance 0 will be shown as its pid. This is 1803 * similar to calling getppid() on a process whose parent is outside of 1804 * its pid namespace. 1805 * 1806 * NSpid: 1807 * If pid namespaces are supported then this function will also print 1808 * the pid of a given pidfd refers to for all descendant pid namespaces 1809 * starting from the current pid namespace of the instance, i.e. the 1810 * Pid field and the first entry in the NSpid field will be identical. 1811 * If the pid namespace of the process is not a descendant of the pid 1812 * namespace of the procfs instance 0 will be shown as its first NSpid 1813 * entry and no others will be shown. 1814 * Note that this differs from the Pid and NSpid fields in 1815 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1816 * the pid namespace of the procfs instance. The difference becomes 1817 * obvious when sending around a pidfd between pid namespaces from a 1818 * different branch of the tree, i.e. where no ancestral relation is 1819 * present between the pid namespaces: 1820 * - create two new pid namespaces ns1 and ns2 in the initial pid 1821 * namespace (also take care to create new mount namespaces in the 1822 * new pid namespace and mount procfs) 1823 * - create a process with a pidfd in ns1 1824 * - send pidfd from ns1 to ns2 1825 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1826 * have exactly one entry, which is 0 1827 */ 1828 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1829 { 1830 struct pid *pid = f->private_data; 1831 struct pid_namespace *ns; 1832 pid_t nr = -1; 1833 1834 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1835 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1836 nr = pid_nr_ns(pid, ns); 1837 } 1838 1839 seq_put_decimal_ll(m, "Pid:\t", nr); 1840 1841 #ifdef CONFIG_PID_NS 1842 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1843 if (nr > 0) { 1844 int i; 1845 1846 /* If nr is non-zero it means that 'pid' is valid and that 1847 * ns, i.e. the pid namespace associated with the procfs 1848 * instance, is in the pid namespace hierarchy of pid. 1849 * Start at one below the already printed level. 1850 */ 1851 for (i = ns->level + 1; i <= pid->level; i++) 1852 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1853 } 1854 #endif 1855 seq_putc(m, '\n'); 1856 } 1857 #endif 1858 1859 /* 1860 * Poll support for process exit notification. 1861 */ 1862 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1863 { 1864 struct pid *pid = file->private_data; 1865 __poll_t poll_flags = 0; 1866 1867 poll_wait(file, &pid->wait_pidfd, pts); 1868 1869 /* 1870 * Inform pollers only when the whole thread group exits. 1871 * If the thread group leader exits before all other threads in the 1872 * group, then poll(2) should block, similar to the wait(2) family. 1873 */ 1874 if (thread_group_exited(pid)) 1875 poll_flags = EPOLLIN | EPOLLRDNORM; 1876 1877 return poll_flags; 1878 } 1879 1880 const struct file_operations pidfd_fops = { 1881 .release = pidfd_release, 1882 .poll = pidfd_poll, 1883 #ifdef CONFIG_PROC_FS 1884 .show_fdinfo = pidfd_show_fdinfo, 1885 #endif 1886 }; 1887 1888 static void __delayed_free_task(struct rcu_head *rhp) 1889 { 1890 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1891 1892 free_task(tsk); 1893 } 1894 1895 static __always_inline void delayed_free_task(struct task_struct *tsk) 1896 { 1897 if (IS_ENABLED(CONFIG_MEMCG)) 1898 call_rcu(&tsk->rcu, __delayed_free_task); 1899 else 1900 free_task(tsk); 1901 } 1902 1903 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1904 { 1905 /* Skip if kernel thread */ 1906 if (!tsk->mm) 1907 return; 1908 1909 /* Skip if spawning a thread or using vfork */ 1910 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1911 return; 1912 1913 /* We need to synchronize with __set_oom_adj */ 1914 mutex_lock(&oom_adj_mutex); 1915 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1916 /* Update the values in case they were changed after copy_signal */ 1917 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1918 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1919 mutex_unlock(&oom_adj_mutex); 1920 } 1921 1922 /* 1923 * This creates a new process as a copy of the old one, 1924 * but does not actually start it yet. 1925 * 1926 * It copies the registers, and all the appropriate 1927 * parts of the process environment (as per the clone 1928 * flags). The actual kick-off is left to the caller. 1929 */ 1930 static __latent_entropy struct task_struct *copy_process( 1931 struct pid *pid, 1932 int trace, 1933 int node, 1934 struct kernel_clone_args *args) 1935 { 1936 int pidfd = -1, retval; 1937 struct task_struct *p; 1938 struct multiprocess_signals delayed; 1939 struct file *pidfile = NULL; 1940 u64 clone_flags = args->flags; 1941 struct nsproxy *nsp = current->nsproxy; 1942 1943 /* 1944 * Don't allow sharing the root directory with processes in a different 1945 * namespace 1946 */ 1947 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1948 return ERR_PTR(-EINVAL); 1949 1950 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1951 return ERR_PTR(-EINVAL); 1952 1953 /* 1954 * Thread groups must share signals as well, and detached threads 1955 * can only be started up within the thread group. 1956 */ 1957 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1958 return ERR_PTR(-EINVAL); 1959 1960 /* 1961 * Shared signal handlers imply shared VM. By way of the above, 1962 * thread groups also imply shared VM. Blocking this case allows 1963 * for various simplifications in other code. 1964 */ 1965 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1966 return ERR_PTR(-EINVAL); 1967 1968 /* 1969 * Siblings of global init remain as zombies on exit since they are 1970 * not reaped by their parent (swapper). To solve this and to avoid 1971 * multi-rooted process trees, prevent global and container-inits 1972 * from creating siblings. 1973 */ 1974 if ((clone_flags & CLONE_PARENT) && 1975 current->signal->flags & SIGNAL_UNKILLABLE) 1976 return ERR_PTR(-EINVAL); 1977 1978 /* 1979 * If the new process will be in a different pid or user namespace 1980 * do not allow it to share a thread group with the forking task. 1981 */ 1982 if (clone_flags & CLONE_THREAD) { 1983 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1984 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1985 return ERR_PTR(-EINVAL); 1986 } 1987 1988 /* 1989 * If the new process will be in a different time namespace 1990 * do not allow it to share VM or a thread group with the forking task. 1991 */ 1992 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1993 if (nsp->time_ns != nsp->time_ns_for_children) 1994 return ERR_PTR(-EINVAL); 1995 } 1996 1997 if (clone_flags & CLONE_PIDFD) { 1998 /* 1999 * - CLONE_DETACHED is blocked so that we can potentially 2000 * reuse it later for CLONE_PIDFD. 2001 * - CLONE_THREAD is blocked until someone really needs it. 2002 */ 2003 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2004 return ERR_PTR(-EINVAL); 2005 } 2006 2007 /* 2008 * Force any signals received before this point to be delivered 2009 * before the fork happens. Collect up signals sent to multiple 2010 * processes that happen during the fork and delay them so that 2011 * they appear to happen after the fork. 2012 */ 2013 sigemptyset(&delayed.signal); 2014 INIT_HLIST_NODE(&delayed.node); 2015 2016 spin_lock_irq(¤t->sighand->siglock); 2017 if (!(clone_flags & CLONE_THREAD)) 2018 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2019 recalc_sigpending(); 2020 spin_unlock_irq(¤t->sighand->siglock); 2021 retval = -ERESTARTNOINTR; 2022 if (task_sigpending(current)) 2023 goto fork_out; 2024 2025 retval = -ENOMEM; 2026 p = dup_task_struct(current, node); 2027 if (!p) 2028 goto fork_out; 2029 if (args->io_thread) { 2030 /* 2031 * Mark us an IO worker, and block any signal that isn't 2032 * fatal or STOP 2033 */ 2034 p->flags |= PF_IO_WORKER; 2035 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2036 } 2037 2038 /* 2039 * This _must_ happen before we call free_task(), i.e. before we jump 2040 * to any of the bad_fork_* labels. This is to avoid freeing 2041 * p->set_child_tid which is (ab)used as a kthread's data pointer for 2042 * kernel threads (PF_KTHREAD). 2043 */ 2044 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2045 /* 2046 * Clear TID on mm_release()? 2047 */ 2048 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2049 2050 ftrace_graph_init_task(p); 2051 2052 rt_mutex_init_task(p); 2053 2054 lockdep_assert_irqs_enabled(); 2055 #ifdef CONFIG_PROVE_LOCKING 2056 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2057 #endif 2058 retval = -EAGAIN; 2059 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2060 if (p->real_cred->user != INIT_USER && 2061 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2062 goto bad_fork_free; 2063 } 2064 current->flags &= ~PF_NPROC_EXCEEDED; 2065 2066 retval = copy_creds(p, clone_flags); 2067 if (retval < 0) 2068 goto bad_fork_free; 2069 2070 /* 2071 * If multiple threads are within copy_process(), then this check 2072 * triggers too late. This doesn't hurt, the check is only there 2073 * to stop root fork bombs. 2074 */ 2075 retval = -EAGAIN; 2076 if (data_race(nr_threads >= max_threads)) 2077 goto bad_fork_cleanup_count; 2078 2079 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2080 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2081 p->flags |= PF_FORKNOEXEC; 2082 INIT_LIST_HEAD(&p->children); 2083 INIT_LIST_HEAD(&p->sibling); 2084 rcu_copy_process(p); 2085 p->vfork_done = NULL; 2086 spin_lock_init(&p->alloc_lock); 2087 2088 init_sigpending(&p->pending); 2089 2090 p->utime = p->stime = p->gtime = 0; 2091 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2092 p->utimescaled = p->stimescaled = 0; 2093 #endif 2094 prev_cputime_init(&p->prev_cputime); 2095 2096 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2097 seqcount_init(&p->vtime.seqcount); 2098 p->vtime.starttime = 0; 2099 p->vtime.state = VTIME_INACTIVE; 2100 #endif 2101 2102 #ifdef CONFIG_IO_URING 2103 p->io_uring = NULL; 2104 #endif 2105 2106 #if defined(SPLIT_RSS_COUNTING) 2107 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2108 #endif 2109 2110 p->default_timer_slack_ns = current->timer_slack_ns; 2111 2112 #ifdef CONFIG_PSI 2113 p->psi_flags = 0; 2114 #endif 2115 2116 task_io_accounting_init(&p->ioac); 2117 acct_clear_integrals(p); 2118 2119 posix_cputimers_init(&p->posix_cputimers); 2120 2121 p->io_context = NULL; 2122 audit_set_context(p, NULL); 2123 cgroup_fork(p); 2124 #ifdef CONFIG_NUMA 2125 p->mempolicy = mpol_dup(p->mempolicy); 2126 if (IS_ERR(p->mempolicy)) { 2127 retval = PTR_ERR(p->mempolicy); 2128 p->mempolicy = NULL; 2129 goto bad_fork_cleanup_threadgroup_lock; 2130 } 2131 #endif 2132 #ifdef CONFIG_CPUSETS 2133 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2134 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2135 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2136 #endif 2137 #ifdef CONFIG_TRACE_IRQFLAGS 2138 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2139 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2140 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2141 p->softirqs_enabled = 1; 2142 p->softirq_context = 0; 2143 #endif 2144 2145 p->pagefault_disabled = 0; 2146 2147 #ifdef CONFIG_LOCKDEP 2148 lockdep_init_task(p); 2149 #endif 2150 2151 #ifdef CONFIG_DEBUG_MUTEXES 2152 p->blocked_on = NULL; /* not blocked yet */ 2153 #endif 2154 #ifdef CONFIG_BCACHE 2155 p->sequential_io = 0; 2156 p->sequential_io_avg = 0; 2157 #endif 2158 #ifdef CONFIG_BPF_SYSCALL 2159 RCU_INIT_POINTER(p->bpf_storage, NULL); 2160 p->bpf_ctx = NULL; 2161 #endif 2162 2163 /* Perform scheduler related setup. Assign this task to a CPU. */ 2164 retval = sched_fork(clone_flags, p); 2165 if (retval) 2166 goto bad_fork_cleanup_policy; 2167 2168 retval = perf_event_init_task(p, clone_flags); 2169 if (retval) 2170 goto bad_fork_cleanup_policy; 2171 retval = audit_alloc(p); 2172 if (retval) 2173 goto bad_fork_cleanup_perf; 2174 /* copy all the process information */ 2175 shm_init_task(p); 2176 retval = security_task_alloc(p, clone_flags); 2177 if (retval) 2178 goto bad_fork_cleanup_audit; 2179 retval = copy_semundo(clone_flags, p); 2180 if (retval) 2181 goto bad_fork_cleanup_security; 2182 retval = copy_files(clone_flags, p); 2183 if (retval) 2184 goto bad_fork_cleanup_semundo; 2185 retval = copy_fs(clone_flags, p); 2186 if (retval) 2187 goto bad_fork_cleanup_files; 2188 retval = copy_sighand(clone_flags, p); 2189 if (retval) 2190 goto bad_fork_cleanup_fs; 2191 retval = copy_signal(clone_flags, p); 2192 if (retval) 2193 goto bad_fork_cleanup_sighand; 2194 retval = copy_mm(clone_flags, p); 2195 if (retval) 2196 goto bad_fork_cleanup_signal; 2197 retval = copy_namespaces(clone_flags, p); 2198 if (retval) 2199 goto bad_fork_cleanup_mm; 2200 retval = copy_io(clone_flags, p); 2201 if (retval) 2202 goto bad_fork_cleanup_namespaces; 2203 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2204 if (retval) 2205 goto bad_fork_cleanup_io; 2206 2207 stackleak_task_init(p); 2208 2209 if (pid != &init_struct_pid) { 2210 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2211 args->set_tid_size); 2212 if (IS_ERR(pid)) { 2213 retval = PTR_ERR(pid); 2214 goto bad_fork_cleanup_thread; 2215 } 2216 } 2217 2218 /* 2219 * This has to happen after we've potentially unshared the file 2220 * descriptor table (so that the pidfd doesn't leak into the child 2221 * if the fd table isn't shared). 2222 */ 2223 if (clone_flags & CLONE_PIDFD) { 2224 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2225 if (retval < 0) 2226 goto bad_fork_free_pid; 2227 2228 pidfd = retval; 2229 2230 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2231 O_RDWR | O_CLOEXEC); 2232 if (IS_ERR(pidfile)) { 2233 put_unused_fd(pidfd); 2234 retval = PTR_ERR(pidfile); 2235 goto bad_fork_free_pid; 2236 } 2237 get_pid(pid); /* held by pidfile now */ 2238 2239 retval = put_user(pidfd, args->pidfd); 2240 if (retval) 2241 goto bad_fork_put_pidfd; 2242 } 2243 2244 #ifdef CONFIG_BLOCK 2245 p->plug = NULL; 2246 #endif 2247 futex_init_task(p); 2248 2249 /* 2250 * sigaltstack should be cleared when sharing the same VM 2251 */ 2252 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2253 sas_ss_reset(p); 2254 2255 /* 2256 * Syscall tracing and stepping should be turned off in the 2257 * child regardless of CLONE_PTRACE. 2258 */ 2259 user_disable_single_step(p); 2260 clear_task_syscall_work(p, SYSCALL_TRACE); 2261 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2262 clear_task_syscall_work(p, SYSCALL_EMU); 2263 #endif 2264 clear_tsk_latency_tracing(p); 2265 2266 /* ok, now we should be set up.. */ 2267 p->pid = pid_nr(pid); 2268 if (clone_flags & CLONE_THREAD) { 2269 p->group_leader = current->group_leader; 2270 p->tgid = current->tgid; 2271 } else { 2272 p->group_leader = p; 2273 p->tgid = p->pid; 2274 } 2275 2276 p->nr_dirtied = 0; 2277 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2278 p->dirty_paused_when = 0; 2279 2280 p->pdeath_signal = 0; 2281 INIT_LIST_HEAD(&p->thread_group); 2282 p->task_works = NULL; 2283 clear_posix_cputimers_work(p); 2284 2285 #ifdef CONFIG_KRETPROBES 2286 p->kretprobe_instances.first = NULL; 2287 #endif 2288 2289 /* 2290 * Ensure that the cgroup subsystem policies allow the new process to be 2291 * forked. It should be noted that the new process's css_set can be changed 2292 * between here and cgroup_post_fork() if an organisation operation is in 2293 * progress. 2294 */ 2295 retval = cgroup_can_fork(p, args); 2296 if (retval) 2297 goto bad_fork_put_pidfd; 2298 2299 /* 2300 * From this point on we must avoid any synchronous user-space 2301 * communication until we take the tasklist-lock. In particular, we do 2302 * not want user-space to be able to predict the process start-time by 2303 * stalling fork(2) after we recorded the start_time but before it is 2304 * visible to the system. 2305 */ 2306 2307 p->start_time = ktime_get_ns(); 2308 p->start_boottime = ktime_get_boottime_ns(); 2309 2310 /* 2311 * Make it visible to the rest of the system, but dont wake it up yet. 2312 * Need tasklist lock for parent etc handling! 2313 */ 2314 write_lock_irq(&tasklist_lock); 2315 2316 /* CLONE_PARENT re-uses the old parent */ 2317 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2318 p->real_parent = current->real_parent; 2319 p->parent_exec_id = current->parent_exec_id; 2320 if (clone_flags & CLONE_THREAD) 2321 p->exit_signal = -1; 2322 else 2323 p->exit_signal = current->group_leader->exit_signal; 2324 } else { 2325 p->real_parent = current; 2326 p->parent_exec_id = current->self_exec_id; 2327 p->exit_signal = args->exit_signal; 2328 } 2329 2330 klp_copy_process(p); 2331 2332 sched_core_fork(p); 2333 2334 spin_lock(¤t->sighand->siglock); 2335 2336 /* 2337 * Copy seccomp details explicitly here, in case they were changed 2338 * before holding sighand lock. 2339 */ 2340 copy_seccomp(p); 2341 2342 rseq_fork(p, clone_flags); 2343 2344 /* Don't start children in a dying pid namespace */ 2345 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2346 retval = -ENOMEM; 2347 goto bad_fork_cancel_cgroup; 2348 } 2349 2350 /* Let kill terminate clone/fork in the middle */ 2351 if (fatal_signal_pending(current)) { 2352 retval = -EINTR; 2353 goto bad_fork_cancel_cgroup; 2354 } 2355 2356 /* past the last point of failure */ 2357 if (pidfile) 2358 fd_install(pidfd, pidfile); 2359 2360 init_task_pid_links(p); 2361 if (likely(p->pid)) { 2362 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2363 2364 init_task_pid(p, PIDTYPE_PID, pid); 2365 if (thread_group_leader(p)) { 2366 init_task_pid(p, PIDTYPE_TGID, pid); 2367 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2368 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2369 2370 if (is_child_reaper(pid)) { 2371 ns_of_pid(pid)->child_reaper = p; 2372 p->signal->flags |= SIGNAL_UNKILLABLE; 2373 } 2374 p->signal->shared_pending.signal = delayed.signal; 2375 p->signal->tty = tty_kref_get(current->signal->tty); 2376 /* 2377 * Inherit has_child_subreaper flag under the same 2378 * tasklist_lock with adding child to the process tree 2379 * for propagate_has_child_subreaper optimization. 2380 */ 2381 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2382 p->real_parent->signal->is_child_subreaper; 2383 list_add_tail(&p->sibling, &p->real_parent->children); 2384 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2385 attach_pid(p, PIDTYPE_TGID); 2386 attach_pid(p, PIDTYPE_PGID); 2387 attach_pid(p, PIDTYPE_SID); 2388 __this_cpu_inc(process_counts); 2389 } else { 2390 current->signal->nr_threads++; 2391 atomic_inc(¤t->signal->live); 2392 refcount_inc(¤t->signal->sigcnt); 2393 task_join_group_stop(p); 2394 list_add_tail_rcu(&p->thread_group, 2395 &p->group_leader->thread_group); 2396 list_add_tail_rcu(&p->thread_node, 2397 &p->signal->thread_head); 2398 } 2399 attach_pid(p, PIDTYPE_PID); 2400 nr_threads++; 2401 } 2402 total_forks++; 2403 hlist_del_init(&delayed.node); 2404 spin_unlock(¤t->sighand->siglock); 2405 syscall_tracepoint_update(p); 2406 write_unlock_irq(&tasklist_lock); 2407 2408 proc_fork_connector(p); 2409 sched_post_fork(p, args); 2410 cgroup_post_fork(p, args); 2411 perf_event_fork(p); 2412 2413 trace_task_newtask(p, clone_flags); 2414 uprobe_copy_process(p, clone_flags); 2415 2416 copy_oom_score_adj(clone_flags, p); 2417 2418 return p; 2419 2420 bad_fork_cancel_cgroup: 2421 sched_core_free(p); 2422 spin_unlock(¤t->sighand->siglock); 2423 write_unlock_irq(&tasklist_lock); 2424 cgroup_cancel_fork(p, args); 2425 bad_fork_put_pidfd: 2426 if (clone_flags & CLONE_PIDFD) { 2427 fput(pidfile); 2428 put_unused_fd(pidfd); 2429 } 2430 bad_fork_free_pid: 2431 if (pid != &init_struct_pid) 2432 free_pid(pid); 2433 bad_fork_cleanup_thread: 2434 exit_thread(p); 2435 bad_fork_cleanup_io: 2436 if (p->io_context) 2437 exit_io_context(p); 2438 bad_fork_cleanup_namespaces: 2439 exit_task_namespaces(p); 2440 bad_fork_cleanup_mm: 2441 if (p->mm) { 2442 mm_clear_owner(p->mm, p); 2443 mmput(p->mm); 2444 } 2445 bad_fork_cleanup_signal: 2446 if (!(clone_flags & CLONE_THREAD)) 2447 free_signal_struct(p->signal); 2448 bad_fork_cleanup_sighand: 2449 __cleanup_sighand(p->sighand); 2450 bad_fork_cleanup_fs: 2451 exit_fs(p); /* blocking */ 2452 bad_fork_cleanup_files: 2453 exit_files(p); /* blocking */ 2454 bad_fork_cleanup_semundo: 2455 exit_sem(p); 2456 bad_fork_cleanup_security: 2457 security_task_free(p); 2458 bad_fork_cleanup_audit: 2459 audit_free(p); 2460 bad_fork_cleanup_perf: 2461 perf_event_free_task(p); 2462 bad_fork_cleanup_policy: 2463 lockdep_free_task(p); 2464 #ifdef CONFIG_NUMA 2465 mpol_put(p->mempolicy); 2466 bad_fork_cleanup_threadgroup_lock: 2467 #endif 2468 delayacct_tsk_free(p); 2469 bad_fork_cleanup_count: 2470 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2471 exit_creds(p); 2472 bad_fork_free: 2473 WRITE_ONCE(p->__state, TASK_DEAD); 2474 put_task_stack(p); 2475 delayed_free_task(p); 2476 fork_out: 2477 spin_lock_irq(¤t->sighand->siglock); 2478 hlist_del_init(&delayed.node); 2479 spin_unlock_irq(¤t->sighand->siglock); 2480 return ERR_PTR(retval); 2481 } 2482 2483 static inline void init_idle_pids(struct task_struct *idle) 2484 { 2485 enum pid_type type; 2486 2487 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2488 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2489 init_task_pid(idle, type, &init_struct_pid); 2490 } 2491 } 2492 2493 struct task_struct * __init fork_idle(int cpu) 2494 { 2495 struct task_struct *task; 2496 struct kernel_clone_args args = { 2497 .flags = CLONE_VM, 2498 }; 2499 2500 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2501 if (!IS_ERR(task)) { 2502 init_idle_pids(task); 2503 init_idle(task, cpu); 2504 } 2505 2506 return task; 2507 } 2508 2509 struct mm_struct *copy_init_mm(void) 2510 { 2511 return dup_mm(NULL, &init_mm); 2512 } 2513 2514 /* 2515 * This is like kernel_clone(), but shaved down and tailored to just 2516 * creating io_uring workers. It returns a created task, or an error pointer. 2517 * The returned task is inactive, and the caller must fire it up through 2518 * wake_up_new_task(p). All signals are blocked in the created task. 2519 */ 2520 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2521 { 2522 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2523 CLONE_IO; 2524 struct kernel_clone_args args = { 2525 .flags = ((lower_32_bits(flags) | CLONE_VM | 2526 CLONE_UNTRACED) & ~CSIGNAL), 2527 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2528 .stack = (unsigned long)fn, 2529 .stack_size = (unsigned long)arg, 2530 .io_thread = 1, 2531 }; 2532 2533 return copy_process(NULL, 0, node, &args); 2534 } 2535 2536 /* 2537 * Ok, this is the main fork-routine. 2538 * 2539 * It copies the process, and if successful kick-starts 2540 * it and waits for it to finish using the VM if required. 2541 * 2542 * args->exit_signal is expected to be checked for sanity by the caller. 2543 */ 2544 pid_t kernel_clone(struct kernel_clone_args *args) 2545 { 2546 u64 clone_flags = args->flags; 2547 struct completion vfork; 2548 struct pid *pid; 2549 struct task_struct *p; 2550 int trace = 0; 2551 pid_t nr; 2552 2553 /* 2554 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2555 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2556 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2557 * field in struct clone_args and it still doesn't make sense to have 2558 * them both point at the same memory location. Performing this check 2559 * here has the advantage that we don't need to have a separate helper 2560 * to check for legacy clone(). 2561 */ 2562 if ((args->flags & CLONE_PIDFD) && 2563 (args->flags & CLONE_PARENT_SETTID) && 2564 (args->pidfd == args->parent_tid)) 2565 return -EINVAL; 2566 2567 /* 2568 * Determine whether and which event to report to ptracer. When 2569 * called from kernel_thread or CLONE_UNTRACED is explicitly 2570 * requested, no event is reported; otherwise, report if the event 2571 * for the type of forking is enabled. 2572 */ 2573 if (!(clone_flags & CLONE_UNTRACED)) { 2574 if (clone_flags & CLONE_VFORK) 2575 trace = PTRACE_EVENT_VFORK; 2576 else if (args->exit_signal != SIGCHLD) 2577 trace = PTRACE_EVENT_CLONE; 2578 else 2579 trace = PTRACE_EVENT_FORK; 2580 2581 if (likely(!ptrace_event_enabled(current, trace))) 2582 trace = 0; 2583 } 2584 2585 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2586 add_latent_entropy(); 2587 2588 if (IS_ERR(p)) 2589 return PTR_ERR(p); 2590 2591 /* 2592 * Do this prior waking up the new thread - the thread pointer 2593 * might get invalid after that point, if the thread exits quickly. 2594 */ 2595 trace_sched_process_fork(current, p); 2596 2597 pid = get_task_pid(p, PIDTYPE_PID); 2598 nr = pid_vnr(pid); 2599 2600 if (clone_flags & CLONE_PARENT_SETTID) 2601 put_user(nr, args->parent_tid); 2602 2603 if (clone_flags & CLONE_VFORK) { 2604 p->vfork_done = &vfork; 2605 init_completion(&vfork); 2606 get_task_struct(p); 2607 } 2608 2609 wake_up_new_task(p); 2610 2611 /* forking complete and child started to run, tell ptracer */ 2612 if (unlikely(trace)) 2613 ptrace_event_pid(trace, pid); 2614 2615 if (clone_flags & CLONE_VFORK) { 2616 if (!wait_for_vfork_done(p, &vfork)) 2617 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2618 } 2619 2620 put_pid(pid); 2621 return nr; 2622 } 2623 2624 /* 2625 * Create a kernel thread. 2626 */ 2627 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2628 { 2629 struct kernel_clone_args args = { 2630 .flags = ((lower_32_bits(flags) | CLONE_VM | 2631 CLONE_UNTRACED) & ~CSIGNAL), 2632 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2633 .stack = (unsigned long)fn, 2634 .stack_size = (unsigned long)arg, 2635 }; 2636 2637 return kernel_clone(&args); 2638 } 2639 2640 #ifdef __ARCH_WANT_SYS_FORK 2641 SYSCALL_DEFINE0(fork) 2642 { 2643 #ifdef CONFIG_MMU 2644 struct kernel_clone_args args = { 2645 .exit_signal = SIGCHLD, 2646 }; 2647 2648 return kernel_clone(&args); 2649 #else 2650 /* can not support in nommu mode */ 2651 return -EINVAL; 2652 #endif 2653 } 2654 #endif 2655 2656 #ifdef __ARCH_WANT_SYS_VFORK 2657 SYSCALL_DEFINE0(vfork) 2658 { 2659 struct kernel_clone_args args = { 2660 .flags = CLONE_VFORK | CLONE_VM, 2661 .exit_signal = SIGCHLD, 2662 }; 2663 2664 return kernel_clone(&args); 2665 } 2666 #endif 2667 2668 #ifdef __ARCH_WANT_SYS_CLONE 2669 #ifdef CONFIG_CLONE_BACKWARDS 2670 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2671 int __user *, parent_tidptr, 2672 unsigned long, tls, 2673 int __user *, child_tidptr) 2674 #elif defined(CONFIG_CLONE_BACKWARDS2) 2675 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2676 int __user *, parent_tidptr, 2677 int __user *, child_tidptr, 2678 unsigned long, tls) 2679 #elif defined(CONFIG_CLONE_BACKWARDS3) 2680 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2681 int, stack_size, 2682 int __user *, parent_tidptr, 2683 int __user *, child_tidptr, 2684 unsigned long, tls) 2685 #else 2686 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2687 int __user *, parent_tidptr, 2688 int __user *, child_tidptr, 2689 unsigned long, tls) 2690 #endif 2691 { 2692 struct kernel_clone_args args = { 2693 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2694 .pidfd = parent_tidptr, 2695 .child_tid = child_tidptr, 2696 .parent_tid = parent_tidptr, 2697 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2698 .stack = newsp, 2699 .tls = tls, 2700 }; 2701 2702 return kernel_clone(&args); 2703 } 2704 #endif 2705 2706 #ifdef __ARCH_WANT_SYS_CLONE3 2707 2708 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2709 struct clone_args __user *uargs, 2710 size_t usize) 2711 { 2712 int err; 2713 struct clone_args args; 2714 pid_t *kset_tid = kargs->set_tid; 2715 2716 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2717 CLONE_ARGS_SIZE_VER0); 2718 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2719 CLONE_ARGS_SIZE_VER1); 2720 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2721 CLONE_ARGS_SIZE_VER2); 2722 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2723 2724 if (unlikely(usize > PAGE_SIZE)) 2725 return -E2BIG; 2726 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2727 return -EINVAL; 2728 2729 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2730 if (err) 2731 return err; 2732 2733 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2734 return -EINVAL; 2735 2736 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2737 return -EINVAL; 2738 2739 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2740 return -EINVAL; 2741 2742 /* 2743 * Verify that higher 32bits of exit_signal are unset and that 2744 * it is a valid signal 2745 */ 2746 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2747 !valid_signal(args.exit_signal))) 2748 return -EINVAL; 2749 2750 if ((args.flags & CLONE_INTO_CGROUP) && 2751 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2752 return -EINVAL; 2753 2754 *kargs = (struct kernel_clone_args){ 2755 .flags = args.flags, 2756 .pidfd = u64_to_user_ptr(args.pidfd), 2757 .child_tid = u64_to_user_ptr(args.child_tid), 2758 .parent_tid = u64_to_user_ptr(args.parent_tid), 2759 .exit_signal = args.exit_signal, 2760 .stack = args.stack, 2761 .stack_size = args.stack_size, 2762 .tls = args.tls, 2763 .set_tid_size = args.set_tid_size, 2764 .cgroup = args.cgroup, 2765 }; 2766 2767 if (args.set_tid && 2768 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2769 (kargs->set_tid_size * sizeof(pid_t)))) 2770 return -EFAULT; 2771 2772 kargs->set_tid = kset_tid; 2773 2774 return 0; 2775 } 2776 2777 /** 2778 * clone3_stack_valid - check and prepare stack 2779 * @kargs: kernel clone args 2780 * 2781 * Verify that the stack arguments userspace gave us are sane. 2782 * In addition, set the stack direction for userspace since it's easy for us to 2783 * determine. 2784 */ 2785 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2786 { 2787 if (kargs->stack == 0) { 2788 if (kargs->stack_size > 0) 2789 return false; 2790 } else { 2791 if (kargs->stack_size == 0) 2792 return false; 2793 2794 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2795 return false; 2796 2797 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2798 kargs->stack += kargs->stack_size; 2799 #endif 2800 } 2801 2802 return true; 2803 } 2804 2805 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2806 { 2807 /* Verify that no unknown flags are passed along. */ 2808 if (kargs->flags & 2809 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2810 return false; 2811 2812 /* 2813 * - make the CLONE_DETACHED bit reusable for clone3 2814 * - make the CSIGNAL bits reusable for clone3 2815 */ 2816 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2817 return false; 2818 2819 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2820 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2821 return false; 2822 2823 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2824 kargs->exit_signal) 2825 return false; 2826 2827 if (!clone3_stack_valid(kargs)) 2828 return false; 2829 2830 return true; 2831 } 2832 2833 /** 2834 * clone3 - create a new process with specific properties 2835 * @uargs: argument structure 2836 * @size: size of @uargs 2837 * 2838 * clone3() is the extensible successor to clone()/clone2(). 2839 * It takes a struct as argument that is versioned by its size. 2840 * 2841 * Return: On success, a positive PID for the child process. 2842 * On error, a negative errno number. 2843 */ 2844 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2845 { 2846 int err; 2847 2848 struct kernel_clone_args kargs; 2849 pid_t set_tid[MAX_PID_NS_LEVEL]; 2850 2851 kargs.set_tid = set_tid; 2852 2853 err = copy_clone_args_from_user(&kargs, uargs, size); 2854 if (err) 2855 return err; 2856 2857 if (!clone3_args_valid(&kargs)) 2858 return -EINVAL; 2859 2860 return kernel_clone(&kargs); 2861 } 2862 #endif 2863 2864 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2865 { 2866 struct task_struct *leader, *parent, *child; 2867 int res; 2868 2869 read_lock(&tasklist_lock); 2870 leader = top = top->group_leader; 2871 down: 2872 for_each_thread(leader, parent) { 2873 list_for_each_entry(child, &parent->children, sibling) { 2874 res = visitor(child, data); 2875 if (res) { 2876 if (res < 0) 2877 goto out; 2878 leader = child; 2879 goto down; 2880 } 2881 up: 2882 ; 2883 } 2884 } 2885 2886 if (leader != top) { 2887 child = leader; 2888 parent = child->real_parent; 2889 leader = parent->group_leader; 2890 goto up; 2891 } 2892 out: 2893 read_unlock(&tasklist_lock); 2894 } 2895 2896 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2897 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2898 #endif 2899 2900 static void sighand_ctor(void *data) 2901 { 2902 struct sighand_struct *sighand = data; 2903 2904 spin_lock_init(&sighand->siglock); 2905 init_waitqueue_head(&sighand->signalfd_wqh); 2906 } 2907 2908 void __init proc_caches_init(void) 2909 { 2910 unsigned int mm_size; 2911 2912 sighand_cachep = kmem_cache_create("sighand_cache", 2913 sizeof(struct sighand_struct), 0, 2914 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2915 SLAB_ACCOUNT, sighand_ctor); 2916 signal_cachep = kmem_cache_create("signal_cache", 2917 sizeof(struct signal_struct), 0, 2918 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2919 NULL); 2920 files_cachep = kmem_cache_create("files_cache", 2921 sizeof(struct files_struct), 0, 2922 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2923 NULL); 2924 fs_cachep = kmem_cache_create("fs_cache", 2925 sizeof(struct fs_struct), 0, 2926 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2927 NULL); 2928 2929 /* 2930 * The mm_cpumask is located at the end of mm_struct, and is 2931 * dynamically sized based on the maximum CPU number this system 2932 * can have, taking hotplug into account (nr_cpu_ids). 2933 */ 2934 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2935 2936 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2937 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2938 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2939 offsetof(struct mm_struct, saved_auxv), 2940 sizeof_field(struct mm_struct, saved_auxv), 2941 NULL); 2942 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2943 mmap_init(); 2944 nsproxy_cache_init(); 2945 } 2946 2947 /* 2948 * Check constraints on flags passed to the unshare system call. 2949 */ 2950 static int check_unshare_flags(unsigned long unshare_flags) 2951 { 2952 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2953 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2954 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2955 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2956 CLONE_NEWTIME)) 2957 return -EINVAL; 2958 /* 2959 * Not implemented, but pretend it works if there is nothing 2960 * to unshare. Note that unsharing the address space or the 2961 * signal handlers also need to unshare the signal queues (aka 2962 * CLONE_THREAD). 2963 */ 2964 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2965 if (!thread_group_empty(current)) 2966 return -EINVAL; 2967 } 2968 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2969 if (refcount_read(¤t->sighand->count) > 1) 2970 return -EINVAL; 2971 } 2972 if (unshare_flags & CLONE_VM) { 2973 if (!current_is_single_threaded()) 2974 return -EINVAL; 2975 } 2976 2977 return 0; 2978 } 2979 2980 /* 2981 * Unshare the filesystem structure if it is being shared 2982 */ 2983 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2984 { 2985 struct fs_struct *fs = current->fs; 2986 2987 if (!(unshare_flags & CLONE_FS) || !fs) 2988 return 0; 2989 2990 /* don't need lock here; in the worst case we'll do useless copy */ 2991 if (fs->users == 1) 2992 return 0; 2993 2994 *new_fsp = copy_fs_struct(fs); 2995 if (!*new_fsp) 2996 return -ENOMEM; 2997 2998 return 0; 2999 } 3000 3001 /* 3002 * Unshare file descriptor table if it is being shared 3003 */ 3004 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3005 struct files_struct **new_fdp) 3006 { 3007 struct files_struct *fd = current->files; 3008 int error = 0; 3009 3010 if ((unshare_flags & CLONE_FILES) && 3011 (fd && atomic_read(&fd->count) > 1)) { 3012 *new_fdp = dup_fd(fd, max_fds, &error); 3013 if (!*new_fdp) 3014 return error; 3015 } 3016 3017 return 0; 3018 } 3019 3020 /* 3021 * unshare allows a process to 'unshare' part of the process 3022 * context which was originally shared using clone. copy_* 3023 * functions used by kernel_clone() cannot be used here directly 3024 * because they modify an inactive task_struct that is being 3025 * constructed. Here we are modifying the current, active, 3026 * task_struct. 3027 */ 3028 int ksys_unshare(unsigned long unshare_flags) 3029 { 3030 struct fs_struct *fs, *new_fs = NULL; 3031 struct files_struct *new_fd = NULL; 3032 struct cred *new_cred = NULL; 3033 struct nsproxy *new_nsproxy = NULL; 3034 int do_sysvsem = 0; 3035 int err; 3036 3037 /* 3038 * If unsharing a user namespace must also unshare the thread group 3039 * and unshare the filesystem root and working directories. 3040 */ 3041 if (unshare_flags & CLONE_NEWUSER) 3042 unshare_flags |= CLONE_THREAD | CLONE_FS; 3043 /* 3044 * If unsharing vm, must also unshare signal handlers. 3045 */ 3046 if (unshare_flags & CLONE_VM) 3047 unshare_flags |= CLONE_SIGHAND; 3048 /* 3049 * If unsharing a signal handlers, must also unshare the signal queues. 3050 */ 3051 if (unshare_flags & CLONE_SIGHAND) 3052 unshare_flags |= CLONE_THREAD; 3053 /* 3054 * If unsharing namespace, must also unshare filesystem information. 3055 */ 3056 if (unshare_flags & CLONE_NEWNS) 3057 unshare_flags |= CLONE_FS; 3058 3059 err = check_unshare_flags(unshare_flags); 3060 if (err) 3061 goto bad_unshare_out; 3062 /* 3063 * CLONE_NEWIPC must also detach from the undolist: after switching 3064 * to a new ipc namespace, the semaphore arrays from the old 3065 * namespace are unreachable. 3066 */ 3067 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3068 do_sysvsem = 1; 3069 err = unshare_fs(unshare_flags, &new_fs); 3070 if (err) 3071 goto bad_unshare_out; 3072 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3073 if (err) 3074 goto bad_unshare_cleanup_fs; 3075 err = unshare_userns(unshare_flags, &new_cred); 3076 if (err) 3077 goto bad_unshare_cleanup_fd; 3078 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3079 new_cred, new_fs); 3080 if (err) 3081 goto bad_unshare_cleanup_cred; 3082 3083 if (new_cred) { 3084 err = set_cred_ucounts(new_cred); 3085 if (err) 3086 goto bad_unshare_cleanup_cred; 3087 } 3088 3089 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3090 if (do_sysvsem) { 3091 /* 3092 * CLONE_SYSVSEM is equivalent to sys_exit(). 3093 */ 3094 exit_sem(current); 3095 } 3096 if (unshare_flags & CLONE_NEWIPC) { 3097 /* Orphan segments in old ns (see sem above). */ 3098 exit_shm(current); 3099 shm_init_task(current); 3100 } 3101 3102 if (new_nsproxy) 3103 switch_task_namespaces(current, new_nsproxy); 3104 3105 task_lock(current); 3106 3107 if (new_fs) { 3108 fs = current->fs; 3109 spin_lock(&fs->lock); 3110 current->fs = new_fs; 3111 if (--fs->users) 3112 new_fs = NULL; 3113 else 3114 new_fs = fs; 3115 spin_unlock(&fs->lock); 3116 } 3117 3118 if (new_fd) 3119 swap(current->files, new_fd); 3120 3121 task_unlock(current); 3122 3123 if (new_cred) { 3124 /* Install the new user namespace */ 3125 commit_creds(new_cred); 3126 new_cred = NULL; 3127 } 3128 } 3129 3130 perf_event_namespaces(current); 3131 3132 bad_unshare_cleanup_cred: 3133 if (new_cred) 3134 put_cred(new_cred); 3135 bad_unshare_cleanup_fd: 3136 if (new_fd) 3137 put_files_struct(new_fd); 3138 3139 bad_unshare_cleanup_fs: 3140 if (new_fs) 3141 free_fs_struct(new_fs); 3142 3143 bad_unshare_out: 3144 return err; 3145 } 3146 3147 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3148 { 3149 return ksys_unshare(unshare_flags); 3150 } 3151 3152 /* 3153 * Helper to unshare the files of the current task. 3154 * We don't want to expose copy_files internals to 3155 * the exec layer of the kernel. 3156 */ 3157 3158 int unshare_files(void) 3159 { 3160 struct task_struct *task = current; 3161 struct files_struct *old, *copy = NULL; 3162 int error; 3163 3164 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3165 if (error || !copy) 3166 return error; 3167 3168 old = task->files; 3169 task_lock(task); 3170 task->files = copy; 3171 task_unlock(task); 3172 put_files_struct(old); 3173 return 0; 3174 } 3175 3176 int sysctl_max_threads(struct ctl_table *table, int write, 3177 void *buffer, size_t *lenp, loff_t *ppos) 3178 { 3179 struct ctl_table t; 3180 int ret; 3181 int threads = max_threads; 3182 int min = 1; 3183 int max = MAX_THREADS; 3184 3185 t = *table; 3186 t.data = &threads; 3187 t.extra1 = &min; 3188 t.extra2 = &max; 3189 3190 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3191 if (ret || !write) 3192 return ret; 3193 3194 max_threads = threads; 3195 3196 return 0; 3197 } 3198