xref: /linux-6.15/kernel/fork.c (revision a19ce320)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/syscall_user_dispatch.h>
57 #include <linux/jiffies.h>
58 #include <linux/futex.h>
59 #include <linux/compat.h>
60 #include <linux/kthread.h>
61 #include <linux/task_io_accounting_ops.h>
62 #include <linux/rcupdate.h>
63 #include <linux/ptrace.h>
64 #include <linux/mount.h>
65 #include <linux/audit.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/proc_fs.h>
69 #include <linux/profile.h>
70 #include <linux/rmap.h>
71 #include <linux/ksm.h>
72 #include <linux/acct.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/tsacct_kern.h>
75 #include <linux/cn_proc.h>
76 #include <linux/freezer.h>
77 #include <linux/delayacct.h>
78 #include <linux/taskstats_kern.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/stackprotector.h>
101 #include <linux/user_events.h>
102 #include <linux/iommu.h>
103 #include <linux/rseq.h>
104 #include <uapi/linux/pidfd.h>
105 #include <linux/pidfs.h>
106 
107 #include <asm/pgalloc.h>
108 #include <linux/uaccess.h>
109 #include <asm/mmu_context.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 
113 #include <trace/events/sched.h>
114 
115 #define CREATE_TRACE_POINTS
116 #include <trace/events/task.h>
117 
118 /*
119  * Minimum number of threads to boot the kernel
120  */
121 #define MIN_THREADS 20
122 
123 /*
124  * Maximum number of threads
125  */
126 #define MAX_THREADS FUTEX_TID_MASK
127 
128 /*
129  * Protected counters by write_lock_irq(&tasklist_lock)
130  */
131 unsigned long total_forks;	/* Handle normal Linux uptimes. */
132 int nr_threads;			/* The idle threads do not count.. */
133 
134 static int max_threads;		/* tunable limit on nr_threads */
135 
136 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
137 
138 static const char * const resident_page_types[] = {
139 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
140 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
141 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
142 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144 
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146 
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148 
149 #ifdef CONFIG_PROVE_RCU
150 int lockdep_tasklist_lock_is_held(void)
151 {
152 	return lockdep_is_held(&tasklist_lock);
153 }
154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
155 #endif /* #ifdef CONFIG_PROVE_RCU */
156 
157 int nr_processes(void)
158 {
159 	int cpu;
160 	int total = 0;
161 
162 	for_each_possible_cpu(cpu)
163 		total += per_cpu(process_counts, cpu);
164 
165 	return total;
166 }
167 
168 void __weak arch_release_task_struct(struct task_struct *tsk)
169 {
170 }
171 
172 static struct kmem_cache *task_struct_cachep;
173 
174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178 
179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 	kmem_cache_free(task_struct_cachep, tsk);
182 }
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 
416 /* SLAB cache for signal_struct structures (tsk->signal) */
417 static struct kmem_cache *signal_cachep;
418 
419 /* SLAB cache for sighand_struct structures (tsk->sighand) */
420 struct kmem_cache *sighand_cachep;
421 
422 /* SLAB cache for files_struct structures (tsk->files) */
423 struct kmem_cache *files_cachep;
424 
425 /* SLAB cache for fs_struct structures (tsk->fs) */
426 struct kmem_cache *fs_cachep;
427 
428 /* SLAB cache for vm_area_struct structures */
429 static struct kmem_cache *vm_area_cachep;
430 
431 /* SLAB cache for mm_struct structures (tsk->mm) */
432 static struct kmem_cache *mm_cachep;
433 
434 #ifdef CONFIG_PER_VMA_LOCK
435 
436 /* SLAB cache for vm_area_struct.lock */
437 static struct kmem_cache *vma_lock_cachep;
438 
439 static bool vma_lock_alloc(struct vm_area_struct *vma)
440 {
441 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
442 	if (!vma->vm_lock)
443 		return false;
444 
445 	init_rwsem(&vma->vm_lock->lock);
446 	vma->vm_lock_seq = -1;
447 
448 	return true;
449 }
450 
451 static inline void vma_lock_free(struct vm_area_struct *vma)
452 {
453 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
454 }
455 
456 #else /* CONFIG_PER_VMA_LOCK */
457 
458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
459 static inline void vma_lock_free(struct vm_area_struct *vma) {}
460 
461 #endif /* CONFIG_PER_VMA_LOCK */
462 
463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
464 {
465 	struct vm_area_struct *vma;
466 
467 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468 	if (!vma)
469 		return NULL;
470 
471 	vma_init(vma, mm);
472 	if (!vma_lock_alloc(vma)) {
473 		kmem_cache_free(vm_area_cachep, vma);
474 		return NULL;
475 	}
476 
477 	return vma;
478 }
479 
480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
481 {
482 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
483 
484 	if (!new)
485 		return NULL;
486 
487 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
488 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
489 	/*
490 	 * orig->shared.rb may be modified concurrently, but the clone
491 	 * will be reinitialized.
492 	 */
493 	data_race(memcpy(new, orig, sizeof(*new)));
494 	if (!vma_lock_alloc(new)) {
495 		kmem_cache_free(vm_area_cachep, new);
496 		return NULL;
497 	}
498 	INIT_LIST_HEAD(&new->anon_vma_chain);
499 	vma_numab_state_init(new);
500 	dup_anon_vma_name(orig, new);
501 
502 	return new;
503 }
504 
505 void __vm_area_free(struct vm_area_struct *vma)
506 {
507 	vma_numab_state_free(vma);
508 	free_anon_vma_name(vma);
509 	vma_lock_free(vma);
510 	kmem_cache_free(vm_area_cachep, vma);
511 }
512 
513 #ifdef CONFIG_PER_VMA_LOCK
514 static void vm_area_free_rcu_cb(struct rcu_head *head)
515 {
516 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
517 						  vm_rcu);
518 
519 	/* The vma should not be locked while being destroyed. */
520 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
521 	__vm_area_free(vma);
522 }
523 #endif
524 
525 void vm_area_free(struct vm_area_struct *vma)
526 {
527 #ifdef CONFIG_PER_VMA_LOCK
528 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
529 #else
530 	__vm_area_free(vma);
531 #endif
532 }
533 
534 static void account_kernel_stack(struct task_struct *tsk, int account)
535 {
536 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
537 		struct vm_struct *vm = task_stack_vm_area(tsk);
538 		int i;
539 
540 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
542 					      account * (PAGE_SIZE / 1024));
543 	} else {
544 		void *stack = task_stack_page(tsk);
545 
546 		/* All stack pages are in the same node. */
547 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
548 				      account * (THREAD_SIZE / 1024));
549 	}
550 }
551 
552 void exit_task_stack_account(struct task_struct *tsk)
553 {
554 	account_kernel_stack(tsk, -1);
555 
556 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
557 		struct vm_struct *vm;
558 		int i;
559 
560 		vm = task_stack_vm_area(tsk);
561 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
562 			memcg_kmem_uncharge_page(vm->pages[i], 0);
563 	}
564 }
565 
566 static void release_task_stack(struct task_struct *tsk)
567 {
568 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
569 		return;  /* Better to leak the stack than to free prematurely */
570 
571 	free_thread_stack(tsk);
572 }
573 
574 #ifdef CONFIG_THREAD_INFO_IN_TASK
575 void put_task_stack(struct task_struct *tsk)
576 {
577 	if (refcount_dec_and_test(&tsk->stack_refcount))
578 		release_task_stack(tsk);
579 }
580 #endif
581 
582 void free_task(struct task_struct *tsk)
583 {
584 #ifdef CONFIG_SECCOMP
585 	WARN_ON_ONCE(tsk->seccomp.filter);
586 #endif
587 	release_user_cpus_ptr(tsk);
588 	scs_release(tsk);
589 
590 #ifndef CONFIG_THREAD_INFO_IN_TASK
591 	/*
592 	 * The task is finally done with both the stack and thread_info,
593 	 * so free both.
594 	 */
595 	release_task_stack(tsk);
596 #else
597 	/*
598 	 * If the task had a separate stack allocation, it should be gone
599 	 * by now.
600 	 */
601 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
602 #endif
603 	rt_mutex_debug_task_free(tsk);
604 	ftrace_graph_exit_task(tsk);
605 	arch_release_task_struct(tsk);
606 	if (tsk->flags & PF_KTHREAD)
607 		free_kthread_struct(tsk);
608 	bpf_task_storage_free(tsk);
609 	free_task_struct(tsk);
610 }
611 EXPORT_SYMBOL(free_task);
612 
613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
614 {
615 	struct file *exe_file;
616 
617 	exe_file = get_mm_exe_file(oldmm);
618 	RCU_INIT_POINTER(mm->exe_file, exe_file);
619 }
620 
621 #ifdef CONFIG_MMU
622 static __latent_entropy int dup_mmap(struct mm_struct *mm,
623 					struct mm_struct *oldmm)
624 {
625 	struct vm_area_struct *mpnt, *tmp;
626 	int retval;
627 	unsigned long charge = 0;
628 	LIST_HEAD(uf);
629 	VMA_ITERATOR(vmi, mm, 0);
630 
631 	uprobe_start_dup_mmap();
632 	if (mmap_write_lock_killable(oldmm)) {
633 		retval = -EINTR;
634 		goto fail_uprobe_end;
635 	}
636 	flush_cache_dup_mm(oldmm);
637 	uprobe_dup_mmap(oldmm, mm);
638 	/*
639 	 * Not linked in yet - no deadlock potential:
640 	 */
641 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
642 
643 	/* No ordering required: file already has been exposed. */
644 	dup_mm_exe_file(mm, oldmm);
645 
646 	mm->total_vm = oldmm->total_vm;
647 	mm->data_vm = oldmm->data_vm;
648 	mm->exec_vm = oldmm->exec_vm;
649 	mm->stack_vm = oldmm->stack_vm;
650 
651 	retval = ksm_fork(mm, oldmm);
652 	if (retval)
653 		goto out;
654 	khugepaged_fork(mm, oldmm);
655 
656 	/* Use __mt_dup() to efficiently build an identical maple tree. */
657 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
658 	if (unlikely(retval))
659 		goto out;
660 
661 	mt_clear_in_rcu(vmi.mas.tree);
662 	for_each_vma(vmi, mpnt) {
663 		struct file *file;
664 
665 		vma_start_write(mpnt);
666 		if (mpnt->vm_flags & VM_DONTCOPY) {
667 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
668 						    mpnt->vm_end, GFP_KERNEL);
669 			if (retval)
670 				goto loop_out;
671 
672 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
673 			continue;
674 		}
675 		charge = 0;
676 		/*
677 		 * Don't duplicate many vmas if we've been oom-killed (for
678 		 * example)
679 		 */
680 		if (fatal_signal_pending(current)) {
681 			retval = -EINTR;
682 			goto loop_out;
683 		}
684 		if (mpnt->vm_flags & VM_ACCOUNT) {
685 			unsigned long len = vma_pages(mpnt);
686 
687 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
688 				goto fail_nomem;
689 			charge = len;
690 		}
691 		tmp = vm_area_dup(mpnt);
692 		if (!tmp)
693 			goto fail_nomem;
694 		retval = vma_dup_policy(mpnt, tmp);
695 		if (retval)
696 			goto fail_nomem_policy;
697 		tmp->vm_mm = mm;
698 		retval = dup_userfaultfd(tmp, &uf);
699 		if (retval)
700 			goto fail_nomem_anon_vma_fork;
701 		if (tmp->vm_flags & VM_WIPEONFORK) {
702 			/*
703 			 * VM_WIPEONFORK gets a clean slate in the child.
704 			 * Don't prepare anon_vma until fault since we don't
705 			 * copy page for current vma.
706 			 */
707 			tmp->anon_vma = NULL;
708 		} else if (anon_vma_fork(tmp, mpnt))
709 			goto fail_nomem_anon_vma_fork;
710 		vm_flags_clear(tmp, VM_LOCKED_MASK);
711 		/*
712 		 * Copy/update hugetlb private vma information.
713 		 */
714 		if (is_vm_hugetlb_page(tmp))
715 			hugetlb_dup_vma_private(tmp);
716 
717 		/*
718 		 * Link the vma into the MT. After using __mt_dup(), memory
719 		 * allocation is not necessary here, so it cannot fail.
720 		 */
721 		vma_iter_bulk_store(&vmi, tmp);
722 
723 		mm->map_count++;
724 
725 		if (tmp->vm_ops && tmp->vm_ops->open)
726 			tmp->vm_ops->open(tmp);
727 
728 		file = tmp->vm_file;
729 		if (file) {
730 			struct address_space *mapping = file->f_mapping;
731 
732 			get_file(file);
733 			i_mmap_lock_write(mapping);
734 			if (vma_is_shared_maywrite(tmp))
735 				mapping_allow_writable(mapping);
736 			flush_dcache_mmap_lock(mapping);
737 			/* insert tmp into the share list, just after mpnt */
738 			vma_interval_tree_insert_after(tmp, mpnt,
739 					&mapping->i_mmap);
740 			flush_dcache_mmap_unlock(mapping);
741 			i_mmap_unlock_write(mapping);
742 		}
743 
744 		if (!(tmp->vm_flags & VM_WIPEONFORK))
745 			retval = copy_page_range(tmp, mpnt);
746 
747 		if (retval) {
748 			mpnt = vma_next(&vmi);
749 			goto loop_out;
750 		}
751 	}
752 	/* a new mm has just been created */
753 	retval = arch_dup_mmap(oldmm, mm);
754 loop_out:
755 	vma_iter_free(&vmi);
756 	if (!retval) {
757 		mt_set_in_rcu(vmi.mas.tree);
758 	} else if (mpnt) {
759 		/*
760 		 * The entire maple tree has already been duplicated. If the
761 		 * mmap duplication fails, mark the failure point with
762 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
763 		 * stop releasing VMAs that have not been duplicated after this
764 		 * point.
765 		 */
766 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
767 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
768 	}
769 out:
770 	mmap_write_unlock(mm);
771 	flush_tlb_mm(oldmm);
772 	mmap_write_unlock(oldmm);
773 	dup_userfaultfd_complete(&uf);
774 fail_uprobe_end:
775 	uprobe_end_dup_mmap();
776 	return retval;
777 
778 fail_nomem_anon_vma_fork:
779 	mpol_put(vma_policy(tmp));
780 fail_nomem_policy:
781 	vm_area_free(tmp);
782 fail_nomem:
783 	retval = -ENOMEM;
784 	vm_unacct_memory(charge);
785 	goto loop_out;
786 }
787 
788 static inline int mm_alloc_pgd(struct mm_struct *mm)
789 {
790 	mm->pgd = pgd_alloc(mm);
791 	if (unlikely(!mm->pgd))
792 		return -ENOMEM;
793 	return 0;
794 }
795 
796 static inline void mm_free_pgd(struct mm_struct *mm)
797 {
798 	pgd_free(mm, mm->pgd);
799 }
800 #else
801 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
802 {
803 	mmap_write_lock(oldmm);
804 	dup_mm_exe_file(mm, oldmm);
805 	mmap_write_unlock(oldmm);
806 	return 0;
807 }
808 #define mm_alloc_pgd(mm)	(0)
809 #define mm_free_pgd(mm)
810 #endif /* CONFIG_MMU */
811 
812 static void check_mm(struct mm_struct *mm)
813 {
814 	int i;
815 
816 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
817 			 "Please make sure 'struct resident_page_types[]' is updated as well");
818 
819 	for (i = 0; i < NR_MM_COUNTERS; i++) {
820 		long x = percpu_counter_sum(&mm->rss_stat[i]);
821 
822 		if (unlikely(x))
823 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
824 				 mm, resident_page_types[i], x);
825 	}
826 
827 	if (mm_pgtables_bytes(mm))
828 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
829 				mm_pgtables_bytes(mm));
830 
831 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
832 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
833 #endif
834 }
835 
836 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
837 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
838 
839 static void do_check_lazy_tlb(void *arg)
840 {
841 	struct mm_struct *mm = arg;
842 
843 	WARN_ON_ONCE(current->active_mm == mm);
844 }
845 
846 static void do_shoot_lazy_tlb(void *arg)
847 {
848 	struct mm_struct *mm = arg;
849 
850 	if (current->active_mm == mm) {
851 		WARN_ON_ONCE(current->mm);
852 		current->active_mm = &init_mm;
853 		switch_mm(mm, &init_mm, current);
854 	}
855 }
856 
857 static void cleanup_lazy_tlbs(struct mm_struct *mm)
858 {
859 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
860 		/*
861 		 * In this case, lazy tlb mms are refounted and would not reach
862 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
863 		 */
864 		return;
865 	}
866 
867 	/*
868 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
869 	 * requires lazy mm users to switch to another mm when the refcount
870 	 * drops to zero, before the mm is freed. This requires IPIs here to
871 	 * switch kernel threads to init_mm.
872 	 *
873 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
874 	 * switch with the final userspace teardown TLB flush which leaves the
875 	 * mm lazy on this CPU but no others, reducing the need for additional
876 	 * IPIs here. There are cases where a final IPI is still required here,
877 	 * such as the final mmdrop being performed on a different CPU than the
878 	 * one exiting, or kernel threads using the mm when userspace exits.
879 	 *
880 	 * IPI overheads have not found to be expensive, but they could be
881 	 * reduced in a number of possible ways, for example (roughly
882 	 * increasing order of complexity):
883 	 * - The last lazy reference created by exit_mm() could instead switch
884 	 *   to init_mm, however it's probable this will run on the same CPU
885 	 *   immediately afterwards, so this may not reduce IPIs much.
886 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
887 	 * - CPUs store active_mm where it can be remotely checked without a
888 	 *   lock, to filter out false-positives in the cpumask.
889 	 * - After mm_users or mm_count reaches zero, switching away from the
890 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
891 	 *   with some batching or delaying of the final IPIs.
892 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
893 	 *   switching to avoid IPIs completely.
894 	 */
895 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
896 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
897 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
898 }
899 
900 /*
901  * Called when the last reference to the mm
902  * is dropped: either by a lazy thread or by
903  * mmput. Free the page directory and the mm.
904  */
905 void __mmdrop(struct mm_struct *mm)
906 {
907 	BUG_ON(mm == &init_mm);
908 	WARN_ON_ONCE(mm == current->mm);
909 
910 	/* Ensure no CPUs are using this as their lazy tlb mm */
911 	cleanup_lazy_tlbs(mm);
912 
913 	WARN_ON_ONCE(mm == current->active_mm);
914 	mm_free_pgd(mm);
915 	destroy_context(mm);
916 	mmu_notifier_subscriptions_destroy(mm);
917 	check_mm(mm);
918 	put_user_ns(mm->user_ns);
919 	mm_pasid_drop(mm);
920 	mm_destroy_cid(mm);
921 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
922 
923 	free_mm(mm);
924 }
925 EXPORT_SYMBOL_GPL(__mmdrop);
926 
927 static void mmdrop_async_fn(struct work_struct *work)
928 {
929 	struct mm_struct *mm;
930 
931 	mm = container_of(work, struct mm_struct, async_put_work);
932 	__mmdrop(mm);
933 }
934 
935 static void mmdrop_async(struct mm_struct *mm)
936 {
937 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
938 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
939 		schedule_work(&mm->async_put_work);
940 	}
941 }
942 
943 static inline void free_signal_struct(struct signal_struct *sig)
944 {
945 	taskstats_tgid_free(sig);
946 	sched_autogroup_exit(sig);
947 	/*
948 	 * __mmdrop is not safe to call from softirq context on x86 due to
949 	 * pgd_dtor so postpone it to the async context
950 	 */
951 	if (sig->oom_mm)
952 		mmdrop_async(sig->oom_mm);
953 	kmem_cache_free(signal_cachep, sig);
954 }
955 
956 static inline void put_signal_struct(struct signal_struct *sig)
957 {
958 	if (refcount_dec_and_test(&sig->sigcnt))
959 		free_signal_struct(sig);
960 }
961 
962 void __put_task_struct(struct task_struct *tsk)
963 {
964 	WARN_ON(!tsk->exit_state);
965 	WARN_ON(refcount_read(&tsk->usage));
966 	WARN_ON(tsk == current);
967 
968 	io_uring_free(tsk);
969 	cgroup_free(tsk);
970 	task_numa_free(tsk, true);
971 	security_task_free(tsk);
972 	exit_creds(tsk);
973 	delayacct_tsk_free(tsk);
974 	put_signal_struct(tsk->signal);
975 	sched_core_free(tsk);
976 	free_task(tsk);
977 }
978 EXPORT_SYMBOL_GPL(__put_task_struct);
979 
980 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
981 {
982 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
983 
984 	__put_task_struct(task);
985 }
986 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
987 
988 void __init __weak arch_task_cache_init(void) { }
989 
990 /*
991  * set_max_threads
992  */
993 static void set_max_threads(unsigned int max_threads_suggested)
994 {
995 	u64 threads;
996 	unsigned long nr_pages = totalram_pages();
997 
998 	/*
999 	 * The number of threads shall be limited such that the thread
1000 	 * structures may only consume a small part of the available memory.
1001 	 */
1002 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1003 		threads = MAX_THREADS;
1004 	else
1005 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1006 				    (u64) THREAD_SIZE * 8UL);
1007 
1008 	if (threads > max_threads_suggested)
1009 		threads = max_threads_suggested;
1010 
1011 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1012 }
1013 
1014 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1015 /* Initialized by the architecture: */
1016 int arch_task_struct_size __read_mostly;
1017 #endif
1018 
1019 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1020 {
1021 	/* Fetch thread_struct whitelist for the architecture. */
1022 	arch_thread_struct_whitelist(offset, size);
1023 
1024 	/*
1025 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1026 	 * adjust offset to position of thread_struct in task_struct.
1027 	 */
1028 	if (unlikely(*size == 0))
1029 		*offset = 0;
1030 	else
1031 		*offset += offsetof(struct task_struct, thread);
1032 }
1033 
1034 void __init fork_init(void)
1035 {
1036 	int i;
1037 #ifndef ARCH_MIN_TASKALIGN
1038 #define ARCH_MIN_TASKALIGN	0
1039 #endif
1040 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1041 	unsigned long useroffset, usersize;
1042 
1043 	/* create a slab on which task_structs can be allocated */
1044 	task_struct_whitelist(&useroffset, &usersize);
1045 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1046 			arch_task_struct_size, align,
1047 			SLAB_PANIC|SLAB_ACCOUNT,
1048 			useroffset, usersize, NULL);
1049 
1050 	/* do the arch specific task caches init */
1051 	arch_task_cache_init();
1052 
1053 	set_max_threads(MAX_THREADS);
1054 
1055 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1056 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1057 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1058 		init_task.signal->rlim[RLIMIT_NPROC];
1059 
1060 	for (i = 0; i < UCOUNT_COUNTS; i++)
1061 		init_user_ns.ucount_max[i] = max_threads/2;
1062 
1063 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1064 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1065 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1066 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1067 
1068 #ifdef CONFIG_VMAP_STACK
1069 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1070 			  NULL, free_vm_stack_cache);
1071 #endif
1072 
1073 	scs_init();
1074 
1075 	lockdep_init_task(&init_task);
1076 	uprobes_init();
1077 }
1078 
1079 int __weak arch_dup_task_struct(struct task_struct *dst,
1080 					       struct task_struct *src)
1081 {
1082 	*dst = *src;
1083 	return 0;
1084 }
1085 
1086 void set_task_stack_end_magic(struct task_struct *tsk)
1087 {
1088 	unsigned long *stackend;
1089 
1090 	stackend = end_of_stack(tsk);
1091 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1092 }
1093 
1094 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1095 {
1096 	struct task_struct *tsk;
1097 	int err;
1098 
1099 	if (node == NUMA_NO_NODE)
1100 		node = tsk_fork_get_node(orig);
1101 	tsk = alloc_task_struct_node(node);
1102 	if (!tsk)
1103 		return NULL;
1104 
1105 	err = arch_dup_task_struct(tsk, orig);
1106 	if (err)
1107 		goto free_tsk;
1108 
1109 	err = alloc_thread_stack_node(tsk, node);
1110 	if (err)
1111 		goto free_tsk;
1112 
1113 #ifdef CONFIG_THREAD_INFO_IN_TASK
1114 	refcount_set(&tsk->stack_refcount, 1);
1115 #endif
1116 	account_kernel_stack(tsk, 1);
1117 
1118 	err = scs_prepare(tsk, node);
1119 	if (err)
1120 		goto free_stack;
1121 
1122 #ifdef CONFIG_SECCOMP
1123 	/*
1124 	 * We must handle setting up seccomp filters once we're under
1125 	 * the sighand lock in case orig has changed between now and
1126 	 * then. Until then, filter must be NULL to avoid messing up
1127 	 * the usage counts on the error path calling free_task.
1128 	 */
1129 	tsk->seccomp.filter = NULL;
1130 #endif
1131 
1132 	setup_thread_stack(tsk, orig);
1133 	clear_user_return_notifier(tsk);
1134 	clear_tsk_need_resched(tsk);
1135 	set_task_stack_end_magic(tsk);
1136 	clear_syscall_work_syscall_user_dispatch(tsk);
1137 
1138 #ifdef CONFIG_STACKPROTECTOR
1139 	tsk->stack_canary = get_random_canary();
1140 #endif
1141 	if (orig->cpus_ptr == &orig->cpus_mask)
1142 		tsk->cpus_ptr = &tsk->cpus_mask;
1143 	dup_user_cpus_ptr(tsk, orig, node);
1144 
1145 	/*
1146 	 * One for the user space visible state that goes away when reaped.
1147 	 * One for the scheduler.
1148 	 */
1149 	refcount_set(&tsk->rcu_users, 2);
1150 	/* One for the rcu users */
1151 	refcount_set(&tsk->usage, 1);
1152 #ifdef CONFIG_BLK_DEV_IO_TRACE
1153 	tsk->btrace_seq = 0;
1154 #endif
1155 	tsk->splice_pipe = NULL;
1156 	tsk->task_frag.page = NULL;
1157 	tsk->wake_q.next = NULL;
1158 	tsk->worker_private = NULL;
1159 
1160 	kcov_task_init(tsk);
1161 	kmsan_task_create(tsk);
1162 	kmap_local_fork(tsk);
1163 
1164 #ifdef CONFIG_FAULT_INJECTION
1165 	tsk->fail_nth = 0;
1166 #endif
1167 
1168 #ifdef CONFIG_BLK_CGROUP
1169 	tsk->throttle_disk = NULL;
1170 	tsk->use_memdelay = 0;
1171 #endif
1172 
1173 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1174 	tsk->pasid_activated = 0;
1175 #endif
1176 
1177 #ifdef CONFIG_MEMCG
1178 	tsk->active_memcg = NULL;
1179 #endif
1180 
1181 #ifdef CONFIG_CPU_SUP_INTEL
1182 	tsk->reported_split_lock = 0;
1183 #endif
1184 
1185 #ifdef CONFIG_SCHED_MM_CID
1186 	tsk->mm_cid = -1;
1187 	tsk->last_mm_cid = -1;
1188 	tsk->mm_cid_active = 0;
1189 	tsk->migrate_from_cpu = -1;
1190 #endif
1191 	return tsk;
1192 
1193 free_stack:
1194 	exit_task_stack_account(tsk);
1195 	free_thread_stack(tsk);
1196 free_tsk:
1197 	free_task_struct(tsk);
1198 	return NULL;
1199 }
1200 
1201 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1202 
1203 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1204 
1205 static int __init coredump_filter_setup(char *s)
1206 {
1207 	default_dump_filter =
1208 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1209 		MMF_DUMP_FILTER_MASK;
1210 	return 1;
1211 }
1212 
1213 __setup("coredump_filter=", coredump_filter_setup);
1214 
1215 #include <linux/init_task.h>
1216 
1217 static void mm_init_aio(struct mm_struct *mm)
1218 {
1219 #ifdef CONFIG_AIO
1220 	spin_lock_init(&mm->ioctx_lock);
1221 	mm->ioctx_table = NULL;
1222 #endif
1223 }
1224 
1225 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1226 					   struct task_struct *p)
1227 {
1228 #ifdef CONFIG_MEMCG
1229 	if (mm->owner == p)
1230 		WRITE_ONCE(mm->owner, NULL);
1231 #endif
1232 }
1233 
1234 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1235 {
1236 #ifdef CONFIG_MEMCG
1237 	mm->owner = p;
1238 #endif
1239 }
1240 
1241 static void mm_init_uprobes_state(struct mm_struct *mm)
1242 {
1243 #ifdef CONFIG_UPROBES
1244 	mm->uprobes_state.xol_area = NULL;
1245 #endif
1246 }
1247 
1248 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1249 	struct user_namespace *user_ns)
1250 {
1251 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1252 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1253 	atomic_set(&mm->mm_users, 1);
1254 	atomic_set(&mm->mm_count, 1);
1255 	seqcount_init(&mm->write_protect_seq);
1256 	mmap_init_lock(mm);
1257 	INIT_LIST_HEAD(&mm->mmlist);
1258 #ifdef CONFIG_PER_VMA_LOCK
1259 	mm->mm_lock_seq = 0;
1260 #endif
1261 	mm_pgtables_bytes_init(mm);
1262 	mm->map_count = 0;
1263 	mm->locked_vm = 0;
1264 	atomic64_set(&mm->pinned_vm, 0);
1265 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1266 	spin_lock_init(&mm->page_table_lock);
1267 	spin_lock_init(&mm->arg_lock);
1268 	mm_init_cpumask(mm);
1269 	mm_init_aio(mm);
1270 	mm_init_owner(mm, p);
1271 	mm_pasid_init(mm);
1272 	RCU_INIT_POINTER(mm->exe_file, NULL);
1273 	mmu_notifier_subscriptions_init(mm);
1274 	init_tlb_flush_pending(mm);
1275 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1276 	mm->pmd_huge_pte = NULL;
1277 #endif
1278 	mm_init_uprobes_state(mm);
1279 	hugetlb_count_init(mm);
1280 
1281 	if (current->mm) {
1282 		mm->flags = mmf_init_flags(current->mm->flags);
1283 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1284 	} else {
1285 		mm->flags = default_dump_filter;
1286 		mm->def_flags = 0;
1287 	}
1288 
1289 	if (mm_alloc_pgd(mm))
1290 		goto fail_nopgd;
1291 
1292 	if (init_new_context(p, mm))
1293 		goto fail_nocontext;
1294 
1295 	if (mm_alloc_cid(mm))
1296 		goto fail_cid;
1297 
1298 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1299 				     NR_MM_COUNTERS))
1300 		goto fail_pcpu;
1301 
1302 	mm->user_ns = get_user_ns(user_ns);
1303 	lru_gen_init_mm(mm);
1304 	return mm;
1305 
1306 fail_pcpu:
1307 	mm_destroy_cid(mm);
1308 fail_cid:
1309 	destroy_context(mm);
1310 fail_nocontext:
1311 	mm_free_pgd(mm);
1312 fail_nopgd:
1313 	free_mm(mm);
1314 	return NULL;
1315 }
1316 
1317 /*
1318  * Allocate and initialize an mm_struct.
1319  */
1320 struct mm_struct *mm_alloc(void)
1321 {
1322 	struct mm_struct *mm;
1323 
1324 	mm = allocate_mm();
1325 	if (!mm)
1326 		return NULL;
1327 
1328 	memset(mm, 0, sizeof(*mm));
1329 	return mm_init(mm, current, current_user_ns());
1330 }
1331 
1332 static inline void __mmput(struct mm_struct *mm)
1333 {
1334 	VM_BUG_ON(atomic_read(&mm->mm_users));
1335 
1336 	uprobe_clear_state(mm);
1337 	exit_aio(mm);
1338 	ksm_exit(mm);
1339 	khugepaged_exit(mm); /* must run before exit_mmap */
1340 	exit_mmap(mm);
1341 	mm_put_huge_zero_folio(mm);
1342 	set_mm_exe_file(mm, NULL);
1343 	if (!list_empty(&mm->mmlist)) {
1344 		spin_lock(&mmlist_lock);
1345 		list_del(&mm->mmlist);
1346 		spin_unlock(&mmlist_lock);
1347 	}
1348 	if (mm->binfmt)
1349 		module_put(mm->binfmt->module);
1350 	lru_gen_del_mm(mm);
1351 	mmdrop(mm);
1352 }
1353 
1354 /*
1355  * Decrement the use count and release all resources for an mm.
1356  */
1357 void mmput(struct mm_struct *mm)
1358 {
1359 	might_sleep();
1360 
1361 	if (atomic_dec_and_test(&mm->mm_users))
1362 		__mmput(mm);
1363 }
1364 EXPORT_SYMBOL_GPL(mmput);
1365 
1366 #ifdef CONFIG_MMU
1367 static void mmput_async_fn(struct work_struct *work)
1368 {
1369 	struct mm_struct *mm = container_of(work, struct mm_struct,
1370 					    async_put_work);
1371 
1372 	__mmput(mm);
1373 }
1374 
1375 void mmput_async(struct mm_struct *mm)
1376 {
1377 	if (atomic_dec_and_test(&mm->mm_users)) {
1378 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1379 		schedule_work(&mm->async_put_work);
1380 	}
1381 }
1382 EXPORT_SYMBOL_GPL(mmput_async);
1383 #endif
1384 
1385 /**
1386  * set_mm_exe_file - change a reference to the mm's executable file
1387  * @mm: The mm to change.
1388  * @new_exe_file: The new file to use.
1389  *
1390  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1391  *
1392  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1393  * invocations: in mmput() nobody alive left, in execve it happens before
1394  * the new mm is made visible to anyone.
1395  *
1396  * Can only fail if new_exe_file != NULL.
1397  */
1398 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1399 {
1400 	struct file *old_exe_file;
1401 
1402 	/*
1403 	 * It is safe to dereference the exe_file without RCU as
1404 	 * this function is only called if nobody else can access
1405 	 * this mm -- see comment above for justification.
1406 	 */
1407 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1408 
1409 	if (new_exe_file)
1410 		get_file(new_exe_file);
1411 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1412 	if (old_exe_file)
1413 		fput(old_exe_file);
1414 	return 0;
1415 }
1416 
1417 /**
1418  * replace_mm_exe_file - replace a reference to the mm's executable file
1419  * @mm: The mm to change.
1420  * @new_exe_file: The new file to use.
1421  *
1422  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1423  *
1424  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1425  */
1426 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1427 {
1428 	struct vm_area_struct *vma;
1429 	struct file *old_exe_file;
1430 	int ret = 0;
1431 
1432 	/* Forbid mm->exe_file change if old file still mapped. */
1433 	old_exe_file = get_mm_exe_file(mm);
1434 	if (old_exe_file) {
1435 		VMA_ITERATOR(vmi, mm, 0);
1436 		mmap_read_lock(mm);
1437 		for_each_vma(vmi, vma) {
1438 			if (!vma->vm_file)
1439 				continue;
1440 			if (path_equal(&vma->vm_file->f_path,
1441 				       &old_exe_file->f_path)) {
1442 				ret = -EBUSY;
1443 				break;
1444 			}
1445 		}
1446 		mmap_read_unlock(mm);
1447 		fput(old_exe_file);
1448 		if (ret)
1449 			return ret;
1450 	}
1451 
1452 	get_file(new_exe_file);
1453 
1454 	/* set the new file */
1455 	mmap_write_lock(mm);
1456 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1457 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1458 	mmap_write_unlock(mm);
1459 
1460 	if (old_exe_file)
1461 		fput(old_exe_file);
1462 	return 0;
1463 }
1464 
1465 /**
1466  * get_mm_exe_file - acquire a reference to the mm's executable file
1467  * @mm: The mm of interest.
1468  *
1469  * Returns %NULL if mm has no associated executable file.
1470  * User must release file via fput().
1471  */
1472 struct file *get_mm_exe_file(struct mm_struct *mm)
1473 {
1474 	struct file *exe_file;
1475 
1476 	rcu_read_lock();
1477 	exe_file = get_file_rcu(&mm->exe_file);
1478 	rcu_read_unlock();
1479 	return exe_file;
1480 }
1481 
1482 /**
1483  * get_task_exe_file - acquire a reference to the task's executable file
1484  * @task: The task.
1485  *
1486  * Returns %NULL if task's mm (if any) has no associated executable file or
1487  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1488  * User must release file via fput().
1489  */
1490 struct file *get_task_exe_file(struct task_struct *task)
1491 {
1492 	struct file *exe_file = NULL;
1493 	struct mm_struct *mm;
1494 
1495 	task_lock(task);
1496 	mm = task->mm;
1497 	if (mm) {
1498 		if (!(task->flags & PF_KTHREAD))
1499 			exe_file = get_mm_exe_file(mm);
1500 	}
1501 	task_unlock(task);
1502 	return exe_file;
1503 }
1504 
1505 /**
1506  * get_task_mm - acquire a reference to the task's mm
1507  * @task: The task.
1508  *
1509  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1510  * this kernel workthread has transiently adopted a user mm with use_mm,
1511  * to do its AIO) is not set and if so returns a reference to it, after
1512  * bumping up the use count.  User must release the mm via mmput()
1513  * after use.  Typically used by /proc and ptrace.
1514  */
1515 struct mm_struct *get_task_mm(struct task_struct *task)
1516 {
1517 	struct mm_struct *mm;
1518 
1519 	task_lock(task);
1520 	mm = task->mm;
1521 	if (mm) {
1522 		if (task->flags & PF_KTHREAD)
1523 			mm = NULL;
1524 		else
1525 			mmget(mm);
1526 	}
1527 	task_unlock(task);
1528 	return mm;
1529 }
1530 EXPORT_SYMBOL_GPL(get_task_mm);
1531 
1532 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1533 {
1534 	struct mm_struct *mm;
1535 	int err;
1536 
1537 	err =  down_read_killable(&task->signal->exec_update_lock);
1538 	if (err)
1539 		return ERR_PTR(err);
1540 
1541 	mm = get_task_mm(task);
1542 	if (mm && mm != current->mm &&
1543 			!ptrace_may_access(task, mode)) {
1544 		mmput(mm);
1545 		mm = ERR_PTR(-EACCES);
1546 	}
1547 	up_read(&task->signal->exec_update_lock);
1548 
1549 	return mm;
1550 }
1551 
1552 static void complete_vfork_done(struct task_struct *tsk)
1553 {
1554 	struct completion *vfork;
1555 
1556 	task_lock(tsk);
1557 	vfork = tsk->vfork_done;
1558 	if (likely(vfork)) {
1559 		tsk->vfork_done = NULL;
1560 		complete(vfork);
1561 	}
1562 	task_unlock(tsk);
1563 }
1564 
1565 static int wait_for_vfork_done(struct task_struct *child,
1566 				struct completion *vfork)
1567 {
1568 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1569 	int killed;
1570 
1571 	cgroup_enter_frozen();
1572 	killed = wait_for_completion_state(vfork, state);
1573 	cgroup_leave_frozen(false);
1574 
1575 	if (killed) {
1576 		task_lock(child);
1577 		child->vfork_done = NULL;
1578 		task_unlock(child);
1579 	}
1580 
1581 	put_task_struct(child);
1582 	return killed;
1583 }
1584 
1585 /* Please note the differences between mmput and mm_release.
1586  * mmput is called whenever we stop holding onto a mm_struct,
1587  * error success whatever.
1588  *
1589  * mm_release is called after a mm_struct has been removed
1590  * from the current process.
1591  *
1592  * This difference is important for error handling, when we
1593  * only half set up a mm_struct for a new process and need to restore
1594  * the old one.  Because we mmput the new mm_struct before
1595  * restoring the old one. . .
1596  * Eric Biederman 10 January 1998
1597  */
1598 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1599 {
1600 	uprobe_free_utask(tsk);
1601 
1602 	/* Get rid of any cached register state */
1603 	deactivate_mm(tsk, mm);
1604 
1605 	/*
1606 	 * Signal userspace if we're not exiting with a core dump
1607 	 * because we want to leave the value intact for debugging
1608 	 * purposes.
1609 	 */
1610 	if (tsk->clear_child_tid) {
1611 		if (atomic_read(&mm->mm_users) > 1) {
1612 			/*
1613 			 * We don't check the error code - if userspace has
1614 			 * not set up a proper pointer then tough luck.
1615 			 */
1616 			put_user(0, tsk->clear_child_tid);
1617 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1618 					1, NULL, NULL, 0, 0);
1619 		}
1620 		tsk->clear_child_tid = NULL;
1621 	}
1622 
1623 	/*
1624 	 * All done, finally we can wake up parent and return this mm to him.
1625 	 * Also kthread_stop() uses this completion for synchronization.
1626 	 */
1627 	if (tsk->vfork_done)
1628 		complete_vfork_done(tsk);
1629 }
1630 
1631 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1632 {
1633 	futex_exit_release(tsk);
1634 	mm_release(tsk, mm);
1635 }
1636 
1637 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1638 {
1639 	futex_exec_release(tsk);
1640 	mm_release(tsk, mm);
1641 }
1642 
1643 /**
1644  * dup_mm() - duplicates an existing mm structure
1645  * @tsk: the task_struct with which the new mm will be associated.
1646  * @oldmm: the mm to duplicate.
1647  *
1648  * Allocates a new mm structure and duplicates the provided @oldmm structure
1649  * content into it.
1650  *
1651  * Return: the duplicated mm or NULL on failure.
1652  */
1653 static struct mm_struct *dup_mm(struct task_struct *tsk,
1654 				struct mm_struct *oldmm)
1655 {
1656 	struct mm_struct *mm;
1657 	int err;
1658 
1659 	mm = allocate_mm();
1660 	if (!mm)
1661 		goto fail_nomem;
1662 
1663 	memcpy(mm, oldmm, sizeof(*mm));
1664 
1665 	if (!mm_init(mm, tsk, mm->user_ns))
1666 		goto fail_nomem;
1667 
1668 	err = dup_mmap(mm, oldmm);
1669 	if (err)
1670 		goto free_pt;
1671 
1672 	mm->hiwater_rss = get_mm_rss(mm);
1673 	mm->hiwater_vm = mm->total_vm;
1674 
1675 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1676 		goto free_pt;
1677 
1678 	return mm;
1679 
1680 free_pt:
1681 	/* don't put binfmt in mmput, we haven't got module yet */
1682 	mm->binfmt = NULL;
1683 	mm_init_owner(mm, NULL);
1684 	mmput(mm);
1685 
1686 fail_nomem:
1687 	return NULL;
1688 }
1689 
1690 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1691 {
1692 	struct mm_struct *mm, *oldmm;
1693 
1694 	tsk->min_flt = tsk->maj_flt = 0;
1695 	tsk->nvcsw = tsk->nivcsw = 0;
1696 #ifdef CONFIG_DETECT_HUNG_TASK
1697 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1698 	tsk->last_switch_time = 0;
1699 #endif
1700 
1701 	tsk->mm = NULL;
1702 	tsk->active_mm = NULL;
1703 
1704 	/*
1705 	 * Are we cloning a kernel thread?
1706 	 *
1707 	 * We need to steal a active VM for that..
1708 	 */
1709 	oldmm = current->mm;
1710 	if (!oldmm)
1711 		return 0;
1712 
1713 	if (clone_flags & CLONE_VM) {
1714 		mmget(oldmm);
1715 		mm = oldmm;
1716 	} else {
1717 		mm = dup_mm(tsk, current->mm);
1718 		if (!mm)
1719 			return -ENOMEM;
1720 	}
1721 
1722 	tsk->mm = mm;
1723 	tsk->active_mm = mm;
1724 	sched_mm_cid_fork(tsk);
1725 	return 0;
1726 }
1727 
1728 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1729 {
1730 	struct fs_struct *fs = current->fs;
1731 	if (clone_flags & CLONE_FS) {
1732 		/* tsk->fs is already what we want */
1733 		spin_lock(&fs->lock);
1734 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1735 		if (fs->in_exec) {
1736 			spin_unlock(&fs->lock);
1737 			return -EAGAIN;
1738 		}
1739 		fs->users++;
1740 		spin_unlock(&fs->lock);
1741 		return 0;
1742 	}
1743 	tsk->fs = copy_fs_struct(fs);
1744 	if (!tsk->fs)
1745 		return -ENOMEM;
1746 	return 0;
1747 }
1748 
1749 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1750 		      int no_files)
1751 {
1752 	struct files_struct *oldf, *newf;
1753 	int error = 0;
1754 
1755 	/*
1756 	 * A background process may not have any files ...
1757 	 */
1758 	oldf = current->files;
1759 	if (!oldf)
1760 		goto out;
1761 
1762 	if (no_files) {
1763 		tsk->files = NULL;
1764 		goto out;
1765 	}
1766 
1767 	if (clone_flags & CLONE_FILES) {
1768 		atomic_inc(&oldf->count);
1769 		goto out;
1770 	}
1771 
1772 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1773 	if (!newf)
1774 		goto out;
1775 
1776 	tsk->files = newf;
1777 	error = 0;
1778 out:
1779 	return error;
1780 }
1781 
1782 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1783 {
1784 	struct sighand_struct *sig;
1785 
1786 	if (clone_flags & CLONE_SIGHAND) {
1787 		refcount_inc(&current->sighand->count);
1788 		return 0;
1789 	}
1790 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1791 	RCU_INIT_POINTER(tsk->sighand, sig);
1792 	if (!sig)
1793 		return -ENOMEM;
1794 
1795 	refcount_set(&sig->count, 1);
1796 	spin_lock_irq(&current->sighand->siglock);
1797 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1798 	spin_unlock_irq(&current->sighand->siglock);
1799 
1800 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1801 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1802 		flush_signal_handlers(tsk, 0);
1803 
1804 	return 0;
1805 }
1806 
1807 void __cleanup_sighand(struct sighand_struct *sighand)
1808 {
1809 	if (refcount_dec_and_test(&sighand->count)) {
1810 		signalfd_cleanup(sighand);
1811 		/*
1812 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1813 		 * without an RCU grace period, see __lock_task_sighand().
1814 		 */
1815 		kmem_cache_free(sighand_cachep, sighand);
1816 	}
1817 }
1818 
1819 /*
1820  * Initialize POSIX timer handling for a thread group.
1821  */
1822 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1823 {
1824 	struct posix_cputimers *pct = &sig->posix_cputimers;
1825 	unsigned long cpu_limit;
1826 
1827 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1828 	posix_cputimers_group_init(pct, cpu_limit);
1829 }
1830 
1831 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1832 {
1833 	struct signal_struct *sig;
1834 
1835 	if (clone_flags & CLONE_THREAD)
1836 		return 0;
1837 
1838 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1839 	tsk->signal = sig;
1840 	if (!sig)
1841 		return -ENOMEM;
1842 
1843 	sig->nr_threads = 1;
1844 	sig->quick_threads = 1;
1845 	atomic_set(&sig->live, 1);
1846 	refcount_set(&sig->sigcnt, 1);
1847 
1848 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1849 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1850 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1851 
1852 	init_waitqueue_head(&sig->wait_chldexit);
1853 	sig->curr_target = tsk;
1854 	init_sigpending(&sig->shared_pending);
1855 	INIT_HLIST_HEAD(&sig->multiprocess);
1856 	seqlock_init(&sig->stats_lock);
1857 	prev_cputime_init(&sig->prev_cputime);
1858 
1859 #ifdef CONFIG_POSIX_TIMERS
1860 	INIT_LIST_HEAD(&sig->posix_timers);
1861 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1862 	sig->real_timer.function = it_real_fn;
1863 #endif
1864 
1865 	task_lock(current->group_leader);
1866 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1867 	task_unlock(current->group_leader);
1868 
1869 	posix_cpu_timers_init_group(sig);
1870 
1871 	tty_audit_fork(sig);
1872 	sched_autogroup_fork(sig);
1873 
1874 	sig->oom_score_adj = current->signal->oom_score_adj;
1875 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1876 
1877 	mutex_init(&sig->cred_guard_mutex);
1878 	init_rwsem(&sig->exec_update_lock);
1879 
1880 	return 0;
1881 }
1882 
1883 static void copy_seccomp(struct task_struct *p)
1884 {
1885 #ifdef CONFIG_SECCOMP
1886 	/*
1887 	 * Must be called with sighand->lock held, which is common to
1888 	 * all threads in the group. Holding cred_guard_mutex is not
1889 	 * needed because this new task is not yet running and cannot
1890 	 * be racing exec.
1891 	 */
1892 	assert_spin_locked(&current->sighand->siglock);
1893 
1894 	/* Ref-count the new filter user, and assign it. */
1895 	get_seccomp_filter(current);
1896 	p->seccomp = current->seccomp;
1897 
1898 	/*
1899 	 * Explicitly enable no_new_privs here in case it got set
1900 	 * between the task_struct being duplicated and holding the
1901 	 * sighand lock. The seccomp state and nnp must be in sync.
1902 	 */
1903 	if (task_no_new_privs(current))
1904 		task_set_no_new_privs(p);
1905 
1906 	/*
1907 	 * If the parent gained a seccomp mode after copying thread
1908 	 * flags and between before we held the sighand lock, we have
1909 	 * to manually enable the seccomp thread flag here.
1910 	 */
1911 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1912 		set_task_syscall_work(p, SECCOMP);
1913 #endif
1914 }
1915 
1916 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1917 {
1918 	current->clear_child_tid = tidptr;
1919 
1920 	return task_pid_vnr(current);
1921 }
1922 
1923 static void rt_mutex_init_task(struct task_struct *p)
1924 {
1925 	raw_spin_lock_init(&p->pi_lock);
1926 #ifdef CONFIG_RT_MUTEXES
1927 	p->pi_waiters = RB_ROOT_CACHED;
1928 	p->pi_top_task = NULL;
1929 	p->pi_blocked_on = NULL;
1930 #endif
1931 }
1932 
1933 static inline void init_task_pid_links(struct task_struct *task)
1934 {
1935 	enum pid_type type;
1936 
1937 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1938 		INIT_HLIST_NODE(&task->pid_links[type]);
1939 }
1940 
1941 static inline void
1942 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1943 {
1944 	if (type == PIDTYPE_PID)
1945 		task->thread_pid = pid;
1946 	else
1947 		task->signal->pids[type] = pid;
1948 }
1949 
1950 static inline void rcu_copy_process(struct task_struct *p)
1951 {
1952 #ifdef CONFIG_PREEMPT_RCU
1953 	p->rcu_read_lock_nesting = 0;
1954 	p->rcu_read_unlock_special.s = 0;
1955 	p->rcu_blocked_node = NULL;
1956 	INIT_LIST_HEAD(&p->rcu_node_entry);
1957 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1958 #ifdef CONFIG_TASKS_RCU
1959 	p->rcu_tasks_holdout = false;
1960 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1961 	p->rcu_tasks_idle_cpu = -1;
1962 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1963 #endif /* #ifdef CONFIG_TASKS_RCU */
1964 #ifdef CONFIG_TASKS_TRACE_RCU
1965 	p->trc_reader_nesting = 0;
1966 	p->trc_reader_special.s = 0;
1967 	INIT_LIST_HEAD(&p->trc_holdout_list);
1968 	INIT_LIST_HEAD(&p->trc_blkd_node);
1969 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1970 }
1971 
1972 /**
1973  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1974  * @pid:   the struct pid for which to create a pidfd
1975  * @flags: flags of the new @pidfd
1976  * @ret: Where to return the file for the pidfd.
1977  *
1978  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1979  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1980  *
1981  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1982  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1983  * pidfd file are prepared.
1984  *
1985  * If this function returns successfully the caller is responsible to either
1986  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1987  * order to install the pidfd into its file descriptor table or they must use
1988  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1989  * respectively.
1990  *
1991  * This function is useful when a pidfd must already be reserved but there
1992  * might still be points of failure afterwards and the caller wants to ensure
1993  * that no pidfd is leaked into its file descriptor table.
1994  *
1995  * Return: On success, a reserved pidfd is returned from the function and a new
1996  *         pidfd file is returned in the last argument to the function. On
1997  *         error, a negative error code is returned from the function and the
1998  *         last argument remains unchanged.
1999  */
2000 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2001 {
2002 	int pidfd;
2003 	struct file *pidfd_file;
2004 
2005 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2006 	if (pidfd < 0)
2007 		return pidfd;
2008 
2009 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2010 	if (IS_ERR(pidfd_file)) {
2011 		put_unused_fd(pidfd);
2012 		return PTR_ERR(pidfd_file);
2013 	}
2014 	/*
2015 	 * anon_inode_getfile() ignores everything outside of the
2016 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2017 	 */
2018 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2019 	*ret = pidfd_file;
2020 	return pidfd;
2021 }
2022 
2023 /**
2024  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2025  * @pid:   the struct pid for which to create a pidfd
2026  * @flags: flags of the new @pidfd
2027  * @ret: Where to return the pidfd.
2028  *
2029  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2030  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2031  *
2032  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2033  * task identified by @pid must be a thread-group leader.
2034  *
2035  * If this function returns successfully the caller is responsible to either
2036  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2037  * order to install the pidfd into its file descriptor table or they must use
2038  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2039  * respectively.
2040  *
2041  * This function is useful when a pidfd must already be reserved but there
2042  * might still be points of failure afterwards and the caller wants to ensure
2043  * that no pidfd is leaked into its file descriptor table.
2044  *
2045  * Return: On success, a reserved pidfd is returned from the function and a new
2046  *         pidfd file is returned in the last argument to the function. On
2047  *         error, a negative error code is returned from the function and the
2048  *         last argument remains unchanged.
2049  */
2050 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2051 {
2052 	bool thread = flags & PIDFD_THREAD;
2053 
2054 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2055 		return -EINVAL;
2056 
2057 	return __pidfd_prepare(pid, flags, ret);
2058 }
2059 
2060 static void __delayed_free_task(struct rcu_head *rhp)
2061 {
2062 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2063 
2064 	free_task(tsk);
2065 }
2066 
2067 static __always_inline void delayed_free_task(struct task_struct *tsk)
2068 {
2069 	if (IS_ENABLED(CONFIG_MEMCG))
2070 		call_rcu(&tsk->rcu, __delayed_free_task);
2071 	else
2072 		free_task(tsk);
2073 }
2074 
2075 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2076 {
2077 	/* Skip if kernel thread */
2078 	if (!tsk->mm)
2079 		return;
2080 
2081 	/* Skip if spawning a thread or using vfork */
2082 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2083 		return;
2084 
2085 	/* We need to synchronize with __set_oom_adj */
2086 	mutex_lock(&oom_adj_mutex);
2087 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2088 	/* Update the values in case they were changed after copy_signal */
2089 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2090 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2091 	mutex_unlock(&oom_adj_mutex);
2092 }
2093 
2094 #ifdef CONFIG_RV
2095 static void rv_task_fork(struct task_struct *p)
2096 {
2097 	int i;
2098 
2099 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2100 		p->rv[i].da_mon.monitoring = false;
2101 }
2102 #else
2103 #define rv_task_fork(p) do {} while (0)
2104 #endif
2105 
2106 /*
2107  * This creates a new process as a copy of the old one,
2108  * but does not actually start it yet.
2109  *
2110  * It copies the registers, and all the appropriate
2111  * parts of the process environment (as per the clone
2112  * flags). The actual kick-off is left to the caller.
2113  */
2114 __latent_entropy struct task_struct *copy_process(
2115 					struct pid *pid,
2116 					int trace,
2117 					int node,
2118 					struct kernel_clone_args *args)
2119 {
2120 	int pidfd = -1, retval;
2121 	struct task_struct *p;
2122 	struct multiprocess_signals delayed;
2123 	struct file *pidfile = NULL;
2124 	const u64 clone_flags = args->flags;
2125 	struct nsproxy *nsp = current->nsproxy;
2126 
2127 	/*
2128 	 * Don't allow sharing the root directory with processes in a different
2129 	 * namespace
2130 	 */
2131 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2132 		return ERR_PTR(-EINVAL);
2133 
2134 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2135 		return ERR_PTR(-EINVAL);
2136 
2137 	/*
2138 	 * Thread groups must share signals as well, and detached threads
2139 	 * can only be started up within the thread group.
2140 	 */
2141 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2142 		return ERR_PTR(-EINVAL);
2143 
2144 	/*
2145 	 * Shared signal handlers imply shared VM. By way of the above,
2146 	 * thread groups also imply shared VM. Blocking this case allows
2147 	 * for various simplifications in other code.
2148 	 */
2149 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2150 		return ERR_PTR(-EINVAL);
2151 
2152 	/*
2153 	 * Siblings of global init remain as zombies on exit since they are
2154 	 * not reaped by their parent (swapper). To solve this and to avoid
2155 	 * multi-rooted process trees, prevent global and container-inits
2156 	 * from creating siblings.
2157 	 */
2158 	if ((clone_flags & CLONE_PARENT) &&
2159 				current->signal->flags & SIGNAL_UNKILLABLE)
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	/*
2163 	 * If the new process will be in a different pid or user namespace
2164 	 * do not allow it to share a thread group with the forking task.
2165 	 */
2166 	if (clone_flags & CLONE_THREAD) {
2167 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2168 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2169 			return ERR_PTR(-EINVAL);
2170 	}
2171 
2172 	if (clone_flags & CLONE_PIDFD) {
2173 		/*
2174 		 * - CLONE_DETACHED is blocked so that we can potentially
2175 		 *   reuse it later for CLONE_PIDFD.
2176 		 */
2177 		if (clone_flags & CLONE_DETACHED)
2178 			return ERR_PTR(-EINVAL);
2179 	}
2180 
2181 	/*
2182 	 * Force any signals received before this point to be delivered
2183 	 * before the fork happens.  Collect up signals sent to multiple
2184 	 * processes that happen during the fork and delay them so that
2185 	 * they appear to happen after the fork.
2186 	 */
2187 	sigemptyset(&delayed.signal);
2188 	INIT_HLIST_NODE(&delayed.node);
2189 
2190 	spin_lock_irq(&current->sighand->siglock);
2191 	if (!(clone_flags & CLONE_THREAD))
2192 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2193 	recalc_sigpending();
2194 	spin_unlock_irq(&current->sighand->siglock);
2195 	retval = -ERESTARTNOINTR;
2196 	if (task_sigpending(current))
2197 		goto fork_out;
2198 
2199 	retval = -ENOMEM;
2200 	p = dup_task_struct(current, node);
2201 	if (!p)
2202 		goto fork_out;
2203 	p->flags &= ~PF_KTHREAD;
2204 	if (args->kthread)
2205 		p->flags |= PF_KTHREAD;
2206 	if (args->user_worker) {
2207 		/*
2208 		 * Mark us a user worker, and block any signal that isn't
2209 		 * fatal or STOP
2210 		 */
2211 		p->flags |= PF_USER_WORKER;
2212 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2213 	}
2214 	if (args->io_thread)
2215 		p->flags |= PF_IO_WORKER;
2216 
2217 	if (args->name)
2218 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2219 
2220 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2221 	/*
2222 	 * Clear TID on mm_release()?
2223 	 */
2224 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2225 
2226 	ftrace_graph_init_task(p);
2227 
2228 	rt_mutex_init_task(p);
2229 
2230 	lockdep_assert_irqs_enabled();
2231 #ifdef CONFIG_PROVE_LOCKING
2232 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2233 #endif
2234 	retval = copy_creds(p, clone_flags);
2235 	if (retval < 0)
2236 		goto bad_fork_free;
2237 
2238 	retval = -EAGAIN;
2239 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2240 		if (p->real_cred->user != INIT_USER &&
2241 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2242 			goto bad_fork_cleanup_count;
2243 	}
2244 	current->flags &= ~PF_NPROC_EXCEEDED;
2245 
2246 	/*
2247 	 * If multiple threads are within copy_process(), then this check
2248 	 * triggers too late. This doesn't hurt, the check is only there
2249 	 * to stop root fork bombs.
2250 	 */
2251 	retval = -EAGAIN;
2252 	if (data_race(nr_threads >= max_threads))
2253 		goto bad_fork_cleanup_count;
2254 
2255 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2256 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2257 	p->flags |= PF_FORKNOEXEC;
2258 	INIT_LIST_HEAD(&p->children);
2259 	INIT_LIST_HEAD(&p->sibling);
2260 	rcu_copy_process(p);
2261 	p->vfork_done = NULL;
2262 	spin_lock_init(&p->alloc_lock);
2263 
2264 	init_sigpending(&p->pending);
2265 
2266 	p->utime = p->stime = p->gtime = 0;
2267 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2268 	p->utimescaled = p->stimescaled = 0;
2269 #endif
2270 	prev_cputime_init(&p->prev_cputime);
2271 
2272 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2273 	seqcount_init(&p->vtime.seqcount);
2274 	p->vtime.starttime = 0;
2275 	p->vtime.state = VTIME_INACTIVE;
2276 #endif
2277 
2278 #ifdef CONFIG_IO_URING
2279 	p->io_uring = NULL;
2280 #endif
2281 
2282 	p->default_timer_slack_ns = current->timer_slack_ns;
2283 
2284 #ifdef CONFIG_PSI
2285 	p->psi_flags = 0;
2286 #endif
2287 
2288 	task_io_accounting_init(&p->ioac);
2289 	acct_clear_integrals(p);
2290 
2291 	posix_cputimers_init(&p->posix_cputimers);
2292 
2293 	p->io_context = NULL;
2294 	audit_set_context(p, NULL);
2295 	cgroup_fork(p);
2296 	if (args->kthread) {
2297 		if (!set_kthread_struct(p))
2298 			goto bad_fork_cleanup_delayacct;
2299 	}
2300 #ifdef CONFIG_NUMA
2301 	p->mempolicy = mpol_dup(p->mempolicy);
2302 	if (IS_ERR(p->mempolicy)) {
2303 		retval = PTR_ERR(p->mempolicy);
2304 		p->mempolicy = NULL;
2305 		goto bad_fork_cleanup_delayacct;
2306 	}
2307 #endif
2308 #ifdef CONFIG_CPUSETS
2309 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2310 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2311 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2312 #endif
2313 #ifdef CONFIG_TRACE_IRQFLAGS
2314 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2315 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2316 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2317 	p->softirqs_enabled		= 1;
2318 	p->softirq_context		= 0;
2319 #endif
2320 
2321 	p->pagefault_disabled = 0;
2322 
2323 #ifdef CONFIG_LOCKDEP
2324 	lockdep_init_task(p);
2325 #endif
2326 
2327 #ifdef CONFIG_DEBUG_MUTEXES
2328 	p->blocked_on = NULL; /* not blocked yet */
2329 #endif
2330 #ifdef CONFIG_BCACHE
2331 	p->sequential_io	= 0;
2332 	p->sequential_io_avg	= 0;
2333 #endif
2334 #ifdef CONFIG_BPF_SYSCALL
2335 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2336 	p->bpf_ctx = NULL;
2337 #endif
2338 
2339 	/* Perform scheduler related setup. Assign this task to a CPU. */
2340 	retval = sched_fork(clone_flags, p);
2341 	if (retval)
2342 		goto bad_fork_cleanup_policy;
2343 
2344 	retval = perf_event_init_task(p, clone_flags);
2345 	if (retval)
2346 		goto bad_fork_cleanup_policy;
2347 	retval = audit_alloc(p);
2348 	if (retval)
2349 		goto bad_fork_cleanup_perf;
2350 	/* copy all the process information */
2351 	shm_init_task(p);
2352 	retval = security_task_alloc(p, clone_flags);
2353 	if (retval)
2354 		goto bad_fork_cleanup_audit;
2355 	retval = copy_semundo(clone_flags, p);
2356 	if (retval)
2357 		goto bad_fork_cleanup_security;
2358 	retval = copy_files(clone_flags, p, args->no_files);
2359 	if (retval)
2360 		goto bad_fork_cleanup_semundo;
2361 	retval = copy_fs(clone_flags, p);
2362 	if (retval)
2363 		goto bad_fork_cleanup_files;
2364 	retval = copy_sighand(clone_flags, p);
2365 	if (retval)
2366 		goto bad_fork_cleanup_fs;
2367 	retval = copy_signal(clone_flags, p);
2368 	if (retval)
2369 		goto bad_fork_cleanup_sighand;
2370 	retval = copy_mm(clone_flags, p);
2371 	if (retval)
2372 		goto bad_fork_cleanup_signal;
2373 	retval = copy_namespaces(clone_flags, p);
2374 	if (retval)
2375 		goto bad_fork_cleanup_mm;
2376 	retval = copy_io(clone_flags, p);
2377 	if (retval)
2378 		goto bad_fork_cleanup_namespaces;
2379 	retval = copy_thread(p, args);
2380 	if (retval)
2381 		goto bad_fork_cleanup_io;
2382 
2383 	stackleak_task_init(p);
2384 
2385 	if (pid != &init_struct_pid) {
2386 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2387 				args->set_tid_size);
2388 		if (IS_ERR(pid)) {
2389 			retval = PTR_ERR(pid);
2390 			goto bad_fork_cleanup_thread;
2391 		}
2392 	}
2393 
2394 	/*
2395 	 * This has to happen after we've potentially unshared the file
2396 	 * descriptor table (so that the pidfd doesn't leak into the child
2397 	 * if the fd table isn't shared).
2398 	 */
2399 	if (clone_flags & CLONE_PIDFD) {
2400 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2401 
2402 		/* Note that no task has been attached to @pid yet. */
2403 		retval = __pidfd_prepare(pid, flags, &pidfile);
2404 		if (retval < 0)
2405 			goto bad_fork_free_pid;
2406 		pidfd = retval;
2407 
2408 		retval = put_user(pidfd, args->pidfd);
2409 		if (retval)
2410 			goto bad_fork_put_pidfd;
2411 	}
2412 
2413 #ifdef CONFIG_BLOCK
2414 	p->plug = NULL;
2415 #endif
2416 	futex_init_task(p);
2417 
2418 	/*
2419 	 * sigaltstack should be cleared when sharing the same VM
2420 	 */
2421 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2422 		sas_ss_reset(p);
2423 
2424 	/*
2425 	 * Syscall tracing and stepping should be turned off in the
2426 	 * child regardless of CLONE_PTRACE.
2427 	 */
2428 	user_disable_single_step(p);
2429 	clear_task_syscall_work(p, SYSCALL_TRACE);
2430 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2431 	clear_task_syscall_work(p, SYSCALL_EMU);
2432 #endif
2433 	clear_tsk_latency_tracing(p);
2434 
2435 	/* ok, now we should be set up.. */
2436 	p->pid = pid_nr(pid);
2437 	if (clone_flags & CLONE_THREAD) {
2438 		p->group_leader = current->group_leader;
2439 		p->tgid = current->tgid;
2440 	} else {
2441 		p->group_leader = p;
2442 		p->tgid = p->pid;
2443 	}
2444 
2445 	p->nr_dirtied = 0;
2446 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2447 	p->dirty_paused_when = 0;
2448 
2449 	p->pdeath_signal = 0;
2450 	p->task_works = NULL;
2451 	clear_posix_cputimers_work(p);
2452 
2453 #ifdef CONFIG_KRETPROBES
2454 	p->kretprobe_instances.first = NULL;
2455 #endif
2456 #ifdef CONFIG_RETHOOK
2457 	p->rethooks.first = NULL;
2458 #endif
2459 
2460 	/*
2461 	 * Ensure that the cgroup subsystem policies allow the new process to be
2462 	 * forked. It should be noted that the new process's css_set can be changed
2463 	 * between here and cgroup_post_fork() if an organisation operation is in
2464 	 * progress.
2465 	 */
2466 	retval = cgroup_can_fork(p, args);
2467 	if (retval)
2468 		goto bad_fork_put_pidfd;
2469 
2470 	/*
2471 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2472 	 * the new task on the correct runqueue. All this *before* the task
2473 	 * becomes visible.
2474 	 *
2475 	 * This isn't part of ->can_fork() because while the re-cloning is
2476 	 * cgroup specific, it unconditionally needs to place the task on a
2477 	 * runqueue.
2478 	 */
2479 	sched_cgroup_fork(p, args);
2480 
2481 	/*
2482 	 * From this point on we must avoid any synchronous user-space
2483 	 * communication until we take the tasklist-lock. In particular, we do
2484 	 * not want user-space to be able to predict the process start-time by
2485 	 * stalling fork(2) after we recorded the start_time but before it is
2486 	 * visible to the system.
2487 	 */
2488 
2489 	p->start_time = ktime_get_ns();
2490 	p->start_boottime = ktime_get_boottime_ns();
2491 
2492 	/*
2493 	 * Make it visible to the rest of the system, but dont wake it up yet.
2494 	 * Need tasklist lock for parent etc handling!
2495 	 */
2496 	write_lock_irq(&tasklist_lock);
2497 
2498 	/* CLONE_PARENT re-uses the old parent */
2499 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2500 		p->real_parent = current->real_parent;
2501 		p->parent_exec_id = current->parent_exec_id;
2502 		if (clone_flags & CLONE_THREAD)
2503 			p->exit_signal = -1;
2504 		else
2505 			p->exit_signal = current->group_leader->exit_signal;
2506 	} else {
2507 		p->real_parent = current;
2508 		p->parent_exec_id = current->self_exec_id;
2509 		p->exit_signal = args->exit_signal;
2510 	}
2511 
2512 	klp_copy_process(p);
2513 
2514 	sched_core_fork(p);
2515 
2516 	spin_lock(&current->sighand->siglock);
2517 
2518 	rv_task_fork(p);
2519 
2520 	rseq_fork(p, clone_flags);
2521 
2522 	/* Don't start children in a dying pid namespace */
2523 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2524 		retval = -ENOMEM;
2525 		goto bad_fork_cancel_cgroup;
2526 	}
2527 
2528 	/* Let kill terminate clone/fork in the middle */
2529 	if (fatal_signal_pending(current)) {
2530 		retval = -EINTR;
2531 		goto bad_fork_cancel_cgroup;
2532 	}
2533 
2534 	/* No more failure paths after this point. */
2535 
2536 	/*
2537 	 * Copy seccomp details explicitly here, in case they were changed
2538 	 * before holding sighand lock.
2539 	 */
2540 	copy_seccomp(p);
2541 
2542 	init_task_pid_links(p);
2543 	if (likely(p->pid)) {
2544 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2545 
2546 		init_task_pid(p, PIDTYPE_PID, pid);
2547 		if (thread_group_leader(p)) {
2548 			init_task_pid(p, PIDTYPE_TGID, pid);
2549 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2550 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2551 
2552 			if (is_child_reaper(pid)) {
2553 				ns_of_pid(pid)->child_reaper = p;
2554 				p->signal->flags |= SIGNAL_UNKILLABLE;
2555 			}
2556 			p->signal->shared_pending.signal = delayed.signal;
2557 			p->signal->tty = tty_kref_get(current->signal->tty);
2558 			/*
2559 			 * Inherit has_child_subreaper flag under the same
2560 			 * tasklist_lock with adding child to the process tree
2561 			 * for propagate_has_child_subreaper optimization.
2562 			 */
2563 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2564 							 p->real_parent->signal->is_child_subreaper;
2565 			list_add_tail(&p->sibling, &p->real_parent->children);
2566 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2567 			attach_pid(p, PIDTYPE_TGID);
2568 			attach_pid(p, PIDTYPE_PGID);
2569 			attach_pid(p, PIDTYPE_SID);
2570 			__this_cpu_inc(process_counts);
2571 		} else {
2572 			current->signal->nr_threads++;
2573 			current->signal->quick_threads++;
2574 			atomic_inc(&current->signal->live);
2575 			refcount_inc(&current->signal->sigcnt);
2576 			task_join_group_stop(p);
2577 			list_add_tail_rcu(&p->thread_node,
2578 					  &p->signal->thread_head);
2579 		}
2580 		attach_pid(p, PIDTYPE_PID);
2581 		nr_threads++;
2582 	}
2583 	total_forks++;
2584 	hlist_del_init(&delayed.node);
2585 	spin_unlock(&current->sighand->siglock);
2586 	syscall_tracepoint_update(p);
2587 	write_unlock_irq(&tasklist_lock);
2588 
2589 	if (pidfile)
2590 		fd_install(pidfd, pidfile);
2591 
2592 	proc_fork_connector(p);
2593 	sched_post_fork(p);
2594 	cgroup_post_fork(p, args);
2595 	perf_event_fork(p);
2596 
2597 	trace_task_newtask(p, clone_flags);
2598 	uprobe_copy_process(p, clone_flags);
2599 	user_events_fork(p, clone_flags);
2600 
2601 	copy_oom_score_adj(clone_flags, p);
2602 
2603 	return p;
2604 
2605 bad_fork_cancel_cgroup:
2606 	sched_core_free(p);
2607 	spin_unlock(&current->sighand->siglock);
2608 	write_unlock_irq(&tasklist_lock);
2609 	cgroup_cancel_fork(p, args);
2610 bad_fork_put_pidfd:
2611 	if (clone_flags & CLONE_PIDFD) {
2612 		fput(pidfile);
2613 		put_unused_fd(pidfd);
2614 	}
2615 bad_fork_free_pid:
2616 	if (pid != &init_struct_pid)
2617 		free_pid(pid);
2618 bad_fork_cleanup_thread:
2619 	exit_thread(p);
2620 bad_fork_cleanup_io:
2621 	if (p->io_context)
2622 		exit_io_context(p);
2623 bad_fork_cleanup_namespaces:
2624 	exit_task_namespaces(p);
2625 bad_fork_cleanup_mm:
2626 	if (p->mm) {
2627 		mm_clear_owner(p->mm, p);
2628 		mmput(p->mm);
2629 	}
2630 bad_fork_cleanup_signal:
2631 	if (!(clone_flags & CLONE_THREAD))
2632 		free_signal_struct(p->signal);
2633 bad_fork_cleanup_sighand:
2634 	__cleanup_sighand(p->sighand);
2635 bad_fork_cleanup_fs:
2636 	exit_fs(p); /* blocking */
2637 bad_fork_cleanup_files:
2638 	exit_files(p); /* blocking */
2639 bad_fork_cleanup_semundo:
2640 	exit_sem(p);
2641 bad_fork_cleanup_security:
2642 	security_task_free(p);
2643 bad_fork_cleanup_audit:
2644 	audit_free(p);
2645 bad_fork_cleanup_perf:
2646 	perf_event_free_task(p);
2647 bad_fork_cleanup_policy:
2648 	lockdep_free_task(p);
2649 #ifdef CONFIG_NUMA
2650 	mpol_put(p->mempolicy);
2651 #endif
2652 bad_fork_cleanup_delayacct:
2653 	delayacct_tsk_free(p);
2654 bad_fork_cleanup_count:
2655 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2656 	exit_creds(p);
2657 bad_fork_free:
2658 	WRITE_ONCE(p->__state, TASK_DEAD);
2659 	exit_task_stack_account(p);
2660 	put_task_stack(p);
2661 	delayed_free_task(p);
2662 fork_out:
2663 	spin_lock_irq(&current->sighand->siglock);
2664 	hlist_del_init(&delayed.node);
2665 	spin_unlock_irq(&current->sighand->siglock);
2666 	return ERR_PTR(retval);
2667 }
2668 
2669 static inline void init_idle_pids(struct task_struct *idle)
2670 {
2671 	enum pid_type type;
2672 
2673 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2674 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2675 		init_task_pid(idle, type, &init_struct_pid);
2676 	}
2677 }
2678 
2679 static int idle_dummy(void *dummy)
2680 {
2681 	/* This function is never called */
2682 	return 0;
2683 }
2684 
2685 struct task_struct * __init fork_idle(int cpu)
2686 {
2687 	struct task_struct *task;
2688 	struct kernel_clone_args args = {
2689 		.flags		= CLONE_VM,
2690 		.fn		= &idle_dummy,
2691 		.fn_arg		= NULL,
2692 		.kthread	= 1,
2693 		.idle		= 1,
2694 	};
2695 
2696 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2697 	if (!IS_ERR(task)) {
2698 		init_idle_pids(task);
2699 		init_idle(task, cpu);
2700 	}
2701 
2702 	return task;
2703 }
2704 
2705 /*
2706  * This is like kernel_clone(), but shaved down and tailored to just
2707  * creating io_uring workers. It returns a created task, or an error pointer.
2708  * The returned task is inactive, and the caller must fire it up through
2709  * wake_up_new_task(p). All signals are blocked in the created task.
2710  */
2711 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2712 {
2713 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2714 				CLONE_IO;
2715 	struct kernel_clone_args args = {
2716 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2717 				    CLONE_UNTRACED) & ~CSIGNAL),
2718 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2719 		.fn		= fn,
2720 		.fn_arg		= arg,
2721 		.io_thread	= 1,
2722 		.user_worker	= 1,
2723 	};
2724 
2725 	return copy_process(NULL, 0, node, &args);
2726 }
2727 
2728 /*
2729  *  Ok, this is the main fork-routine.
2730  *
2731  * It copies the process, and if successful kick-starts
2732  * it and waits for it to finish using the VM if required.
2733  *
2734  * args->exit_signal is expected to be checked for sanity by the caller.
2735  */
2736 pid_t kernel_clone(struct kernel_clone_args *args)
2737 {
2738 	u64 clone_flags = args->flags;
2739 	struct completion vfork;
2740 	struct pid *pid;
2741 	struct task_struct *p;
2742 	int trace = 0;
2743 	pid_t nr;
2744 
2745 	/*
2746 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2747 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2748 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2749 	 * field in struct clone_args and it still doesn't make sense to have
2750 	 * them both point at the same memory location. Performing this check
2751 	 * here has the advantage that we don't need to have a separate helper
2752 	 * to check for legacy clone().
2753 	 */
2754 	if ((clone_flags & CLONE_PIDFD) &&
2755 	    (clone_flags & CLONE_PARENT_SETTID) &&
2756 	    (args->pidfd == args->parent_tid))
2757 		return -EINVAL;
2758 
2759 	/*
2760 	 * Determine whether and which event to report to ptracer.  When
2761 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2762 	 * requested, no event is reported; otherwise, report if the event
2763 	 * for the type of forking is enabled.
2764 	 */
2765 	if (!(clone_flags & CLONE_UNTRACED)) {
2766 		if (clone_flags & CLONE_VFORK)
2767 			trace = PTRACE_EVENT_VFORK;
2768 		else if (args->exit_signal != SIGCHLD)
2769 			trace = PTRACE_EVENT_CLONE;
2770 		else
2771 			trace = PTRACE_EVENT_FORK;
2772 
2773 		if (likely(!ptrace_event_enabled(current, trace)))
2774 			trace = 0;
2775 	}
2776 
2777 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2778 	add_latent_entropy();
2779 
2780 	if (IS_ERR(p))
2781 		return PTR_ERR(p);
2782 
2783 	/*
2784 	 * Do this prior waking up the new thread - the thread pointer
2785 	 * might get invalid after that point, if the thread exits quickly.
2786 	 */
2787 	trace_sched_process_fork(current, p);
2788 
2789 	pid = get_task_pid(p, PIDTYPE_PID);
2790 	nr = pid_vnr(pid);
2791 
2792 	if (clone_flags & CLONE_PARENT_SETTID)
2793 		put_user(nr, args->parent_tid);
2794 
2795 	if (clone_flags & CLONE_VFORK) {
2796 		p->vfork_done = &vfork;
2797 		init_completion(&vfork);
2798 		get_task_struct(p);
2799 	}
2800 
2801 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2802 		/* lock the task to synchronize with memcg migration */
2803 		task_lock(p);
2804 		lru_gen_add_mm(p->mm);
2805 		task_unlock(p);
2806 	}
2807 
2808 	wake_up_new_task(p);
2809 
2810 	/* forking complete and child started to run, tell ptracer */
2811 	if (unlikely(trace))
2812 		ptrace_event_pid(trace, pid);
2813 
2814 	if (clone_flags & CLONE_VFORK) {
2815 		if (!wait_for_vfork_done(p, &vfork))
2816 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2817 	}
2818 
2819 	put_pid(pid);
2820 	return nr;
2821 }
2822 
2823 /*
2824  * Create a kernel thread.
2825  */
2826 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2827 		    unsigned long flags)
2828 {
2829 	struct kernel_clone_args args = {
2830 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2831 				    CLONE_UNTRACED) & ~CSIGNAL),
2832 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2833 		.fn		= fn,
2834 		.fn_arg		= arg,
2835 		.name		= name,
2836 		.kthread	= 1,
2837 	};
2838 
2839 	return kernel_clone(&args);
2840 }
2841 
2842 /*
2843  * Create a user mode thread.
2844  */
2845 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2846 {
2847 	struct kernel_clone_args args = {
2848 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2849 				    CLONE_UNTRACED) & ~CSIGNAL),
2850 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2851 		.fn		= fn,
2852 		.fn_arg		= arg,
2853 	};
2854 
2855 	return kernel_clone(&args);
2856 }
2857 
2858 #ifdef __ARCH_WANT_SYS_FORK
2859 SYSCALL_DEFINE0(fork)
2860 {
2861 #ifdef CONFIG_MMU
2862 	struct kernel_clone_args args = {
2863 		.exit_signal = SIGCHLD,
2864 	};
2865 
2866 	return kernel_clone(&args);
2867 #else
2868 	/* can not support in nommu mode */
2869 	return -EINVAL;
2870 #endif
2871 }
2872 #endif
2873 
2874 #ifdef __ARCH_WANT_SYS_VFORK
2875 SYSCALL_DEFINE0(vfork)
2876 {
2877 	struct kernel_clone_args args = {
2878 		.flags		= CLONE_VFORK | CLONE_VM,
2879 		.exit_signal	= SIGCHLD,
2880 	};
2881 
2882 	return kernel_clone(&args);
2883 }
2884 #endif
2885 
2886 #ifdef __ARCH_WANT_SYS_CLONE
2887 #ifdef CONFIG_CLONE_BACKWARDS
2888 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2889 		 int __user *, parent_tidptr,
2890 		 unsigned long, tls,
2891 		 int __user *, child_tidptr)
2892 #elif defined(CONFIG_CLONE_BACKWARDS2)
2893 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2894 		 int __user *, parent_tidptr,
2895 		 int __user *, child_tidptr,
2896 		 unsigned long, tls)
2897 #elif defined(CONFIG_CLONE_BACKWARDS3)
2898 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2899 		int, stack_size,
2900 		int __user *, parent_tidptr,
2901 		int __user *, child_tidptr,
2902 		unsigned long, tls)
2903 #else
2904 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2905 		 int __user *, parent_tidptr,
2906 		 int __user *, child_tidptr,
2907 		 unsigned long, tls)
2908 #endif
2909 {
2910 	struct kernel_clone_args args = {
2911 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2912 		.pidfd		= parent_tidptr,
2913 		.child_tid	= child_tidptr,
2914 		.parent_tid	= parent_tidptr,
2915 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2916 		.stack		= newsp,
2917 		.tls		= tls,
2918 	};
2919 
2920 	return kernel_clone(&args);
2921 }
2922 #endif
2923 
2924 #ifdef __ARCH_WANT_SYS_CLONE3
2925 
2926 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2927 					      struct clone_args __user *uargs,
2928 					      size_t usize)
2929 {
2930 	int err;
2931 	struct clone_args args;
2932 	pid_t *kset_tid = kargs->set_tid;
2933 
2934 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2935 		     CLONE_ARGS_SIZE_VER0);
2936 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2937 		     CLONE_ARGS_SIZE_VER1);
2938 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2939 		     CLONE_ARGS_SIZE_VER2);
2940 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2941 
2942 	if (unlikely(usize > PAGE_SIZE))
2943 		return -E2BIG;
2944 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2945 		return -EINVAL;
2946 
2947 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2948 	if (err)
2949 		return err;
2950 
2951 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2952 		return -EINVAL;
2953 
2954 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2955 		return -EINVAL;
2956 
2957 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2958 		return -EINVAL;
2959 
2960 	/*
2961 	 * Verify that higher 32bits of exit_signal are unset and that
2962 	 * it is a valid signal
2963 	 */
2964 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2965 		     !valid_signal(args.exit_signal)))
2966 		return -EINVAL;
2967 
2968 	if ((args.flags & CLONE_INTO_CGROUP) &&
2969 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2970 		return -EINVAL;
2971 
2972 	*kargs = (struct kernel_clone_args){
2973 		.flags		= args.flags,
2974 		.pidfd		= u64_to_user_ptr(args.pidfd),
2975 		.child_tid	= u64_to_user_ptr(args.child_tid),
2976 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2977 		.exit_signal	= args.exit_signal,
2978 		.stack		= args.stack,
2979 		.stack_size	= args.stack_size,
2980 		.tls		= args.tls,
2981 		.set_tid_size	= args.set_tid_size,
2982 		.cgroup		= args.cgroup,
2983 	};
2984 
2985 	if (args.set_tid &&
2986 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2987 			(kargs->set_tid_size * sizeof(pid_t))))
2988 		return -EFAULT;
2989 
2990 	kargs->set_tid = kset_tid;
2991 
2992 	return 0;
2993 }
2994 
2995 /**
2996  * clone3_stack_valid - check and prepare stack
2997  * @kargs: kernel clone args
2998  *
2999  * Verify that the stack arguments userspace gave us are sane.
3000  * In addition, set the stack direction for userspace since it's easy for us to
3001  * determine.
3002  */
3003 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3004 {
3005 	if (kargs->stack == 0) {
3006 		if (kargs->stack_size > 0)
3007 			return false;
3008 	} else {
3009 		if (kargs->stack_size == 0)
3010 			return false;
3011 
3012 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3013 			return false;
3014 
3015 #if !defined(CONFIG_STACK_GROWSUP)
3016 		kargs->stack += kargs->stack_size;
3017 #endif
3018 	}
3019 
3020 	return true;
3021 }
3022 
3023 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3024 {
3025 	/* Verify that no unknown flags are passed along. */
3026 	if (kargs->flags &
3027 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3028 		return false;
3029 
3030 	/*
3031 	 * - make the CLONE_DETACHED bit reusable for clone3
3032 	 * - make the CSIGNAL bits reusable for clone3
3033 	 */
3034 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3035 		return false;
3036 
3037 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3038 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3039 		return false;
3040 
3041 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3042 	    kargs->exit_signal)
3043 		return false;
3044 
3045 	if (!clone3_stack_valid(kargs))
3046 		return false;
3047 
3048 	return true;
3049 }
3050 
3051 /**
3052  * sys_clone3 - create a new process with specific properties
3053  * @uargs: argument structure
3054  * @size:  size of @uargs
3055  *
3056  * clone3() is the extensible successor to clone()/clone2().
3057  * It takes a struct as argument that is versioned by its size.
3058  *
3059  * Return: On success, a positive PID for the child process.
3060  *         On error, a negative errno number.
3061  */
3062 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3063 {
3064 	int err;
3065 
3066 	struct kernel_clone_args kargs;
3067 	pid_t set_tid[MAX_PID_NS_LEVEL];
3068 
3069 	kargs.set_tid = set_tid;
3070 
3071 	err = copy_clone_args_from_user(&kargs, uargs, size);
3072 	if (err)
3073 		return err;
3074 
3075 	if (!clone3_args_valid(&kargs))
3076 		return -EINVAL;
3077 
3078 	return kernel_clone(&kargs);
3079 }
3080 #endif
3081 
3082 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3083 {
3084 	struct task_struct *leader, *parent, *child;
3085 	int res;
3086 
3087 	read_lock(&tasklist_lock);
3088 	leader = top = top->group_leader;
3089 down:
3090 	for_each_thread(leader, parent) {
3091 		list_for_each_entry(child, &parent->children, sibling) {
3092 			res = visitor(child, data);
3093 			if (res) {
3094 				if (res < 0)
3095 					goto out;
3096 				leader = child;
3097 				goto down;
3098 			}
3099 up:
3100 			;
3101 		}
3102 	}
3103 
3104 	if (leader != top) {
3105 		child = leader;
3106 		parent = child->real_parent;
3107 		leader = parent->group_leader;
3108 		goto up;
3109 	}
3110 out:
3111 	read_unlock(&tasklist_lock);
3112 }
3113 
3114 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3115 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3116 #endif
3117 
3118 static void sighand_ctor(void *data)
3119 {
3120 	struct sighand_struct *sighand = data;
3121 
3122 	spin_lock_init(&sighand->siglock);
3123 	init_waitqueue_head(&sighand->signalfd_wqh);
3124 }
3125 
3126 void __init mm_cache_init(void)
3127 {
3128 	unsigned int mm_size;
3129 
3130 	/*
3131 	 * The mm_cpumask is located at the end of mm_struct, and is
3132 	 * dynamically sized based on the maximum CPU number this system
3133 	 * can have, taking hotplug into account (nr_cpu_ids).
3134 	 */
3135 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3136 
3137 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3138 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3139 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3140 			offsetof(struct mm_struct, saved_auxv),
3141 			sizeof_field(struct mm_struct, saved_auxv),
3142 			NULL);
3143 }
3144 
3145 void __init proc_caches_init(void)
3146 {
3147 	sighand_cachep = kmem_cache_create("sighand_cache",
3148 			sizeof(struct sighand_struct), 0,
3149 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3150 			SLAB_ACCOUNT, sighand_ctor);
3151 	signal_cachep = kmem_cache_create("signal_cache",
3152 			sizeof(struct signal_struct), 0,
3153 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3154 			NULL);
3155 	files_cachep = kmem_cache_create("files_cache",
3156 			sizeof(struct files_struct), 0,
3157 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3158 			NULL);
3159 	fs_cachep = kmem_cache_create("fs_cache",
3160 			sizeof(struct fs_struct), 0,
3161 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3162 			NULL);
3163 
3164 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3165 #ifdef CONFIG_PER_VMA_LOCK
3166 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3167 #endif
3168 	mmap_init();
3169 	nsproxy_cache_init();
3170 }
3171 
3172 /*
3173  * Check constraints on flags passed to the unshare system call.
3174  */
3175 static int check_unshare_flags(unsigned long unshare_flags)
3176 {
3177 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3178 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3179 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3180 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3181 				CLONE_NEWTIME))
3182 		return -EINVAL;
3183 	/*
3184 	 * Not implemented, but pretend it works if there is nothing
3185 	 * to unshare.  Note that unsharing the address space or the
3186 	 * signal handlers also need to unshare the signal queues (aka
3187 	 * CLONE_THREAD).
3188 	 */
3189 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3190 		if (!thread_group_empty(current))
3191 			return -EINVAL;
3192 	}
3193 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3194 		if (refcount_read(&current->sighand->count) > 1)
3195 			return -EINVAL;
3196 	}
3197 	if (unshare_flags & CLONE_VM) {
3198 		if (!current_is_single_threaded())
3199 			return -EINVAL;
3200 	}
3201 
3202 	return 0;
3203 }
3204 
3205 /*
3206  * Unshare the filesystem structure if it is being shared
3207  */
3208 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3209 {
3210 	struct fs_struct *fs = current->fs;
3211 
3212 	if (!(unshare_flags & CLONE_FS) || !fs)
3213 		return 0;
3214 
3215 	/* don't need lock here; in the worst case we'll do useless copy */
3216 	if (fs->users == 1)
3217 		return 0;
3218 
3219 	*new_fsp = copy_fs_struct(fs);
3220 	if (!*new_fsp)
3221 		return -ENOMEM;
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * Unshare file descriptor table if it is being shared
3228  */
3229 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3230 	       struct files_struct **new_fdp)
3231 {
3232 	struct files_struct *fd = current->files;
3233 	int error = 0;
3234 
3235 	if ((unshare_flags & CLONE_FILES) &&
3236 	    (fd && atomic_read(&fd->count) > 1)) {
3237 		*new_fdp = dup_fd(fd, max_fds, &error);
3238 		if (!*new_fdp)
3239 			return error;
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 /*
3246  * unshare allows a process to 'unshare' part of the process
3247  * context which was originally shared using clone.  copy_*
3248  * functions used by kernel_clone() cannot be used here directly
3249  * because they modify an inactive task_struct that is being
3250  * constructed. Here we are modifying the current, active,
3251  * task_struct.
3252  */
3253 int ksys_unshare(unsigned long unshare_flags)
3254 {
3255 	struct fs_struct *fs, *new_fs = NULL;
3256 	struct files_struct *new_fd = NULL;
3257 	struct cred *new_cred = NULL;
3258 	struct nsproxy *new_nsproxy = NULL;
3259 	int do_sysvsem = 0;
3260 	int err;
3261 
3262 	/*
3263 	 * If unsharing a user namespace must also unshare the thread group
3264 	 * and unshare the filesystem root and working directories.
3265 	 */
3266 	if (unshare_flags & CLONE_NEWUSER)
3267 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3268 	/*
3269 	 * If unsharing vm, must also unshare signal handlers.
3270 	 */
3271 	if (unshare_flags & CLONE_VM)
3272 		unshare_flags |= CLONE_SIGHAND;
3273 	/*
3274 	 * If unsharing a signal handlers, must also unshare the signal queues.
3275 	 */
3276 	if (unshare_flags & CLONE_SIGHAND)
3277 		unshare_flags |= CLONE_THREAD;
3278 	/*
3279 	 * If unsharing namespace, must also unshare filesystem information.
3280 	 */
3281 	if (unshare_flags & CLONE_NEWNS)
3282 		unshare_flags |= CLONE_FS;
3283 
3284 	err = check_unshare_flags(unshare_flags);
3285 	if (err)
3286 		goto bad_unshare_out;
3287 	/*
3288 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3289 	 * to a new ipc namespace, the semaphore arrays from the old
3290 	 * namespace are unreachable.
3291 	 */
3292 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3293 		do_sysvsem = 1;
3294 	err = unshare_fs(unshare_flags, &new_fs);
3295 	if (err)
3296 		goto bad_unshare_out;
3297 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3298 	if (err)
3299 		goto bad_unshare_cleanup_fs;
3300 	err = unshare_userns(unshare_flags, &new_cred);
3301 	if (err)
3302 		goto bad_unshare_cleanup_fd;
3303 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3304 					 new_cred, new_fs);
3305 	if (err)
3306 		goto bad_unshare_cleanup_cred;
3307 
3308 	if (new_cred) {
3309 		err = set_cred_ucounts(new_cred);
3310 		if (err)
3311 			goto bad_unshare_cleanup_cred;
3312 	}
3313 
3314 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3315 		if (do_sysvsem) {
3316 			/*
3317 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3318 			 */
3319 			exit_sem(current);
3320 		}
3321 		if (unshare_flags & CLONE_NEWIPC) {
3322 			/* Orphan segments in old ns (see sem above). */
3323 			exit_shm(current);
3324 			shm_init_task(current);
3325 		}
3326 
3327 		if (new_nsproxy)
3328 			switch_task_namespaces(current, new_nsproxy);
3329 
3330 		task_lock(current);
3331 
3332 		if (new_fs) {
3333 			fs = current->fs;
3334 			spin_lock(&fs->lock);
3335 			current->fs = new_fs;
3336 			if (--fs->users)
3337 				new_fs = NULL;
3338 			else
3339 				new_fs = fs;
3340 			spin_unlock(&fs->lock);
3341 		}
3342 
3343 		if (new_fd)
3344 			swap(current->files, new_fd);
3345 
3346 		task_unlock(current);
3347 
3348 		if (new_cred) {
3349 			/* Install the new user namespace */
3350 			commit_creds(new_cred);
3351 			new_cred = NULL;
3352 		}
3353 	}
3354 
3355 	perf_event_namespaces(current);
3356 
3357 bad_unshare_cleanup_cred:
3358 	if (new_cred)
3359 		put_cred(new_cred);
3360 bad_unshare_cleanup_fd:
3361 	if (new_fd)
3362 		put_files_struct(new_fd);
3363 
3364 bad_unshare_cleanup_fs:
3365 	if (new_fs)
3366 		free_fs_struct(new_fs);
3367 
3368 bad_unshare_out:
3369 	return err;
3370 }
3371 
3372 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3373 {
3374 	return ksys_unshare(unshare_flags);
3375 }
3376 
3377 /*
3378  *	Helper to unshare the files of the current task.
3379  *	We don't want to expose copy_files internals to
3380  *	the exec layer of the kernel.
3381  */
3382 
3383 int unshare_files(void)
3384 {
3385 	struct task_struct *task = current;
3386 	struct files_struct *old, *copy = NULL;
3387 	int error;
3388 
3389 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3390 	if (error || !copy)
3391 		return error;
3392 
3393 	old = task->files;
3394 	task_lock(task);
3395 	task->files = copy;
3396 	task_unlock(task);
3397 	put_files_struct(old);
3398 	return 0;
3399 }
3400 
3401 int sysctl_max_threads(struct ctl_table *table, int write,
3402 		       void *buffer, size_t *lenp, loff_t *ppos)
3403 {
3404 	struct ctl_table t;
3405 	int ret;
3406 	int threads = max_threads;
3407 	int min = 1;
3408 	int max = MAX_THREADS;
3409 
3410 	t = *table;
3411 	t.data = &threads;
3412 	t.extra1 = &min;
3413 	t.extra2 = &max;
3414 
3415 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3416 	if (ret || !write)
3417 		return ret;
3418 
3419 	max_threads = threads;
3420 
3421 	return 0;
3422 }
3423