1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 315 THREADINFO_GFP & ~__GFP_ACCOUNT, 316 node, __builtin_return_address(0)); 317 if (!stack) 318 return -ENOMEM; 319 320 vm = find_vm_area(stack); 321 if (memcg_charge_kernel_stack(vm)) { 322 vfree(stack); 323 return -ENOMEM; 324 } 325 /* 326 * We can't call find_vm_area() in interrupt context, and 327 * free_thread_stack() can be called in interrupt context, 328 * so cache the vm_struct. 329 */ 330 tsk->stack_vm_area = vm; 331 stack = kasan_reset_tag(stack); 332 tsk->stack = stack; 333 return 0; 334 } 335 336 static void free_thread_stack(struct task_struct *tsk) 337 { 338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 339 thread_stack_delayed_free(tsk); 340 341 tsk->stack = NULL; 342 tsk->stack_vm_area = NULL; 343 } 344 345 # else /* !CONFIG_VMAP_STACK */ 346 347 static void thread_stack_free_rcu(struct rcu_head *rh) 348 { 349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 350 } 351 352 static void thread_stack_delayed_free(struct task_struct *tsk) 353 { 354 struct rcu_head *rh = tsk->stack; 355 356 call_rcu(rh, thread_stack_free_rcu); 357 } 358 359 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 360 { 361 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 362 THREAD_SIZE_ORDER); 363 364 if (likely(page)) { 365 tsk->stack = kasan_reset_tag(page_address(page)); 366 return 0; 367 } 368 return -ENOMEM; 369 } 370 371 static void free_thread_stack(struct task_struct *tsk) 372 { 373 thread_stack_delayed_free(tsk); 374 tsk->stack = NULL; 375 } 376 377 # endif /* CONFIG_VMAP_STACK */ 378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 379 380 static struct kmem_cache *thread_stack_cache; 381 382 static void thread_stack_free_rcu(struct rcu_head *rh) 383 { 384 kmem_cache_free(thread_stack_cache, rh); 385 } 386 387 static void thread_stack_delayed_free(struct task_struct *tsk) 388 { 389 struct rcu_head *rh = tsk->stack; 390 391 call_rcu(rh, thread_stack_free_rcu); 392 } 393 394 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 395 { 396 unsigned long *stack; 397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 398 stack = kasan_reset_tag(stack); 399 tsk->stack = stack; 400 return stack ? 0 : -ENOMEM; 401 } 402 403 static void free_thread_stack(struct task_struct *tsk) 404 { 405 thread_stack_delayed_free(tsk); 406 tsk->stack = NULL; 407 } 408 409 void thread_stack_cache_init(void) 410 { 411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 412 THREAD_SIZE, THREAD_SIZE, 0, 0, 413 THREAD_SIZE, NULL); 414 BUG_ON(thread_stack_cache == NULL); 415 } 416 417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 418 419 /* SLAB cache for signal_struct structures (tsk->signal) */ 420 static struct kmem_cache *signal_cachep; 421 422 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 423 struct kmem_cache *sighand_cachep; 424 425 /* SLAB cache for files_struct structures (tsk->files) */ 426 struct kmem_cache *files_cachep; 427 428 /* SLAB cache for fs_struct structures (tsk->fs) */ 429 struct kmem_cache *fs_cachep; 430 431 /* SLAB cache for vm_area_struct structures */ 432 static struct kmem_cache *vm_area_cachep; 433 434 /* SLAB cache for mm_struct structures (tsk->mm) */ 435 static struct kmem_cache *mm_cachep; 436 437 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 438 { 439 struct vm_area_struct *vma; 440 441 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 442 if (!vma) 443 return NULL; 444 445 vma_init(vma, mm); 446 447 return vma; 448 } 449 450 static void vm_area_init_from(const struct vm_area_struct *src, 451 struct vm_area_struct *dest) 452 { 453 dest->vm_mm = src->vm_mm; 454 dest->vm_ops = src->vm_ops; 455 dest->vm_start = src->vm_start; 456 dest->vm_end = src->vm_end; 457 dest->anon_vma = src->anon_vma; 458 dest->vm_pgoff = src->vm_pgoff; 459 dest->vm_file = src->vm_file; 460 dest->vm_private_data = src->vm_private_data; 461 vm_flags_init(dest, src->vm_flags); 462 memcpy(&dest->vm_page_prot, &src->vm_page_prot, 463 sizeof(dest->vm_page_prot)); 464 /* 465 * src->shared.rb may be modified concurrently when called from 466 * dup_mmap(), but the clone will reinitialize it. 467 */ 468 data_race(memcpy(&dest->shared, &src->shared, sizeof(dest->shared))); 469 memcpy(&dest->vm_userfaultfd_ctx, &src->vm_userfaultfd_ctx, 470 sizeof(dest->vm_userfaultfd_ctx)); 471 #ifdef CONFIG_ANON_VMA_NAME 472 dest->anon_name = src->anon_name; 473 #endif 474 #ifdef CONFIG_SWAP 475 memcpy(&dest->swap_readahead_info, &src->swap_readahead_info, 476 sizeof(dest->swap_readahead_info)); 477 #endif 478 #ifndef CONFIG_MMU 479 dest->vm_region = src->vm_region; 480 #endif 481 #ifdef CONFIG_NUMA 482 dest->vm_policy = src->vm_policy; 483 #endif 484 } 485 486 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 487 { 488 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 489 490 if (!new) 491 return NULL; 492 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 494 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 495 vm_area_init_from(orig, new); 496 vma_lock_init(new, true); 497 INIT_LIST_HEAD(&new->anon_vma_chain); 498 vma_numab_state_init(new); 499 dup_anon_vma_name(orig, new); 500 501 return new; 502 } 503 504 void vm_area_free(struct vm_area_struct *vma) 505 { 506 /* The vma should be detached while being destroyed. */ 507 vma_assert_detached(vma); 508 vma_numab_state_free(vma); 509 free_anon_vma_name(vma); 510 kmem_cache_free(vm_area_cachep, vma); 511 } 512 513 static void account_kernel_stack(struct task_struct *tsk, int account) 514 { 515 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 516 struct vm_struct *vm = task_stack_vm_area(tsk); 517 int i; 518 519 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 520 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 521 account * (PAGE_SIZE / 1024)); 522 } else { 523 void *stack = task_stack_page(tsk); 524 525 /* All stack pages are in the same node. */ 526 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 527 account * (THREAD_SIZE / 1024)); 528 } 529 } 530 531 void exit_task_stack_account(struct task_struct *tsk) 532 { 533 account_kernel_stack(tsk, -1); 534 535 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 536 struct vm_struct *vm; 537 int i; 538 539 vm = task_stack_vm_area(tsk); 540 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 541 memcg_kmem_uncharge_page(vm->pages[i], 0); 542 } 543 } 544 545 static void release_task_stack(struct task_struct *tsk) 546 { 547 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 548 return; /* Better to leak the stack than to free prematurely */ 549 550 free_thread_stack(tsk); 551 } 552 553 #ifdef CONFIG_THREAD_INFO_IN_TASK 554 void put_task_stack(struct task_struct *tsk) 555 { 556 if (refcount_dec_and_test(&tsk->stack_refcount)) 557 release_task_stack(tsk); 558 } 559 #endif 560 561 void free_task(struct task_struct *tsk) 562 { 563 #ifdef CONFIG_SECCOMP 564 WARN_ON_ONCE(tsk->seccomp.filter); 565 #endif 566 release_user_cpus_ptr(tsk); 567 scs_release(tsk); 568 569 #ifndef CONFIG_THREAD_INFO_IN_TASK 570 /* 571 * The task is finally done with both the stack and thread_info, 572 * so free both. 573 */ 574 release_task_stack(tsk); 575 #else 576 /* 577 * If the task had a separate stack allocation, it should be gone 578 * by now. 579 */ 580 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 581 #endif 582 rt_mutex_debug_task_free(tsk); 583 ftrace_graph_exit_task(tsk); 584 arch_release_task_struct(tsk); 585 if (tsk->flags & PF_KTHREAD) 586 free_kthread_struct(tsk); 587 bpf_task_storage_free(tsk); 588 free_task_struct(tsk); 589 } 590 EXPORT_SYMBOL(free_task); 591 592 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 593 { 594 struct file *exe_file; 595 596 exe_file = get_mm_exe_file(oldmm); 597 RCU_INIT_POINTER(mm->exe_file, exe_file); 598 /* 599 * We depend on the oldmm having properly denied write access to the 600 * exe_file already. 601 */ 602 if (exe_file && exe_file_deny_write_access(exe_file)) 603 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 604 } 605 606 #ifdef CONFIG_MMU 607 static __latent_entropy int dup_mmap(struct mm_struct *mm, 608 struct mm_struct *oldmm) 609 { 610 struct vm_area_struct *mpnt, *tmp; 611 int retval; 612 unsigned long charge = 0; 613 LIST_HEAD(uf); 614 VMA_ITERATOR(vmi, mm, 0); 615 616 if (mmap_write_lock_killable(oldmm)) 617 return -EINTR; 618 flush_cache_dup_mm(oldmm); 619 uprobe_dup_mmap(oldmm, mm); 620 /* 621 * Not linked in yet - no deadlock potential: 622 */ 623 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 624 625 /* No ordering required: file already has been exposed. */ 626 dup_mm_exe_file(mm, oldmm); 627 628 mm->total_vm = oldmm->total_vm; 629 mm->data_vm = oldmm->data_vm; 630 mm->exec_vm = oldmm->exec_vm; 631 mm->stack_vm = oldmm->stack_vm; 632 633 /* Use __mt_dup() to efficiently build an identical maple tree. */ 634 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 635 if (unlikely(retval)) 636 goto out; 637 638 mt_clear_in_rcu(vmi.mas.tree); 639 for_each_vma(vmi, mpnt) { 640 struct file *file; 641 642 vma_start_write(mpnt); 643 if (mpnt->vm_flags & VM_DONTCOPY) { 644 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 645 mpnt->vm_end, GFP_KERNEL); 646 if (retval) 647 goto loop_out; 648 649 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 650 continue; 651 } 652 charge = 0; 653 /* 654 * Don't duplicate many vmas if we've been oom-killed (for 655 * example) 656 */ 657 if (fatal_signal_pending(current)) { 658 retval = -EINTR; 659 goto loop_out; 660 } 661 if (mpnt->vm_flags & VM_ACCOUNT) { 662 unsigned long len = vma_pages(mpnt); 663 664 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 665 goto fail_nomem; 666 charge = len; 667 } 668 tmp = vm_area_dup(mpnt); 669 if (!tmp) 670 goto fail_nomem; 671 retval = vma_dup_policy(mpnt, tmp); 672 if (retval) 673 goto fail_nomem_policy; 674 tmp->vm_mm = mm; 675 retval = dup_userfaultfd(tmp, &uf); 676 if (retval) 677 goto fail_nomem_anon_vma_fork; 678 if (tmp->vm_flags & VM_WIPEONFORK) { 679 /* 680 * VM_WIPEONFORK gets a clean slate in the child. 681 * Don't prepare anon_vma until fault since we don't 682 * copy page for current vma. 683 */ 684 tmp->anon_vma = NULL; 685 } else if (anon_vma_fork(tmp, mpnt)) 686 goto fail_nomem_anon_vma_fork; 687 vm_flags_clear(tmp, VM_LOCKED_MASK); 688 /* 689 * Copy/update hugetlb private vma information. 690 */ 691 if (is_vm_hugetlb_page(tmp)) 692 hugetlb_dup_vma_private(tmp); 693 694 /* 695 * Link the vma into the MT. After using __mt_dup(), memory 696 * allocation is not necessary here, so it cannot fail. 697 */ 698 vma_iter_bulk_store(&vmi, tmp); 699 700 mm->map_count++; 701 702 if (tmp->vm_ops && tmp->vm_ops->open) 703 tmp->vm_ops->open(tmp); 704 705 file = tmp->vm_file; 706 if (file) { 707 struct address_space *mapping = file->f_mapping; 708 709 get_file(file); 710 i_mmap_lock_write(mapping); 711 if (vma_is_shared_maywrite(tmp)) 712 mapping_allow_writable(mapping); 713 flush_dcache_mmap_lock(mapping); 714 /* insert tmp into the share list, just after mpnt */ 715 vma_interval_tree_insert_after(tmp, mpnt, 716 &mapping->i_mmap); 717 flush_dcache_mmap_unlock(mapping); 718 i_mmap_unlock_write(mapping); 719 } 720 721 if (!(tmp->vm_flags & VM_WIPEONFORK)) 722 retval = copy_page_range(tmp, mpnt); 723 724 if (retval) { 725 mpnt = vma_next(&vmi); 726 goto loop_out; 727 } 728 } 729 /* a new mm has just been created */ 730 retval = arch_dup_mmap(oldmm, mm); 731 loop_out: 732 vma_iter_free(&vmi); 733 if (!retval) { 734 mt_set_in_rcu(vmi.mas.tree); 735 ksm_fork(mm, oldmm); 736 khugepaged_fork(mm, oldmm); 737 } else { 738 739 /* 740 * The entire maple tree has already been duplicated. If the 741 * mmap duplication fails, mark the failure point with 742 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 743 * stop releasing VMAs that have not been duplicated after this 744 * point. 745 */ 746 if (mpnt) { 747 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 748 mas_store(&vmi.mas, XA_ZERO_ENTRY); 749 /* Avoid OOM iterating a broken tree */ 750 set_bit(MMF_OOM_SKIP, &mm->flags); 751 } 752 /* 753 * The mm_struct is going to exit, but the locks will be dropped 754 * first. Set the mm_struct as unstable is advisable as it is 755 * not fully initialised. 756 */ 757 set_bit(MMF_UNSTABLE, &mm->flags); 758 } 759 out: 760 mmap_write_unlock(mm); 761 flush_tlb_mm(oldmm); 762 mmap_write_unlock(oldmm); 763 if (!retval) 764 dup_userfaultfd_complete(&uf); 765 else 766 dup_userfaultfd_fail(&uf); 767 return retval; 768 769 fail_nomem_anon_vma_fork: 770 mpol_put(vma_policy(tmp)); 771 fail_nomem_policy: 772 vm_area_free(tmp); 773 fail_nomem: 774 retval = -ENOMEM; 775 vm_unacct_memory(charge); 776 goto loop_out; 777 } 778 779 static inline int mm_alloc_pgd(struct mm_struct *mm) 780 { 781 mm->pgd = pgd_alloc(mm); 782 if (unlikely(!mm->pgd)) 783 return -ENOMEM; 784 return 0; 785 } 786 787 static inline void mm_free_pgd(struct mm_struct *mm) 788 { 789 pgd_free(mm, mm->pgd); 790 } 791 #else 792 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 793 { 794 mmap_write_lock(oldmm); 795 dup_mm_exe_file(mm, oldmm); 796 mmap_write_unlock(oldmm); 797 return 0; 798 } 799 #define mm_alloc_pgd(mm) (0) 800 #define mm_free_pgd(mm) 801 #endif /* CONFIG_MMU */ 802 803 #ifdef CONFIG_MM_ID 804 static DEFINE_IDA(mm_ida); 805 806 static inline int mm_alloc_id(struct mm_struct *mm) 807 { 808 int ret; 809 810 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 811 if (ret < 0) 812 return ret; 813 mm->mm_id = ret; 814 return 0; 815 } 816 817 static inline void mm_free_id(struct mm_struct *mm) 818 { 819 const mm_id_t id = mm->mm_id; 820 821 mm->mm_id = MM_ID_DUMMY; 822 if (id == MM_ID_DUMMY) 823 return; 824 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 825 return; 826 ida_free(&mm_ida, id); 827 } 828 #else /* !CONFIG_MM_ID */ 829 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 830 static inline void mm_free_id(struct mm_struct *mm) {} 831 #endif /* CONFIG_MM_ID */ 832 833 static void check_mm(struct mm_struct *mm) 834 { 835 int i; 836 837 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 838 "Please make sure 'struct resident_page_types[]' is updated as well"); 839 840 for (i = 0; i < NR_MM_COUNTERS; i++) { 841 long x = percpu_counter_sum(&mm->rss_stat[i]); 842 843 if (unlikely(x)) 844 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 845 mm, resident_page_types[i], x); 846 } 847 848 if (mm_pgtables_bytes(mm)) 849 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 850 mm_pgtables_bytes(mm)); 851 852 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 853 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 854 #endif 855 } 856 857 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 858 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 859 860 static void do_check_lazy_tlb(void *arg) 861 { 862 struct mm_struct *mm = arg; 863 864 WARN_ON_ONCE(current->active_mm == mm); 865 } 866 867 static void do_shoot_lazy_tlb(void *arg) 868 { 869 struct mm_struct *mm = arg; 870 871 if (current->active_mm == mm) { 872 WARN_ON_ONCE(current->mm); 873 current->active_mm = &init_mm; 874 switch_mm(mm, &init_mm, current); 875 } 876 } 877 878 static void cleanup_lazy_tlbs(struct mm_struct *mm) 879 { 880 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 881 /* 882 * In this case, lazy tlb mms are refounted and would not reach 883 * __mmdrop until all CPUs have switched away and mmdrop()ed. 884 */ 885 return; 886 } 887 888 /* 889 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 890 * requires lazy mm users to switch to another mm when the refcount 891 * drops to zero, before the mm is freed. This requires IPIs here to 892 * switch kernel threads to init_mm. 893 * 894 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 895 * switch with the final userspace teardown TLB flush which leaves the 896 * mm lazy on this CPU but no others, reducing the need for additional 897 * IPIs here. There are cases where a final IPI is still required here, 898 * such as the final mmdrop being performed on a different CPU than the 899 * one exiting, or kernel threads using the mm when userspace exits. 900 * 901 * IPI overheads have not found to be expensive, but they could be 902 * reduced in a number of possible ways, for example (roughly 903 * increasing order of complexity): 904 * - The last lazy reference created by exit_mm() could instead switch 905 * to init_mm, however it's probable this will run on the same CPU 906 * immediately afterwards, so this may not reduce IPIs much. 907 * - A batch of mms requiring IPIs could be gathered and freed at once. 908 * - CPUs store active_mm where it can be remotely checked without a 909 * lock, to filter out false-positives in the cpumask. 910 * - After mm_users or mm_count reaches zero, switching away from the 911 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 912 * with some batching or delaying of the final IPIs. 913 * - A delayed freeing and RCU-like quiescing sequence based on mm 914 * switching to avoid IPIs completely. 915 */ 916 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 917 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 918 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 919 } 920 921 /* 922 * Called when the last reference to the mm 923 * is dropped: either by a lazy thread or by 924 * mmput. Free the page directory and the mm. 925 */ 926 void __mmdrop(struct mm_struct *mm) 927 { 928 BUG_ON(mm == &init_mm); 929 WARN_ON_ONCE(mm == current->mm); 930 931 /* Ensure no CPUs are using this as their lazy tlb mm */ 932 cleanup_lazy_tlbs(mm); 933 934 WARN_ON_ONCE(mm == current->active_mm); 935 mm_free_pgd(mm); 936 mm_free_id(mm); 937 destroy_context(mm); 938 mmu_notifier_subscriptions_destroy(mm); 939 check_mm(mm); 940 put_user_ns(mm->user_ns); 941 mm_pasid_drop(mm); 942 mm_destroy_cid(mm); 943 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 944 945 free_mm(mm); 946 } 947 EXPORT_SYMBOL_GPL(__mmdrop); 948 949 static void mmdrop_async_fn(struct work_struct *work) 950 { 951 struct mm_struct *mm; 952 953 mm = container_of(work, struct mm_struct, async_put_work); 954 __mmdrop(mm); 955 } 956 957 static void mmdrop_async(struct mm_struct *mm) 958 { 959 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 960 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 961 schedule_work(&mm->async_put_work); 962 } 963 } 964 965 static inline void free_signal_struct(struct signal_struct *sig) 966 { 967 taskstats_tgid_free(sig); 968 sched_autogroup_exit(sig); 969 /* 970 * __mmdrop is not safe to call from softirq context on x86 due to 971 * pgd_dtor so postpone it to the async context 972 */ 973 if (sig->oom_mm) 974 mmdrop_async(sig->oom_mm); 975 kmem_cache_free(signal_cachep, sig); 976 } 977 978 static inline void put_signal_struct(struct signal_struct *sig) 979 { 980 if (refcount_dec_and_test(&sig->sigcnt)) 981 free_signal_struct(sig); 982 } 983 984 void __put_task_struct(struct task_struct *tsk) 985 { 986 WARN_ON(!tsk->exit_state); 987 WARN_ON(refcount_read(&tsk->usage)); 988 WARN_ON(tsk == current); 989 990 sched_ext_free(tsk); 991 io_uring_free(tsk); 992 cgroup_free(tsk); 993 task_numa_free(tsk, true); 994 security_task_free(tsk); 995 exit_creds(tsk); 996 delayacct_tsk_free(tsk); 997 put_signal_struct(tsk->signal); 998 sched_core_free(tsk); 999 free_task(tsk); 1000 } 1001 EXPORT_SYMBOL_GPL(__put_task_struct); 1002 1003 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 1004 { 1005 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 1006 1007 __put_task_struct(task); 1008 } 1009 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 1010 1011 void __init __weak arch_task_cache_init(void) { } 1012 1013 /* 1014 * set_max_threads 1015 */ 1016 static void __init set_max_threads(unsigned int max_threads_suggested) 1017 { 1018 u64 threads; 1019 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1020 1021 /* 1022 * The number of threads shall be limited such that the thread 1023 * structures may only consume a small part of the available memory. 1024 */ 1025 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1026 threads = MAX_THREADS; 1027 else 1028 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1029 (u64) THREAD_SIZE * 8UL); 1030 1031 if (threads > max_threads_suggested) 1032 threads = max_threads_suggested; 1033 1034 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1035 } 1036 1037 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1038 /* Initialized by the architecture: */ 1039 int arch_task_struct_size __read_mostly; 1040 #endif 1041 1042 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1043 { 1044 /* Fetch thread_struct whitelist for the architecture. */ 1045 arch_thread_struct_whitelist(offset, size); 1046 1047 /* 1048 * Handle zero-sized whitelist or empty thread_struct, otherwise 1049 * adjust offset to position of thread_struct in task_struct. 1050 */ 1051 if (unlikely(*size == 0)) 1052 *offset = 0; 1053 else 1054 *offset += offsetof(struct task_struct, thread); 1055 } 1056 1057 void __init fork_init(void) 1058 { 1059 int i; 1060 #ifndef ARCH_MIN_TASKALIGN 1061 #define ARCH_MIN_TASKALIGN 0 1062 #endif 1063 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1064 unsigned long useroffset, usersize; 1065 1066 /* create a slab on which task_structs can be allocated */ 1067 task_struct_whitelist(&useroffset, &usersize); 1068 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1069 arch_task_struct_size, align, 1070 SLAB_PANIC|SLAB_ACCOUNT, 1071 useroffset, usersize, NULL); 1072 1073 /* do the arch specific task caches init */ 1074 arch_task_cache_init(); 1075 1076 set_max_threads(MAX_THREADS); 1077 1078 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1079 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1080 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1081 init_task.signal->rlim[RLIMIT_NPROC]; 1082 1083 for (i = 0; i < UCOUNT_COUNTS; i++) 1084 init_user_ns.ucount_max[i] = max_threads/2; 1085 1086 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1087 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1088 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1089 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1090 1091 #ifdef CONFIG_VMAP_STACK 1092 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1093 NULL, free_vm_stack_cache); 1094 #endif 1095 1096 scs_init(); 1097 1098 lockdep_init_task(&init_task); 1099 uprobes_init(); 1100 } 1101 1102 int __weak arch_dup_task_struct(struct task_struct *dst, 1103 struct task_struct *src) 1104 { 1105 *dst = *src; 1106 return 0; 1107 } 1108 1109 void set_task_stack_end_magic(struct task_struct *tsk) 1110 { 1111 unsigned long *stackend; 1112 1113 stackend = end_of_stack(tsk); 1114 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1115 } 1116 1117 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1118 { 1119 struct task_struct *tsk; 1120 int err; 1121 1122 if (node == NUMA_NO_NODE) 1123 node = tsk_fork_get_node(orig); 1124 tsk = alloc_task_struct_node(node); 1125 if (!tsk) 1126 return NULL; 1127 1128 err = arch_dup_task_struct(tsk, orig); 1129 if (err) 1130 goto free_tsk; 1131 1132 err = alloc_thread_stack_node(tsk, node); 1133 if (err) 1134 goto free_tsk; 1135 1136 #ifdef CONFIG_THREAD_INFO_IN_TASK 1137 refcount_set(&tsk->stack_refcount, 1); 1138 #endif 1139 account_kernel_stack(tsk, 1); 1140 1141 err = scs_prepare(tsk, node); 1142 if (err) 1143 goto free_stack; 1144 1145 #ifdef CONFIG_SECCOMP 1146 /* 1147 * We must handle setting up seccomp filters once we're under 1148 * the sighand lock in case orig has changed between now and 1149 * then. Until then, filter must be NULL to avoid messing up 1150 * the usage counts on the error path calling free_task. 1151 */ 1152 tsk->seccomp.filter = NULL; 1153 #endif 1154 1155 setup_thread_stack(tsk, orig); 1156 clear_user_return_notifier(tsk); 1157 clear_tsk_need_resched(tsk); 1158 set_task_stack_end_magic(tsk); 1159 clear_syscall_work_syscall_user_dispatch(tsk); 1160 1161 #ifdef CONFIG_STACKPROTECTOR 1162 tsk->stack_canary = get_random_canary(); 1163 #endif 1164 if (orig->cpus_ptr == &orig->cpus_mask) 1165 tsk->cpus_ptr = &tsk->cpus_mask; 1166 dup_user_cpus_ptr(tsk, orig, node); 1167 1168 /* 1169 * One for the user space visible state that goes away when reaped. 1170 * One for the scheduler. 1171 */ 1172 refcount_set(&tsk->rcu_users, 2); 1173 /* One for the rcu users */ 1174 refcount_set(&tsk->usage, 1); 1175 #ifdef CONFIG_BLK_DEV_IO_TRACE 1176 tsk->btrace_seq = 0; 1177 #endif 1178 tsk->splice_pipe = NULL; 1179 tsk->task_frag.page = NULL; 1180 tsk->wake_q.next = NULL; 1181 tsk->worker_private = NULL; 1182 1183 kcov_task_init(tsk); 1184 kmsan_task_create(tsk); 1185 kmap_local_fork(tsk); 1186 1187 #ifdef CONFIG_FAULT_INJECTION 1188 tsk->fail_nth = 0; 1189 #endif 1190 1191 #ifdef CONFIG_BLK_CGROUP 1192 tsk->throttle_disk = NULL; 1193 tsk->use_memdelay = 0; 1194 #endif 1195 1196 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1197 tsk->pasid_activated = 0; 1198 #endif 1199 1200 #ifdef CONFIG_MEMCG 1201 tsk->active_memcg = NULL; 1202 #endif 1203 1204 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1205 tsk->reported_split_lock = 0; 1206 #endif 1207 1208 #ifdef CONFIG_SCHED_MM_CID 1209 tsk->mm_cid = -1; 1210 tsk->last_mm_cid = -1; 1211 tsk->mm_cid_active = 0; 1212 tsk->migrate_from_cpu = -1; 1213 #endif 1214 return tsk; 1215 1216 free_stack: 1217 exit_task_stack_account(tsk); 1218 free_thread_stack(tsk); 1219 free_tsk: 1220 free_task_struct(tsk); 1221 return NULL; 1222 } 1223 1224 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1225 1226 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1227 1228 static int __init coredump_filter_setup(char *s) 1229 { 1230 default_dump_filter = 1231 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1232 MMF_DUMP_FILTER_MASK; 1233 return 1; 1234 } 1235 1236 __setup("coredump_filter=", coredump_filter_setup); 1237 1238 #include <linux/init_task.h> 1239 1240 static void mm_init_aio(struct mm_struct *mm) 1241 { 1242 #ifdef CONFIG_AIO 1243 spin_lock_init(&mm->ioctx_lock); 1244 mm->ioctx_table = NULL; 1245 #endif 1246 } 1247 1248 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1249 struct task_struct *p) 1250 { 1251 #ifdef CONFIG_MEMCG 1252 if (mm->owner == p) 1253 WRITE_ONCE(mm->owner, NULL); 1254 #endif 1255 } 1256 1257 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1258 { 1259 #ifdef CONFIG_MEMCG 1260 mm->owner = p; 1261 #endif 1262 } 1263 1264 static void mm_init_uprobes_state(struct mm_struct *mm) 1265 { 1266 #ifdef CONFIG_UPROBES 1267 mm->uprobes_state.xol_area = NULL; 1268 #endif 1269 } 1270 1271 static void mmap_init_lock(struct mm_struct *mm) 1272 { 1273 init_rwsem(&mm->mmap_lock); 1274 mm_lock_seqcount_init(mm); 1275 #ifdef CONFIG_PER_VMA_LOCK 1276 rcuwait_init(&mm->vma_writer_wait); 1277 #endif 1278 } 1279 1280 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1281 struct user_namespace *user_ns) 1282 { 1283 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1284 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1285 atomic_set(&mm->mm_users, 1); 1286 atomic_set(&mm->mm_count, 1); 1287 seqcount_init(&mm->write_protect_seq); 1288 mmap_init_lock(mm); 1289 INIT_LIST_HEAD(&mm->mmlist); 1290 mm_pgtables_bytes_init(mm); 1291 mm->map_count = 0; 1292 mm->locked_vm = 0; 1293 atomic64_set(&mm->pinned_vm, 0); 1294 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1295 spin_lock_init(&mm->page_table_lock); 1296 spin_lock_init(&mm->arg_lock); 1297 mm_init_cpumask(mm); 1298 mm_init_aio(mm); 1299 mm_init_owner(mm, p); 1300 mm_pasid_init(mm); 1301 RCU_INIT_POINTER(mm->exe_file, NULL); 1302 mmu_notifier_subscriptions_init(mm); 1303 init_tlb_flush_pending(mm); 1304 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1305 mm->pmd_huge_pte = NULL; 1306 #endif 1307 mm_init_uprobes_state(mm); 1308 hugetlb_count_init(mm); 1309 1310 if (current->mm) { 1311 mm->flags = mmf_init_flags(current->mm->flags); 1312 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1313 } else { 1314 mm->flags = default_dump_filter; 1315 mm->def_flags = 0; 1316 } 1317 1318 if (mm_alloc_pgd(mm)) 1319 goto fail_nopgd; 1320 1321 if (mm_alloc_id(mm)) 1322 goto fail_noid; 1323 1324 if (init_new_context(p, mm)) 1325 goto fail_nocontext; 1326 1327 if (mm_alloc_cid(mm, p)) 1328 goto fail_cid; 1329 1330 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1331 NR_MM_COUNTERS)) 1332 goto fail_pcpu; 1333 1334 mm->user_ns = get_user_ns(user_ns); 1335 lru_gen_init_mm(mm); 1336 return mm; 1337 1338 fail_pcpu: 1339 mm_destroy_cid(mm); 1340 fail_cid: 1341 destroy_context(mm); 1342 fail_nocontext: 1343 mm_free_id(mm); 1344 fail_noid: 1345 mm_free_pgd(mm); 1346 fail_nopgd: 1347 free_mm(mm); 1348 return NULL; 1349 } 1350 1351 /* 1352 * Allocate and initialize an mm_struct. 1353 */ 1354 struct mm_struct *mm_alloc(void) 1355 { 1356 struct mm_struct *mm; 1357 1358 mm = allocate_mm(); 1359 if (!mm) 1360 return NULL; 1361 1362 memset(mm, 0, sizeof(*mm)); 1363 return mm_init(mm, current, current_user_ns()); 1364 } 1365 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1366 1367 static inline void __mmput(struct mm_struct *mm) 1368 { 1369 VM_BUG_ON(atomic_read(&mm->mm_users)); 1370 1371 uprobe_clear_state(mm); 1372 exit_aio(mm); 1373 ksm_exit(mm); 1374 khugepaged_exit(mm); /* must run before exit_mmap */ 1375 exit_mmap(mm); 1376 mm_put_huge_zero_folio(mm); 1377 set_mm_exe_file(mm, NULL); 1378 if (!list_empty(&mm->mmlist)) { 1379 spin_lock(&mmlist_lock); 1380 list_del(&mm->mmlist); 1381 spin_unlock(&mmlist_lock); 1382 } 1383 if (mm->binfmt) 1384 module_put(mm->binfmt->module); 1385 lru_gen_del_mm(mm); 1386 mmdrop(mm); 1387 } 1388 1389 /* 1390 * Decrement the use count and release all resources for an mm. 1391 */ 1392 void mmput(struct mm_struct *mm) 1393 { 1394 might_sleep(); 1395 1396 if (atomic_dec_and_test(&mm->mm_users)) 1397 __mmput(mm); 1398 } 1399 EXPORT_SYMBOL_GPL(mmput); 1400 1401 #ifdef CONFIG_MMU 1402 static void mmput_async_fn(struct work_struct *work) 1403 { 1404 struct mm_struct *mm = container_of(work, struct mm_struct, 1405 async_put_work); 1406 1407 __mmput(mm); 1408 } 1409 1410 void mmput_async(struct mm_struct *mm) 1411 { 1412 if (atomic_dec_and_test(&mm->mm_users)) { 1413 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1414 schedule_work(&mm->async_put_work); 1415 } 1416 } 1417 EXPORT_SYMBOL_GPL(mmput_async); 1418 #endif 1419 1420 /** 1421 * set_mm_exe_file - change a reference to the mm's executable file 1422 * @mm: The mm to change. 1423 * @new_exe_file: The new file to use. 1424 * 1425 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1426 * 1427 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1428 * invocations: in mmput() nobody alive left, in execve it happens before 1429 * the new mm is made visible to anyone. 1430 * 1431 * Can only fail if new_exe_file != NULL. 1432 */ 1433 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1434 { 1435 struct file *old_exe_file; 1436 1437 /* 1438 * It is safe to dereference the exe_file without RCU as 1439 * this function is only called if nobody else can access 1440 * this mm -- see comment above for justification. 1441 */ 1442 old_exe_file = rcu_dereference_raw(mm->exe_file); 1443 1444 if (new_exe_file) { 1445 /* 1446 * We expect the caller (i.e., sys_execve) to already denied 1447 * write access, so this is unlikely to fail. 1448 */ 1449 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1450 return -EACCES; 1451 get_file(new_exe_file); 1452 } 1453 rcu_assign_pointer(mm->exe_file, new_exe_file); 1454 if (old_exe_file) { 1455 exe_file_allow_write_access(old_exe_file); 1456 fput(old_exe_file); 1457 } 1458 return 0; 1459 } 1460 1461 /** 1462 * replace_mm_exe_file - replace a reference to the mm's executable file 1463 * @mm: The mm to change. 1464 * @new_exe_file: The new file to use. 1465 * 1466 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1467 * 1468 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1469 */ 1470 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1471 { 1472 struct vm_area_struct *vma; 1473 struct file *old_exe_file; 1474 int ret = 0; 1475 1476 /* Forbid mm->exe_file change if old file still mapped. */ 1477 old_exe_file = get_mm_exe_file(mm); 1478 if (old_exe_file) { 1479 VMA_ITERATOR(vmi, mm, 0); 1480 mmap_read_lock(mm); 1481 for_each_vma(vmi, vma) { 1482 if (!vma->vm_file) 1483 continue; 1484 if (path_equal(&vma->vm_file->f_path, 1485 &old_exe_file->f_path)) { 1486 ret = -EBUSY; 1487 break; 1488 } 1489 } 1490 mmap_read_unlock(mm); 1491 fput(old_exe_file); 1492 if (ret) 1493 return ret; 1494 } 1495 1496 ret = exe_file_deny_write_access(new_exe_file); 1497 if (ret) 1498 return -EACCES; 1499 get_file(new_exe_file); 1500 1501 /* set the new file */ 1502 mmap_write_lock(mm); 1503 old_exe_file = rcu_dereference_raw(mm->exe_file); 1504 rcu_assign_pointer(mm->exe_file, new_exe_file); 1505 mmap_write_unlock(mm); 1506 1507 if (old_exe_file) { 1508 exe_file_allow_write_access(old_exe_file); 1509 fput(old_exe_file); 1510 } 1511 return 0; 1512 } 1513 1514 /** 1515 * get_mm_exe_file - acquire a reference to the mm's executable file 1516 * @mm: The mm of interest. 1517 * 1518 * Returns %NULL if mm has no associated executable file. 1519 * User must release file via fput(). 1520 */ 1521 struct file *get_mm_exe_file(struct mm_struct *mm) 1522 { 1523 struct file *exe_file; 1524 1525 rcu_read_lock(); 1526 exe_file = get_file_rcu(&mm->exe_file); 1527 rcu_read_unlock(); 1528 return exe_file; 1529 } 1530 1531 /** 1532 * get_task_exe_file - acquire a reference to the task's executable file 1533 * @task: The task. 1534 * 1535 * Returns %NULL if task's mm (if any) has no associated executable file or 1536 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1537 * User must release file via fput(). 1538 */ 1539 struct file *get_task_exe_file(struct task_struct *task) 1540 { 1541 struct file *exe_file = NULL; 1542 struct mm_struct *mm; 1543 1544 if (task->flags & PF_KTHREAD) 1545 return NULL; 1546 1547 task_lock(task); 1548 mm = task->mm; 1549 if (mm) 1550 exe_file = get_mm_exe_file(mm); 1551 task_unlock(task); 1552 return exe_file; 1553 } 1554 1555 /** 1556 * get_task_mm - acquire a reference to the task's mm 1557 * @task: The task. 1558 * 1559 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1560 * this kernel workthread has transiently adopted a user mm with use_mm, 1561 * to do its AIO) is not set and if so returns a reference to it, after 1562 * bumping up the use count. User must release the mm via mmput() 1563 * after use. Typically used by /proc and ptrace. 1564 */ 1565 struct mm_struct *get_task_mm(struct task_struct *task) 1566 { 1567 struct mm_struct *mm; 1568 1569 if (task->flags & PF_KTHREAD) 1570 return NULL; 1571 1572 task_lock(task); 1573 mm = task->mm; 1574 if (mm) 1575 mmget(mm); 1576 task_unlock(task); 1577 return mm; 1578 } 1579 EXPORT_SYMBOL_GPL(get_task_mm); 1580 1581 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1582 { 1583 struct mm_struct *mm; 1584 int err; 1585 1586 err = down_read_killable(&task->signal->exec_update_lock); 1587 if (err) 1588 return ERR_PTR(err); 1589 1590 mm = get_task_mm(task); 1591 if (!mm) { 1592 mm = ERR_PTR(-ESRCH); 1593 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1594 mmput(mm); 1595 mm = ERR_PTR(-EACCES); 1596 } 1597 up_read(&task->signal->exec_update_lock); 1598 1599 return mm; 1600 } 1601 1602 static void complete_vfork_done(struct task_struct *tsk) 1603 { 1604 struct completion *vfork; 1605 1606 task_lock(tsk); 1607 vfork = tsk->vfork_done; 1608 if (likely(vfork)) { 1609 tsk->vfork_done = NULL; 1610 complete(vfork); 1611 } 1612 task_unlock(tsk); 1613 } 1614 1615 static int wait_for_vfork_done(struct task_struct *child, 1616 struct completion *vfork) 1617 { 1618 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1619 int killed; 1620 1621 cgroup_enter_frozen(); 1622 killed = wait_for_completion_state(vfork, state); 1623 cgroup_leave_frozen(false); 1624 1625 if (killed) { 1626 task_lock(child); 1627 child->vfork_done = NULL; 1628 task_unlock(child); 1629 } 1630 1631 put_task_struct(child); 1632 return killed; 1633 } 1634 1635 /* Please note the differences between mmput and mm_release. 1636 * mmput is called whenever we stop holding onto a mm_struct, 1637 * error success whatever. 1638 * 1639 * mm_release is called after a mm_struct has been removed 1640 * from the current process. 1641 * 1642 * This difference is important for error handling, when we 1643 * only half set up a mm_struct for a new process and need to restore 1644 * the old one. Because we mmput the new mm_struct before 1645 * restoring the old one. . . 1646 * Eric Biederman 10 January 1998 1647 */ 1648 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1649 { 1650 uprobe_free_utask(tsk); 1651 1652 /* Get rid of any cached register state */ 1653 deactivate_mm(tsk, mm); 1654 1655 /* 1656 * Signal userspace if we're not exiting with a core dump 1657 * because we want to leave the value intact for debugging 1658 * purposes. 1659 */ 1660 if (tsk->clear_child_tid) { 1661 if (atomic_read(&mm->mm_users) > 1) { 1662 /* 1663 * We don't check the error code - if userspace has 1664 * not set up a proper pointer then tough luck. 1665 */ 1666 put_user(0, tsk->clear_child_tid); 1667 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1668 1, NULL, NULL, 0, 0); 1669 } 1670 tsk->clear_child_tid = NULL; 1671 } 1672 1673 /* 1674 * All done, finally we can wake up parent and return this mm to him. 1675 * Also kthread_stop() uses this completion for synchronization. 1676 */ 1677 if (tsk->vfork_done) 1678 complete_vfork_done(tsk); 1679 } 1680 1681 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1682 { 1683 futex_exit_release(tsk); 1684 mm_release(tsk, mm); 1685 } 1686 1687 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1688 { 1689 futex_exec_release(tsk); 1690 mm_release(tsk, mm); 1691 } 1692 1693 /** 1694 * dup_mm() - duplicates an existing mm structure 1695 * @tsk: the task_struct with which the new mm will be associated. 1696 * @oldmm: the mm to duplicate. 1697 * 1698 * Allocates a new mm structure and duplicates the provided @oldmm structure 1699 * content into it. 1700 * 1701 * Return: the duplicated mm or NULL on failure. 1702 */ 1703 static struct mm_struct *dup_mm(struct task_struct *tsk, 1704 struct mm_struct *oldmm) 1705 { 1706 struct mm_struct *mm; 1707 int err; 1708 1709 mm = allocate_mm(); 1710 if (!mm) 1711 goto fail_nomem; 1712 1713 memcpy(mm, oldmm, sizeof(*mm)); 1714 1715 if (!mm_init(mm, tsk, mm->user_ns)) 1716 goto fail_nomem; 1717 1718 uprobe_start_dup_mmap(); 1719 err = dup_mmap(mm, oldmm); 1720 if (err) 1721 goto free_pt; 1722 uprobe_end_dup_mmap(); 1723 1724 mm->hiwater_rss = get_mm_rss(mm); 1725 mm->hiwater_vm = mm->total_vm; 1726 1727 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1728 goto free_pt; 1729 1730 return mm; 1731 1732 free_pt: 1733 /* don't put binfmt in mmput, we haven't got module yet */ 1734 mm->binfmt = NULL; 1735 mm_init_owner(mm, NULL); 1736 mmput(mm); 1737 if (err) 1738 uprobe_end_dup_mmap(); 1739 1740 fail_nomem: 1741 return NULL; 1742 } 1743 1744 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1745 { 1746 struct mm_struct *mm, *oldmm; 1747 1748 tsk->min_flt = tsk->maj_flt = 0; 1749 tsk->nvcsw = tsk->nivcsw = 0; 1750 #ifdef CONFIG_DETECT_HUNG_TASK 1751 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1752 tsk->last_switch_time = 0; 1753 #endif 1754 1755 tsk->mm = NULL; 1756 tsk->active_mm = NULL; 1757 1758 /* 1759 * Are we cloning a kernel thread? 1760 * 1761 * We need to steal a active VM for that.. 1762 */ 1763 oldmm = current->mm; 1764 if (!oldmm) 1765 return 0; 1766 1767 if (clone_flags & CLONE_VM) { 1768 mmget(oldmm); 1769 mm = oldmm; 1770 } else { 1771 mm = dup_mm(tsk, current->mm); 1772 if (!mm) 1773 return -ENOMEM; 1774 } 1775 1776 tsk->mm = mm; 1777 tsk->active_mm = mm; 1778 sched_mm_cid_fork(tsk); 1779 return 0; 1780 } 1781 1782 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1783 { 1784 struct fs_struct *fs = current->fs; 1785 if (clone_flags & CLONE_FS) { 1786 /* tsk->fs is already what we want */ 1787 spin_lock(&fs->lock); 1788 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1789 if (fs->in_exec) { 1790 spin_unlock(&fs->lock); 1791 return -EAGAIN; 1792 } 1793 fs->users++; 1794 spin_unlock(&fs->lock); 1795 return 0; 1796 } 1797 tsk->fs = copy_fs_struct(fs); 1798 if (!tsk->fs) 1799 return -ENOMEM; 1800 return 0; 1801 } 1802 1803 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1804 int no_files) 1805 { 1806 struct files_struct *oldf, *newf; 1807 1808 /* 1809 * A background process may not have any files ... 1810 */ 1811 oldf = current->files; 1812 if (!oldf) 1813 return 0; 1814 1815 if (no_files) { 1816 tsk->files = NULL; 1817 return 0; 1818 } 1819 1820 if (clone_flags & CLONE_FILES) { 1821 atomic_inc(&oldf->count); 1822 return 0; 1823 } 1824 1825 newf = dup_fd(oldf, NULL); 1826 if (IS_ERR(newf)) 1827 return PTR_ERR(newf); 1828 1829 tsk->files = newf; 1830 return 0; 1831 } 1832 1833 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1834 { 1835 struct sighand_struct *sig; 1836 1837 if (clone_flags & CLONE_SIGHAND) { 1838 refcount_inc(¤t->sighand->count); 1839 return 0; 1840 } 1841 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1842 RCU_INIT_POINTER(tsk->sighand, sig); 1843 if (!sig) 1844 return -ENOMEM; 1845 1846 refcount_set(&sig->count, 1); 1847 spin_lock_irq(¤t->sighand->siglock); 1848 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1849 spin_unlock_irq(¤t->sighand->siglock); 1850 1851 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1852 if (clone_flags & CLONE_CLEAR_SIGHAND) 1853 flush_signal_handlers(tsk, 0); 1854 1855 return 0; 1856 } 1857 1858 void __cleanup_sighand(struct sighand_struct *sighand) 1859 { 1860 if (refcount_dec_and_test(&sighand->count)) { 1861 signalfd_cleanup(sighand); 1862 /* 1863 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1864 * without an RCU grace period, see __lock_task_sighand(). 1865 */ 1866 kmem_cache_free(sighand_cachep, sighand); 1867 } 1868 } 1869 1870 /* 1871 * Initialize POSIX timer handling for a thread group. 1872 */ 1873 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1874 { 1875 struct posix_cputimers *pct = &sig->posix_cputimers; 1876 unsigned long cpu_limit; 1877 1878 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1879 posix_cputimers_group_init(pct, cpu_limit); 1880 } 1881 1882 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1883 { 1884 struct signal_struct *sig; 1885 1886 if (clone_flags & CLONE_THREAD) 1887 return 0; 1888 1889 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1890 tsk->signal = sig; 1891 if (!sig) 1892 return -ENOMEM; 1893 1894 sig->nr_threads = 1; 1895 sig->quick_threads = 1; 1896 atomic_set(&sig->live, 1); 1897 refcount_set(&sig->sigcnt, 1); 1898 1899 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1900 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1901 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1902 1903 init_waitqueue_head(&sig->wait_chldexit); 1904 sig->curr_target = tsk; 1905 init_sigpending(&sig->shared_pending); 1906 INIT_HLIST_HEAD(&sig->multiprocess); 1907 seqlock_init(&sig->stats_lock); 1908 prev_cputime_init(&sig->prev_cputime); 1909 1910 #ifdef CONFIG_POSIX_TIMERS 1911 INIT_HLIST_HEAD(&sig->posix_timers); 1912 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1913 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1914 sig->real_timer.function = it_real_fn; 1915 #endif 1916 1917 task_lock(current->group_leader); 1918 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1919 task_unlock(current->group_leader); 1920 1921 posix_cpu_timers_init_group(sig); 1922 1923 tty_audit_fork(sig); 1924 sched_autogroup_fork(sig); 1925 1926 sig->oom_score_adj = current->signal->oom_score_adj; 1927 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1928 1929 mutex_init(&sig->cred_guard_mutex); 1930 init_rwsem(&sig->exec_update_lock); 1931 1932 return 0; 1933 } 1934 1935 static void copy_seccomp(struct task_struct *p) 1936 { 1937 #ifdef CONFIG_SECCOMP 1938 /* 1939 * Must be called with sighand->lock held, which is common to 1940 * all threads in the group. Holding cred_guard_mutex is not 1941 * needed because this new task is not yet running and cannot 1942 * be racing exec. 1943 */ 1944 assert_spin_locked(¤t->sighand->siglock); 1945 1946 /* Ref-count the new filter user, and assign it. */ 1947 get_seccomp_filter(current); 1948 p->seccomp = current->seccomp; 1949 1950 /* 1951 * Explicitly enable no_new_privs here in case it got set 1952 * between the task_struct being duplicated and holding the 1953 * sighand lock. The seccomp state and nnp must be in sync. 1954 */ 1955 if (task_no_new_privs(current)) 1956 task_set_no_new_privs(p); 1957 1958 /* 1959 * If the parent gained a seccomp mode after copying thread 1960 * flags and between before we held the sighand lock, we have 1961 * to manually enable the seccomp thread flag here. 1962 */ 1963 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1964 set_task_syscall_work(p, SECCOMP); 1965 #endif 1966 } 1967 1968 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1969 { 1970 current->clear_child_tid = tidptr; 1971 1972 return task_pid_vnr(current); 1973 } 1974 1975 static void rt_mutex_init_task(struct task_struct *p) 1976 { 1977 raw_spin_lock_init(&p->pi_lock); 1978 #ifdef CONFIG_RT_MUTEXES 1979 p->pi_waiters = RB_ROOT_CACHED; 1980 p->pi_top_task = NULL; 1981 p->pi_blocked_on = NULL; 1982 #endif 1983 } 1984 1985 static inline void init_task_pid_links(struct task_struct *task) 1986 { 1987 enum pid_type type; 1988 1989 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1990 INIT_HLIST_NODE(&task->pid_links[type]); 1991 } 1992 1993 static inline void 1994 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1995 { 1996 if (type == PIDTYPE_PID) 1997 task->thread_pid = pid; 1998 else 1999 task->signal->pids[type] = pid; 2000 } 2001 2002 static inline void rcu_copy_process(struct task_struct *p) 2003 { 2004 #ifdef CONFIG_PREEMPT_RCU 2005 p->rcu_read_lock_nesting = 0; 2006 p->rcu_read_unlock_special.s = 0; 2007 p->rcu_blocked_node = NULL; 2008 INIT_LIST_HEAD(&p->rcu_node_entry); 2009 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2010 #ifdef CONFIG_TASKS_RCU 2011 p->rcu_tasks_holdout = false; 2012 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2013 p->rcu_tasks_idle_cpu = -1; 2014 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 2015 #endif /* #ifdef CONFIG_TASKS_RCU */ 2016 #ifdef CONFIG_TASKS_TRACE_RCU 2017 p->trc_reader_nesting = 0; 2018 p->trc_reader_special.s = 0; 2019 INIT_LIST_HEAD(&p->trc_holdout_list); 2020 INIT_LIST_HEAD(&p->trc_blkd_node); 2021 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2022 } 2023 2024 /** 2025 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2026 * @pid: the struct pid for which to create a pidfd 2027 * @flags: flags of the new @pidfd 2028 * @ret: Where to return the file for the pidfd. 2029 * 2030 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2031 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2032 * 2033 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2034 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2035 * pidfd file are prepared. 2036 * 2037 * If this function returns successfully the caller is responsible to either 2038 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2039 * order to install the pidfd into its file descriptor table or they must use 2040 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2041 * respectively. 2042 * 2043 * This function is useful when a pidfd must already be reserved but there 2044 * might still be points of failure afterwards and the caller wants to ensure 2045 * that no pidfd is leaked into its file descriptor table. 2046 * 2047 * Return: On success, a reserved pidfd is returned from the function and a new 2048 * pidfd file is returned in the last argument to the function. On 2049 * error, a negative error code is returned from the function and the 2050 * last argument remains unchanged. 2051 */ 2052 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2053 { 2054 int pidfd; 2055 struct file *pidfd_file; 2056 2057 pidfd = get_unused_fd_flags(O_CLOEXEC); 2058 if (pidfd < 0) 2059 return pidfd; 2060 2061 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2062 if (IS_ERR(pidfd_file)) { 2063 put_unused_fd(pidfd); 2064 return PTR_ERR(pidfd_file); 2065 } 2066 /* 2067 * anon_inode_getfile() ignores everything outside of the 2068 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2069 */ 2070 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2071 *ret = pidfd_file; 2072 return pidfd; 2073 } 2074 2075 /** 2076 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2077 * @pid: the struct pid for which to create a pidfd 2078 * @flags: flags of the new @pidfd 2079 * @ret: Where to return the pidfd. 2080 * 2081 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2082 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2083 * 2084 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2085 * task identified by @pid must be a thread-group leader. 2086 * 2087 * If this function returns successfully the caller is responsible to either 2088 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2089 * order to install the pidfd into its file descriptor table or they must use 2090 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2091 * respectively. 2092 * 2093 * This function is useful when a pidfd must already be reserved but there 2094 * might still be points of failure afterwards and the caller wants to ensure 2095 * that no pidfd is leaked into its file descriptor table. 2096 * 2097 * Return: On success, a reserved pidfd is returned from the function and a new 2098 * pidfd file is returned in the last argument to the function. On 2099 * error, a negative error code is returned from the function and the 2100 * last argument remains unchanged. 2101 */ 2102 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2103 { 2104 bool thread = flags & PIDFD_THREAD; 2105 2106 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2107 return -EINVAL; 2108 2109 return __pidfd_prepare(pid, flags, ret); 2110 } 2111 2112 static void __delayed_free_task(struct rcu_head *rhp) 2113 { 2114 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2115 2116 free_task(tsk); 2117 } 2118 2119 static __always_inline void delayed_free_task(struct task_struct *tsk) 2120 { 2121 if (IS_ENABLED(CONFIG_MEMCG)) 2122 call_rcu(&tsk->rcu, __delayed_free_task); 2123 else 2124 free_task(tsk); 2125 } 2126 2127 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2128 { 2129 /* Skip if kernel thread */ 2130 if (!tsk->mm) 2131 return; 2132 2133 /* Skip if spawning a thread or using vfork */ 2134 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2135 return; 2136 2137 /* We need to synchronize with __set_oom_adj */ 2138 mutex_lock(&oom_adj_mutex); 2139 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2140 /* Update the values in case they were changed after copy_signal */ 2141 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2142 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2143 mutex_unlock(&oom_adj_mutex); 2144 } 2145 2146 #ifdef CONFIG_RV 2147 static void rv_task_fork(struct task_struct *p) 2148 { 2149 int i; 2150 2151 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2152 p->rv[i].da_mon.monitoring = false; 2153 } 2154 #else 2155 #define rv_task_fork(p) do {} while (0) 2156 #endif 2157 2158 /* 2159 * This creates a new process as a copy of the old one, 2160 * but does not actually start it yet. 2161 * 2162 * It copies the registers, and all the appropriate 2163 * parts of the process environment (as per the clone 2164 * flags). The actual kick-off is left to the caller. 2165 */ 2166 __latent_entropy struct task_struct *copy_process( 2167 struct pid *pid, 2168 int trace, 2169 int node, 2170 struct kernel_clone_args *args) 2171 { 2172 int pidfd = -1, retval; 2173 struct task_struct *p; 2174 struct multiprocess_signals delayed; 2175 struct file *pidfile = NULL; 2176 const u64 clone_flags = args->flags; 2177 struct nsproxy *nsp = current->nsproxy; 2178 2179 /* 2180 * Don't allow sharing the root directory with processes in a different 2181 * namespace 2182 */ 2183 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2184 return ERR_PTR(-EINVAL); 2185 2186 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2187 return ERR_PTR(-EINVAL); 2188 2189 /* 2190 * Thread groups must share signals as well, and detached threads 2191 * can only be started up within the thread group. 2192 */ 2193 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2194 return ERR_PTR(-EINVAL); 2195 2196 /* 2197 * Shared signal handlers imply shared VM. By way of the above, 2198 * thread groups also imply shared VM. Blocking this case allows 2199 * for various simplifications in other code. 2200 */ 2201 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2202 return ERR_PTR(-EINVAL); 2203 2204 /* 2205 * Siblings of global init remain as zombies on exit since they are 2206 * not reaped by their parent (swapper). To solve this and to avoid 2207 * multi-rooted process trees, prevent global and container-inits 2208 * from creating siblings. 2209 */ 2210 if ((clone_flags & CLONE_PARENT) && 2211 current->signal->flags & SIGNAL_UNKILLABLE) 2212 return ERR_PTR(-EINVAL); 2213 2214 /* 2215 * If the new process will be in a different pid or user namespace 2216 * do not allow it to share a thread group with the forking task. 2217 */ 2218 if (clone_flags & CLONE_THREAD) { 2219 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2220 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2221 return ERR_PTR(-EINVAL); 2222 } 2223 2224 if (clone_flags & CLONE_PIDFD) { 2225 /* 2226 * - CLONE_DETACHED is blocked so that we can potentially 2227 * reuse it later for CLONE_PIDFD. 2228 */ 2229 if (clone_flags & CLONE_DETACHED) 2230 return ERR_PTR(-EINVAL); 2231 } 2232 2233 /* 2234 * Force any signals received before this point to be delivered 2235 * before the fork happens. Collect up signals sent to multiple 2236 * processes that happen during the fork and delay them so that 2237 * they appear to happen after the fork. 2238 */ 2239 sigemptyset(&delayed.signal); 2240 INIT_HLIST_NODE(&delayed.node); 2241 2242 spin_lock_irq(¤t->sighand->siglock); 2243 if (!(clone_flags & CLONE_THREAD)) 2244 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2245 recalc_sigpending(); 2246 spin_unlock_irq(¤t->sighand->siglock); 2247 retval = -ERESTARTNOINTR; 2248 if (task_sigpending(current)) 2249 goto fork_out; 2250 2251 retval = -ENOMEM; 2252 p = dup_task_struct(current, node); 2253 if (!p) 2254 goto fork_out; 2255 p->flags &= ~PF_KTHREAD; 2256 if (args->kthread) 2257 p->flags |= PF_KTHREAD; 2258 if (args->user_worker) { 2259 /* 2260 * Mark us a user worker, and block any signal that isn't 2261 * fatal or STOP 2262 */ 2263 p->flags |= PF_USER_WORKER; 2264 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2265 } 2266 if (args->io_thread) 2267 p->flags |= PF_IO_WORKER; 2268 2269 if (args->name) 2270 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2271 2272 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2273 /* 2274 * Clear TID on mm_release()? 2275 */ 2276 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2277 2278 ftrace_graph_init_task(p); 2279 2280 rt_mutex_init_task(p); 2281 2282 lockdep_assert_irqs_enabled(); 2283 #ifdef CONFIG_PROVE_LOCKING 2284 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2285 #endif 2286 retval = copy_creds(p, clone_flags); 2287 if (retval < 0) 2288 goto bad_fork_free; 2289 2290 retval = -EAGAIN; 2291 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2292 if (p->real_cred->user != INIT_USER && 2293 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2294 goto bad_fork_cleanup_count; 2295 } 2296 current->flags &= ~PF_NPROC_EXCEEDED; 2297 2298 /* 2299 * If multiple threads are within copy_process(), then this check 2300 * triggers too late. This doesn't hurt, the check is only there 2301 * to stop root fork bombs. 2302 */ 2303 retval = -EAGAIN; 2304 if (data_race(nr_threads >= max_threads)) 2305 goto bad_fork_cleanup_count; 2306 2307 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2308 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2309 p->flags |= PF_FORKNOEXEC; 2310 INIT_LIST_HEAD(&p->children); 2311 INIT_LIST_HEAD(&p->sibling); 2312 rcu_copy_process(p); 2313 p->vfork_done = NULL; 2314 spin_lock_init(&p->alloc_lock); 2315 2316 init_sigpending(&p->pending); 2317 2318 p->utime = p->stime = p->gtime = 0; 2319 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2320 p->utimescaled = p->stimescaled = 0; 2321 #endif 2322 prev_cputime_init(&p->prev_cputime); 2323 2324 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2325 seqcount_init(&p->vtime.seqcount); 2326 p->vtime.starttime = 0; 2327 p->vtime.state = VTIME_INACTIVE; 2328 #endif 2329 2330 #ifdef CONFIG_IO_URING 2331 p->io_uring = NULL; 2332 #endif 2333 2334 p->default_timer_slack_ns = current->timer_slack_ns; 2335 2336 #ifdef CONFIG_PSI 2337 p->psi_flags = 0; 2338 #endif 2339 2340 task_io_accounting_init(&p->ioac); 2341 acct_clear_integrals(p); 2342 2343 posix_cputimers_init(&p->posix_cputimers); 2344 tick_dep_init_task(p); 2345 2346 p->io_context = NULL; 2347 audit_set_context(p, NULL); 2348 cgroup_fork(p); 2349 if (args->kthread) { 2350 if (!set_kthread_struct(p)) 2351 goto bad_fork_cleanup_delayacct; 2352 } 2353 #ifdef CONFIG_NUMA 2354 p->mempolicy = mpol_dup(p->mempolicy); 2355 if (IS_ERR(p->mempolicy)) { 2356 retval = PTR_ERR(p->mempolicy); 2357 p->mempolicy = NULL; 2358 goto bad_fork_cleanup_delayacct; 2359 } 2360 #endif 2361 #ifdef CONFIG_CPUSETS 2362 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2363 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2364 #endif 2365 #ifdef CONFIG_TRACE_IRQFLAGS 2366 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2367 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2368 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2369 p->softirqs_enabled = 1; 2370 p->softirq_context = 0; 2371 #endif 2372 2373 p->pagefault_disabled = 0; 2374 2375 #ifdef CONFIG_LOCKDEP 2376 lockdep_init_task(p); 2377 #endif 2378 2379 #ifdef CONFIG_DEBUG_MUTEXES 2380 p->blocked_on = NULL; /* not blocked yet */ 2381 #endif 2382 #ifdef CONFIG_BCACHE 2383 p->sequential_io = 0; 2384 p->sequential_io_avg = 0; 2385 #endif 2386 #ifdef CONFIG_BPF_SYSCALL 2387 RCU_INIT_POINTER(p->bpf_storage, NULL); 2388 p->bpf_ctx = NULL; 2389 #endif 2390 2391 /* Perform scheduler related setup. Assign this task to a CPU. */ 2392 retval = sched_fork(clone_flags, p); 2393 if (retval) 2394 goto bad_fork_cleanup_policy; 2395 2396 retval = perf_event_init_task(p, clone_flags); 2397 if (retval) 2398 goto bad_fork_sched_cancel_fork; 2399 retval = audit_alloc(p); 2400 if (retval) 2401 goto bad_fork_cleanup_perf; 2402 /* copy all the process information */ 2403 shm_init_task(p); 2404 retval = security_task_alloc(p, clone_flags); 2405 if (retval) 2406 goto bad_fork_cleanup_audit; 2407 retval = copy_semundo(clone_flags, p); 2408 if (retval) 2409 goto bad_fork_cleanup_security; 2410 retval = copy_files(clone_flags, p, args->no_files); 2411 if (retval) 2412 goto bad_fork_cleanup_semundo; 2413 retval = copy_fs(clone_flags, p); 2414 if (retval) 2415 goto bad_fork_cleanup_files; 2416 retval = copy_sighand(clone_flags, p); 2417 if (retval) 2418 goto bad_fork_cleanup_fs; 2419 retval = copy_signal(clone_flags, p); 2420 if (retval) 2421 goto bad_fork_cleanup_sighand; 2422 retval = copy_mm(clone_flags, p); 2423 if (retval) 2424 goto bad_fork_cleanup_signal; 2425 retval = copy_namespaces(clone_flags, p); 2426 if (retval) 2427 goto bad_fork_cleanup_mm; 2428 retval = copy_io(clone_flags, p); 2429 if (retval) 2430 goto bad_fork_cleanup_namespaces; 2431 retval = copy_thread(p, args); 2432 if (retval) 2433 goto bad_fork_cleanup_io; 2434 2435 stackleak_task_init(p); 2436 2437 if (pid != &init_struct_pid) { 2438 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2439 args->set_tid_size); 2440 if (IS_ERR(pid)) { 2441 retval = PTR_ERR(pid); 2442 goto bad_fork_cleanup_thread; 2443 } 2444 } 2445 2446 /* 2447 * This has to happen after we've potentially unshared the file 2448 * descriptor table (so that the pidfd doesn't leak into the child 2449 * if the fd table isn't shared). 2450 */ 2451 if (clone_flags & CLONE_PIDFD) { 2452 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2453 2454 /* Note that no task has been attached to @pid yet. */ 2455 retval = __pidfd_prepare(pid, flags, &pidfile); 2456 if (retval < 0) 2457 goto bad_fork_free_pid; 2458 pidfd = retval; 2459 2460 retval = put_user(pidfd, args->pidfd); 2461 if (retval) 2462 goto bad_fork_put_pidfd; 2463 } 2464 2465 #ifdef CONFIG_BLOCK 2466 p->plug = NULL; 2467 #endif 2468 futex_init_task(p); 2469 2470 /* 2471 * sigaltstack should be cleared when sharing the same VM 2472 */ 2473 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2474 sas_ss_reset(p); 2475 2476 /* 2477 * Syscall tracing and stepping should be turned off in the 2478 * child regardless of CLONE_PTRACE. 2479 */ 2480 user_disable_single_step(p); 2481 clear_task_syscall_work(p, SYSCALL_TRACE); 2482 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2483 clear_task_syscall_work(p, SYSCALL_EMU); 2484 #endif 2485 clear_tsk_latency_tracing(p); 2486 2487 /* ok, now we should be set up.. */ 2488 p->pid = pid_nr(pid); 2489 if (clone_flags & CLONE_THREAD) { 2490 p->group_leader = current->group_leader; 2491 p->tgid = current->tgid; 2492 } else { 2493 p->group_leader = p; 2494 p->tgid = p->pid; 2495 } 2496 2497 p->nr_dirtied = 0; 2498 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2499 p->dirty_paused_when = 0; 2500 2501 p->pdeath_signal = 0; 2502 p->task_works = NULL; 2503 clear_posix_cputimers_work(p); 2504 2505 #ifdef CONFIG_KRETPROBES 2506 p->kretprobe_instances.first = NULL; 2507 #endif 2508 #ifdef CONFIG_RETHOOK 2509 p->rethooks.first = NULL; 2510 #endif 2511 2512 /* 2513 * Ensure that the cgroup subsystem policies allow the new process to be 2514 * forked. It should be noted that the new process's css_set can be changed 2515 * between here and cgroup_post_fork() if an organisation operation is in 2516 * progress. 2517 */ 2518 retval = cgroup_can_fork(p, args); 2519 if (retval) 2520 goto bad_fork_put_pidfd; 2521 2522 /* 2523 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2524 * the new task on the correct runqueue. All this *before* the task 2525 * becomes visible. 2526 * 2527 * This isn't part of ->can_fork() because while the re-cloning is 2528 * cgroup specific, it unconditionally needs to place the task on a 2529 * runqueue. 2530 */ 2531 retval = sched_cgroup_fork(p, args); 2532 if (retval) 2533 goto bad_fork_cancel_cgroup; 2534 2535 /* 2536 * From this point on we must avoid any synchronous user-space 2537 * communication until we take the tasklist-lock. In particular, we do 2538 * not want user-space to be able to predict the process start-time by 2539 * stalling fork(2) after we recorded the start_time but before it is 2540 * visible to the system. 2541 */ 2542 2543 p->start_time = ktime_get_ns(); 2544 p->start_boottime = ktime_get_boottime_ns(); 2545 2546 /* 2547 * Make it visible to the rest of the system, but dont wake it up yet. 2548 * Need tasklist lock for parent etc handling! 2549 */ 2550 write_lock_irq(&tasklist_lock); 2551 2552 /* CLONE_PARENT re-uses the old parent */ 2553 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2554 p->real_parent = current->real_parent; 2555 p->parent_exec_id = current->parent_exec_id; 2556 if (clone_flags & CLONE_THREAD) 2557 p->exit_signal = -1; 2558 else 2559 p->exit_signal = current->group_leader->exit_signal; 2560 } else { 2561 p->real_parent = current; 2562 p->parent_exec_id = current->self_exec_id; 2563 p->exit_signal = args->exit_signal; 2564 } 2565 2566 klp_copy_process(p); 2567 2568 sched_core_fork(p); 2569 2570 spin_lock(¤t->sighand->siglock); 2571 2572 rv_task_fork(p); 2573 2574 rseq_fork(p, clone_flags); 2575 2576 /* Don't start children in a dying pid namespace */ 2577 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2578 retval = -ENOMEM; 2579 goto bad_fork_core_free; 2580 } 2581 2582 /* Let kill terminate clone/fork in the middle */ 2583 if (fatal_signal_pending(current)) { 2584 retval = -EINTR; 2585 goto bad_fork_core_free; 2586 } 2587 2588 /* No more failure paths after this point. */ 2589 2590 /* 2591 * Copy seccomp details explicitly here, in case they were changed 2592 * before holding sighand lock. 2593 */ 2594 copy_seccomp(p); 2595 2596 init_task_pid_links(p); 2597 if (likely(p->pid)) { 2598 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2599 2600 init_task_pid(p, PIDTYPE_PID, pid); 2601 if (thread_group_leader(p)) { 2602 init_task_pid(p, PIDTYPE_TGID, pid); 2603 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2604 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2605 2606 if (is_child_reaper(pid)) { 2607 ns_of_pid(pid)->child_reaper = p; 2608 p->signal->flags |= SIGNAL_UNKILLABLE; 2609 } 2610 p->signal->shared_pending.signal = delayed.signal; 2611 p->signal->tty = tty_kref_get(current->signal->tty); 2612 /* 2613 * Inherit has_child_subreaper flag under the same 2614 * tasklist_lock with adding child to the process tree 2615 * for propagate_has_child_subreaper optimization. 2616 */ 2617 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2618 p->real_parent->signal->is_child_subreaper; 2619 list_add_tail(&p->sibling, &p->real_parent->children); 2620 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2621 attach_pid(p, PIDTYPE_TGID); 2622 attach_pid(p, PIDTYPE_PGID); 2623 attach_pid(p, PIDTYPE_SID); 2624 __this_cpu_inc(process_counts); 2625 } else { 2626 current->signal->nr_threads++; 2627 current->signal->quick_threads++; 2628 atomic_inc(¤t->signal->live); 2629 refcount_inc(¤t->signal->sigcnt); 2630 task_join_group_stop(p); 2631 list_add_tail_rcu(&p->thread_node, 2632 &p->signal->thread_head); 2633 } 2634 attach_pid(p, PIDTYPE_PID); 2635 nr_threads++; 2636 } 2637 total_forks++; 2638 hlist_del_init(&delayed.node); 2639 spin_unlock(¤t->sighand->siglock); 2640 syscall_tracepoint_update(p); 2641 write_unlock_irq(&tasklist_lock); 2642 2643 if (pidfile) 2644 fd_install(pidfd, pidfile); 2645 2646 proc_fork_connector(p); 2647 sched_post_fork(p); 2648 cgroup_post_fork(p, args); 2649 perf_event_fork(p); 2650 2651 trace_task_newtask(p, clone_flags); 2652 uprobe_copy_process(p, clone_flags); 2653 user_events_fork(p, clone_flags); 2654 2655 copy_oom_score_adj(clone_flags, p); 2656 2657 return p; 2658 2659 bad_fork_core_free: 2660 sched_core_free(p); 2661 spin_unlock(¤t->sighand->siglock); 2662 write_unlock_irq(&tasklist_lock); 2663 bad_fork_cancel_cgroup: 2664 cgroup_cancel_fork(p, args); 2665 bad_fork_put_pidfd: 2666 if (clone_flags & CLONE_PIDFD) { 2667 fput(pidfile); 2668 put_unused_fd(pidfd); 2669 } 2670 bad_fork_free_pid: 2671 if (pid != &init_struct_pid) 2672 free_pid(pid); 2673 bad_fork_cleanup_thread: 2674 exit_thread(p); 2675 bad_fork_cleanup_io: 2676 if (p->io_context) 2677 exit_io_context(p); 2678 bad_fork_cleanup_namespaces: 2679 exit_task_namespaces(p); 2680 bad_fork_cleanup_mm: 2681 if (p->mm) { 2682 mm_clear_owner(p->mm, p); 2683 mmput(p->mm); 2684 } 2685 bad_fork_cleanup_signal: 2686 if (!(clone_flags & CLONE_THREAD)) 2687 free_signal_struct(p->signal); 2688 bad_fork_cleanup_sighand: 2689 __cleanup_sighand(p->sighand); 2690 bad_fork_cleanup_fs: 2691 exit_fs(p); /* blocking */ 2692 bad_fork_cleanup_files: 2693 exit_files(p); /* blocking */ 2694 bad_fork_cleanup_semundo: 2695 exit_sem(p); 2696 bad_fork_cleanup_security: 2697 security_task_free(p); 2698 bad_fork_cleanup_audit: 2699 audit_free(p); 2700 bad_fork_cleanup_perf: 2701 perf_event_free_task(p); 2702 bad_fork_sched_cancel_fork: 2703 sched_cancel_fork(p); 2704 bad_fork_cleanup_policy: 2705 lockdep_free_task(p); 2706 #ifdef CONFIG_NUMA 2707 mpol_put(p->mempolicy); 2708 #endif 2709 bad_fork_cleanup_delayacct: 2710 delayacct_tsk_free(p); 2711 bad_fork_cleanup_count: 2712 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2713 exit_creds(p); 2714 bad_fork_free: 2715 WRITE_ONCE(p->__state, TASK_DEAD); 2716 exit_task_stack_account(p); 2717 put_task_stack(p); 2718 delayed_free_task(p); 2719 fork_out: 2720 spin_lock_irq(¤t->sighand->siglock); 2721 hlist_del_init(&delayed.node); 2722 spin_unlock_irq(¤t->sighand->siglock); 2723 return ERR_PTR(retval); 2724 } 2725 2726 static inline void init_idle_pids(struct task_struct *idle) 2727 { 2728 enum pid_type type; 2729 2730 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2731 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2732 init_task_pid(idle, type, &init_struct_pid); 2733 } 2734 } 2735 2736 static int idle_dummy(void *dummy) 2737 { 2738 /* This function is never called */ 2739 return 0; 2740 } 2741 2742 struct task_struct * __init fork_idle(int cpu) 2743 { 2744 struct task_struct *task; 2745 struct kernel_clone_args args = { 2746 .flags = CLONE_VM, 2747 .fn = &idle_dummy, 2748 .fn_arg = NULL, 2749 .kthread = 1, 2750 .idle = 1, 2751 }; 2752 2753 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2754 if (!IS_ERR(task)) { 2755 init_idle_pids(task); 2756 init_idle(task, cpu); 2757 } 2758 2759 return task; 2760 } 2761 2762 /* 2763 * This is like kernel_clone(), but shaved down and tailored to just 2764 * creating io_uring workers. It returns a created task, or an error pointer. 2765 * The returned task is inactive, and the caller must fire it up through 2766 * wake_up_new_task(p). All signals are blocked in the created task. 2767 */ 2768 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2769 { 2770 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2771 CLONE_IO; 2772 struct kernel_clone_args args = { 2773 .flags = ((lower_32_bits(flags) | CLONE_VM | 2774 CLONE_UNTRACED) & ~CSIGNAL), 2775 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2776 .fn = fn, 2777 .fn_arg = arg, 2778 .io_thread = 1, 2779 .user_worker = 1, 2780 }; 2781 2782 return copy_process(NULL, 0, node, &args); 2783 } 2784 2785 /* 2786 * Ok, this is the main fork-routine. 2787 * 2788 * It copies the process, and if successful kick-starts 2789 * it and waits for it to finish using the VM if required. 2790 * 2791 * args->exit_signal is expected to be checked for sanity by the caller. 2792 */ 2793 pid_t kernel_clone(struct kernel_clone_args *args) 2794 { 2795 u64 clone_flags = args->flags; 2796 struct completion vfork; 2797 struct pid *pid; 2798 struct task_struct *p; 2799 int trace = 0; 2800 pid_t nr; 2801 2802 /* 2803 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2804 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2805 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2806 * field in struct clone_args and it still doesn't make sense to have 2807 * them both point at the same memory location. Performing this check 2808 * here has the advantage that we don't need to have a separate helper 2809 * to check for legacy clone(). 2810 */ 2811 if ((clone_flags & CLONE_PIDFD) && 2812 (clone_flags & CLONE_PARENT_SETTID) && 2813 (args->pidfd == args->parent_tid)) 2814 return -EINVAL; 2815 2816 /* 2817 * Determine whether and which event to report to ptracer. When 2818 * called from kernel_thread or CLONE_UNTRACED is explicitly 2819 * requested, no event is reported; otherwise, report if the event 2820 * for the type of forking is enabled. 2821 */ 2822 if (!(clone_flags & CLONE_UNTRACED)) { 2823 if (clone_flags & CLONE_VFORK) 2824 trace = PTRACE_EVENT_VFORK; 2825 else if (args->exit_signal != SIGCHLD) 2826 trace = PTRACE_EVENT_CLONE; 2827 else 2828 trace = PTRACE_EVENT_FORK; 2829 2830 if (likely(!ptrace_event_enabled(current, trace))) 2831 trace = 0; 2832 } 2833 2834 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2835 add_latent_entropy(); 2836 2837 if (IS_ERR(p)) 2838 return PTR_ERR(p); 2839 2840 /* 2841 * Do this prior waking up the new thread - the thread pointer 2842 * might get invalid after that point, if the thread exits quickly. 2843 */ 2844 trace_sched_process_fork(current, p); 2845 2846 pid = get_task_pid(p, PIDTYPE_PID); 2847 nr = pid_vnr(pid); 2848 2849 if (clone_flags & CLONE_PARENT_SETTID) 2850 put_user(nr, args->parent_tid); 2851 2852 if (clone_flags & CLONE_VFORK) { 2853 p->vfork_done = &vfork; 2854 init_completion(&vfork); 2855 get_task_struct(p); 2856 } 2857 2858 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2859 /* lock the task to synchronize with memcg migration */ 2860 task_lock(p); 2861 lru_gen_add_mm(p->mm); 2862 task_unlock(p); 2863 } 2864 2865 wake_up_new_task(p); 2866 2867 /* forking complete and child started to run, tell ptracer */ 2868 if (unlikely(trace)) 2869 ptrace_event_pid(trace, pid); 2870 2871 if (clone_flags & CLONE_VFORK) { 2872 if (!wait_for_vfork_done(p, &vfork)) 2873 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2874 } 2875 2876 put_pid(pid); 2877 return nr; 2878 } 2879 2880 /* 2881 * Create a kernel thread. 2882 */ 2883 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2884 unsigned long flags) 2885 { 2886 struct kernel_clone_args args = { 2887 .flags = ((lower_32_bits(flags) | CLONE_VM | 2888 CLONE_UNTRACED) & ~CSIGNAL), 2889 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2890 .fn = fn, 2891 .fn_arg = arg, 2892 .name = name, 2893 .kthread = 1, 2894 }; 2895 2896 return kernel_clone(&args); 2897 } 2898 2899 /* 2900 * Create a user mode thread. 2901 */ 2902 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2903 { 2904 struct kernel_clone_args args = { 2905 .flags = ((lower_32_bits(flags) | CLONE_VM | 2906 CLONE_UNTRACED) & ~CSIGNAL), 2907 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2908 .fn = fn, 2909 .fn_arg = arg, 2910 }; 2911 2912 return kernel_clone(&args); 2913 } 2914 2915 #ifdef __ARCH_WANT_SYS_FORK 2916 SYSCALL_DEFINE0(fork) 2917 { 2918 #ifdef CONFIG_MMU 2919 struct kernel_clone_args args = { 2920 .exit_signal = SIGCHLD, 2921 }; 2922 2923 return kernel_clone(&args); 2924 #else 2925 /* can not support in nommu mode */ 2926 return -EINVAL; 2927 #endif 2928 } 2929 #endif 2930 2931 #ifdef __ARCH_WANT_SYS_VFORK 2932 SYSCALL_DEFINE0(vfork) 2933 { 2934 struct kernel_clone_args args = { 2935 .flags = CLONE_VFORK | CLONE_VM, 2936 .exit_signal = SIGCHLD, 2937 }; 2938 2939 return kernel_clone(&args); 2940 } 2941 #endif 2942 2943 #ifdef __ARCH_WANT_SYS_CLONE 2944 #ifdef CONFIG_CLONE_BACKWARDS 2945 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2946 int __user *, parent_tidptr, 2947 unsigned long, tls, 2948 int __user *, child_tidptr) 2949 #elif defined(CONFIG_CLONE_BACKWARDS2) 2950 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2951 int __user *, parent_tidptr, 2952 int __user *, child_tidptr, 2953 unsigned long, tls) 2954 #elif defined(CONFIG_CLONE_BACKWARDS3) 2955 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2956 int, stack_size, 2957 int __user *, parent_tidptr, 2958 int __user *, child_tidptr, 2959 unsigned long, tls) 2960 #else 2961 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2962 int __user *, parent_tidptr, 2963 int __user *, child_tidptr, 2964 unsigned long, tls) 2965 #endif 2966 { 2967 struct kernel_clone_args args = { 2968 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2969 .pidfd = parent_tidptr, 2970 .child_tid = child_tidptr, 2971 .parent_tid = parent_tidptr, 2972 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2973 .stack = newsp, 2974 .tls = tls, 2975 }; 2976 2977 return kernel_clone(&args); 2978 } 2979 #endif 2980 2981 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2982 struct clone_args __user *uargs, 2983 size_t usize) 2984 { 2985 int err; 2986 struct clone_args args; 2987 pid_t *kset_tid = kargs->set_tid; 2988 2989 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2990 CLONE_ARGS_SIZE_VER0); 2991 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2992 CLONE_ARGS_SIZE_VER1); 2993 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2994 CLONE_ARGS_SIZE_VER2); 2995 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2996 2997 if (unlikely(usize > PAGE_SIZE)) 2998 return -E2BIG; 2999 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3000 return -EINVAL; 3001 3002 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3003 if (err) 3004 return err; 3005 3006 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3007 return -EINVAL; 3008 3009 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3010 return -EINVAL; 3011 3012 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3013 return -EINVAL; 3014 3015 /* 3016 * Verify that higher 32bits of exit_signal are unset and that 3017 * it is a valid signal 3018 */ 3019 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3020 !valid_signal(args.exit_signal))) 3021 return -EINVAL; 3022 3023 if ((args.flags & CLONE_INTO_CGROUP) && 3024 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3025 return -EINVAL; 3026 3027 *kargs = (struct kernel_clone_args){ 3028 .flags = args.flags, 3029 .pidfd = u64_to_user_ptr(args.pidfd), 3030 .child_tid = u64_to_user_ptr(args.child_tid), 3031 .parent_tid = u64_to_user_ptr(args.parent_tid), 3032 .exit_signal = args.exit_signal, 3033 .stack = args.stack, 3034 .stack_size = args.stack_size, 3035 .tls = args.tls, 3036 .set_tid_size = args.set_tid_size, 3037 .cgroup = args.cgroup, 3038 }; 3039 3040 if (args.set_tid && 3041 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3042 (kargs->set_tid_size * sizeof(pid_t)))) 3043 return -EFAULT; 3044 3045 kargs->set_tid = kset_tid; 3046 3047 return 0; 3048 } 3049 3050 /** 3051 * clone3_stack_valid - check and prepare stack 3052 * @kargs: kernel clone args 3053 * 3054 * Verify that the stack arguments userspace gave us are sane. 3055 * In addition, set the stack direction for userspace since it's easy for us to 3056 * determine. 3057 */ 3058 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3059 { 3060 if (kargs->stack == 0) { 3061 if (kargs->stack_size > 0) 3062 return false; 3063 } else { 3064 if (kargs->stack_size == 0) 3065 return false; 3066 3067 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3068 return false; 3069 3070 #if !defined(CONFIG_STACK_GROWSUP) 3071 kargs->stack += kargs->stack_size; 3072 #endif 3073 } 3074 3075 return true; 3076 } 3077 3078 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3079 { 3080 /* Verify that no unknown flags are passed along. */ 3081 if (kargs->flags & 3082 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3083 return false; 3084 3085 /* 3086 * - make the CLONE_DETACHED bit reusable for clone3 3087 * - make the CSIGNAL bits reusable for clone3 3088 */ 3089 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3090 return false; 3091 3092 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3093 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3094 return false; 3095 3096 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3097 kargs->exit_signal) 3098 return false; 3099 3100 if (!clone3_stack_valid(kargs)) 3101 return false; 3102 3103 return true; 3104 } 3105 3106 /** 3107 * sys_clone3 - create a new process with specific properties 3108 * @uargs: argument structure 3109 * @size: size of @uargs 3110 * 3111 * clone3() is the extensible successor to clone()/clone2(). 3112 * It takes a struct as argument that is versioned by its size. 3113 * 3114 * Return: On success, a positive PID for the child process. 3115 * On error, a negative errno number. 3116 */ 3117 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3118 { 3119 int err; 3120 3121 struct kernel_clone_args kargs; 3122 pid_t set_tid[MAX_PID_NS_LEVEL]; 3123 3124 #ifdef __ARCH_BROKEN_SYS_CLONE3 3125 #warning clone3() entry point is missing, please fix 3126 return -ENOSYS; 3127 #endif 3128 3129 kargs.set_tid = set_tid; 3130 3131 err = copy_clone_args_from_user(&kargs, uargs, size); 3132 if (err) 3133 return err; 3134 3135 if (!clone3_args_valid(&kargs)) 3136 return -EINVAL; 3137 3138 return kernel_clone(&kargs); 3139 } 3140 3141 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3142 { 3143 struct task_struct *leader, *parent, *child; 3144 int res; 3145 3146 read_lock(&tasklist_lock); 3147 leader = top = top->group_leader; 3148 down: 3149 for_each_thread(leader, parent) { 3150 list_for_each_entry(child, &parent->children, sibling) { 3151 res = visitor(child, data); 3152 if (res) { 3153 if (res < 0) 3154 goto out; 3155 leader = child; 3156 goto down; 3157 } 3158 up: 3159 ; 3160 } 3161 } 3162 3163 if (leader != top) { 3164 child = leader; 3165 parent = child->real_parent; 3166 leader = parent->group_leader; 3167 goto up; 3168 } 3169 out: 3170 read_unlock(&tasklist_lock); 3171 } 3172 3173 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3174 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3175 #endif 3176 3177 static void sighand_ctor(void *data) 3178 { 3179 struct sighand_struct *sighand = data; 3180 3181 spin_lock_init(&sighand->siglock); 3182 init_waitqueue_head(&sighand->signalfd_wqh); 3183 } 3184 3185 void __init mm_cache_init(void) 3186 { 3187 unsigned int mm_size; 3188 3189 /* 3190 * The mm_cpumask is located at the end of mm_struct, and is 3191 * dynamically sized based on the maximum CPU number this system 3192 * can have, taking hotplug into account (nr_cpu_ids). 3193 */ 3194 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3195 3196 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3197 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3198 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3199 offsetof(struct mm_struct, saved_auxv), 3200 sizeof_field(struct mm_struct, saved_auxv), 3201 NULL); 3202 } 3203 3204 void __init proc_caches_init(void) 3205 { 3206 struct kmem_cache_args args = { 3207 .use_freeptr_offset = true, 3208 .freeptr_offset = offsetof(struct vm_area_struct, vm_freeptr), 3209 }; 3210 3211 sighand_cachep = kmem_cache_create("sighand_cache", 3212 sizeof(struct sighand_struct), 0, 3213 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3214 SLAB_ACCOUNT, sighand_ctor); 3215 signal_cachep = kmem_cache_create("signal_cache", 3216 sizeof(struct signal_struct), 0, 3217 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3218 NULL); 3219 files_cachep = kmem_cache_create("files_cache", 3220 sizeof(struct files_struct), 0, 3221 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3222 NULL); 3223 fs_cachep = kmem_cache_create("fs_cache", 3224 sizeof(struct fs_struct), 0, 3225 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3226 NULL); 3227 vm_area_cachep = kmem_cache_create("vm_area_struct", 3228 sizeof(struct vm_area_struct), &args, 3229 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3230 SLAB_ACCOUNT); 3231 mmap_init(); 3232 nsproxy_cache_init(); 3233 } 3234 3235 /* 3236 * Check constraints on flags passed to the unshare system call. 3237 */ 3238 static int check_unshare_flags(unsigned long unshare_flags) 3239 { 3240 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3241 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3242 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3243 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3244 CLONE_NEWTIME)) 3245 return -EINVAL; 3246 /* 3247 * Not implemented, but pretend it works if there is nothing 3248 * to unshare. Note that unsharing the address space or the 3249 * signal handlers also need to unshare the signal queues (aka 3250 * CLONE_THREAD). 3251 */ 3252 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3253 if (!thread_group_empty(current)) 3254 return -EINVAL; 3255 } 3256 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3257 if (refcount_read(¤t->sighand->count) > 1) 3258 return -EINVAL; 3259 } 3260 if (unshare_flags & CLONE_VM) { 3261 if (!current_is_single_threaded()) 3262 return -EINVAL; 3263 } 3264 3265 return 0; 3266 } 3267 3268 /* 3269 * Unshare the filesystem structure if it is being shared 3270 */ 3271 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3272 { 3273 struct fs_struct *fs = current->fs; 3274 3275 if (!(unshare_flags & CLONE_FS) || !fs) 3276 return 0; 3277 3278 /* don't need lock here; in the worst case we'll do useless copy */ 3279 if (fs->users == 1) 3280 return 0; 3281 3282 *new_fsp = copy_fs_struct(fs); 3283 if (!*new_fsp) 3284 return -ENOMEM; 3285 3286 return 0; 3287 } 3288 3289 /* 3290 * Unshare file descriptor table if it is being shared 3291 */ 3292 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3293 { 3294 struct files_struct *fd = current->files; 3295 3296 if ((unshare_flags & CLONE_FILES) && 3297 (fd && atomic_read(&fd->count) > 1)) { 3298 fd = dup_fd(fd, NULL); 3299 if (IS_ERR(fd)) 3300 return PTR_ERR(fd); 3301 *new_fdp = fd; 3302 } 3303 3304 return 0; 3305 } 3306 3307 /* 3308 * unshare allows a process to 'unshare' part of the process 3309 * context which was originally shared using clone. copy_* 3310 * functions used by kernel_clone() cannot be used here directly 3311 * because they modify an inactive task_struct that is being 3312 * constructed. Here we are modifying the current, active, 3313 * task_struct. 3314 */ 3315 int ksys_unshare(unsigned long unshare_flags) 3316 { 3317 struct fs_struct *fs, *new_fs = NULL; 3318 struct files_struct *new_fd = NULL; 3319 struct cred *new_cred = NULL; 3320 struct nsproxy *new_nsproxy = NULL; 3321 int do_sysvsem = 0; 3322 int err; 3323 3324 /* 3325 * If unsharing a user namespace must also unshare the thread group 3326 * and unshare the filesystem root and working directories. 3327 */ 3328 if (unshare_flags & CLONE_NEWUSER) 3329 unshare_flags |= CLONE_THREAD | CLONE_FS; 3330 /* 3331 * If unsharing vm, must also unshare signal handlers. 3332 */ 3333 if (unshare_flags & CLONE_VM) 3334 unshare_flags |= CLONE_SIGHAND; 3335 /* 3336 * If unsharing a signal handlers, must also unshare the signal queues. 3337 */ 3338 if (unshare_flags & CLONE_SIGHAND) 3339 unshare_flags |= CLONE_THREAD; 3340 /* 3341 * If unsharing namespace, must also unshare filesystem information. 3342 */ 3343 if (unshare_flags & CLONE_NEWNS) 3344 unshare_flags |= CLONE_FS; 3345 3346 err = check_unshare_flags(unshare_flags); 3347 if (err) 3348 goto bad_unshare_out; 3349 /* 3350 * CLONE_NEWIPC must also detach from the undolist: after switching 3351 * to a new ipc namespace, the semaphore arrays from the old 3352 * namespace are unreachable. 3353 */ 3354 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3355 do_sysvsem = 1; 3356 err = unshare_fs(unshare_flags, &new_fs); 3357 if (err) 3358 goto bad_unshare_out; 3359 err = unshare_fd(unshare_flags, &new_fd); 3360 if (err) 3361 goto bad_unshare_cleanup_fs; 3362 err = unshare_userns(unshare_flags, &new_cred); 3363 if (err) 3364 goto bad_unshare_cleanup_fd; 3365 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3366 new_cred, new_fs); 3367 if (err) 3368 goto bad_unshare_cleanup_cred; 3369 3370 if (new_cred) { 3371 err = set_cred_ucounts(new_cred); 3372 if (err) 3373 goto bad_unshare_cleanup_cred; 3374 } 3375 3376 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3377 if (do_sysvsem) { 3378 /* 3379 * CLONE_SYSVSEM is equivalent to sys_exit(). 3380 */ 3381 exit_sem(current); 3382 } 3383 if (unshare_flags & CLONE_NEWIPC) { 3384 /* Orphan segments in old ns (see sem above). */ 3385 exit_shm(current); 3386 shm_init_task(current); 3387 } 3388 3389 if (new_nsproxy) 3390 switch_task_namespaces(current, new_nsproxy); 3391 3392 task_lock(current); 3393 3394 if (new_fs) { 3395 fs = current->fs; 3396 spin_lock(&fs->lock); 3397 current->fs = new_fs; 3398 if (--fs->users) 3399 new_fs = NULL; 3400 else 3401 new_fs = fs; 3402 spin_unlock(&fs->lock); 3403 } 3404 3405 if (new_fd) 3406 swap(current->files, new_fd); 3407 3408 task_unlock(current); 3409 3410 if (new_cred) { 3411 /* Install the new user namespace */ 3412 commit_creds(new_cred); 3413 new_cred = NULL; 3414 } 3415 } 3416 3417 perf_event_namespaces(current); 3418 3419 bad_unshare_cleanup_cred: 3420 if (new_cred) 3421 put_cred(new_cred); 3422 bad_unshare_cleanup_fd: 3423 if (new_fd) 3424 put_files_struct(new_fd); 3425 3426 bad_unshare_cleanup_fs: 3427 if (new_fs) 3428 free_fs_struct(new_fs); 3429 3430 bad_unshare_out: 3431 return err; 3432 } 3433 3434 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3435 { 3436 return ksys_unshare(unshare_flags); 3437 } 3438 3439 /* 3440 * Helper to unshare the files of the current task. 3441 * We don't want to expose copy_files internals to 3442 * the exec layer of the kernel. 3443 */ 3444 3445 int unshare_files(void) 3446 { 3447 struct task_struct *task = current; 3448 struct files_struct *old, *copy = NULL; 3449 int error; 3450 3451 error = unshare_fd(CLONE_FILES, ©); 3452 if (error || !copy) 3453 return error; 3454 3455 old = task->files; 3456 task_lock(task); 3457 task->files = copy; 3458 task_unlock(task); 3459 put_files_struct(old); 3460 return 0; 3461 } 3462 3463 int sysctl_max_threads(const struct ctl_table *table, int write, 3464 void *buffer, size_t *lenp, loff_t *ppos) 3465 { 3466 struct ctl_table t; 3467 int ret; 3468 int threads = max_threads; 3469 int min = 1; 3470 int max = MAX_THREADS; 3471 3472 t = *table; 3473 t.data = &threads; 3474 t.extra1 = &min; 3475 t.extra2 = &max; 3476 3477 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3478 if (ret || !write) 3479 return ret; 3480 3481 max_threads = threads; 3482 3483 return 0; 3484 } 3485