1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 *new = data_race(*orig); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 release_user_cpus_ptr(tsk); 539 scs_release(tsk); 540 541 #ifndef CONFIG_THREAD_INFO_IN_TASK 542 /* 543 * The task is finally done with both the stack and thread_info, 544 * so free both. 545 */ 546 release_task_stack(tsk); 547 #else 548 /* 549 * If the task had a separate stack allocation, it should be gone 550 * by now. 551 */ 552 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 553 #endif 554 rt_mutex_debug_task_free(tsk); 555 ftrace_graph_exit_task(tsk); 556 arch_release_task_struct(tsk); 557 if (tsk->flags & PF_KTHREAD) 558 free_kthread_struct(tsk); 559 free_task_struct(tsk); 560 } 561 EXPORT_SYMBOL(free_task); 562 563 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 564 { 565 struct file *exe_file; 566 567 exe_file = get_mm_exe_file(oldmm); 568 RCU_INIT_POINTER(mm->exe_file, exe_file); 569 /* 570 * We depend on the oldmm having properly denied write access to the 571 * exe_file already. 572 */ 573 if (exe_file && deny_write_access(exe_file)) 574 pr_warn_once("deny_write_access() failed in %s\n", __func__); 575 } 576 577 #ifdef CONFIG_MMU 578 static __latent_entropy int dup_mmap(struct mm_struct *mm, 579 struct mm_struct *oldmm) 580 { 581 struct vm_area_struct *mpnt, *tmp; 582 int retval; 583 unsigned long charge = 0; 584 LIST_HEAD(uf); 585 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); 586 MA_STATE(mas, &mm->mm_mt, 0, 0); 587 588 uprobe_start_dup_mmap(); 589 if (mmap_write_lock_killable(oldmm)) { 590 retval = -EINTR; 591 goto fail_uprobe_end; 592 } 593 flush_cache_dup_mm(oldmm); 594 uprobe_dup_mmap(oldmm, mm); 595 /* 596 * Not linked in yet - no deadlock potential: 597 */ 598 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 599 600 /* No ordering required: file already has been exposed. */ 601 dup_mm_exe_file(mm, oldmm); 602 603 mm->total_vm = oldmm->total_vm; 604 mm->data_vm = oldmm->data_vm; 605 mm->exec_vm = oldmm->exec_vm; 606 mm->stack_vm = oldmm->stack_vm; 607 608 retval = ksm_fork(mm, oldmm); 609 if (retval) 610 goto out; 611 khugepaged_fork(mm, oldmm); 612 613 retval = mas_expected_entries(&mas, oldmm->map_count); 614 if (retval) 615 goto out; 616 617 mas_for_each(&old_mas, mpnt, ULONG_MAX) { 618 struct file *file; 619 620 if (mpnt->vm_flags & VM_DONTCOPY) { 621 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 622 continue; 623 } 624 charge = 0; 625 /* 626 * Don't duplicate many vmas if we've been oom-killed (for 627 * example) 628 */ 629 if (fatal_signal_pending(current)) { 630 retval = -EINTR; 631 goto loop_out; 632 } 633 if (mpnt->vm_flags & VM_ACCOUNT) { 634 unsigned long len = vma_pages(mpnt); 635 636 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 637 goto fail_nomem; 638 charge = len; 639 } 640 tmp = vm_area_dup(mpnt); 641 if (!tmp) 642 goto fail_nomem; 643 retval = vma_dup_policy(mpnt, tmp); 644 if (retval) 645 goto fail_nomem_policy; 646 tmp->vm_mm = mm; 647 retval = dup_userfaultfd(tmp, &uf); 648 if (retval) 649 goto fail_nomem_anon_vma_fork; 650 if (tmp->vm_flags & VM_WIPEONFORK) { 651 /* 652 * VM_WIPEONFORK gets a clean slate in the child. 653 * Don't prepare anon_vma until fault since we don't 654 * copy page for current vma. 655 */ 656 tmp->anon_vma = NULL; 657 } else if (anon_vma_fork(tmp, mpnt)) 658 goto fail_nomem_anon_vma_fork; 659 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 660 file = tmp->vm_file; 661 if (file) { 662 struct address_space *mapping = file->f_mapping; 663 664 get_file(file); 665 i_mmap_lock_write(mapping); 666 if (tmp->vm_flags & VM_SHARED) 667 mapping_allow_writable(mapping); 668 flush_dcache_mmap_lock(mapping); 669 /* insert tmp into the share list, just after mpnt */ 670 vma_interval_tree_insert_after(tmp, mpnt, 671 &mapping->i_mmap); 672 flush_dcache_mmap_unlock(mapping); 673 i_mmap_unlock_write(mapping); 674 } 675 676 /* 677 * Copy/update hugetlb private vma information. 678 */ 679 if (is_vm_hugetlb_page(tmp)) 680 hugetlb_dup_vma_private(tmp); 681 682 /* Link the vma into the MT */ 683 mas.index = tmp->vm_start; 684 mas.last = tmp->vm_end - 1; 685 mas_store(&mas, tmp); 686 if (mas_is_err(&mas)) 687 goto fail_nomem_mas_store; 688 689 mm->map_count++; 690 if (!(tmp->vm_flags & VM_WIPEONFORK)) 691 retval = copy_page_range(tmp, mpnt); 692 693 if (tmp->vm_ops && tmp->vm_ops->open) 694 tmp->vm_ops->open(tmp); 695 696 if (retval) 697 goto loop_out; 698 } 699 /* a new mm has just been created */ 700 retval = arch_dup_mmap(oldmm, mm); 701 loop_out: 702 mas_destroy(&mas); 703 out: 704 mmap_write_unlock(mm); 705 flush_tlb_mm(oldmm); 706 mmap_write_unlock(oldmm); 707 dup_userfaultfd_complete(&uf); 708 fail_uprobe_end: 709 uprobe_end_dup_mmap(); 710 return retval; 711 712 fail_nomem_mas_store: 713 unlink_anon_vmas(tmp); 714 fail_nomem_anon_vma_fork: 715 mpol_put(vma_policy(tmp)); 716 fail_nomem_policy: 717 vm_area_free(tmp); 718 fail_nomem: 719 retval = -ENOMEM; 720 vm_unacct_memory(charge); 721 goto loop_out; 722 } 723 724 static inline int mm_alloc_pgd(struct mm_struct *mm) 725 { 726 mm->pgd = pgd_alloc(mm); 727 if (unlikely(!mm->pgd)) 728 return -ENOMEM; 729 return 0; 730 } 731 732 static inline void mm_free_pgd(struct mm_struct *mm) 733 { 734 pgd_free(mm, mm->pgd); 735 } 736 #else 737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 738 { 739 mmap_write_lock(oldmm); 740 dup_mm_exe_file(mm, oldmm); 741 mmap_write_unlock(oldmm); 742 return 0; 743 } 744 #define mm_alloc_pgd(mm) (0) 745 #define mm_free_pgd(mm) 746 #endif /* CONFIG_MMU */ 747 748 static void check_mm(struct mm_struct *mm) 749 { 750 int i; 751 752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 753 "Please make sure 'struct resident_page_types[]' is updated as well"); 754 755 for (i = 0; i < NR_MM_COUNTERS; i++) { 756 long x = atomic_long_read(&mm->rss_stat.count[i]); 757 758 if (unlikely(x)) 759 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 760 mm, resident_page_types[i], x); 761 } 762 763 if (mm_pgtables_bytes(mm)) 764 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 765 mm_pgtables_bytes(mm)); 766 767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 768 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 769 #endif 770 } 771 772 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 773 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 774 775 /* 776 * Called when the last reference to the mm 777 * is dropped: either by a lazy thread or by 778 * mmput. Free the page directory and the mm. 779 */ 780 void __mmdrop(struct mm_struct *mm) 781 { 782 BUG_ON(mm == &init_mm); 783 WARN_ON_ONCE(mm == current->mm); 784 WARN_ON_ONCE(mm == current->active_mm); 785 mm_free_pgd(mm); 786 destroy_context(mm); 787 mmu_notifier_subscriptions_destroy(mm); 788 check_mm(mm); 789 put_user_ns(mm->user_ns); 790 mm_pasid_drop(mm); 791 free_mm(mm); 792 } 793 EXPORT_SYMBOL_GPL(__mmdrop); 794 795 static void mmdrop_async_fn(struct work_struct *work) 796 { 797 struct mm_struct *mm; 798 799 mm = container_of(work, struct mm_struct, async_put_work); 800 __mmdrop(mm); 801 } 802 803 static void mmdrop_async(struct mm_struct *mm) 804 { 805 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 806 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 807 schedule_work(&mm->async_put_work); 808 } 809 } 810 811 static inline void free_signal_struct(struct signal_struct *sig) 812 { 813 taskstats_tgid_free(sig); 814 sched_autogroup_exit(sig); 815 /* 816 * __mmdrop is not safe to call from softirq context on x86 due to 817 * pgd_dtor so postpone it to the async context 818 */ 819 if (sig->oom_mm) 820 mmdrop_async(sig->oom_mm); 821 kmem_cache_free(signal_cachep, sig); 822 } 823 824 static inline void put_signal_struct(struct signal_struct *sig) 825 { 826 if (refcount_dec_and_test(&sig->sigcnt)) 827 free_signal_struct(sig); 828 } 829 830 void __put_task_struct(struct task_struct *tsk) 831 { 832 WARN_ON(!tsk->exit_state); 833 WARN_ON(refcount_read(&tsk->usage)); 834 WARN_ON(tsk == current); 835 836 io_uring_free(tsk); 837 cgroup_free(tsk); 838 task_numa_free(tsk, true); 839 security_task_free(tsk); 840 bpf_task_storage_free(tsk); 841 exit_creds(tsk); 842 delayacct_tsk_free(tsk); 843 put_signal_struct(tsk->signal); 844 sched_core_free(tsk); 845 free_task(tsk); 846 } 847 EXPORT_SYMBOL_GPL(__put_task_struct); 848 849 void __init __weak arch_task_cache_init(void) { } 850 851 /* 852 * set_max_threads 853 */ 854 static void set_max_threads(unsigned int max_threads_suggested) 855 { 856 u64 threads; 857 unsigned long nr_pages = totalram_pages(); 858 859 /* 860 * The number of threads shall be limited such that the thread 861 * structures may only consume a small part of the available memory. 862 */ 863 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 864 threads = MAX_THREADS; 865 else 866 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 867 (u64) THREAD_SIZE * 8UL); 868 869 if (threads > max_threads_suggested) 870 threads = max_threads_suggested; 871 872 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 873 } 874 875 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 876 /* Initialized by the architecture: */ 877 int arch_task_struct_size __read_mostly; 878 #endif 879 880 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 881 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 882 { 883 /* Fetch thread_struct whitelist for the architecture. */ 884 arch_thread_struct_whitelist(offset, size); 885 886 /* 887 * Handle zero-sized whitelist or empty thread_struct, otherwise 888 * adjust offset to position of thread_struct in task_struct. 889 */ 890 if (unlikely(*size == 0)) 891 *offset = 0; 892 else 893 *offset += offsetof(struct task_struct, thread); 894 } 895 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 896 897 void __init fork_init(void) 898 { 899 int i; 900 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 901 #ifndef ARCH_MIN_TASKALIGN 902 #define ARCH_MIN_TASKALIGN 0 903 #endif 904 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 905 unsigned long useroffset, usersize; 906 907 /* create a slab on which task_structs can be allocated */ 908 task_struct_whitelist(&useroffset, &usersize); 909 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 910 arch_task_struct_size, align, 911 SLAB_PANIC|SLAB_ACCOUNT, 912 useroffset, usersize, NULL); 913 #endif 914 915 /* do the arch specific task caches init */ 916 arch_task_cache_init(); 917 918 set_max_threads(MAX_THREADS); 919 920 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 921 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 922 init_task.signal->rlim[RLIMIT_SIGPENDING] = 923 init_task.signal->rlim[RLIMIT_NPROC]; 924 925 for (i = 0; i < UCOUNT_COUNTS; i++) 926 init_user_ns.ucount_max[i] = max_threads/2; 927 928 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 929 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 930 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 931 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 932 933 #ifdef CONFIG_VMAP_STACK 934 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 935 NULL, free_vm_stack_cache); 936 #endif 937 938 scs_init(); 939 940 lockdep_init_task(&init_task); 941 uprobes_init(); 942 } 943 944 int __weak arch_dup_task_struct(struct task_struct *dst, 945 struct task_struct *src) 946 { 947 *dst = *src; 948 return 0; 949 } 950 951 void set_task_stack_end_magic(struct task_struct *tsk) 952 { 953 unsigned long *stackend; 954 955 stackend = end_of_stack(tsk); 956 *stackend = STACK_END_MAGIC; /* for overflow detection */ 957 } 958 959 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 960 { 961 struct task_struct *tsk; 962 int err; 963 964 if (node == NUMA_NO_NODE) 965 node = tsk_fork_get_node(orig); 966 tsk = alloc_task_struct_node(node); 967 if (!tsk) 968 return NULL; 969 970 err = arch_dup_task_struct(tsk, orig); 971 if (err) 972 goto free_tsk; 973 974 err = alloc_thread_stack_node(tsk, node); 975 if (err) 976 goto free_tsk; 977 978 #ifdef CONFIG_THREAD_INFO_IN_TASK 979 refcount_set(&tsk->stack_refcount, 1); 980 #endif 981 account_kernel_stack(tsk, 1); 982 983 err = scs_prepare(tsk, node); 984 if (err) 985 goto free_stack; 986 987 #ifdef CONFIG_SECCOMP 988 /* 989 * We must handle setting up seccomp filters once we're under 990 * the sighand lock in case orig has changed between now and 991 * then. Until then, filter must be NULL to avoid messing up 992 * the usage counts on the error path calling free_task. 993 */ 994 tsk->seccomp.filter = NULL; 995 #endif 996 997 setup_thread_stack(tsk, orig); 998 clear_user_return_notifier(tsk); 999 clear_tsk_need_resched(tsk); 1000 set_task_stack_end_magic(tsk); 1001 clear_syscall_work_syscall_user_dispatch(tsk); 1002 1003 #ifdef CONFIG_STACKPROTECTOR 1004 tsk->stack_canary = get_random_canary(); 1005 #endif 1006 if (orig->cpus_ptr == &orig->cpus_mask) 1007 tsk->cpus_ptr = &tsk->cpus_mask; 1008 dup_user_cpus_ptr(tsk, orig, node); 1009 1010 /* 1011 * One for the user space visible state that goes away when reaped. 1012 * One for the scheduler. 1013 */ 1014 refcount_set(&tsk->rcu_users, 2); 1015 /* One for the rcu users */ 1016 refcount_set(&tsk->usage, 1); 1017 #ifdef CONFIG_BLK_DEV_IO_TRACE 1018 tsk->btrace_seq = 0; 1019 #endif 1020 tsk->splice_pipe = NULL; 1021 tsk->task_frag.page = NULL; 1022 tsk->wake_q.next = NULL; 1023 tsk->worker_private = NULL; 1024 1025 kcov_task_init(tsk); 1026 kmsan_task_create(tsk); 1027 kmap_local_fork(tsk); 1028 1029 #ifdef CONFIG_FAULT_INJECTION 1030 tsk->fail_nth = 0; 1031 #endif 1032 1033 #ifdef CONFIG_BLK_CGROUP 1034 tsk->throttle_queue = NULL; 1035 tsk->use_memdelay = 0; 1036 #endif 1037 1038 #ifdef CONFIG_IOMMU_SVA 1039 tsk->pasid_activated = 0; 1040 #endif 1041 1042 #ifdef CONFIG_MEMCG 1043 tsk->active_memcg = NULL; 1044 #endif 1045 1046 #ifdef CONFIG_CPU_SUP_INTEL 1047 tsk->reported_split_lock = 0; 1048 #endif 1049 1050 return tsk; 1051 1052 free_stack: 1053 exit_task_stack_account(tsk); 1054 free_thread_stack(tsk); 1055 free_tsk: 1056 free_task_struct(tsk); 1057 return NULL; 1058 } 1059 1060 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1061 1062 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1063 1064 static int __init coredump_filter_setup(char *s) 1065 { 1066 default_dump_filter = 1067 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1068 MMF_DUMP_FILTER_MASK; 1069 return 1; 1070 } 1071 1072 __setup("coredump_filter=", coredump_filter_setup); 1073 1074 #include <linux/init_task.h> 1075 1076 static void mm_init_aio(struct mm_struct *mm) 1077 { 1078 #ifdef CONFIG_AIO 1079 spin_lock_init(&mm->ioctx_lock); 1080 mm->ioctx_table = NULL; 1081 #endif 1082 } 1083 1084 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1085 struct task_struct *p) 1086 { 1087 #ifdef CONFIG_MEMCG 1088 if (mm->owner == p) 1089 WRITE_ONCE(mm->owner, NULL); 1090 #endif 1091 } 1092 1093 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1094 { 1095 #ifdef CONFIG_MEMCG 1096 mm->owner = p; 1097 #endif 1098 } 1099 1100 static void mm_init_uprobes_state(struct mm_struct *mm) 1101 { 1102 #ifdef CONFIG_UPROBES 1103 mm->uprobes_state.xol_area = NULL; 1104 #endif 1105 } 1106 1107 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1108 struct user_namespace *user_ns) 1109 { 1110 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1111 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1112 atomic_set(&mm->mm_users, 1); 1113 atomic_set(&mm->mm_count, 1); 1114 seqcount_init(&mm->write_protect_seq); 1115 mmap_init_lock(mm); 1116 INIT_LIST_HEAD(&mm->mmlist); 1117 mm_pgtables_bytes_init(mm); 1118 mm->map_count = 0; 1119 mm->locked_vm = 0; 1120 atomic64_set(&mm->pinned_vm, 0); 1121 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1122 spin_lock_init(&mm->page_table_lock); 1123 spin_lock_init(&mm->arg_lock); 1124 mm_init_cpumask(mm); 1125 mm_init_aio(mm); 1126 mm_init_owner(mm, p); 1127 mm_pasid_init(mm); 1128 RCU_INIT_POINTER(mm->exe_file, NULL); 1129 mmu_notifier_subscriptions_init(mm); 1130 init_tlb_flush_pending(mm); 1131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1132 mm->pmd_huge_pte = NULL; 1133 #endif 1134 mm_init_uprobes_state(mm); 1135 hugetlb_count_init(mm); 1136 1137 if (current->mm) { 1138 mm->flags = current->mm->flags & MMF_INIT_MASK; 1139 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1140 } else { 1141 mm->flags = default_dump_filter; 1142 mm->def_flags = 0; 1143 } 1144 1145 if (mm_alloc_pgd(mm)) 1146 goto fail_nopgd; 1147 1148 if (init_new_context(p, mm)) 1149 goto fail_nocontext; 1150 1151 mm->user_ns = get_user_ns(user_ns); 1152 lru_gen_init_mm(mm); 1153 return mm; 1154 1155 fail_nocontext: 1156 mm_free_pgd(mm); 1157 fail_nopgd: 1158 free_mm(mm); 1159 return NULL; 1160 } 1161 1162 /* 1163 * Allocate and initialize an mm_struct. 1164 */ 1165 struct mm_struct *mm_alloc(void) 1166 { 1167 struct mm_struct *mm; 1168 1169 mm = allocate_mm(); 1170 if (!mm) 1171 return NULL; 1172 1173 memset(mm, 0, sizeof(*mm)); 1174 return mm_init(mm, current, current_user_ns()); 1175 } 1176 1177 static inline void __mmput(struct mm_struct *mm) 1178 { 1179 VM_BUG_ON(atomic_read(&mm->mm_users)); 1180 1181 uprobe_clear_state(mm); 1182 exit_aio(mm); 1183 ksm_exit(mm); 1184 khugepaged_exit(mm); /* must run before exit_mmap */ 1185 exit_mmap(mm); 1186 mm_put_huge_zero_page(mm); 1187 set_mm_exe_file(mm, NULL); 1188 if (!list_empty(&mm->mmlist)) { 1189 spin_lock(&mmlist_lock); 1190 list_del(&mm->mmlist); 1191 spin_unlock(&mmlist_lock); 1192 } 1193 if (mm->binfmt) 1194 module_put(mm->binfmt->module); 1195 lru_gen_del_mm(mm); 1196 mmdrop(mm); 1197 } 1198 1199 /* 1200 * Decrement the use count and release all resources for an mm. 1201 */ 1202 void mmput(struct mm_struct *mm) 1203 { 1204 might_sleep(); 1205 1206 if (atomic_dec_and_test(&mm->mm_users)) 1207 __mmput(mm); 1208 } 1209 EXPORT_SYMBOL_GPL(mmput); 1210 1211 #ifdef CONFIG_MMU 1212 static void mmput_async_fn(struct work_struct *work) 1213 { 1214 struct mm_struct *mm = container_of(work, struct mm_struct, 1215 async_put_work); 1216 1217 __mmput(mm); 1218 } 1219 1220 void mmput_async(struct mm_struct *mm) 1221 { 1222 if (atomic_dec_and_test(&mm->mm_users)) { 1223 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1224 schedule_work(&mm->async_put_work); 1225 } 1226 } 1227 EXPORT_SYMBOL_GPL(mmput_async); 1228 #endif 1229 1230 /** 1231 * set_mm_exe_file - change a reference to the mm's executable file 1232 * 1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1234 * 1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1236 * invocations: in mmput() nobody alive left, in execve task is single 1237 * threaded. 1238 * 1239 * Can only fail if new_exe_file != NULL. 1240 */ 1241 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1242 { 1243 struct file *old_exe_file; 1244 1245 /* 1246 * It is safe to dereference the exe_file without RCU as 1247 * this function is only called if nobody else can access 1248 * this mm -- see comment above for justification. 1249 */ 1250 old_exe_file = rcu_dereference_raw(mm->exe_file); 1251 1252 if (new_exe_file) { 1253 /* 1254 * We expect the caller (i.e., sys_execve) to already denied 1255 * write access, so this is unlikely to fail. 1256 */ 1257 if (unlikely(deny_write_access(new_exe_file))) 1258 return -EACCES; 1259 get_file(new_exe_file); 1260 } 1261 rcu_assign_pointer(mm->exe_file, new_exe_file); 1262 if (old_exe_file) { 1263 allow_write_access(old_exe_file); 1264 fput(old_exe_file); 1265 } 1266 return 0; 1267 } 1268 1269 /** 1270 * replace_mm_exe_file - replace a reference to the mm's executable file 1271 * 1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1273 * dealing with concurrent invocation and without grabbing the mmap lock in 1274 * write mode. 1275 * 1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1277 */ 1278 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1279 { 1280 struct vm_area_struct *vma; 1281 struct file *old_exe_file; 1282 int ret = 0; 1283 1284 /* Forbid mm->exe_file change if old file still mapped. */ 1285 old_exe_file = get_mm_exe_file(mm); 1286 if (old_exe_file) { 1287 VMA_ITERATOR(vmi, mm, 0); 1288 mmap_read_lock(mm); 1289 for_each_vma(vmi, vma) { 1290 if (!vma->vm_file) 1291 continue; 1292 if (path_equal(&vma->vm_file->f_path, 1293 &old_exe_file->f_path)) { 1294 ret = -EBUSY; 1295 break; 1296 } 1297 } 1298 mmap_read_unlock(mm); 1299 fput(old_exe_file); 1300 if (ret) 1301 return ret; 1302 } 1303 1304 /* set the new file, lockless */ 1305 ret = deny_write_access(new_exe_file); 1306 if (ret) 1307 return -EACCES; 1308 get_file(new_exe_file); 1309 1310 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1311 if (old_exe_file) { 1312 /* 1313 * Don't race with dup_mmap() getting the file and disallowing 1314 * write access while someone might open the file writable. 1315 */ 1316 mmap_read_lock(mm); 1317 allow_write_access(old_exe_file); 1318 fput(old_exe_file); 1319 mmap_read_unlock(mm); 1320 } 1321 return 0; 1322 } 1323 1324 /** 1325 * get_mm_exe_file - acquire a reference to the mm's executable file 1326 * 1327 * Returns %NULL if mm has no associated executable file. 1328 * User must release file via fput(). 1329 */ 1330 struct file *get_mm_exe_file(struct mm_struct *mm) 1331 { 1332 struct file *exe_file; 1333 1334 rcu_read_lock(); 1335 exe_file = rcu_dereference(mm->exe_file); 1336 if (exe_file && !get_file_rcu(exe_file)) 1337 exe_file = NULL; 1338 rcu_read_unlock(); 1339 return exe_file; 1340 } 1341 1342 /** 1343 * get_task_exe_file - acquire a reference to the task's executable file 1344 * 1345 * Returns %NULL if task's mm (if any) has no associated executable file or 1346 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1347 * User must release file via fput(). 1348 */ 1349 struct file *get_task_exe_file(struct task_struct *task) 1350 { 1351 struct file *exe_file = NULL; 1352 struct mm_struct *mm; 1353 1354 task_lock(task); 1355 mm = task->mm; 1356 if (mm) { 1357 if (!(task->flags & PF_KTHREAD)) 1358 exe_file = get_mm_exe_file(mm); 1359 } 1360 task_unlock(task); 1361 return exe_file; 1362 } 1363 1364 /** 1365 * get_task_mm - acquire a reference to the task's mm 1366 * 1367 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1368 * this kernel workthread has transiently adopted a user mm with use_mm, 1369 * to do its AIO) is not set and if so returns a reference to it, after 1370 * bumping up the use count. User must release the mm via mmput() 1371 * after use. Typically used by /proc and ptrace. 1372 */ 1373 struct mm_struct *get_task_mm(struct task_struct *task) 1374 { 1375 struct mm_struct *mm; 1376 1377 task_lock(task); 1378 mm = task->mm; 1379 if (mm) { 1380 if (task->flags & PF_KTHREAD) 1381 mm = NULL; 1382 else 1383 mmget(mm); 1384 } 1385 task_unlock(task); 1386 return mm; 1387 } 1388 EXPORT_SYMBOL_GPL(get_task_mm); 1389 1390 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1391 { 1392 struct mm_struct *mm; 1393 int err; 1394 1395 err = down_read_killable(&task->signal->exec_update_lock); 1396 if (err) 1397 return ERR_PTR(err); 1398 1399 mm = get_task_mm(task); 1400 if (mm && mm != current->mm && 1401 !ptrace_may_access(task, mode)) { 1402 mmput(mm); 1403 mm = ERR_PTR(-EACCES); 1404 } 1405 up_read(&task->signal->exec_update_lock); 1406 1407 return mm; 1408 } 1409 1410 static void complete_vfork_done(struct task_struct *tsk) 1411 { 1412 struct completion *vfork; 1413 1414 task_lock(tsk); 1415 vfork = tsk->vfork_done; 1416 if (likely(vfork)) { 1417 tsk->vfork_done = NULL; 1418 complete(vfork); 1419 } 1420 task_unlock(tsk); 1421 } 1422 1423 static int wait_for_vfork_done(struct task_struct *child, 1424 struct completion *vfork) 1425 { 1426 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1427 int killed; 1428 1429 cgroup_enter_frozen(); 1430 killed = wait_for_completion_state(vfork, state); 1431 cgroup_leave_frozen(false); 1432 1433 if (killed) { 1434 task_lock(child); 1435 child->vfork_done = NULL; 1436 task_unlock(child); 1437 } 1438 1439 put_task_struct(child); 1440 return killed; 1441 } 1442 1443 /* Please note the differences between mmput and mm_release. 1444 * mmput is called whenever we stop holding onto a mm_struct, 1445 * error success whatever. 1446 * 1447 * mm_release is called after a mm_struct has been removed 1448 * from the current process. 1449 * 1450 * This difference is important for error handling, when we 1451 * only half set up a mm_struct for a new process and need to restore 1452 * the old one. Because we mmput the new mm_struct before 1453 * restoring the old one. . . 1454 * Eric Biederman 10 January 1998 1455 */ 1456 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1457 { 1458 uprobe_free_utask(tsk); 1459 1460 /* Get rid of any cached register state */ 1461 deactivate_mm(tsk, mm); 1462 1463 /* 1464 * Signal userspace if we're not exiting with a core dump 1465 * because we want to leave the value intact for debugging 1466 * purposes. 1467 */ 1468 if (tsk->clear_child_tid) { 1469 if (atomic_read(&mm->mm_users) > 1) { 1470 /* 1471 * We don't check the error code - if userspace has 1472 * not set up a proper pointer then tough luck. 1473 */ 1474 put_user(0, tsk->clear_child_tid); 1475 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1476 1, NULL, NULL, 0, 0); 1477 } 1478 tsk->clear_child_tid = NULL; 1479 } 1480 1481 /* 1482 * All done, finally we can wake up parent and return this mm to him. 1483 * Also kthread_stop() uses this completion for synchronization. 1484 */ 1485 if (tsk->vfork_done) 1486 complete_vfork_done(tsk); 1487 } 1488 1489 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1490 { 1491 futex_exit_release(tsk); 1492 mm_release(tsk, mm); 1493 } 1494 1495 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1496 { 1497 futex_exec_release(tsk); 1498 mm_release(tsk, mm); 1499 } 1500 1501 /** 1502 * dup_mm() - duplicates an existing mm structure 1503 * @tsk: the task_struct with which the new mm will be associated. 1504 * @oldmm: the mm to duplicate. 1505 * 1506 * Allocates a new mm structure and duplicates the provided @oldmm structure 1507 * content into it. 1508 * 1509 * Return: the duplicated mm or NULL on failure. 1510 */ 1511 static struct mm_struct *dup_mm(struct task_struct *tsk, 1512 struct mm_struct *oldmm) 1513 { 1514 struct mm_struct *mm; 1515 int err; 1516 1517 mm = allocate_mm(); 1518 if (!mm) 1519 goto fail_nomem; 1520 1521 memcpy(mm, oldmm, sizeof(*mm)); 1522 1523 if (!mm_init(mm, tsk, mm->user_ns)) 1524 goto fail_nomem; 1525 1526 err = dup_mmap(mm, oldmm); 1527 if (err) 1528 goto free_pt; 1529 1530 mm->hiwater_rss = get_mm_rss(mm); 1531 mm->hiwater_vm = mm->total_vm; 1532 1533 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1534 goto free_pt; 1535 1536 return mm; 1537 1538 free_pt: 1539 /* don't put binfmt in mmput, we haven't got module yet */ 1540 mm->binfmt = NULL; 1541 mm_init_owner(mm, NULL); 1542 mmput(mm); 1543 1544 fail_nomem: 1545 return NULL; 1546 } 1547 1548 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1549 { 1550 struct mm_struct *mm, *oldmm; 1551 1552 tsk->min_flt = tsk->maj_flt = 0; 1553 tsk->nvcsw = tsk->nivcsw = 0; 1554 #ifdef CONFIG_DETECT_HUNG_TASK 1555 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1556 tsk->last_switch_time = 0; 1557 #endif 1558 1559 tsk->mm = NULL; 1560 tsk->active_mm = NULL; 1561 1562 /* 1563 * Are we cloning a kernel thread? 1564 * 1565 * We need to steal a active VM for that.. 1566 */ 1567 oldmm = current->mm; 1568 if (!oldmm) 1569 return 0; 1570 1571 if (clone_flags & CLONE_VM) { 1572 mmget(oldmm); 1573 mm = oldmm; 1574 } else { 1575 mm = dup_mm(tsk, current->mm); 1576 if (!mm) 1577 return -ENOMEM; 1578 } 1579 1580 tsk->mm = mm; 1581 tsk->active_mm = mm; 1582 return 0; 1583 } 1584 1585 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1586 { 1587 struct fs_struct *fs = current->fs; 1588 if (clone_flags & CLONE_FS) { 1589 /* tsk->fs is already what we want */ 1590 spin_lock(&fs->lock); 1591 if (fs->in_exec) { 1592 spin_unlock(&fs->lock); 1593 return -EAGAIN; 1594 } 1595 fs->users++; 1596 spin_unlock(&fs->lock); 1597 return 0; 1598 } 1599 tsk->fs = copy_fs_struct(fs); 1600 if (!tsk->fs) 1601 return -ENOMEM; 1602 return 0; 1603 } 1604 1605 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1606 { 1607 struct files_struct *oldf, *newf; 1608 int error = 0; 1609 1610 /* 1611 * A background process may not have any files ... 1612 */ 1613 oldf = current->files; 1614 if (!oldf) 1615 goto out; 1616 1617 if (clone_flags & CLONE_FILES) { 1618 atomic_inc(&oldf->count); 1619 goto out; 1620 } 1621 1622 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1623 if (!newf) 1624 goto out; 1625 1626 tsk->files = newf; 1627 error = 0; 1628 out: 1629 return error; 1630 } 1631 1632 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1633 { 1634 struct sighand_struct *sig; 1635 1636 if (clone_flags & CLONE_SIGHAND) { 1637 refcount_inc(¤t->sighand->count); 1638 return 0; 1639 } 1640 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1641 RCU_INIT_POINTER(tsk->sighand, sig); 1642 if (!sig) 1643 return -ENOMEM; 1644 1645 refcount_set(&sig->count, 1); 1646 spin_lock_irq(¤t->sighand->siglock); 1647 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1648 spin_unlock_irq(¤t->sighand->siglock); 1649 1650 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1651 if (clone_flags & CLONE_CLEAR_SIGHAND) 1652 flush_signal_handlers(tsk, 0); 1653 1654 return 0; 1655 } 1656 1657 void __cleanup_sighand(struct sighand_struct *sighand) 1658 { 1659 if (refcount_dec_and_test(&sighand->count)) { 1660 signalfd_cleanup(sighand); 1661 /* 1662 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1663 * without an RCU grace period, see __lock_task_sighand(). 1664 */ 1665 kmem_cache_free(sighand_cachep, sighand); 1666 } 1667 } 1668 1669 /* 1670 * Initialize POSIX timer handling for a thread group. 1671 */ 1672 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1673 { 1674 struct posix_cputimers *pct = &sig->posix_cputimers; 1675 unsigned long cpu_limit; 1676 1677 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1678 posix_cputimers_group_init(pct, cpu_limit); 1679 } 1680 1681 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1682 { 1683 struct signal_struct *sig; 1684 1685 if (clone_flags & CLONE_THREAD) 1686 return 0; 1687 1688 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1689 tsk->signal = sig; 1690 if (!sig) 1691 return -ENOMEM; 1692 1693 sig->nr_threads = 1; 1694 sig->quick_threads = 1; 1695 atomic_set(&sig->live, 1); 1696 refcount_set(&sig->sigcnt, 1); 1697 1698 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1699 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1700 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1701 1702 init_waitqueue_head(&sig->wait_chldexit); 1703 sig->curr_target = tsk; 1704 init_sigpending(&sig->shared_pending); 1705 INIT_HLIST_HEAD(&sig->multiprocess); 1706 seqlock_init(&sig->stats_lock); 1707 prev_cputime_init(&sig->prev_cputime); 1708 1709 #ifdef CONFIG_POSIX_TIMERS 1710 INIT_LIST_HEAD(&sig->posix_timers); 1711 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1712 sig->real_timer.function = it_real_fn; 1713 #endif 1714 1715 task_lock(current->group_leader); 1716 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1717 task_unlock(current->group_leader); 1718 1719 posix_cpu_timers_init_group(sig); 1720 1721 tty_audit_fork(sig); 1722 sched_autogroup_fork(sig); 1723 1724 sig->oom_score_adj = current->signal->oom_score_adj; 1725 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1726 1727 mutex_init(&sig->cred_guard_mutex); 1728 init_rwsem(&sig->exec_update_lock); 1729 1730 return 0; 1731 } 1732 1733 static void copy_seccomp(struct task_struct *p) 1734 { 1735 #ifdef CONFIG_SECCOMP 1736 /* 1737 * Must be called with sighand->lock held, which is common to 1738 * all threads in the group. Holding cred_guard_mutex is not 1739 * needed because this new task is not yet running and cannot 1740 * be racing exec. 1741 */ 1742 assert_spin_locked(¤t->sighand->siglock); 1743 1744 /* Ref-count the new filter user, and assign it. */ 1745 get_seccomp_filter(current); 1746 p->seccomp = current->seccomp; 1747 1748 /* 1749 * Explicitly enable no_new_privs here in case it got set 1750 * between the task_struct being duplicated and holding the 1751 * sighand lock. The seccomp state and nnp must be in sync. 1752 */ 1753 if (task_no_new_privs(current)) 1754 task_set_no_new_privs(p); 1755 1756 /* 1757 * If the parent gained a seccomp mode after copying thread 1758 * flags and between before we held the sighand lock, we have 1759 * to manually enable the seccomp thread flag here. 1760 */ 1761 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1762 set_task_syscall_work(p, SECCOMP); 1763 #endif 1764 } 1765 1766 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1767 { 1768 current->clear_child_tid = tidptr; 1769 1770 return task_pid_vnr(current); 1771 } 1772 1773 static void rt_mutex_init_task(struct task_struct *p) 1774 { 1775 raw_spin_lock_init(&p->pi_lock); 1776 #ifdef CONFIG_RT_MUTEXES 1777 p->pi_waiters = RB_ROOT_CACHED; 1778 p->pi_top_task = NULL; 1779 p->pi_blocked_on = NULL; 1780 #endif 1781 } 1782 1783 static inline void init_task_pid_links(struct task_struct *task) 1784 { 1785 enum pid_type type; 1786 1787 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1788 INIT_HLIST_NODE(&task->pid_links[type]); 1789 } 1790 1791 static inline void 1792 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1793 { 1794 if (type == PIDTYPE_PID) 1795 task->thread_pid = pid; 1796 else 1797 task->signal->pids[type] = pid; 1798 } 1799 1800 static inline void rcu_copy_process(struct task_struct *p) 1801 { 1802 #ifdef CONFIG_PREEMPT_RCU 1803 p->rcu_read_lock_nesting = 0; 1804 p->rcu_read_unlock_special.s = 0; 1805 p->rcu_blocked_node = NULL; 1806 INIT_LIST_HEAD(&p->rcu_node_entry); 1807 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1808 #ifdef CONFIG_TASKS_RCU 1809 p->rcu_tasks_holdout = false; 1810 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1811 p->rcu_tasks_idle_cpu = -1; 1812 #endif /* #ifdef CONFIG_TASKS_RCU */ 1813 #ifdef CONFIG_TASKS_TRACE_RCU 1814 p->trc_reader_nesting = 0; 1815 p->trc_reader_special.s = 0; 1816 INIT_LIST_HEAD(&p->trc_holdout_list); 1817 INIT_LIST_HEAD(&p->trc_blkd_node); 1818 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1819 } 1820 1821 struct pid *pidfd_pid(const struct file *file) 1822 { 1823 if (file->f_op == &pidfd_fops) 1824 return file->private_data; 1825 1826 return ERR_PTR(-EBADF); 1827 } 1828 1829 static int pidfd_release(struct inode *inode, struct file *file) 1830 { 1831 struct pid *pid = file->private_data; 1832 1833 file->private_data = NULL; 1834 put_pid(pid); 1835 return 0; 1836 } 1837 1838 #ifdef CONFIG_PROC_FS 1839 /** 1840 * pidfd_show_fdinfo - print information about a pidfd 1841 * @m: proc fdinfo file 1842 * @f: file referencing a pidfd 1843 * 1844 * Pid: 1845 * This function will print the pid that a given pidfd refers to in the 1846 * pid namespace of the procfs instance. 1847 * If the pid namespace of the process is not a descendant of the pid 1848 * namespace of the procfs instance 0 will be shown as its pid. This is 1849 * similar to calling getppid() on a process whose parent is outside of 1850 * its pid namespace. 1851 * 1852 * NSpid: 1853 * If pid namespaces are supported then this function will also print 1854 * the pid of a given pidfd refers to for all descendant pid namespaces 1855 * starting from the current pid namespace of the instance, i.e. the 1856 * Pid field and the first entry in the NSpid field will be identical. 1857 * If the pid namespace of the process is not a descendant of the pid 1858 * namespace of the procfs instance 0 will be shown as its first NSpid 1859 * entry and no others will be shown. 1860 * Note that this differs from the Pid and NSpid fields in 1861 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1862 * the pid namespace of the procfs instance. The difference becomes 1863 * obvious when sending around a pidfd between pid namespaces from a 1864 * different branch of the tree, i.e. where no ancestral relation is 1865 * present between the pid namespaces: 1866 * - create two new pid namespaces ns1 and ns2 in the initial pid 1867 * namespace (also take care to create new mount namespaces in the 1868 * new pid namespace and mount procfs) 1869 * - create a process with a pidfd in ns1 1870 * - send pidfd from ns1 to ns2 1871 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1872 * have exactly one entry, which is 0 1873 */ 1874 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1875 { 1876 struct pid *pid = f->private_data; 1877 struct pid_namespace *ns; 1878 pid_t nr = -1; 1879 1880 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1881 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1882 nr = pid_nr_ns(pid, ns); 1883 } 1884 1885 seq_put_decimal_ll(m, "Pid:\t", nr); 1886 1887 #ifdef CONFIG_PID_NS 1888 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1889 if (nr > 0) { 1890 int i; 1891 1892 /* If nr is non-zero it means that 'pid' is valid and that 1893 * ns, i.e. the pid namespace associated with the procfs 1894 * instance, is in the pid namespace hierarchy of pid. 1895 * Start at one below the already printed level. 1896 */ 1897 for (i = ns->level + 1; i <= pid->level; i++) 1898 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1899 } 1900 #endif 1901 seq_putc(m, '\n'); 1902 } 1903 #endif 1904 1905 /* 1906 * Poll support for process exit notification. 1907 */ 1908 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1909 { 1910 struct pid *pid = file->private_data; 1911 __poll_t poll_flags = 0; 1912 1913 poll_wait(file, &pid->wait_pidfd, pts); 1914 1915 /* 1916 * Inform pollers only when the whole thread group exits. 1917 * If the thread group leader exits before all other threads in the 1918 * group, then poll(2) should block, similar to the wait(2) family. 1919 */ 1920 if (thread_group_exited(pid)) 1921 poll_flags = EPOLLIN | EPOLLRDNORM; 1922 1923 return poll_flags; 1924 } 1925 1926 const struct file_operations pidfd_fops = { 1927 .release = pidfd_release, 1928 .poll = pidfd_poll, 1929 #ifdef CONFIG_PROC_FS 1930 .show_fdinfo = pidfd_show_fdinfo, 1931 #endif 1932 }; 1933 1934 static void __delayed_free_task(struct rcu_head *rhp) 1935 { 1936 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1937 1938 free_task(tsk); 1939 } 1940 1941 static __always_inline void delayed_free_task(struct task_struct *tsk) 1942 { 1943 if (IS_ENABLED(CONFIG_MEMCG)) 1944 call_rcu(&tsk->rcu, __delayed_free_task); 1945 else 1946 free_task(tsk); 1947 } 1948 1949 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1950 { 1951 /* Skip if kernel thread */ 1952 if (!tsk->mm) 1953 return; 1954 1955 /* Skip if spawning a thread or using vfork */ 1956 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1957 return; 1958 1959 /* We need to synchronize with __set_oom_adj */ 1960 mutex_lock(&oom_adj_mutex); 1961 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1962 /* Update the values in case they were changed after copy_signal */ 1963 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1964 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1965 mutex_unlock(&oom_adj_mutex); 1966 } 1967 1968 #ifdef CONFIG_RV 1969 static void rv_task_fork(struct task_struct *p) 1970 { 1971 int i; 1972 1973 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1974 p->rv[i].da_mon.monitoring = false; 1975 } 1976 #else 1977 #define rv_task_fork(p) do {} while (0) 1978 #endif 1979 1980 /* 1981 * This creates a new process as a copy of the old one, 1982 * but does not actually start it yet. 1983 * 1984 * It copies the registers, and all the appropriate 1985 * parts of the process environment (as per the clone 1986 * flags). The actual kick-off is left to the caller. 1987 */ 1988 static __latent_entropy struct task_struct *copy_process( 1989 struct pid *pid, 1990 int trace, 1991 int node, 1992 struct kernel_clone_args *args) 1993 { 1994 int pidfd = -1, retval; 1995 struct task_struct *p; 1996 struct multiprocess_signals delayed; 1997 struct file *pidfile = NULL; 1998 const u64 clone_flags = args->flags; 1999 struct nsproxy *nsp = current->nsproxy; 2000 2001 /* 2002 * Don't allow sharing the root directory with processes in a different 2003 * namespace 2004 */ 2005 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2006 return ERR_PTR(-EINVAL); 2007 2008 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2009 return ERR_PTR(-EINVAL); 2010 2011 /* 2012 * Thread groups must share signals as well, and detached threads 2013 * can only be started up within the thread group. 2014 */ 2015 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2016 return ERR_PTR(-EINVAL); 2017 2018 /* 2019 * Shared signal handlers imply shared VM. By way of the above, 2020 * thread groups also imply shared VM. Blocking this case allows 2021 * for various simplifications in other code. 2022 */ 2023 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2024 return ERR_PTR(-EINVAL); 2025 2026 /* 2027 * Siblings of global init remain as zombies on exit since they are 2028 * not reaped by their parent (swapper). To solve this and to avoid 2029 * multi-rooted process trees, prevent global and container-inits 2030 * from creating siblings. 2031 */ 2032 if ((clone_flags & CLONE_PARENT) && 2033 current->signal->flags & SIGNAL_UNKILLABLE) 2034 return ERR_PTR(-EINVAL); 2035 2036 /* 2037 * If the new process will be in a different pid or user namespace 2038 * do not allow it to share a thread group with the forking task. 2039 */ 2040 if (clone_flags & CLONE_THREAD) { 2041 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2042 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2043 return ERR_PTR(-EINVAL); 2044 } 2045 2046 if (clone_flags & CLONE_PIDFD) { 2047 /* 2048 * - CLONE_DETACHED is blocked so that we can potentially 2049 * reuse it later for CLONE_PIDFD. 2050 * - CLONE_THREAD is blocked until someone really needs it. 2051 */ 2052 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2053 return ERR_PTR(-EINVAL); 2054 } 2055 2056 /* 2057 * Force any signals received before this point to be delivered 2058 * before the fork happens. Collect up signals sent to multiple 2059 * processes that happen during the fork and delay them so that 2060 * they appear to happen after the fork. 2061 */ 2062 sigemptyset(&delayed.signal); 2063 INIT_HLIST_NODE(&delayed.node); 2064 2065 spin_lock_irq(¤t->sighand->siglock); 2066 if (!(clone_flags & CLONE_THREAD)) 2067 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2068 recalc_sigpending(); 2069 spin_unlock_irq(¤t->sighand->siglock); 2070 retval = -ERESTARTNOINTR; 2071 if (task_sigpending(current)) 2072 goto fork_out; 2073 2074 retval = -ENOMEM; 2075 p = dup_task_struct(current, node); 2076 if (!p) 2077 goto fork_out; 2078 p->flags &= ~PF_KTHREAD; 2079 if (args->kthread) 2080 p->flags |= PF_KTHREAD; 2081 if (args->io_thread) { 2082 /* 2083 * Mark us an IO worker, and block any signal that isn't 2084 * fatal or STOP 2085 */ 2086 p->flags |= PF_IO_WORKER; 2087 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2088 } 2089 2090 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2091 /* 2092 * Clear TID on mm_release()? 2093 */ 2094 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2095 2096 ftrace_graph_init_task(p); 2097 2098 rt_mutex_init_task(p); 2099 2100 lockdep_assert_irqs_enabled(); 2101 #ifdef CONFIG_PROVE_LOCKING 2102 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2103 #endif 2104 retval = copy_creds(p, clone_flags); 2105 if (retval < 0) 2106 goto bad_fork_free; 2107 2108 retval = -EAGAIN; 2109 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2110 if (p->real_cred->user != INIT_USER && 2111 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2112 goto bad_fork_cleanup_count; 2113 } 2114 current->flags &= ~PF_NPROC_EXCEEDED; 2115 2116 /* 2117 * If multiple threads are within copy_process(), then this check 2118 * triggers too late. This doesn't hurt, the check is only there 2119 * to stop root fork bombs. 2120 */ 2121 retval = -EAGAIN; 2122 if (data_race(nr_threads >= max_threads)) 2123 goto bad_fork_cleanup_count; 2124 2125 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2126 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2127 p->flags |= PF_FORKNOEXEC; 2128 INIT_LIST_HEAD(&p->children); 2129 INIT_LIST_HEAD(&p->sibling); 2130 rcu_copy_process(p); 2131 p->vfork_done = NULL; 2132 spin_lock_init(&p->alloc_lock); 2133 2134 init_sigpending(&p->pending); 2135 2136 p->utime = p->stime = p->gtime = 0; 2137 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2138 p->utimescaled = p->stimescaled = 0; 2139 #endif 2140 prev_cputime_init(&p->prev_cputime); 2141 2142 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2143 seqcount_init(&p->vtime.seqcount); 2144 p->vtime.starttime = 0; 2145 p->vtime.state = VTIME_INACTIVE; 2146 #endif 2147 2148 #ifdef CONFIG_IO_URING 2149 p->io_uring = NULL; 2150 #endif 2151 2152 #if defined(SPLIT_RSS_COUNTING) 2153 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2154 #endif 2155 2156 p->default_timer_slack_ns = current->timer_slack_ns; 2157 2158 #ifdef CONFIG_PSI 2159 p->psi_flags = 0; 2160 #endif 2161 2162 task_io_accounting_init(&p->ioac); 2163 acct_clear_integrals(p); 2164 2165 posix_cputimers_init(&p->posix_cputimers); 2166 2167 p->io_context = NULL; 2168 audit_set_context(p, NULL); 2169 cgroup_fork(p); 2170 if (args->kthread) { 2171 if (!set_kthread_struct(p)) 2172 goto bad_fork_cleanup_delayacct; 2173 } 2174 #ifdef CONFIG_NUMA 2175 p->mempolicy = mpol_dup(p->mempolicy); 2176 if (IS_ERR(p->mempolicy)) { 2177 retval = PTR_ERR(p->mempolicy); 2178 p->mempolicy = NULL; 2179 goto bad_fork_cleanup_delayacct; 2180 } 2181 #endif 2182 #ifdef CONFIG_CPUSETS 2183 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2184 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2185 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2186 #endif 2187 #ifdef CONFIG_TRACE_IRQFLAGS 2188 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2189 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2190 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2191 p->softirqs_enabled = 1; 2192 p->softirq_context = 0; 2193 #endif 2194 2195 p->pagefault_disabled = 0; 2196 2197 #ifdef CONFIG_LOCKDEP 2198 lockdep_init_task(p); 2199 #endif 2200 2201 #ifdef CONFIG_DEBUG_MUTEXES 2202 p->blocked_on = NULL; /* not blocked yet */ 2203 #endif 2204 #ifdef CONFIG_BCACHE 2205 p->sequential_io = 0; 2206 p->sequential_io_avg = 0; 2207 #endif 2208 #ifdef CONFIG_BPF_SYSCALL 2209 RCU_INIT_POINTER(p->bpf_storage, NULL); 2210 p->bpf_ctx = NULL; 2211 #endif 2212 2213 /* Perform scheduler related setup. Assign this task to a CPU. */ 2214 retval = sched_fork(clone_flags, p); 2215 if (retval) 2216 goto bad_fork_cleanup_policy; 2217 2218 retval = perf_event_init_task(p, clone_flags); 2219 if (retval) 2220 goto bad_fork_cleanup_policy; 2221 retval = audit_alloc(p); 2222 if (retval) 2223 goto bad_fork_cleanup_perf; 2224 /* copy all the process information */ 2225 shm_init_task(p); 2226 retval = security_task_alloc(p, clone_flags); 2227 if (retval) 2228 goto bad_fork_cleanup_audit; 2229 retval = copy_semundo(clone_flags, p); 2230 if (retval) 2231 goto bad_fork_cleanup_security; 2232 retval = copy_files(clone_flags, p); 2233 if (retval) 2234 goto bad_fork_cleanup_semundo; 2235 retval = copy_fs(clone_flags, p); 2236 if (retval) 2237 goto bad_fork_cleanup_files; 2238 retval = copy_sighand(clone_flags, p); 2239 if (retval) 2240 goto bad_fork_cleanup_fs; 2241 retval = copy_signal(clone_flags, p); 2242 if (retval) 2243 goto bad_fork_cleanup_sighand; 2244 retval = copy_mm(clone_flags, p); 2245 if (retval) 2246 goto bad_fork_cleanup_signal; 2247 retval = copy_namespaces(clone_flags, p); 2248 if (retval) 2249 goto bad_fork_cleanup_mm; 2250 retval = copy_io(clone_flags, p); 2251 if (retval) 2252 goto bad_fork_cleanup_namespaces; 2253 retval = copy_thread(p, args); 2254 if (retval) 2255 goto bad_fork_cleanup_io; 2256 2257 stackleak_task_init(p); 2258 2259 if (pid != &init_struct_pid) { 2260 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2261 args->set_tid_size); 2262 if (IS_ERR(pid)) { 2263 retval = PTR_ERR(pid); 2264 goto bad_fork_cleanup_thread; 2265 } 2266 } 2267 2268 /* 2269 * This has to happen after we've potentially unshared the file 2270 * descriptor table (so that the pidfd doesn't leak into the child 2271 * if the fd table isn't shared). 2272 */ 2273 if (clone_flags & CLONE_PIDFD) { 2274 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2275 if (retval < 0) 2276 goto bad_fork_free_pid; 2277 2278 pidfd = retval; 2279 2280 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2281 O_RDWR | O_CLOEXEC); 2282 if (IS_ERR(pidfile)) { 2283 put_unused_fd(pidfd); 2284 retval = PTR_ERR(pidfile); 2285 goto bad_fork_free_pid; 2286 } 2287 get_pid(pid); /* held by pidfile now */ 2288 2289 retval = put_user(pidfd, args->pidfd); 2290 if (retval) 2291 goto bad_fork_put_pidfd; 2292 } 2293 2294 #ifdef CONFIG_BLOCK 2295 p->plug = NULL; 2296 #endif 2297 futex_init_task(p); 2298 2299 /* 2300 * sigaltstack should be cleared when sharing the same VM 2301 */ 2302 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2303 sas_ss_reset(p); 2304 2305 /* 2306 * Syscall tracing and stepping should be turned off in the 2307 * child regardless of CLONE_PTRACE. 2308 */ 2309 user_disable_single_step(p); 2310 clear_task_syscall_work(p, SYSCALL_TRACE); 2311 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2312 clear_task_syscall_work(p, SYSCALL_EMU); 2313 #endif 2314 clear_tsk_latency_tracing(p); 2315 2316 /* ok, now we should be set up.. */ 2317 p->pid = pid_nr(pid); 2318 if (clone_flags & CLONE_THREAD) { 2319 p->group_leader = current->group_leader; 2320 p->tgid = current->tgid; 2321 } else { 2322 p->group_leader = p; 2323 p->tgid = p->pid; 2324 } 2325 2326 p->nr_dirtied = 0; 2327 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2328 p->dirty_paused_when = 0; 2329 2330 p->pdeath_signal = 0; 2331 INIT_LIST_HEAD(&p->thread_group); 2332 p->task_works = NULL; 2333 clear_posix_cputimers_work(p); 2334 2335 #ifdef CONFIG_KRETPROBES 2336 p->kretprobe_instances.first = NULL; 2337 #endif 2338 #ifdef CONFIG_RETHOOK 2339 p->rethooks.first = NULL; 2340 #endif 2341 2342 /* 2343 * Ensure that the cgroup subsystem policies allow the new process to be 2344 * forked. It should be noted that the new process's css_set can be changed 2345 * between here and cgroup_post_fork() if an organisation operation is in 2346 * progress. 2347 */ 2348 retval = cgroup_can_fork(p, args); 2349 if (retval) 2350 goto bad_fork_put_pidfd; 2351 2352 /* 2353 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2354 * the new task on the correct runqueue. All this *before* the task 2355 * becomes visible. 2356 * 2357 * This isn't part of ->can_fork() because while the re-cloning is 2358 * cgroup specific, it unconditionally needs to place the task on a 2359 * runqueue. 2360 */ 2361 sched_cgroup_fork(p, args); 2362 2363 /* 2364 * From this point on we must avoid any synchronous user-space 2365 * communication until we take the tasklist-lock. In particular, we do 2366 * not want user-space to be able to predict the process start-time by 2367 * stalling fork(2) after we recorded the start_time but before it is 2368 * visible to the system. 2369 */ 2370 2371 p->start_time = ktime_get_ns(); 2372 p->start_boottime = ktime_get_boottime_ns(); 2373 2374 /* 2375 * Make it visible to the rest of the system, but dont wake it up yet. 2376 * Need tasklist lock for parent etc handling! 2377 */ 2378 write_lock_irq(&tasklist_lock); 2379 2380 /* CLONE_PARENT re-uses the old parent */ 2381 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2382 p->real_parent = current->real_parent; 2383 p->parent_exec_id = current->parent_exec_id; 2384 if (clone_flags & CLONE_THREAD) 2385 p->exit_signal = -1; 2386 else 2387 p->exit_signal = current->group_leader->exit_signal; 2388 } else { 2389 p->real_parent = current; 2390 p->parent_exec_id = current->self_exec_id; 2391 p->exit_signal = args->exit_signal; 2392 } 2393 2394 klp_copy_process(p); 2395 2396 sched_core_fork(p); 2397 2398 spin_lock(¤t->sighand->siglock); 2399 2400 /* 2401 * Copy seccomp details explicitly here, in case they were changed 2402 * before holding sighand lock. 2403 */ 2404 copy_seccomp(p); 2405 2406 rv_task_fork(p); 2407 2408 rseq_fork(p, clone_flags); 2409 2410 /* Don't start children in a dying pid namespace */ 2411 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2412 retval = -ENOMEM; 2413 goto bad_fork_cancel_cgroup; 2414 } 2415 2416 /* Let kill terminate clone/fork in the middle */ 2417 if (fatal_signal_pending(current)) { 2418 retval = -EINTR; 2419 goto bad_fork_cancel_cgroup; 2420 } 2421 2422 init_task_pid_links(p); 2423 if (likely(p->pid)) { 2424 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2425 2426 init_task_pid(p, PIDTYPE_PID, pid); 2427 if (thread_group_leader(p)) { 2428 init_task_pid(p, PIDTYPE_TGID, pid); 2429 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2430 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2431 2432 if (is_child_reaper(pid)) { 2433 ns_of_pid(pid)->child_reaper = p; 2434 p->signal->flags |= SIGNAL_UNKILLABLE; 2435 } 2436 p->signal->shared_pending.signal = delayed.signal; 2437 p->signal->tty = tty_kref_get(current->signal->tty); 2438 /* 2439 * Inherit has_child_subreaper flag under the same 2440 * tasklist_lock with adding child to the process tree 2441 * for propagate_has_child_subreaper optimization. 2442 */ 2443 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2444 p->real_parent->signal->is_child_subreaper; 2445 list_add_tail(&p->sibling, &p->real_parent->children); 2446 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2447 attach_pid(p, PIDTYPE_TGID); 2448 attach_pid(p, PIDTYPE_PGID); 2449 attach_pid(p, PIDTYPE_SID); 2450 __this_cpu_inc(process_counts); 2451 } else { 2452 current->signal->nr_threads++; 2453 current->signal->quick_threads++; 2454 atomic_inc(¤t->signal->live); 2455 refcount_inc(¤t->signal->sigcnt); 2456 task_join_group_stop(p); 2457 list_add_tail_rcu(&p->thread_group, 2458 &p->group_leader->thread_group); 2459 list_add_tail_rcu(&p->thread_node, 2460 &p->signal->thread_head); 2461 } 2462 attach_pid(p, PIDTYPE_PID); 2463 nr_threads++; 2464 } 2465 total_forks++; 2466 hlist_del_init(&delayed.node); 2467 spin_unlock(¤t->sighand->siglock); 2468 syscall_tracepoint_update(p); 2469 write_unlock_irq(&tasklist_lock); 2470 2471 if (pidfile) 2472 fd_install(pidfd, pidfile); 2473 2474 proc_fork_connector(p); 2475 sched_post_fork(p); 2476 cgroup_post_fork(p, args); 2477 perf_event_fork(p); 2478 2479 trace_task_newtask(p, clone_flags); 2480 uprobe_copy_process(p, clone_flags); 2481 2482 copy_oom_score_adj(clone_flags, p); 2483 2484 return p; 2485 2486 bad_fork_cancel_cgroup: 2487 sched_core_free(p); 2488 spin_unlock(¤t->sighand->siglock); 2489 write_unlock_irq(&tasklist_lock); 2490 cgroup_cancel_fork(p, args); 2491 bad_fork_put_pidfd: 2492 if (clone_flags & CLONE_PIDFD) { 2493 fput(pidfile); 2494 put_unused_fd(pidfd); 2495 } 2496 bad_fork_free_pid: 2497 if (pid != &init_struct_pid) 2498 free_pid(pid); 2499 bad_fork_cleanup_thread: 2500 exit_thread(p); 2501 bad_fork_cleanup_io: 2502 if (p->io_context) 2503 exit_io_context(p); 2504 bad_fork_cleanup_namespaces: 2505 exit_task_namespaces(p); 2506 bad_fork_cleanup_mm: 2507 if (p->mm) { 2508 mm_clear_owner(p->mm, p); 2509 mmput(p->mm); 2510 } 2511 bad_fork_cleanup_signal: 2512 if (!(clone_flags & CLONE_THREAD)) 2513 free_signal_struct(p->signal); 2514 bad_fork_cleanup_sighand: 2515 __cleanup_sighand(p->sighand); 2516 bad_fork_cleanup_fs: 2517 exit_fs(p); /* blocking */ 2518 bad_fork_cleanup_files: 2519 exit_files(p); /* blocking */ 2520 bad_fork_cleanup_semundo: 2521 exit_sem(p); 2522 bad_fork_cleanup_security: 2523 security_task_free(p); 2524 bad_fork_cleanup_audit: 2525 audit_free(p); 2526 bad_fork_cleanup_perf: 2527 perf_event_free_task(p); 2528 bad_fork_cleanup_policy: 2529 lockdep_free_task(p); 2530 #ifdef CONFIG_NUMA 2531 mpol_put(p->mempolicy); 2532 #endif 2533 bad_fork_cleanup_delayacct: 2534 delayacct_tsk_free(p); 2535 bad_fork_cleanup_count: 2536 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2537 exit_creds(p); 2538 bad_fork_free: 2539 WRITE_ONCE(p->__state, TASK_DEAD); 2540 exit_task_stack_account(p); 2541 put_task_stack(p); 2542 delayed_free_task(p); 2543 fork_out: 2544 spin_lock_irq(¤t->sighand->siglock); 2545 hlist_del_init(&delayed.node); 2546 spin_unlock_irq(¤t->sighand->siglock); 2547 return ERR_PTR(retval); 2548 } 2549 2550 static inline void init_idle_pids(struct task_struct *idle) 2551 { 2552 enum pid_type type; 2553 2554 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2555 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2556 init_task_pid(idle, type, &init_struct_pid); 2557 } 2558 } 2559 2560 static int idle_dummy(void *dummy) 2561 { 2562 /* This function is never called */ 2563 return 0; 2564 } 2565 2566 struct task_struct * __init fork_idle(int cpu) 2567 { 2568 struct task_struct *task; 2569 struct kernel_clone_args args = { 2570 .flags = CLONE_VM, 2571 .fn = &idle_dummy, 2572 .fn_arg = NULL, 2573 .kthread = 1, 2574 .idle = 1, 2575 }; 2576 2577 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2578 if (!IS_ERR(task)) { 2579 init_idle_pids(task); 2580 init_idle(task, cpu); 2581 } 2582 2583 return task; 2584 } 2585 2586 struct mm_struct *copy_init_mm(void) 2587 { 2588 return dup_mm(NULL, &init_mm); 2589 } 2590 2591 /* 2592 * This is like kernel_clone(), but shaved down and tailored to just 2593 * creating io_uring workers. It returns a created task, or an error pointer. 2594 * The returned task is inactive, and the caller must fire it up through 2595 * wake_up_new_task(p). All signals are blocked in the created task. 2596 */ 2597 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2598 { 2599 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2600 CLONE_IO; 2601 struct kernel_clone_args args = { 2602 .flags = ((lower_32_bits(flags) | CLONE_VM | 2603 CLONE_UNTRACED) & ~CSIGNAL), 2604 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2605 .fn = fn, 2606 .fn_arg = arg, 2607 .io_thread = 1, 2608 }; 2609 2610 return copy_process(NULL, 0, node, &args); 2611 } 2612 2613 /* 2614 * Ok, this is the main fork-routine. 2615 * 2616 * It copies the process, and if successful kick-starts 2617 * it and waits for it to finish using the VM if required. 2618 * 2619 * args->exit_signal is expected to be checked for sanity by the caller. 2620 */ 2621 pid_t kernel_clone(struct kernel_clone_args *args) 2622 { 2623 u64 clone_flags = args->flags; 2624 struct completion vfork; 2625 struct pid *pid; 2626 struct task_struct *p; 2627 int trace = 0; 2628 pid_t nr; 2629 2630 /* 2631 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2632 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2633 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2634 * field in struct clone_args and it still doesn't make sense to have 2635 * them both point at the same memory location. Performing this check 2636 * here has the advantage that we don't need to have a separate helper 2637 * to check for legacy clone(). 2638 */ 2639 if ((args->flags & CLONE_PIDFD) && 2640 (args->flags & CLONE_PARENT_SETTID) && 2641 (args->pidfd == args->parent_tid)) 2642 return -EINVAL; 2643 2644 /* 2645 * Determine whether and which event to report to ptracer. When 2646 * called from kernel_thread or CLONE_UNTRACED is explicitly 2647 * requested, no event is reported; otherwise, report if the event 2648 * for the type of forking is enabled. 2649 */ 2650 if (!(clone_flags & CLONE_UNTRACED)) { 2651 if (clone_flags & CLONE_VFORK) 2652 trace = PTRACE_EVENT_VFORK; 2653 else if (args->exit_signal != SIGCHLD) 2654 trace = PTRACE_EVENT_CLONE; 2655 else 2656 trace = PTRACE_EVENT_FORK; 2657 2658 if (likely(!ptrace_event_enabled(current, trace))) 2659 trace = 0; 2660 } 2661 2662 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2663 add_latent_entropy(); 2664 2665 if (IS_ERR(p)) 2666 return PTR_ERR(p); 2667 2668 /* 2669 * Do this prior waking up the new thread - the thread pointer 2670 * might get invalid after that point, if the thread exits quickly. 2671 */ 2672 trace_sched_process_fork(current, p); 2673 2674 pid = get_task_pid(p, PIDTYPE_PID); 2675 nr = pid_vnr(pid); 2676 2677 if (clone_flags & CLONE_PARENT_SETTID) 2678 put_user(nr, args->parent_tid); 2679 2680 if (clone_flags & CLONE_VFORK) { 2681 p->vfork_done = &vfork; 2682 init_completion(&vfork); 2683 get_task_struct(p); 2684 } 2685 2686 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2687 /* lock the task to synchronize with memcg migration */ 2688 task_lock(p); 2689 lru_gen_add_mm(p->mm); 2690 task_unlock(p); 2691 } 2692 2693 wake_up_new_task(p); 2694 2695 /* forking complete and child started to run, tell ptracer */ 2696 if (unlikely(trace)) 2697 ptrace_event_pid(trace, pid); 2698 2699 if (clone_flags & CLONE_VFORK) { 2700 if (!wait_for_vfork_done(p, &vfork)) 2701 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2702 } 2703 2704 put_pid(pid); 2705 return nr; 2706 } 2707 2708 /* 2709 * Create a kernel thread. 2710 */ 2711 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2712 { 2713 struct kernel_clone_args args = { 2714 .flags = ((lower_32_bits(flags) | CLONE_VM | 2715 CLONE_UNTRACED) & ~CSIGNAL), 2716 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2717 .fn = fn, 2718 .fn_arg = arg, 2719 .kthread = 1, 2720 }; 2721 2722 return kernel_clone(&args); 2723 } 2724 2725 /* 2726 * Create a user mode thread. 2727 */ 2728 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2729 { 2730 struct kernel_clone_args args = { 2731 .flags = ((lower_32_bits(flags) | CLONE_VM | 2732 CLONE_UNTRACED) & ~CSIGNAL), 2733 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2734 .fn = fn, 2735 .fn_arg = arg, 2736 }; 2737 2738 return kernel_clone(&args); 2739 } 2740 2741 #ifdef __ARCH_WANT_SYS_FORK 2742 SYSCALL_DEFINE0(fork) 2743 { 2744 #ifdef CONFIG_MMU 2745 struct kernel_clone_args args = { 2746 .exit_signal = SIGCHLD, 2747 }; 2748 2749 return kernel_clone(&args); 2750 #else 2751 /* can not support in nommu mode */ 2752 return -EINVAL; 2753 #endif 2754 } 2755 #endif 2756 2757 #ifdef __ARCH_WANT_SYS_VFORK 2758 SYSCALL_DEFINE0(vfork) 2759 { 2760 struct kernel_clone_args args = { 2761 .flags = CLONE_VFORK | CLONE_VM, 2762 .exit_signal = SIGCHLD, 2763 }; 2764 2765 return kernel_clone(&args); 2766 } 2767 #endif 2768 2769 #ifdef __ARCH_WANT_SYS_CLONE 2770 #ifdef CONFIG_CLONE_BACKWARDS 2771 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2772 int __user *, parent_tidptr, 2773 unsigned long, tls, 2774 int __user *, child_tidptr) 2775 #elif defined(CONFIG_CLONE_BACKWARDS2) 2776 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2777 int __user *, parent_tidptr, 2778 int __user *, child_tidptr, 2779 unsigned long, tls) 2780 #elif defined(CONFIG_CLONE_BACKWARDS3) 2781 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2782 int, stack_size, 2783 int __user *, parent_tidptr, 2784 int __user *, child_tidptr, 2785 unsigned long, tls) 2786 #else 2787 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2788 int __user *, parent_tidptr, 2789 int __user *, child_tidptr, 2790 unsigned long, tls) 2791 #endif 2792 { 2793 struct kernel_clone_args args = { 2794 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2795 .pidfd = parent_tidptr, 2796 .child_tid = child_tidptr, 2797 .parent_tid = parent_tidptr, 2798 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2799 .stack = newsp, 2800 .tls = tls, 2801 }; 2802 2803 return kernel_clone(&args); 2804 } 2805 #endif 2806 2807 #ifdef __ARCH_WANT_SYS_CLONE3 2808 2809 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2810 struct clone_args __user *uargs, 2811 size_t usize) 2812 { 2813 int err; 2814 struct clone_args args; 2815 pid_t *kset_tid = kargs->set_tid; 2816 2817 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2818 CLONE_ARGS_SIZE_VER0); 2819 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2820 CLONE_ARGS_SIZE_VER1); 2821 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2822 CLONE_ARGS_SIZE_VER2); 2823 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2824 2825 if (unlikely(usize > PAGE_SIZE)) 2826 return -E2BIG; 2827 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2828 return -EINVAL; 2829 2830 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2831 if (err) 2832 return err; 2833 2834 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2835 return -EINVAL; 2836 2837 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2838 return -EINVAL; 2839 2840 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2841 return -EINVAL; 2842 2843 /* 2844 * Verify that higher 32bits of exit_signal are unset and that 2845 * it is a valid signal 2846 */ 2847 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2848 !valid_signal(args.exit_signal))) 2849 return -EINVAL; 2850 2851 if ((args.flags & CLONE_INTO_CGROUP) && 2852 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2853 return -EINVAL; 2854 2855 *kargs = (struct kernel_clone_args){ 2856 .flags = args.flags, 2857 .pidfd = u64_to_user_ptr(args.pidfd), 2858 .child_tid = u64_to_user_ptr(args.child_tid), 2859 .parent_tid = u64_to_user_ptr(args.parent_tid), 2860 .exit_signal = args.exit_signal, 2861 .stack = args.stack, 2862 .stack_size = args.stack_size, 2863 .tls = args.tls, 2864 .set_tid_size = args.set_tid_size, 2865 .cgroup = args.cgroup, 2866 }; 2867 2868 if (args.set_tid && 2869 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2870 (kargs->set_tid_size * sizeof(pid_t)))) 2871 return -EFAULT; 2872 2873 kargs->set_tid = kset_tid; 2874 2875 return 0; 2876 } 2877 2878 /** 2879 * clone3_stack_valid - check and prepare stack 2880 * @kargs: kernel clone args 2881 * 2882 * Verify that the stack arguments userspace gave us are sane. 2883 * In addition, set the stack direction for userspace since it's easy for us to 2884 * determine. 2885 */ 2886 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2887 { 2888 if (kargs->stack == 0) { 2889 if (kargs->stack_size > 0) 2890 return false; 2891 } else { 2892 if (kargs->stack_size == 0) 2893 return false; 2894 2895 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2896 return false; 2897 2898 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2899 kargs->stack += kargs->stack_size; 2900 #endif 2901 } 2902 2903 return true; 2904 } 2905 2906 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2907 { 2908 /* Verify that no unknown flags are passed along. */ 2909 if (kargs->flags & 2910 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2911 return false; 2912 2913 /* 2914 * - make the CLONE_DETACHED bit reusable for clone3 2915 * - make the CSIGNAL bits reusable for clone3 2916 */ 2917 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2918 return false; 2919 2920 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2921 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2922 return false; 2923 2924 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2925 kargs->exit_signal) 2926 return false; 2927 2928 if (!clone3_stack_valid(kargs)) 2929 return false; 2930 2931 return true; 2932 } 2933 2934 /** 2935 * clone3 - create a new process with specific properties 2936 * @uargs: argument structure 2937 * @size: size of @uargs 2938 * 2939 * clone3() is the extensible successor to clone()/clone2(). 2940 * It takes a struct as argument that is versioned by its size. 2941 * 2942 * Return: On success, a positive PID for the child process. 2943 * On error, a negative errno number. 2944 */ 2945 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2946 { 2947 int err; 2948 2949 struct kernel_clone_args kargs; 2950 pid_t set_tid[MAX_PID_NS_LEVEL]; 2951 2952 kargs.set_tid = set_tid; 2953 2954 err = copy_clone_args_from_user(&kargs, uargs, size); 2955 if (err) 2956 return err; 2957 2958 if (!clone3_args_valid(&kargs)) 2959 return -EINVAL; 2960 2961 return kernel_clone(&kargs); 2962 } 2963 #endif 2964 2965 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2966 { 2967 struct task_struct *leader, *parent, *child; 2968 int res; 2969 2970 read_lock(&tasklist_lock); 2971 leader = top = top->group_leader; 2972 down: 2973 for_each_thread(leader, parent) { 2974 list_for_each_entry(child, &parent->children, sibling) { 2975 res = visitor(child, data); 2976 if (res) { 2977 if (res < 0) 2978 goto out; 2979 leader = child; 2980 goto down; 2981 } 2982 up: 2983 ; 2984 } 2985 } 2986 2987 if (leader != top) { 2988 child = leader; 2989 parent = child->real_parent; 2990 leader = parent->group_leader; 2991 goto up; 2992 } 2993 out: 2994 read_unlock(&tasklist_lock); 2995 } 2996 2997 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2998 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2999 #endif 3000 3001 static void sighand_ctor(void *data) 3002 { 3003 struct sighand_struct *sighand = data; 3004 3005 spin_lock_init(&sighand->siglock); 3006 init_waitqueue_head(&sighand->signalfd_wqh); 3007 } 3008 3009 void __init proc_caches_init(void) 3010 { 3011 unsigned int mm_size; 3012 3013 sighand_cachep = kmem_cache_create("sighand_cache", 3014 sizeof(struct sighand_struct), 0, 3015 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3016 SLAB_ACCOUNT, sighand_ctor); 3017 signal_cachep = kmem_cache_create("signal_cache", 3018 sizeof(struct signal_struct), 0, 3019 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3020 NULL); 3021 files_cachep = kmem_cache_create("files_cache", 3022 sizeof(struct files_struct), 0, 3023 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3024 NULL); 3025 fs_cachep = kmem_cache_create("fs_cache", 3026 sizeof(struct fs_struct), 0, 3027 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3028 NULL); 3029 3030 /* 3031 * The mm_cpumask is located at the end of mm_struct, and is 3032 * dynamically sized based on the maximum CPU number this system 3033 * can have, taking hotplug into account (nr_cpu_ids). 3034 */ 3035 mm_size = sizeof(struct mm_struct) + cpumask_size(); 3036 3037 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3038 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3039 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3040 offsetof(struct mm_struct, saved_auxv), 3041 sizeof_field(struct mm_struct, saved_auxv), 3042 NULL); 3043 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3044 mmap_init(); 3045 nsproxy_cache_init(); 3046 } 3047 3048 /* 3049 * Check constraints on flags passed to the unshare system call. 3050 */ 3051 static int check_unshare_flags(unsigned long unshare_flags) 3052 { 3053 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3054 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3055 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3056 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3057 CLONE_NEWTIME)) 3058 return -EINVAL; 3059 /* 3060 * Not implemented, but pretend it works if there is nothing 3061 * to unshare. Note that unsharing the address space or the 3062 * signal handlers also need to unshare the signal queues (aka 3063 * CLONE_THREAD). 3064 */ 3065 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3066 if (!thread_group_empty(current)) 3067 return -EINVAL; 3068 } 3069 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3070 if (refcount_read(¤t->sighand->count) > 1) 3071 return -EINVAL; 3072 } 3073 if (unshare_flags & CLONE_VM) { 3074 if (!current_is_single_threaded()) 3075 return -EINVAL; 3076 } 3077 3078 return 0; 3079 } 3080 3081 /* 3082 * Unshare the filesystem structure if it is being shared 3083 */ 3084 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3085 { 3086 struct fs_struct *fs = current->fs; 3087 3088 if (!(unshare_flags & CLONE_FS) || !fs) 3089 return 0; 3090 3091 /* don't need lock here; in the worst case we'll do useless copy */ 3092 if (fs->users == 1) 3093 return 0; 3094 3095 *new_fsp = copy_fs_struct(fs); 3096 if (!*new_fsp) 3097 return -ENOMEM; 3098 3099 return 0; 3100 } 3101 3102 /* 3103 * Unshare file descriptor table if it is being shared 3104 */ 3105 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3106 struct files_struct **new_fdp) 3107 { 3108 struct files_struct *fd = current->files; 3109 int error = 0; 3110 3111 if ((unshare_flags & CLONE_FILES) && 3112 (fd && atomic_read(&fd->count) > 1)) { 3113 *new_fdp = dup_fd(fd, max_fds, &error); 3114 if (!*new_fdp) 3115 return error; 3116 } 3117 3118 return 0; 3119 } 3120 3121 /* 3122 * unshare allows a process to 'unshare' part of the process 3123 * context which was originally shared using clone. copy_* 3124 * functions used by kernel_clone() cannot be used here directly 3125 * because they modify an inactive task_struct that is being 3126 * constructed. Here we are modifying the current, active, 3127 * task_struct. 3128 */ 3129 int ksys_unshare(unsigned long unshare_flags) 3130 { 3131 struct fs_struct *fs, *new_fs = NULL; 3132 struct files_struct *new_fd = NULL; 3133 struct cred *new_cred = NULL; 3134 struct nsproxy *new_nsproxy = NULL; 3135 int do_sysvsem = 0; 3136 int err; 3137 3138 /* 3139 * If unsharing a user namespace must also unshare the thread group 3140 * and unshare the filesystem root and working directories. 3141 */ 3142 if (unshare_flags & CLONE_NEWUSER) 3143 unshare_flags |= CLONE_THREAD | CLONE_FS; 3144 /* 3145 * If unsharing vm, must also unshare signal handlers. 3146 */ 3147 if (unshare_flags & CLONE_VM) 3148 unshare_flags |= CLONE_SIGHAND; 3149 /* 3150 * If unsharing a signal handlers, must also unshare the signal queues. 3151 */ 3152 if (unshare_flags & CLONE_SIGHAND) 3153 unshare_flags |= CLONE_THREAD; 3154 /* 3155 * If unsharing namespace, must also unshare filesystem information. 3156 */ 3157 if (unshare_flags & CLONE_NEWNS) 3158 unshare_flags |= CLONE_FS; 3159 3160 err = check_unshare_flags(unshare_flags); 3161 if (err) 3162 goto bad_unshare_out; 3163 /* 3164 * CLONE_NEWIPC must also detach from the undolist: after switching 3165 * to a new ipc namespace, the semaphore arrays from the old 3166 * namespace are unreachable. 3167 */ 3168 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3169 do_sysvsem = 1; 3170 err = unshare_fs(unshare_flags, &new_fs); 3171 if (err) 3172 goto bad_unshare_out; 3173 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3174 if (err) 3175 goto bad_unshare_cleanup_fs; 3176 err = unshare_userns(unshare_flags, &new_cred); 3177 if (err) 3178 goto bad_unshare_cleanup_fd; 3179 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3180 new_cred, new_fs); 3181 if (err) 3182 goto bad_unshare_cleanup_cred; 3183 3184 if (new_cred) { 3185 err = set_cred_ucounts(new_cred); 3186 if (err) 3187 goto bad_unshare_cleanup_cred; 3188 } 3189 3190 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3191 if (do_sysvsem) { 3192 /* 3193 * CLONE_SYSVSEM is equivalent to sys_exit(). 3194 */ 3195 exit_sem(current); 3196 } 3197 if (unshare_flags & CLONE_NEWIPC) { 3198 /* Orphan segments in old ns (see sem above). */ 3199 exit_shm(current); 3200 shm_init_task(current); 3201 } 3202 3203 if (new_nsproxy) 3204 switch_task_namespaces(current, new_nsproxy); 3205 3206 task_lock(current); 3207 3208 if (new_fs) { 3209 fs = current->fs; 3210 spin_lock(&fs->lock); 3211 current->fs = new_fs; 3212 if (--fs->users) 3213 new_fs = NULL; 3214 else 3215 new_fs = fs; 3216 spin_unlock(&fs->lock); 3217 } 3218 3219 if (new_fd) 3220 swap(current->files, new_fd); 3221 3222 task_unlock(current); 3223 3224 if (new_cred) { 3225 /* Install the new user namespace */ 3226 commit_creds(new_cred); 3227 new_cred = NULL; 3228 } 3229 } 3230 3231 perf_event_namespaces(current); 3232 3233 bad_unshare_cleanup_cred: 3234 if (new_cred) 3235 put_cred(new_cred); 3236 bad_unshare_cleanup_fd: 3237 if (new_fd) 3238 put_files_struct(new_fd); 3239 3240 bad_unshare_cleanup_fs: 3241 if (new_fs) 3242 free_fs_struct(new_fs); 3243 3244 bad_unshare_out: 3245 return err; 3246 } 3247 3248 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3249 { 3250 return ksys_unshare(unshare_flags); 3251 } 3252 3253 /* 3254 * Helper to unshare the files of the current task. 3255 * We don't want to expose copy_files internals to 3256 * the exec layer of the kernel. 3257 */ 3258 3259 int unshare_files(void) 3260 { 3261 struct task_struct *task = current; 3262 struct files_struct *old, *copy = NULL; 3263 int error; 3264 3265 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3266 if (error || !copy) 3267 return error; 3268 3269 old = task->files; 3270 task_lock(task); 3271 task->files = copy; 3272 task_unlock(task); 3273 put_files_struct(old); 3274 return 0; 3275 } 3276 3277 int sysctl_max_threads(struct ctl_table *table, int write, 3278 void *buffer, size_t *lenp, loff_t *ppos) 3279 { 3280 struct ctl_table t; 3281 int ret; 3282 int threads = max_threads; 3283 int min = 1; 3284 int max = MAX_THREADS; 3285 3286 t = *table; 3287 t.data = &threads; 3288 t.extra1 = &min; 3289 t.extra2 = &max; 3290 3291 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3292 if (ret || !write) 3293 return ret; 3294 3295 max_threads = threads; 3296 3297 return 0; 3298 } 3299