1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 #include <uapi/linux/pidfd.h> 105 #include <linux/pidfs.h> 106 107 #include <asm/pgalloc.h> 108 #include <linux/uaccess.h> 109 #include <asm/mmu_context.h> 110 #include <asm/cacheflush.h> 111 #include <asm/tlbflush.h> 112 113 #include <trace/events/sched.h> 114 115 #define CREATE_TRACE_POINTS 116 #include <trace/events/task.h> 117 118 /* 119 * Minimum number of threads to boot the kernel 120 */ 121 #define MIN_THREADS 20 122 123 /* 124 * Maximum number of threads 125 */ 126 #define MAX_THREADS FUTEX_TID_MASK 127 128 /* 129 * Protected counters by write_lock_irq(&tasklist_lock) 130 */ 131 unsigned long total_forks; /* Handle normal Linux uptimes. */ 132 int nr_threads; /* The idle threads do not count.. */ 133 134 static int max_threads; /* tunable limit on nr_threads */ 135 136 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 137 138 static const char * const resident_page_types[] = { 139 NAMED_ARRAY_INDEX(MM_FILEPAGES), 140 NAMED_ARRAY_INDEX(MM_ANONPAGES), 141 NAMED_ARRAY_INDEX(MM_SWAPENTS), 142 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 143 }; 144 145 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 146 147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 148 149 #ifdef CONFIG_PROVE_RCU 150 int lockdep_tasklist_lock_is_held(void) 151 { 152 return lockdep_is_held(&tasklist_lock); 153 } 154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 155 #endif /* #ifdef CONFIG_PROVE_RCU */ 156 157 int nr_processes(void) 158 { 159 int cpu; 160 int total = 0; 161 162 for_each_possible_cpu(cpu) 163 total += per_cpu(process_counts, cpu); 164 165 return total; 166 } 167 168 void __weak arch_release_task_struct(struct task_struct *tsk) 169 { 170 } 171 172 static struct kmem_cache *task_struct_cachep; 173 174 static inline struct task_struct *alloc_task_struct_node(int node) 175 { 176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 177 } 178 179 static inline void free_task_struct(struct task_struct *tsk) 180 { 181 kmem_cache_free(task_struct_cachep, tsk); 182 } 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 416 /* SLAB cache for signal_struct structures (tsk->signal) */ 417 static struct kmem_cache *signal_cachep; 418 419 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 420 struct kmem_cache *sighand_cachep; 421 422 /* SLAB cache for files_struct structures (tsk->files) */ 423 struct kmem_cache *files_cachep; 424 425 /* SLAB cache for fs_struct structures (tsk->fs) */ 426 struct kmem_cache *fs_cachep; 427 428 /* SLAB cache for vm_area_struct structures */ 429 static struct kmem_cache *vm_area_cachep; 430 431 /* SLAB cache for mm_struct structures (tsk->mm) */ 432 static struct kmem_cache *mm_cachep; 433 434 #ifdef CONFIG_PER_VMA_LOCK 435 436 /* SLAB cache for vm_area_struct.lock */ 437 static struct kmem_cache *vma_lock_cachep; 438 439 static bool vma_lock_alloc(struct vm_area_struct *vma) 440 { 441 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 442 if (!vma->vm_lock) 443 return false; 444 445 init_rwsem(&vma->vm_lock->lock); 446 vma->vm_lock_seq = -1; 447 448 return true; 449 } 450 451 static inline void vma_lock_free(struct vm_area_struct *vma) 452 { 453 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 454 } 455 456 #else /* CONFIG_PER_VMA_LOCK */ 457 458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 459 static inline void vma_lock_free(struct vm_area_struct *vma) {} 460 461 #endif /* CONFIG_PER_VMA_LOCK */ 462 463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 464 { 465 struct vm_area_struct *vma; 466 467 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 if (!vma) 469 return NULL; 470 471 vma_init(vma, mm); 472 if (!vma_lock_alloc(vma)) { 473 kmem_cache_free(vm_area_cachep, vma); 474 return NULL; 475 } 476 477 return vma; 478 } 479 480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 481 { 482 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 483 484 if (!new) 485 return NULL; 486 487 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 488 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 489 /* 490 * orig->shared.rb may be modified concurrently, but the clone 491 * will be reinitialized. 492 */ 493 data_race(memcpy(new, orig, sizeof(*new))); 494 if (!vma_lock_alloc(new)) { 495 kmem_cache_free(vm_area_cachep, new); 496 return NULL; 497 } 498 INIT_LIST_HEAD(&new->anon_vma_chain); 499 vma_numab_state_init(new); 500 dup_anon_vma_name(orig, new); 501 502 return new; 503 } 504 505 void __vm_area_free(struct vm_area_struct *vma) 506 { 507 vma_numab_state_free(vma); 508 free_anon_vma_name(vma); 509 vma_lock_free(vma); 510 kmem_cache_free(vm_area_cachep, vma); 511 } 512 513 #ifdef CONFIG_PER_VMA_LOCK 514 static void vm_area_free_rcu_cb(struct rcu_head *head) 515 { 516 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 517 vm_rcu); 518 519 /* The vma should not be locked while being destroyed. */ 520 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 521 __vm_area_free(vma); 522 } 523 #endif 524 525 void vm_area_free(struct vm_area_struct *vma) 526 { 527 #ifdef CONFIG_PER_VMA_LOCK 528 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 529 #else 530 __vm_area_free(vma); 531 #endif 532 } 533 534 static void account_kernel_stack(struct task_struct *tsk, int account) 535 { 536 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 537 struct vm_struct *vm = task_stack_vm_area(tsk); 538 int i; 539 540 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 541 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 542 account * (PAGE_SIZE / 1024)); 543 } else { 544 void *stack = task_stack_page(tsk); 545 546 /* All stack pages are in the same node. */ 547 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 548 account * (THREAD_SIZE / 1024)); 549 } 550 } 551 552 void exit_task_stack_account(struct task_struct *tsk) 553 { 554 account_kernel_stack(tsk, -1); 555 556 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 557 struct vm_struct *vm; 558 int i; 559 560 vm = task_stack_vm_area(tsk); 561 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 562 memcg_kmem_uncharge_page(vm->pages[i], 0); 563 } 564 } 565 566 static void release_task_stack(struct task_struct *tsk) 567 { 568 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 569 return; /* Better to leak the stack than to free prematurely */ 570 571 free_thread_stack(tsk); 572 } 573 574 #ifdef CONFIG_THREAD_INFO_IN_TASK 575 void put_task_stack(struct task_struct *tsk) 576 { 577 if (refcount_dec_and_test(&tsk->stack_refcount)) 578 release_task_stack(tsk); 579 } 580 #endif 581 582 void free_task(struct task_struct *tsk) 583 { 584 #ifdef CONFIG_SECCOMP 585 WARN_ON_ONCE(tsk->seccomp.filter); 586 #endif 587 release_user_cpus_ptr(tsk); 588 scs_release(tsk); 589 590 #ifndef CONFIG_THREAD_INFO_IN_TASK 591 /* 592 * The task is finally done with both the stack and thread_info, 593 * so free both. 594 */ 595 release_task_stack(tsk); 596 #else 597 /* 598 * If the task had a separate stack allocation, it should be gone 599 * by now. 600 */ 601 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 602 #endif 603 rt_mutex_debug_task_free(tsk); 604 ftrace_graph_exit_task(tsk); 605 arch_release_task_struct(tsk); 606 if (tsk->flags & PF_KTHREAD) 607 free_kthread_struct(tsk); 608 bpf_task_storage_free(tsk); 609 free_task_struct(tsk); 610 } 611 EXPORT_SYMBOL(free_task); 612 613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 614 { 615 struct file *exe_file; 616 617 exe_file = get_mm_exe_file(oldmm); 618 RCU_INIT_POINTER(mm->exe_file, exe_file); 619 } 620 621 #ifdef CONFIG_MMU 622 static __latent_entropy int dup_mmap(struct mm_struct *mm, 623 struct mm_struct *oldmm) 624 { 625 struct vm_area_struct *mpnt, *tmp; 626 int retval; 627 unsigned long charge = 0; 628 LIST_HEAD(uf); 629 VMA_ITERATOR(vmi, mm, 0); 630 631 uprobe_start_dup_mmap(); 632 if (mmap_write_lock_killable(oldmm)) { 633 retval = -EINTR; 634 goto fail_uprobe_end; 635 } 636 flush_cache_dup_mm(oldmm); 637 uprobe_dup_mmap(oldmm, mm); 638 /* 639 * Not linked in yet - no deadlock potential: 640 */ 641 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 642 643 /* No ordering required: file already has been exposed. */ 644 dup_mm_exe_file(mm, oldmm); 645 646 mm->total_vm = oldmm->total_vm; 647 mm->data_vm = oldmm->data_vm; 648 mm->exec_vm = oldmm->exec_vm; 649 mm->stack_vm = oldmm->stack_vm; 650 651 retval = ksm_fork(mm, oldmm); 652 if (retval) 653 goto out; 654 khugepaged_fork(mm, oldmm); 655 656 /* Use __mt_dup() to efficiently build an identical maple tree. */ 657 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 658 if (unlikely(retval)) 659 goto out; 660 661 mt_clear_in_rcu(vmi.mas.tree); 662 for_each_vma(vmi, mpnt) { 663 struct file *file; 664 665 vma_start_write(mpnt); 666 if (mpnt->vm_flags & VM_DONTCOPY) { 667 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 668 mpnt->vm_end, GFP_KERNEL); 669 if (retval) 670 goto loop_out; 671 672 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 673 continue; 674 } 675 charge = 0; 676 /* 677 * Don't duplicate many vmas if we've been oom-killed (for 678 * example) 679 */ 680 if (fatal_signal_pending(current)) { 681 retval = -EINTR; 682 goto loop_out; 683 } 684 if (mpnt->vm_flags & VM_ACCOUNT) { 685 unsigned long len = vma_pages(mpnt); 686 687 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 688 goto fail_nomem; 689 charge = len; 690 } 691 tmp = vm_area_dup(mpnt); 692 if (!tmp) 693 goto fail_nomem; 694 retval = vma_dup_policy(mpnt, tmp); 695 if (retval) 696 goto fail_nomem_policy; 697 tmp->vm_mm = mm; 698 retval = dup_userfaultfd(tmp, &uf); 699 if (retval) 700 goto fail_nomem_anon_vma_fork; 701 if (tmp->vm_flags & VM_WIPEONFORK) { 702 /* 703 * VM_WIPEONFORK gets a clean slate in the child. 704 * Don't prepare anon_vma until fault since we don't 705 * copy page for current vma. 706 */ 707 tmp->anon_vma = NULL; 708 } else if (anon_vma_fork(tmp, mpnt)) 709 goto fail_nomem_anon_vma_fork; 710 vm_flags_clear(tmp, VM_LOCKED_MASK); 711 /* 712 * Copy/update hugetlb private vma information. 713 */ 714 if (is_vm_hugetlb_page(tmp)) 715 hugetlb_dup_vma_private(tmp); 716 717 /* 718 * Link the vma into the MT. After using __mt_dup(), memory 719 * allocation is not necessary here, so it cannot fail. 720 */ 721 vma_iter_bulk_store(&vmi, tmp); 722 723 mm->map_count++; 724 725 if (tmp->vm_ops && tmp->vm_ops->open) 726 tmp->vm_ops->open(tmp); 727 728 file = tmp->vm_file; 729 if (file) { 730 struct address_space *mapping = file->f_mapping; 731 732 get_file(file); 733 i_mmap_lock_write(mapping); 734 if (vma_is_shared_maywrite(tmp)) 735 mapping_allow_writable(mapping); 736 flush_dcache_mmap_lock(mapping); 737 /* insert tmp into the share list, just after mpnt */ 738 vma_interval_tree_insert_after(tmp, mpnt, 739 &mapping->i_mmap); 740 flush_dcache_mmap_unlock(mapping); 741 i_mmap_unlock_write(mapping); 742 } 743 744 if (!(tmp->vm_flags & VM_WIPEONFORK)) 745 retval = copy_page_range(tmp, mpnt); 746 747 if (retval) { 748 mpnt = vma_next(&vmi); 749 goto loop_out; 750 } 751 } 752 /* a new mm has just been created */ 753 retval = arch_dup_mmap(oldmm, mm); 754 loop_out: 755 vma_iter_free(&vmi); 756 if (!retval) { 757 mt_set_in_rcu(vmi.mas.tree); 758 } else if (mpnt) { 759 /* 760 * The entire maple tree has already been duplicated. If the 761 * mmap duplication fails, mark the failure point with 762 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 763 * stop releasing VMAs that have not been duplicated after this 764 * point. 765 */ 766 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 767 mas_store(&vmi.mas, XA_ZERO_ENTRY); 768 } 769 out: 770 mmap_write_unlock(mm); 771 flush_tlb_mm(oldmm); 772 mmap_write_unlock(oldmm); 773 dup_userfaultfd_complete(&uf); 774 fail_uprobe_end: 775 uprobe_end_dup_mmap(); 776 return retval; 777 778 fail_nomem_anon_vma_fork: 779 mpol_put(vma_policy(tmp)); 780 fail_nomem_policy: 781 vm_area_free(tmp); 782 fail_nomem: 783 retval = -ENOMEM; 784 vm_unacct_memory(charge); 785 goto loop_out; 786 } 787 788 static inline int mm_alloc_pgd(struct mm_struct *mm) 789 { 790 mm->pgd = pgd_alloc(mm); 791 if (unlikely(!mm->pgd)) 792 return -ENOMEM; 793 return 0; 794 } 795 796 static inline void mm_free_pgd(struct mm_struct *mm) 797 { 798 pgd_free(mm, mm->pgd); 799 } 800 #else 801 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 802 { 803 mmap_write_lock(oldmm); 804 dup_mm_exe_file(mm, oldmm); 805 mmap_write_unlock(oldmm); 806 return 0; 807 } 808 #define mm_alloc_pgd(mm) (0) 809 #define mm_free_pgd(mm) 810 #endif /* CONFIG_MMU */ 811 812 static void check_mm(struct mm_struct *mm) 813 { 814 int i; 815 816 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 817 "Please make sure 'struct resident_page_types[]' is updated as well"); 818 819 for (i = 0; i < NR_MM_COUNTERS; i++) { 820 long x = percpu_counter_sum(&mm->rss_stat[i]); 821 822 if (unlikely(x)) 823 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 824 mm, resident_page_types[i], x); 825 } 826 827 if (mm_pgtables_bytes(mm)) 828 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 829 mm_pgtables_bytes(mm)); 830 831 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 832 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 833 #endif 834 } 835 836 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 837 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 838 839 static void do_check_lazy_tlb(void *arg) 840 { 841 struct mm_struct *mm = arg; 842 843 WARN_ON_ONCE(current->active_mm == mm); 844 } 845 846 static void do_shoot_lazy_tlb(void *arg) 847 { 848 struct mm_struct *mm = arg; 849 850 if (current->active_mm == mm) { 851 WARN_ON_ONCE(current->mm); 852 current->active_mm = &init_mm; 853 switch_mm(mm, &init_mm, current); 854 } 855 } 856 857 static void cleanup_lazy_tlbs(struct mm_struct *mm) 858 { 859 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 860 /* 861 * In this case, lazy tlb mms are refounted and would not reach 862 * __mmdrop until all CPUs have switched away and mmdrop()ed. 863 */ 864 return; 865 } 866 867 /* 868 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 869 * requires lazy mm users to switch to another mm when the refcount 870 * drops to zero, before the mm is freed. This requires IPIs here to 871 * switch kernel threads to init_mm. 872 * 873 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 874 * switch with the final userspace teardown TLB flush which leaves the 875 * mm lazy on this CPU but no others, reducing the need for additional 876 * IPIs here. There are cases where a final IPI is still required here, 877 * such as the final mmdrop being performed on a different CPU than the 878 * one exiting, or kernel threads using the mm when userspace exits. 879 * 880 * IPI overheads have not found to be expensive, but they could be 881 * reduced in a number of possible ways, for example (roughly 882 * increasing order of complexity): 883 * - The last lazy reference created by exit_mm() could instead switch 884 * to init_mm, however it's probable this will run on the same CPU 885 * immediately afterwards, so this may not reduce IPIs much. 886 * - A batch of mms requiring IPIs could be gathered and freed at once. 887 * - CPUs store active_mm where it can be remotely checked without a 888 * lock, to filter out false-positives in the cpumask. 889 * - After mm_users or mm_count reaches zero, switching away from the 890 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 891 * with some batching or delaying of the final IPIs. 892 * - A delayed freeing and RCU-like quiescing sequence based on mm 893 * switching to avoid IPIs completely. 894 */ 895 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 896 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 897 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 898 } 899 900 /* 901 * Called when the last reference to the mm 902 * is dropped: either by a lazy thread or by 903 * mmput. Free the page directory and the mm. 904 */ 905 void __mmdrop(struct mm_struct *mm) 906 { 907 BUG_ON(mm == &init_mm); 908 WARN_ON_ONCE(mm == current->mm); 909 910 /* Ensure no CPUs are using this as their lazy tlb mm */ 911 cleanup_lazy_tlbs(mm); 912 913 WARN_ON_ONCE(mm == current->active_mm); 914 mm_free_pgd(mm); 915 destroy_context(mm); 916 mmu_notifier_subscriptions_destroy(mm); 917 check_mm(mm); 918 put_user_ns(mm->user_ns); 919 mm_pasid_drop(mm); 920 mm_destroy_cid(mm); 921 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 922 923 free_mm(mm); 924 } 925 EXPORT_SYMBOL_GPL(__mmdrop); 926 927 static void mmdrop_async_fn(struct work_struct *work) 928 { 929 struct mm_struct *mm; 930 931 mm = container_of(work, struct mm_struct, async_put_work); 932 __mmdrop(mm); 933 } 934 935 static void mmdrop_async(struct mm_struct *mm) 936 { 937 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 938 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 939 schedule_work(&mm->async_put_work); 940 } 941 } 942 943 static inline void free_signal_struct(struct signal_struct *sig) 944 { 945 taskstats_tgid_free(sig); 946 sched_autogroup_exit(sig); 947 /* 948 * __mmdrop is not safe to call from softirq context on x86 due to 949 * pgd_dtor so postpone it to the async context 950 */ 951 if (sig->oom_mm) 952 mmdrop_async(sig->oom_mm); 953 kmem_cache_free(signal_cachep, sig); 954 } 955 956 static inline void put_signal_struct(struct signal_struct *sig) 957 { 958 if (refcount_dec_and_test(&sig->sigcnt)) 959 free_signal_struct(sig); 960 } 961 962 void __put_task_struct(struct task_struct *tsk) 963 { 964 WARN_ON(!tsk->exit_state); 965 WARN_ON(refcount_read(&tsk->usage)); 966 WARN_ON(tsk == current); 967 968 io_uring_free(tsk); 969 cgroup_free(tsk); 970 task_numa_free(tsk, true); 971 security_task_free(tsk); 972 exit_creds(tsk); 973 delayacct_tsk_free(tsk); 974 put_signal_struct(tsk->signal); 975 sched_core_free(tsk); 976 free_task(tsk); 977 } 978 EXPORT_SYMBOL_GPL(__put_task_struct); 979 980 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 981 { 982 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 983 984 __put_task_struct(task); 985 } 986 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 987 988 void __init __weak arch_task_cache_init(void) { } 989 990 /* 991 * set_max_threads 992 */ 993 static void set_max_threads(unsigned int max_threads_suggested) 994 { 995 u64 threads; 996 unsigned long nr_pages = totalram_pages(); 997 998 /* 999 * The number of threads shall be limited such that the thread 1000 * structures may only consume a small part of the available memory. 1001 */ 1002 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1003 threads = MAX_THREADS; 1004 else 1005 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1006 (u64) THREAD_SIZE * 8UL); 1007 1008 if (threads > max_threads_suggested) 1009 threads = max_threads_suggested; 1010 1011 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1012 } 1013 1014 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1015 /* Initialized by the architecture: */ 1016 int arch_task_struct_size __read_mostly; 1017 #endif 1018 1019 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1020 { 1021 /* Fetch thread_struct whitelist for the architecture. */ 1022 arch_thread_struct_whitelist(offset, size); 1023 1024 /* 1025 * Handle zero-sized whitelist or empty thread_struct, otherwise 1026 * adjust offset to position of thread_struct in task_struct. 1027 */ 1028 if (unlikely(*size == 0)) 1029 *offset = 0; 1030 else 1031 *offset += offsetof(struct task_struct, thread); 1032 } 1033 1034 void __init fork_init(void) 1035 { 1036 int i; 1037 #ifndef ARCH_MIN_TASKALIGN 1038 #define ARCH_MIN_TASKALIGN 0 1039 #endif 1040 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1041 unsigned long useroffset, usersize; 1042 1043 /* create a slab on which task_structs can be allocated */ 1044 task_struct_whitelist(&useroffset, &usersize); 1045 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1046 arch_task_struct_size, align, 1047 SLAB_PANIC|SLAB_ACCOUNT, 1048 useroffset, usersize, NULL); 1049 1050 /* do the arch specific task caches init */ 1051 arch_task_cache_init(); 1052 1053 set_max_threads(MAX_THREADS); 1054 1055 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1056 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1057 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1058 init_task.signal->rlim[RLIMIT_NPROC]; 1059 1060 for (i = 0; i < UCOUNT_COUNTS; i++) 1061 init_user_ns.ucount_max[i] = max_threads/2; 1062 1063 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1064 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1065 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1067 1068 #ifdef CONFIG_VMAP_STACK 1069 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1070 NULL, free_vm_stack_cache); 1071 #endif 1072 1073 scs_init(); 1074 1075 lockdep_init_task(&init_task); 1076 uprobes_init(); 1077 } 1078 1079 int __weak arch_dup_task_struct(struct task_struct *dst, 1080 struct task_struct *src) 1081 { 1082 *dst = *src; 1083 return 0; 1084 } 1085 1086 void set_task_stack_end_magic(struct task_struct *tsk) 1087 { 1088 unsigned long *stackend; 1089 1090 stackend = end_of_stack(tsk); 1091 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1092 } 1093 1094 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1095 { 1096 struct task_struct *tsk; 1097 int err; 1098 1099 if (node == NUMA_NO_NODE) 1100 node = tsk_fork_get_node(orig); 1101 tsk = alloc_task_struct_node(node); 1102 if (!tsk) 1103 return NULL; 1104 1105 err = arch_dup_task_struct(tsk, orig); 1106 if (err) 1107 goto free_tsk; 1108 1109 err = alloc_thread_stack_node(tsk, node); 1110 if (err) 1111 goto free_tsk; 1112 1113 #ifdef CONFIG_THREAD_INFO_IN_TASK 1114 refcount_set(&tsk->stack_refcount, 1); 1115 #endif 1116 account_kernel_stack(tsk, 1); 1117 1118 err = scs_prepare(tsk, node); 1119 if (err) 1120 goto free_stack; 1121 1122 #ifdef CONFIG_SECCOMP 1123 /* 1124 * We must handle setting up seccomp filters once we're under 1125 * the sighand lock in case orig has changed between now and 1126 * then. Until then, filter must be NULL to avoid messing up 1127 * the usage counts on the error path calling free_task. 1128 */ 1129 tsk->seccomp.filter = NULL; 1130 #endif 1131 1132 setup_thread_stack(tsk, orig); 1133 clear_user_return_notifier(tsk); 1134 clear_tsk_need_resched(tsk); 1135 set_task_stack_end_magic(tsk); 1136 clear_syscall_work_syscall_user_dispatch(tsk); 1137 1138 #ifdef CONFIG_STACKPROTECTOR 1139 tsk->stack_canary = get_random_canary(); 1140 #endif 1141 if (orig->cpus_ptr == &orig->cpus_mask) 1142 tsk->cpus_ptr = &tsk->cpus_mask; 1143 dup_user_cpus_ptr(tsk, orig, node); 1144 1145 /* 1146 * One for the user space visible state that goes away when reaped. 1147 * One for the scheduler. 1148 */ 1149 refcount_set(&tsk->rcu_users, 2); 1150 /* One for the rcu users */ 1151 refcount_set(&tsk->usage, 1); 1152 #ifdef CONFIG_BLK_DEV_IO_TRACE 1153 tsk->btrace_seq = 0; 1154 #endif 1155 tsk->splice_pipe = NULL; 1156 tsk->task_frag.page = NULL; 1157 tsk->wake_q.next = NULL; 1158 tsk->worker_private = NULL; 1159 1160 kcov_task_init(tsk); 1161 kmsan_task_create(tsk); 1162 kmap_local_fork(tsk); 1163 1164 #ifdef CONFIG_FAULT_INJECTION 1165 tsk->fail_nth = 0; 1166 #endif 1167 1168 #ifdef CONFIG_BLK_CGROUP 1169 tsk->throttle_disk = NULL; 1170 tsk->use_memdelay = 0; 1171 #endif 1172 1173 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1174 tsk->pasid_activated = 0; 1175 #endif 1176 1177 #ifdef CONFIG_MEMCG 1178 tsk->active_memcg = NULL; 1179 #endif 1180 1181 #ifdef CONFIG_CPU_SUP_INTEL 1182 tsk->reported_split_lock = 0; 1183 #endif 1184 1185 #ifdef CONFIG_SCHED_MM_CID 1186 tsk->mm_cid = -1; 1187 tsk->last_mm_cid = -1; 1188 tsk->mm_cid_active = 0; 1189 tsk->migrate_from_cpu = -1; 1190 #endif 1191 return tsk; 1192 1193 free_stack: 1194 exit_task_stack_account(tsk); 1195 free_thread_stack(tsk); 1196 free_tsk: 1197 free_task_struct(tsk); 1198 return NULL; 1199 } 1200 1201 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1202 1203 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1204 1205 static int __init coredump_filter_setup(char *s) 1206 { 1207 default_dump_filter = 1208 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1209 MMF_DUMP_FILTER_MASK; 1210 return 1; 1211 } 1212 1213 __setup("coredump_filter=", coredump_filter_setup); 1214 1215 #include <linux/init_task.h> 1216 1217 static void mm_init_aio(struct mm_struct *mm) 1218 { 1219 #ifdef CONFIG_AIO 1220 spin_lock_init(&mm->ioctx_lock); 1221 mm->ioctx_table = NULL; 1222 #endif 1223 } 1224 1225 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1226 struct task_struct *p) 1227 { 1228 #ifdef CONFIG_MEMCG 1229 if (mm->owner == p) 1230 WRITE_ONCE(mm->owner, NULL); 1231 #endif 1232 } 1233 1234 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1235 { 1236 #ifdef CONFIG_MEMCG 1237 mm->owner = p; 1238 #endif 1239 } 1240 1241 static void mm_init_uprobes_state(struct mm_struct *mm) 1242 { 1243 #ifdef CONFIG_UPROBES 1244 mm->uprobes_state.xol_area = NULL; 1245 #endif 1246 } 1247 1248 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1249 struct user_namespace *user_ns) 1250 { 1251 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1252 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1253 atomic_set(&mm->mm_users, 1); 1254 atomic_set(&mm->mm_count, 1); 1255 seqcount_init(&mm->write_protect_seq); 1256 mmap_init_lock(mm); 1257 INIT_LIST_HEAD(&mm->mmlist); 1258 #ifdef CONFIG_PER_VMA_LOCK 1259 mm->mm_lock_seq = 0; 1260 #endif 1261 mm_pgtables_bytes_init(mm); 1262 mm->map_count = 0; 1263 mm->locked_vm = 0; 1264 atomic64_set(&mm->pinned_vm, 0); 1265 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1266 spin_lock_init(&mm->page_table_lock); 1267 spin_lock_init(&mm->arg_lock); 1268 mm_init_cpumask(mm); 1269 mm_init_aio(mm); 1270 mm_init_owner(mm, p); 1271 mm_pasid_init(mm); 1272 RCU_INIT_POINTER(mm->exe_file, NULL); 1273 mmu_notifier_subscriptions_init(mm); 1274 init_tlb_flush_pending(mm); 1275 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1276 mm->pmd_huge_pte = NULL; 1277 #endif 1278 mm_init_uprobes_state(mm); 1279 hugetlb_count_init(mm); 1280 1281 if (current->mm) { 1282 mm->flags = mmf_init_flags(current->mm->flags); 1283 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1284 } else { 1285 mm->flags = default_dump_filter; 1286 mm->def_flags = 0; 1287 } 1288 1289 if (mm_alloc_pgd(mm)) 1290 goto fail_nopgd; 1291 1292 if (init_new_context(p, mm)) 1293 goto fail_nocontext; 1294 1295 if (mm_alloc_cid(mm)) 1296 goto fail_cid; 1297 1298 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1299 NR_MM_COUNTERS)) 1300 goto fail_pcpu; 1301 1302 mm->user_ns = get_user_ns(user_ns); 1303 lru_gen_init_mm(mm); 1304 return mm; 1305 1306 fail_pcpu: 1307 mm_destroy_cid(mm); 1308 fail_cid: 1309 destroy_context(mm); 1310 fail_nocontext: 1311 mm_free_pgd(mm); 1312 fail_nopgd: 1313 free_mm(mm); 1314 return NULL; 1315 } 1316 1317 /* 1318 * Allocate and initialize an mm_struct. 1319 */ 1320 struct mm_struct *mm_alloc(void) 1321 { 1322 struct mm_struct *mm; 1323 1324 mm = allocate_mm(); 1325 if (!mm) 1326 return NULL; 1327 1328 memset(mm, 0, sizeof(*mm)); 1329 return mm_init(mm, current, current_user_ns()); 1330 } 1331 1332 static inline void __mmput(struct mm_struct *mm) 1333 { 1334 VM_BUG_ON(atomic_read(&mm->mm_users)); 1335 1336 uprobe_clear_state(mm); 1337 exit_aio(mm); 1338 ksm_exit(mm); 1339 khugepaged_exit(mm); /* must run before exit_mmap */ 1340 exit_mmap(mm); 1341 mm_put_huge_zero_folio(mm); 1342 set_mm_exe_file(mm, NULL); 1343 if (!list_empty(&mm->mmlist)) { 1344 spin_lock(&mmlist_lock); 1345 list_del(&mm->mmlist); 1346 spin_unlock(&mmlist_lock); 1347 } 1348 if (mm->binfmt) 1349 module_put(mm->binfmt->module); 1350 lru_gen_del_mm(mm); 1351 mmdrop(mm); 1352 } 1353 1354 /* 1355 * Decrement the use count and release all resources for an mm. 1356 */ 1357 void mmput(struct mm_struct *mm) 1358 { 1359 might_sleep(); 1360 1361 if (atomic_dec_and_test(&mm->mm_users)) 1362 __mmput(mm); 1363 } 1364 EXPORT_SYMBOL_GPL(mmput); 1365 1366 #ifdef CONFIG_MMU 1367 static void mmput_async_fn(struct work_struct *work) 1368 { 1369 struct mm_struct *mm = container_of(work, struct mm_struct, 1370 async_put_work); 1371 1372 __mmput(mm); 1373 } 1374 1375 void mmput_async(struct mm_struct *mm) 1376 { 1377 if (atomic_dec_and_test(&mm->mm_users)) { 1378 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1379 schedule_work(&mm->async_put_work); 1380 } 1381 } 1382 EXPORT_SYMBOL_GPL(mmput_async); 1383 #endif 1384 1385 /** 1386 * set_mm_exe_file - change a reference to the mm's executable file 1387 * @mm: The mm to change. 1388 * @new_exe_file: The new file to use. 1389 * 1390 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1391 * 1392 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1393 * invocations: in mmput() nobody alive left, in execve it happens before 1394 * the new mm is made visible to anyone. 1395 * 1396 * Can only fail if new_exe_file != NULL. 1397 */ 1398 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1399 { 1400 struct file *old_exe_file; 1401 1402 /* 1403 * It is safe to dereference the exe_file without RCU as 1404 * this function is only called if nobody else can access 1405 * this mm -- see comment above for justification. 1406 */ 1407 old_exe_file = rcu_dereference_raw(mm->exe_file); 1408 1409 if (new_exe_file) 1410 get_file(new_exe_file); 1411 rcu_assign_pointer(mm->exe_file, new_exe_file); 1412 if (old_exe_file) 1413 fput(old_exe_file); 1414 return 0; 1415 } 1416 1417 /** 1418 * replace_mm_exe_file - replace a reference to the mm's executable file 1419 * @mm: The mm to change. 1420 * @new_exe_file: The new file to use. 1421 * 1422 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1423 * 1424 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1425 */ 1426 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1427 { 1428 struct vm_area_struct *vma; 1429 struct file *old_exe_file; 1430 int ret = 0; 1431 1432 /* Forbid mm->exe_file change if old file still mapped. */ 1433 old_exe_file = get_mm_exe_file(mm); 1434 if (old_exe_file) { 1435 VMA_ITERATOR(vmi, mm, 0); 1436 mmap_read_lock(mm); 1437 for_each_vma(vmi, vma) { 1438 if (!vma->vm_file) 1439 continue; 1440 if (path_equal(&vma->vm_file->f_path, 1441 &old_exe_file->f_path)) { 1442 ret = -EBUSY; 1443 break; 1444 } 1445 } 1446 mmap_read_unlock(mm); 1447 fput(old_exe_file); 1448 if (ret) 1449 return ret; 1450 } 1451 1452 get_file(new_exe_file); 1453 1454 /* set the new file */ 1455 mmap_write_lock(mm); 1456 old_exe_file = rcu_dereference_raw(mm->exe_file); 1457 rcu_assign_pointer(mm->exe_file, new_exe_file); 1458 mmap_write_unlock(mm); 1459 1460 if (old_exe_file) 1461 fput(old_exe_file); 1462 return 0; 1463 } 1464 1465 /** 1466 * get_mm_exe_file - acquire a reference to the mm's executable file 1467 * @mm: The mm of interest. 1468 * 1469 * Returns %NULL if mm has no associated executable file. 1470 * User must release file via fput(). 1471 */ 1472 struct file *get_mm_exe_file(struct mm_struct *mm) 1473 { 1474 struct file *exe_file; 1475 1476 rcu_read_lock(); 1477 exe_file = get_file_rcu(&mm->exe_file); 1478 rcu_read_unlock(); 1479 return exe_file; 1480 } 1481 1482 /** 1483 * get_task_exe_file - acquire a reference to the task's executable file 1484 * @task: The task. 1485 * 1486 * Returns %NULL if task's mm (if any) has no associated executable file or 1487 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1488 * User must release file via fput(). 1489 */ 1490 struct file *get_task_exe_file(struct task_struct *task) 1491 { 1492 struct file *exe_file = NULL; 1493 struct mm_struct *mm; 1494 1495 task_lock(task); 1496 mm = task->mm; 1497 if (mm) { 1498 if (!(task->flags & PF_KTHREAD)) 1499 exe_file = get_mm_exe_file(mm); 1500 } 1501 task_unlock(task); 1502 return exe_file; 1503 } 1504 1505 /** 1506 * get_task_mm - acquire a reference to the task's mm 1507 * @task: The task. 1508 * 1509 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1510 * this kernel workthread has transiently adopted a user mm with use_mm, 1511 * to do its AIO) is not set and if so returns a reference to it, after 1512 * bumping up the use count. User must release the mm via mmput() 1513 * after use. Typically used by /proc and ptrace. 1514 */ 1515 struct mm_struct *get_task_mm(struct task_struct *task) 1516 { 1517 struct mm_struct *mm; 1518 1519 task_lock(task); 1520 mm = task->mm; 1521 if (mm) { 1522 if (task->flags & PF_KTHREAD) 1523 mm = NULL; 1524 else 1525 mmget(mm); 1526 } 1527 task_unlock(task); 1528 return mm; 1529 } 1530 EXPORT_SYMBOL_GPL(get_task_mm); 1531 1532 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1533 { 1534 struct mm_struct *mm; 1535 int err; 1536 1537 err = down_read_killable(&task->signal->exec_update_lock); 1538 if (err) 1539 return ERR_PTR(err); 1540 1541 mm = get_task_mm(task); 1542 if (mm && mm != current->mm && 1543 !ptrace_may_access(task, mode)) { 1544 mmput(mm); 1545 mm = ERR_PTR(-EACCES); 1546 } 1547 up_read(&task->signal->exec_update_lock); 1548 1549 return mm; 1550 } 1551 1552 static void complete_vfork_done(struct task_struct *tsk) 1553 { 1554 struct completion *vfork; 1555 1556 task_lock(tsk); 1557 vfork = tsk->vfork_done; 1558 if (likely(vfork)) { 1559 tsk->vfork_done = NULL; 1560 complete(vfork); 1561 } 1562 task_unlock(tsk); 1563 } 1564 1565 static int wait_for_vfork_done(struct task_struct *child, 1566 struct completion *vfork) 1567 { 1568 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1569 int killed; 1570 1571 cgroup_enter_frozen(); 1572 killed = wait_for_completion_state(vfork, state); 1573 cgroup_leave_frozen(false); 1574 1575 if (killed) { 1576 task_lock(child); 1577 child->vfork_done = NULL; 1578 task_unlock(child); 1579 } 1580 1581 put_task_struct(child); 1582 return killed; 1583 } 1584 1585 /* Please note the differences between mmput and mm_release. 1586 * mmput is called whenever we stop holding onto a mm_struct, 1587 * error success whatever. 1588 * 1589 * mm_release is called after a mm_struct has been removed 1590 * from the current process. 1591 * 1592 * This difference is important for error handling, when we 1593 * only half set up a mm_struct for a new process and need to restore 1594 * the old one. Because we mmput the new mm_struct before 1595 * restoring the old one. . . 1596 * Eric Biederman 10 January 1998 1597 */ 1598 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1599 { 1600 uprobe_free_utask(tsk); 1601 1602 /* Get rid of any cached register state */ 1603 deactivate_mm(tsk, mm); 1604 1605 /* 1606 * Signal userspace if we're not exiting with a core dump 1607 * because we want to leave the value intact for debugging 1608 * purposes. 1609 */ 1610 if (tsk->clear_child_tid) { 1611 if (atomic_read(&mm->mm_users) > 1) { 1612 /* 1613 * We don't check the error code - if userspace has 1614 * not set up a proper pointer then tough luck. 1615 */ 1616 put_user(0, tsk->clear_child_tid); 1617 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1618 1, NULL, NULL, 0, 0); 1619 } 1620 tsk->clear_child_tid = NULL; 1621 } 1622 1623 /* 1624 * All done, finally we can wake up parent and return this mm to him. 1625 * Also kthread_stop() uses this completion for synchronization. 1626 */ 1627 if (tsk->vfork_done) 1628 complete_vfork_done(tsk); 1629 } 1630 1631 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1632 { 1633 futex_exit_release(tsk); 1634 mm_release(tsk, mm); 1635 } 1636 1637 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1638 { 1639 futex_exec_release(tsk); 1640 mm_release(tsk, mm); 1641 } 1642 1643 /** 1644 * dup_mm() - duplicates an existing mm structure 1645 * @tsk: the task_struct with which the new mm will be associated. 1646 * @oldmm: the mm to duplicate. 1647 * 1648 * Allocates a new mm structure and duplicates the provided @oldmm structure 1649 * content into it. 1650 * 1651 * Return: the duplicated mm or NULL on failure. 1652 */ 1653 static struct mm_struct *dup_mm(struct task_struct *tsk, 1654 struct mm_struct *oldmm) 1655 { 1656 struct mm_struct *mm; 1657 int err; 1658 1659 mm = allocate_mm(); 1660 if (!mm) 1661 goto fail_nomem; 1662 1663 memcpy(mm, oldmm, sizeof(*mm)); 1664 1665 if (!mm_init(mm, tsk, mm->user_ns)) 1666 goto fail_nomem; 1667 1668 err = dup_mmap(mm, oldmm); 1669 if (err) 1670 goto free_pt; 1671 1672 mm->hiwater_rss = get_mm_rss(mm); 1673 mm->hiwater_vm = mm->total_vm; 1674 1675 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1676 goto free_pt; 1677 1678 return mm; 1679 1680 free_pt: 1681 /* don't put binfmt in mmput, we haven't got module yet */ 1682 mm->binfmt = NULL; 1683 mm_init_owner(mm, NULL); 1684 mmput(mm); 1685 1686 fail_nomem: 1687 return NULL; 1688 } 1689 1690 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1691 { 1692 struct mm_struct *mm, *oldmm; 1693 1694 tsk->min_flt = tsk->maj_flt = 0; 1695 tsk->nvcsw = tsk->nivcsw = 0; 1696 #ifdef CONFIG_DETECT_HUNG_TASK 1697 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1698 tsk->last_switch_time = 0; 1699 #endif 1700 1701 tsk->mm = NULL; 1702 tsk->active_mm = NULL; 1703 1704 /* 1705 * Are we cloning a kernel thread? 1706 * 1707 * We need to steal a active VM for that.. 1708 */ 1709 oldmm = current->mm; 1710 if (!oldmm) 1711 return 0; 1712 1713 if (clone_flags & CLONE_VM) { 1714 mmget(oldmm); 1715 mm = oldmm; 1716 } else { 1717 mm = dup_mm(tsk, current->mm); 1718 if (!mm) 1719 return -ENOMEM; 1720 } 1721 1722 tsk->mm = mm; 1723 tsk->active_mm = mm; 1724 sched_mm_cid_fork(tsk); 1725 return 0; 1726 } 1727 1728 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1729 { 1730 struct fs_struct *fs = current->fs; 1731 if (clone_flags & CLONE_FS) { 1732 /* tsk->fs is already what we want */ 1733 spin_lock(&fs->lock); 1734 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1735 if (fs->in_exec) { 1736 spin_unlock(&fs->lock); 1737 return -EAGAIN; 1738 } 1739 fs->users++; 1740 spin_unlock(&fs->lock); 1741 return 0; 1742 } 1743 tsk->fs = copy_fs_struct(fs); 1744 if (!tsk->fs) 1745 return -ENOMEM; 1746 return 0; 1747 } 1748 1749 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1750 int no_files) 1751 { 1752 struct files_struct *oldf, *newf; 1753 int error = 0; 1754 1755 /* 1756 * A background process may not have any files ... 1757 */ 1758 oldf = current->files; 1759 if (!oldf) 1760 goto out; 1761 1762 if (no_files) { 1763 tsk->files = NULL; 1764 goto out; 1765 } 1766 1767 if (clone_flags & CLONE_FILES) { 1768 atomic_inc(&oldf->count); 1769 goto out; 1770 } 1771 1772 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1773 if (!newf) 1774 goto out; 1775 1776 tsk->files = newf; 1777 error = 0; 1778 out: 1779 return error; 1780 } 1781 1782 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1783 { 1784 struct sighand_struct *sig; 1785 1786 if (clone_flags & CLONE_SIGHAND) { 1787 refcount_inc(¤t->sighand->count); 1788 return 0; 1789 } 1790 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1791 RCU_INIT_POINTER(tsk->sighand, sig); 1792 if (!sig) 1793 return -ENOMEM; 1794 1795 refcount_set(&sig->count, 1); 1796 spin_lock_irq(¤t->sighand->siglock); 1797 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1798 spin_unlock_irq(¤t->sighand->siglock); 1799 1800 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1801 if (clone_flags & CLONE_CLEAR_SIGHAND) 1802 flush_signal_handlers(tsk, 0); 1803 1804 return 0; 1805 } 1806 1807 void __cleanup_sighand(struct sighand_struct *sighand) 1808 { 1809 if (refcount_dec_and_test(&sighand->count)) { 1810 signalfd_cleanup(sighand); 1811 /* 1812 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1813 * without an RCU grace period, see __lock_task_sighand(). 1814 */ 1815 kmem_cache_free(sighand_cachep, sighand); 1816 } 1817 } 1818 1819 /* 1820 * Initialize POSIX timer handling for a thread group. 1821 */ 1822 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1823 { 1824 struct posix_cputimers *pct = &sig->posix_cputimers; 1825 unsigned long cpu_limit; 1826 1827 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1828 posix_cputimers_group_init(pct, cpu_limit); 1829 } 1830 1831 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1832 { 1833 struct signal_struct *sig; 1834 1835 if (clone_flags & CLONE_THREAD) 1836 return 0; 1837 1838 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1839 tsk->signal = sig; 1840 if (!sig) 1841 return -ENOMEM; 1842 1843 sig->nr_threads = 1; 1844 sig->quick_threads = 1; 1845 atomic_set(&sig->live, 1); 1846 refcount_set(&sig->sigcnt, 1); 1847 1848 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1849 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1850 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1851 1852 init_waitqueue_head(&sig->wait_chldexit); 1853 sig->curr_target = tsk; 1854 init_sigpending(&sig->shared_pending); 1855 INIT_HLIST_HEAD(&sig->multiprocess); 1856 seqlock_init(&sig->stats_lock); 1857 prev_cputime_init(&sig->prev_cputime); 1858 1859 #ifdef CONFIG_POSIX_TIMERS 1860 INIT_LIST_HEAD(&sig->posix_timers); 1861 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1862 sig->real_timer.function = it_real_fn; 1863 #endif 1864 1865 task_lock(current->group_leader); 1866 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1867 task_unlock(current->group_leader); 1868 1869 posix_cpu_timers_init_group(sig); 1870 1871 tty_audit_fork(sig); 1872 sched_autogroup_fork(sig); 1873 1874 sig->oom_score_adj = current->signal->oom_score_adj; 1875 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1876 1877 mutex_init(&sig->cred_guard_mutex); 1878 init_rwsem(&sig->exec_update_lock); 1879 1880 return 0; 1881 } 1882 1883 static void copy_seccomp(struct task_struct *p) 1884 { 1885 #ifdef CONFIG_SECCOMP 1886 /* 1887 * Must be called with sighand->lock held, which is common to 1888 * all threads in the group. Holding cred_guard_mutex is not 1889 * needed because this new task is not yet running and cannot 1890 * be racing exec. 1891 */ 1892 assert_spin_locked(¤t->sighand->siglock); 1893 1894 /* Ref-count the new filter user, and assign it. */ 1895 get_seccomp_filter(current); 1896 p->seccomp = current->seccomp; 1897 1898 /* 1899 * Explicitly enable no_new_privs here in case it got set 1900 * between the task_struct being duplicated and holding the 1901 * sighand lock. The seccomp state and nnp must be in sync. 1902 */ 1903 if (task_no_new_privs(current)) 1904 task_set_no_new_privs(p); 1905 1906 /* 1907 * If the parent gained a seccomp mode after copying thread 1908 * flags and between before we held the sighand lock, we have 1909 * to manually enable the seccomp thread flag here. 1910 */ 1911 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1912 set_task_syscall_work(p, SECCOMP); 1913 #endif 1914 } 1915 1916 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1917 { 1918 current->clear_child_tid = tidptr; 1919 1920 return task_pid_vnr(current); 1921 } 1922 1923 static void rt_mutex_init_task(struct task_struct *p) 1924 { 1925 raw_spin_lock_init(&p->pi_lock); 1926 #ifdef CONFIG_RT_MUTEXES 1927 p->pi_waiters = RB_ROOT_CACHED; 1928 p->pi_top_task = NULL; 1929 p->pi_blocked_on = NULL; 1930 #endif 1931 } 1932 1933 static inline void init_task_pid_links(struct task_struct *task) 1934 { 1935 enum pid_type type; 1936 1937 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1938 INIT_HLIST_NODE(&task->pid_links[type]); 1939 } 1940 1941 static inline void 1942 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1943 { 1944 if (type == PIDTYPE_PID) 1945 task->thread_pid = pid; 1946 else 1947 task->signal->pids[type] = pid; 1948 } 1949 1950 static inline void rcu_copy_process(struct task_struct *p) 1951 { 1952 #ifdef CONFIG_PREEMPT_RCU 1953 p->rcu_read_lock_nesting = 0; 1954 p->rcu_read_unlock_special.s = 0; 1955 p->rcu_blocked_node = NULL; 1956 INIT_LIST_HEAD(&p->rcu_node_entry); 1957 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1958 #ifdef CONFIG_TASKS_RCU 1959 p->rcu_tasks_holdout = false; 1960 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1961 p->rcu_tasks_idle_cpu = -1; 1962 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1963 #endif /* #ifdef CONFIG_TASKS_RCU */ 1964 #ifdef CONFIG_TASKS_TRACE_RCU 1965 p->trc_reader_nesting = 0; 1966 p->trc_reader_special.s = 0; 1967 INIT_LIST_HEAD(&p->trc_holdout_list); 1968 INIT_LIST_HEAD(&p->trc_blkd_node); 1969 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1970 } 1971 1972 /** 1973 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1974 * @pid: the struct pid for which to create a pidfd 1975 * @flags: flags of the new @pidfd 1976 * @ret: Where to return the file for the pidfd. 1977 * 1978 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1979 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1980 * 1981 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1982 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1983 * pidfd file are prepared. 1984 * 1985 * If this function returns successfully the caller is responsible to either 1986 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1987 * order to install the pidfd into its file descriptor table or they must use 1988 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1989 * respectively. 1990 * 1991 * This function is useful when a pidfd must already be reserved but there 1992 * might still be points of failure afterwards and the caller wants to ensure 1993 * that no pidfd is leaked into its file descriptor table. 1994 * 1995 * Return: On success, a reserved pidfd is returned from the function and a new 1996 * pidfd file is returned in the last argument to the function. On 1997 * error, a negative error code is returned from the function and the 1998 * last argument remains unchanged. 1999 */ 2000 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2001 { 2002 int pidfd; 2003 struct file *pidfd_file; 2004 2005 pidfd = get_unused_fd_flags(O_CLOEXEC); 2006 if (pidfd < 0) 2007 return pidfd; 2008 2009 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2010 if (IS_ERR(pidfd_file)) { 2011 put_unused_fd(pidfd); 2012 return PTR_ERR(pidfd_file); 2013 } 2014 /* 2015 * anon_inode_getfile() ignores everything outside of the 2016 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2017 */ 2018 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2019 *ret = pidfd_file; 2020 return pidfd; 2021 } 2022 2023 /** 2024 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2025 * @pid: the struct pid for which to create a pidfd 2026 * @flags: flags of the new @pidfd 2027 * @ret: Where to return the pidfd. 2028 * 2029 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2030 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2031 * 2032 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2033 * task identified by @pid must be a thread-group leader. 2034 * 2035 * If this function returns successfully the caller is responsible to either 2036 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2037 * order to install the pidfd into its file descriptor table or they must use 2038 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2039 * respectively. 2040 * 2041 * This function is useful when a pidfd must already be reserved but there 2042 * might still be points of failure afterwards and the caller wants to ensure 2043 * that no pidfd is leaked into its file descriptor table. 2044 * 2045 * Return: On success, a reserved pidfd is returned from the function and a new 2046 * pidfd file is returned in the last argument to the function. On 2047 * error, a negative error code is returned from the function and the 2048 * last argument remains unchanged. 2049 */ 2050 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2051 { 2052 bool thread = flags & PIDFD_THREAD; 2053 2054 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2055 return -EINVAL; 2056 2057 return __pidfd_prepare(pid, flags, ret); 2058 } 2059 2060 static void __delayed_free_task(struct rcu_head *rhp) 2061 { 2062 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2063 2064 free_task(tsk); 2065 } 2066 2067 static __always_inline void delayed_free_task(struct task_struct *tsk) 2068 { 2069 if (IS_ENABLED(CONFIG_MEMCG)) 2070 call_rcu(&tsk->rcu, __delayed_free_task); 2071 else 2072 free_task(tsk); 2073 } 2074 2075 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2076 { 2077 /* Skip if kernel thread */ 2078 if (!tsk->mm) 2079 return; 2080 2081 /* Skip if spawning a thread or using vfork */ 2082 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2083 return; 2084 2085 /* We need to synchronize with __set_oom_adj */ 2086 mutex_lock(&oom_adj_mutex); 2087 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2088 /* Update the values in case they were changed after copy_signal */ 2089 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2090 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2091 mutex_unlock(&oom_adj_mutex); 2092 } 2093 2094 #ifdef CONFIG_RV 2095 static void rv_task_fork(struct task_struct *p) 2096 { 2097 int i; 2098 2099 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2100 p->rv[i].da_mon.monitoring = false; 2101 } 2102 #else 2103 #define rv_task_fork(p) do {} while (0) 2104 #endif 2105 2106 /* 2107 * This creates a new process as a copy of the old one, 2108 * but does not actually start it yet. 2109 * 2110 * It copies the registers, and all the appropriate 2111 * parts of the process environment (as per the clone 2112 * flags). The actual kick-off is left to the caller. 2113 */ 2114 __latent_entropy struct task_struct *copy_process( 2115 struct pid *pid, 2116 int trace, 2117 int node, 2118 struct kernel_clone_args *args) 2119 { 2120 int pidfd = -1, retval; 2121 struct task_struct *p; 2122 struct multiprocess_signals delayed; 2123 struct file *pidfile = NULL; 2124 const u64 clone_flags = args->flags; 2125 struct nsproxy *nsp = current->nsproxy; 2126 2127 /* 2128 * Don't allow sharing the root directory with processes in a different 2129 * namespace 2130 */ 2131 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2132 return ERR_PTR(-EINVAL); 2133 2134 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2135 return ERR_PTR(-EINVAL); 2136 2137 /* 2138 * Thread groups must share signals as well, and detached threads 2139 * can only be started up within the thread group. 2140 */ 2141 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2142 return ERR_PTR(-EINVAL); 2143 2144 /* 2145 * Shared signal handlers imply shared VM. By way of the above, 2146 * thread groups also imply shared VM. Blocking this case allows 2147 * for various simplifications in other code. 2148 */ 2149 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2150 return ERR_PTR(-EINVAL); 2151 2152 /* 2153 * Siblings of global init remain as zombies on exit since they are 2154 * not reaped by their parent (swapper). To solve this and to avoid 2155 * multi-rooted process trees, prevent global and container-inits 2156 * from creating siblings. 2157 */ 2158 if ((clone_flags & CLONE_PARENT) && 2159 current->signal->flags & SIGNAL_UNKILLABLE) 2160 return ERR_PTR(-EINVAL); 2161 2162 /* 2163 * If the new process will be in a different pid or user namespace 2164 * do not allow it to share a thread group with the forking task. 2165 */ 2166 if (clone_flags & CLONE_THREAD) { 2167 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2168 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2169 return ERR_PTR(-EINVAL); 2170 } 2171 2172 if (clone_flags & CLONE_PIDFD) { 2173 /* 2174 * - CLONE_DETACHED is blocked so that we can potentially 2175 * reuse it later for CLONE_PIDFD. 2176 */ 2177 if (clone_flags & CLONE_DETACHED) 2178 return ERR_PTR(-EINVAL); 2179 } 2180 2181 /* 2182 * Force any signals received before this point to be delivered 2183 * before the fork happens. Collect up signals sent to multiple 2184 * processes that happen during the fork and delay them so that 2185 * they appear to happen after the fork. 2186 */ 2187 sigemptyset(&delayed.signal); 2188 INIT_HLIST_NODE(&delayed.node); 2189 2190 spin_lock_irq(¤t->sighand->siglock); 2191 if (!(clone_flags & CLONE_THREAD)) 2192 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2193 recalc_sigpending(); 2194 spin_unlock_irq(¤t->sighand->siglock); 2195 retval = -ERESTARTNOINTR; 2196 if (task_sigpending(current)) 2197 goto fork_out; 2198 2199 retval = -ENOMEM; 2200 p = dup_task_struct(current, node); 2201 if (!p) 2202 goto fork_out; 2203 p->flags &= ~PF_KTHREAD; 2204 if (args->kthread) 2205 p->flags |= PF_KTHREAD; 2206 if (args->user_worker) { 2207 /* 2208 * Mark us a user worker, and block any signal that isn't 2209 * fatal or STOP 2210 */ 2211 p->flags |= PF_USER_WORKER; 2212 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2213 } 2214 if (args->io_thread) 2215 p->flags |= PF_IO_WORKER; 2216 2217 if (args->name) 2218 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2219 2220 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2221 /* 2222 * Clear TID on mm_release()? 2223 */ 2224 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2225 2226 ftrace_graph_init_task(p); 2227 2228 rt_mutex_init_task(p); 2229 2230 lockdep_assert_irqs_enabled(); 2231 #ifdef CONFIG_PROVE_LOCKING 2232 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2233 #endif 2234 retval = copy_creds(p, clone_flags); 2235 if (retval < 0) 2236 goto bad_fork_free; 2237 2238 retval = -EAGAIN; 2239 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2240 if (p->real_cred->user != INIT_USER && 2241 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2242 goto bad_fork_cleanup_count; 2243 } 2244 current->flags &= ~PF_NPROC_EXCEEDED; 2245 2246 /* 2247 * If multiple threads are within copy_process(), then this check 2248 * triggers too late. This doesn't hurt, the check is only there 2249 * to stop root fork bombs. 2250 */ 2251 retval = -EAGAIN; 2252 if (data_race(nr_threads >= max_threads)) 2253 goto bad_fork_cleanup_count; 2254 2255 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2256 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2257 p->flags |= PF_FORKNOEXEC; 2258 INIT_LIST_HEAD(&p->children); 2259 INIT_LIST_HEAD(&p->sibling); 2260 rcu_copy_process(p); 2261 p->vfork_done = NULL; 2262 spin_lock_init(&p->alloc_lock); 2263 2264 init_sigpending(&p->pending); 2265 2266 p->utime = p->stime = p->gtime = 0; 2267 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2268 p->utimescaled = p->stimescaled = 0; 2269 #endif 2270 prev_cputime_init(&p->prev_cputime); 2271 2272 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2273 seqcount_init(&p->vtime.seqcount); 2274 p->vtime.starttime = 0; 2275 p->vtime.state = VTIME_INACTIVE; 2276 #endif 2277 2278 #ifdef CONFIG_IO_URING 2279 p->io_uring = NULL; 2280 #endif 2281 2282 p->default_timer_slack_ns = current->timer_slack_ns; 2283 2284 #ifdef CONFIG_PSI 2285 p->psi_flags = 0; 2286 #endif 2287 2288 task_io_accounting_init(&p->ioac); 2289 acct_clear_integrals(p); 2290 2291 posix_cputimers_init(&p->posix_cputimers); 2292 2293 p->io_context = NULL; 2294 audit_set_context(p, NULL); 2295 cgroup_fork(p); 2296 if (args->kthread) { 2297 if (!set_kthread_struct(p)) 2298 goto bad_fork_cleanup_delayacct; 2299 } 2300 #ifdef CONFIG_NUMA 2301 p->mempolicy = mpol_dup(p->mempolicy); 2302 if (IS_ERR(p->mempolicy)) { 2303 retval = PTR_ERR(p->mempolicy); 2304 p->mempolicy = NULL; 2305 goto bad_fork_cleanup_delayacct; 2306 } 2307 #endif 2308 #ifdef CONFIG_CPUSETS 2309 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2310 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2311 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2312 #endif 2313 #ifdef CONFIG_TRACE_IRQFLAGS 2314 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2315 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2316 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2317 p->softirqs_enabled = 1; 2318 p->softirq_context = 0; 2319 #endif 2320 2321 p->pagefault_disabled = 0; 2322 2323 #ifdef CONFIG_LOCKDEP 2324 lockdep_init_task(p); 2325 #endif 2326 2327 #ifdef CONFIG_DEBUG_MUTEXES 2328 p->blocked_on = NULL; /* not blocked yet */ 2329 #endif 2330 #ifdef CONFIG_BCACHE 2331 p->sequential_io = 0; 2332 p->sequential_io_avg = 0; 2333 #endif 2334 #ifdef CONFIG_BPF_SYSCALL 2335 RCU_INIT_POINTER(p->bpf_storage, NULL); 2336 p->bpf_ctx = NULL; 2337 #endif 2338 2339 /* Perform scheduler related setup. Assign this task to a CPU. */ 2340 retval = sched_fork(clone_flags, p); 2341 if (retval) 2342 goto bad_fork_cleanup_policy; 2343 2344 retval = perf_event_init_task(p, clone_flags); 2345 if (retval) 2346 goto bad_fork_cleanup_policy; 2347 retval = audit_alloc(p); 2348 if (retval) 2349 goto bad_fork_cleanup_perf; 2350 /* copy all the process information */ 2351 shm_init_task(p); 2352 retval = security_task_alloc(p, clone_flags); 2353 if (retval) 2354 goto bad_fork_cleanup_audit; 2355 retval = copy_semundo(clone_flags, p); 2356 if (retval) 2357 goto bad_fork_cleanup_security; 2358 retval = copy_files(clone_flags, p, args->no_files); 2359 if (retval) 2360 goto bad_fork_cleanup_semundo; 2361 retval = copy_fs(clone_flags, p); 2362 if (retval) 2363 goto bad_fork_cleanup_files; 2364 retval = copy_sighand(clone_flags, p); 2365 if (retval) 2366 goto bad_fork_cleanup_fs; 2367 retval = copy_signal(clone_flags, p); 2368 if (retval) 2369 goto bad_fork_cleanup_sighand; 2370 retval = copy_mm(clone_flags, p); 2371 if (retval) 2372 goto bad_fork_cleanup_signal; 2373 retval = copy_namespaces(clone_flags, p); 2374 if (retval) 2375 goto bad_fork_cleanup_mm; 2376 retval = copy_io(clone_flags, p); 2377 if (retval) 2378 goto bad_fork_cleanup_namespaces; 2379 retval = copy_thread(p, args); 2380 if (retval) 2381 goto bad_fork_cleanup_io; 2382 2383 stackleak_task_init(p); 2384 2385 if (pid != &init_struct_pid) { 2386 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2387 args->set_tid_size); 2388 if (IS_ERR(pid)) { 2389 retval = PTR_ERR(pid); 2390 goto bad_fork_cleanup_thread; 2391 } 2392 } 2393 2394 /* 2395 * This has to happen after we've potentially unshared the file 2396 * descriptor table (so that the pidfd doesn't leak into the child 2397 * if the fd table isn't shared). 2398 */ 2399 if (clone_flags & CLONE_PIDFD) { 2400 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2401 2402 /* Note that no task has been attached to @pid yet. */ 2403 retval = __pidfd_prepare(pid, flags, &pidfile); 2404 if (retval < 0) 2405 goto bad_fork_free_pid; 2406 pidfd = retval; 2407 2408 retval = put_user(pidfd, args->pidfd); 2409 if (retval) 2410 goto bad_fork_put_pidfd; 2411 } 2412 2413 #ifdef CONFIG_BLOCK 2414 p->plug = NULL; 2415 #endif 2416 futex_init_task(p); 2417 2418 /* 2419 * sigaltstack should be cleared when sharing the same VM 2420 */ 2421 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2422 sas_ss_reset(p); 2423 2424 /* 2425 * Syscall tracing and stepping should be turned off in the 2426 * child regardless of CLONE_PTRACE. 2427 */ 2428 user_disable_single_step(p); 2429 clear_task_syscall_work(p, SYSCALL_TRACE); 2430 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2431 clear_task_syscall_work(p, SYSCALL_EMU); 2432 #endif 2433 clear_tsk_latency_tracing(p); 2434 2435 /* ok, now we should be set up.. */ 2436 p->pid = pid_nr(pid); 2437 if (clone_flags & CLONE_THREAD) { 2438 p->group_leader = current->group_leader; 2439 p->tgid = current->tgid; 2440 } else { 2441 p->group_leader = p; 2442 p->tgid = p->pid; 2443 } 2444 2445 p->nr_dirtied = 0; 2446 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2447 p->dirty_paused_when = 0; 2448 2449 p->pdeath_signal = 0; 2450 p->task_works = NULL; 2451 clear_posix_cputimers_work(p); 2452 2453 #ifdef CONFIG_KRETPROBES 2454 p->kretprobe_instances.first = NULL; 2455 #endif 2456 #ifdef CONFIG_RETHOOK 2457 p->rethooks.first = NULL; 2458 #endif 2459 2460 /* 2461 * Ensure that the cgroup subsystem policies allow the new process to be 2462 * forked. It should be noted that the new process's css_set can be changed 2463 * between here and cgroup_post_fork() if an organisation operation is in 2464 * progress. 2465 */ 2466 retval = cgroup_can_fork(p, args); 2467 if (retval) 2468 goto bad_fork_put_pidfd; 2469 2470 /* 2471 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2472 * the new task on the correct runqueue. All this *before* the task 2473 * becomes visible. 2474 * 2475 * This isn't part of ->can_fork() because while the re-cloning is 2476 * cgroup specific, it unconditionally needs to place the task on a 2477 * runqueue. 2478 */ 2479 sched_cgroup_fork(p, args); 2480 2481 /* 2482 * From this point on we must avoid any synchronous user-space 2483 * communication until we take the tasklist-lock. In particular, we do 2484 * not want user-space to be able to predict the process start-time by 2485 * stalling fork(2) after we recorded the start_time but before it is 2486 * visible to the system. 2487 */ 2488 2489 p->start_time = ktime_get_ns(); 2490 p->start_boottime = ktime_get_boottime_ns(); 2491 2492 /* 2493 * Make it visible to the rest of the system, but dont wake it up yet. 2494 * Need tasklist lock for parent etc handling! 2495 */ 2496 write_lock_irq(&tasklist_lock); 2497 2498 /* CLONE_PARENT re-uses the old parent */ 2499 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2500 p->real_parent = current->real_parent; 2501 p->parent_exec_id = current->parent_exec_id; 2502 if (clone_flags & CLONE_THREAD) 2503 p->exit_signal = -1; 2504 else 2505 p->exit_signal = current->group_leader->exit_signal; 2506 } else { 2507 p->real_parent = current; 2508 p->parent_exec_id = current->self_exec_id; 2509 p->exit_signal = args->exit_signal; 2510 } 2511 2512 klp_copy_process(p); 2513 2514 sched_core_fork(p); 2515 2516 spin_lock(¤t->sighand->siglock); 2517 2518 rv_task_fork(p); 2519 2520 rseq_fork(p, clone_flags); 2521 2522 /* Don't start children in a dying pid namespace */ 2523 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2524 retval = -ENOMEM; 2525 goto bad_fork_cancel_cgroup; 2526 } 2527 2528 /* Let kill terminate clone/fork in the middle */ 2529 if (fatal_signal_pending(current)) { 2530 retval = -EINTR; 2531 goto bad_fork_cancel_cgroup; 2532 } 2533 2534 /* No more failure paths after this point. */ 2535 2536 /* 2537 * Copy seccomp details explicitly here, in case they were changed 2538 * before holding sighand lock. 2539 */ 2540 copy_seccomp(p); 2541 2542 init_task_pid_links(p); 2543 if (likely(p->pid)) { 2544 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2545 2546 init_task_pid(p, PIDTYPE_PID, pid); 2547 if (thread_group_leader(p)) { 2548 init_task_pid(p, PIDTYPE_TGID, pid); 2549 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2550 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2551 2552 if (is_child_reaper(pid)) { 2553 ns_of_pid(pid)->child_reaper = p; 2554 p->signal->flags |= SIGNAL_UNKILLABLE; 2555 } 2556 p->signal->shared_pending.signal = delayed.signal; 2557 p->signal->tty = tty_kref_get(current->signal->tty); 2558 /* 2559 * Inherit has_child_subreaper flag under the same 2560 * tasklist_lock with adding child to the process tree 2561 * for propagate_has_child_subreaper optimization. 2562 */ 2563 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2564 p->real_parent->signal->is_child_subreaper; 2565 list_add_tail(&p->sibling, &p->real_parent->children); 2566 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2567 attach_pid(p, PIDTYPE_TGID); 2568 attach_pid(p, PIDTYPE_PGID); 2569 attach_pid(p, PIDTYPE_SID); 2570 __this_cpu_inc(process_counts); 2571 } else { 2572 current->signal->nr_threads++; 2573 current->signal->quick_threads++; 2574 atomic_inc(¤t->signal->live); 2575 refcount_inc(¤t->signal->sigcnt); 2576 task_join_group_stop(p); 2577 list_add_tail_rcu(&p->thread_node, 2578 &p->signal->thread_head); 2579 } 2580 attach_pid(p, PIDTYPE_PID); 2581 nr_threads++; 2582 } 2583 total_forks++; 2584 hlist_del_init(&delayed.node); 2585 spin_unlock(¤t->sighand->siglock); 2586 syscall_tracepoint_update(p); 2587 write_unlock_irq(&tasklist_lock); 2588 2589 if (pidfile) 2590 fd_install(pidfd, pidfile); 2591 2592 proc_fork_connector(p); 2593 sched_post_fork(p); 2594 cgroup_post_fork(p, args); 2595 perf_event_fork(p); 2596 2597 trace_task_newtask(p, clone_flags); 2598 uprobe_copy_process(p, clone_flags); 2599 user_events_fork(p, clone_flags); 2600 2601 copy_oom_score_adj(clone_flags, p); 2602 2603 return p; 2604 2605 bad_fork_cancel_cgroup: 2606 sched_core_free(p); 2607 spin_unlock(¤t->sighand->siglock); 2608 write_unlock_irq(&tasklist_lock); 2609 cgroup_cancel_fork(p, args); 2610 bad_fork_put_pidfd: 2611 if (clone_flags & CLONE_PIDFD) { 2612 fput(pidfile); 2613 put_unused_fd(pidfd); 2614 } 2615 bad_fork_free_pid: 2616 if (pid != &init_struct_pid) 2617 free_pid(pid); 2618 bad_fork_cleanup_thread: 2619 exit_thread(p); 2620 bad_fork_cleanup_io: 2621 if (p->io_context) 2622 exit_io_context(p); 2623 bad_fork_cleanup_namespaces: 2624 exit_task_namespaces(p); 2625 bad_fork_cleanup_mm: 2626 if (p->mm) { 2627 mm_clear_owner(p->mm, p); 2628 mmput(p->mm); 2629 } 2630 bad_fork_cleanup_signal: 2631 if (!(clone_flags & CLONE_THREAD)) 2632 free_signal_struct(p->signal); 2633 bad_fork_cleanup_sighand: 2634 __cleanup_sighand(p->sighand); 2635 bad_fork_cleanup_fs: 2636 exit_fs(p); /* blocking */ 2637 bad_fork_cleanup_files: 2638 exit_files(p); /* blocking */ 2639 bad_fork_cleanup_semundo: 2640 exit_sem(p); 2641 bad_fork_cleanup_security: 2642 security_task_free(p); 2643 bad_fork_cleanup_audit: 2644 audit_free(p); 2645 bad_fork_cleanup_perf: 2646 perf_event_free_task(p); 2647 bad_fork_cleanup_policy: 2648 lockdep_free_task(p); 2649 #ifdef CONFIG_NUMA 2650 mpol_put(p->mempolicy); 2651 #endif 2652 bad_fork_cleanup_delayacct: 2653 delayacct_tsk_free(p); 2654 bad_fork_cleanup_count: 2655 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2656 exit_creds(p); 2657 bad_fork_free: 2658 WRITE_ONCE(p->__state, TASK_DEAD); 2659 exit_task_stack_account(p); 2660 put_task_stack(p); 2661 delayed_free_task(p); 2662 fork_out: 2663 spin_lock_irq(¤t->sighand->siglock); 2664 hlist_del_init(&delayed.node); 2665 spin_unlock_irq(¤t->sighand->siglock); 2666 return ERR_PTR(retval); 2667 } 2668 2669 static inline void init_idle_pids(struct task_struct *idle) 2670 { 2671 enum pid_type type; 2672 2673 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2674 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2675 init_task_pid(idle, type, &init_struct_pid); 2676 } 2677 } 2678 2679 static int idle_dummy(void *dummy) 2680 { 2681 /* This function is never called */ 2682 return 0; 2683 } 2684 2685 struct task_struct * __init fork_idle(int cpu) 2686 { 2687 struct task_struct *task; 2688 struct kernel_clone_args args = { 2689 .flags = CLONE_VM, 2690 .fn = &idle_dummy, 2691 .fn_arg = NULL, 2692 .kthread = 1, 2693 .idle = 1, 2694 }; 2695 2696 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2697 if (!IS_ERR(task)) { 2698 init_idle_pids(task); 2699 init_idle(task, cpu); 2700 } 2701 2702 return task; 2703 } 2704 2705 /* 2706 * This is like kernel_clone(), but shaved down and tailored to just 2707 * creating io_uring workers. It returns a created task, or an error pointer. 2708 * The returned task is inactive, and the caller must fire it up through 2709 * wake_up_new_task(p). All signals are blocked in the created task. 2710 */ 2711 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2712 { 2713 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2714 CLONE_IO; 2715 struct kernel_clone_args args = { 2716 .flags = ((lower_32_bits(flags) | CLONE_VM | 2717 CLONE_UNTRACED) & ~CSIGNAL), 2718 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2719 .fn = fn, 2720 .fn_arg = arg, 2721 .io_thread = 1, 2722 .user_worker = 1, 2723 }; 2724 2725 return copy_process(NULL, 0, node, &args); 2726 } 2727 2728 /* 2729 * Ok, this is the main fork-routine. 2730 * 2731 * It copies the process, and if successful kick-starts 2732 * it and waits for it to finish using the VM if required. 2733 * 2734 * args->exit_signal is expected to be checked for sanity by the caller. 2735 */ 2736 pid_t kernel_clone(struct kernel_clone_args *args) 2737 { 2738 u64 clone_flags = args->flags; 2739 struct completion vfork; 2740 struct pid *pid; 2741 struct task_struct *p; 2742 int trace = 0; 2743 pid_t nr; 2744 2745 /* 2746 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2747 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2748 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2749 * field in struct clone_args and it still doesn't make sense to have 2750 * them both point at the same memory location. Performing this check 2751 * here has the advantage that we don't need to have a separate helper 2752 * to check for legacy clone(). 2753 */ 2754 if ((clone_flags & CLONE_PIDFD) && 2755 (clone_flags & CLONE_PARENT_SETTID) && 2756 (args->pidfd == args->parent_tid)) 2757 return -EINVAL; 2758 2759 /* 2760 * Determine whether and which event to report to ptracer. When 2761 * called from kernel_thread or CLONE_UNTRACED is explicitly 2762 * requested, no event is reported; otherwise, report if the event 2763 * for the type of forking is enabled. 2764 */ 2765 if (!(clone_flags & CLONE_UNTRACED)) { 2766 if (clone_flags & CLONE_VFORK) 2767 trace = PTRACE_EVENT_VFORK; 2768 else if (args->exit_signal != SIGCHLD) 2769 trace = PTRACE_EVENT_CLONE; 2770 else 2771 trace = PTRACE_EVENT_FORK; 2772 2773 if (likely(!ptrace_event_enabled(current, trace))) 2774 trace = 0; 2775 } 2776 2777 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2778 add_latent_entropy(); 2779 2780 if (IS_ERR(p)) 2781 return PTR_ERR(p); 2782 2783 /* 2784 * Do this prior waking up the new thread - the thread pointer 2785 * might get invalid after that point, if the thread exits quickly. 2786 */ 2787 trace_sched_process_fork(current, p); 2788 2789 pid = get_task_pid(p, PIDTYPE_PID); 2790 nr = pid_vnr(pid); 2791 2792 if (clone_flags & CLONE_PARENT_SETTID) 2793 put_user(nr, args->parent_tid); 2794 2795 if (clone_flags & CLONE_VFORK) { 2796 p->vfork_done = &vfork; 2797 init_completion(&vfork); 2798 get_task_struct(p); 2799 } 2800 2801 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2802 /* lock the task to synchronize with memcg migration */ 2803 task_lock(p); 2804 lru_gen_add_mm(p->mm); 2805 task_unlock(p); 2806 } 2807 2808 wake_up_new_task(p); 2809 2810 /* forking complete and child started to run, tell ptracer */ 2811 if (unlikely(trace)) 2812 ptrace_event_pid(trace, pid); 2813 2814 if (clone_flags & CLONE_VFORK) { 2815 if (!wait_for_vfork_done(p, &vfork)) 2816 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2817 } 2818 2819 put_pid(pid); 2820 return nr; 2821 } 2822 2823 /* 2824 * Create a kernel thread. 2825 */ 2826 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2827 unsigned long flags) 2828 { 2829 struct kernel_clone_args args = { 2830 .flags = ((lower_32_bits(flags) | CLONE_VM | 2831 CLONE_UNTRACED) & ~CSIGNAL), 2832 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2833 .fn = fn, 2834 .fn_arg = arg, 2835 .name = name, 2836 .kthread = 1, 2837 }; 2838 2839 return kernel_clone(&args); 2840 } 2841 2842 /* 2843 * Create a user mode thread. 2844 */ 2845 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2846 { 2847 struct kernel_clone_args args = { 2848 .flags = ((lower_32_bits(flags) | CLONE_VM | 2849 CLONE_UNTRACED) & ~CSIGNAL), 2850 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2851 .fn = fn, 2852 .fn_arg = arg, 2853 }; 2854 2855 return kernel_clone(&args); 2856 } 2857 2858 #ifdef __ARCH_WANT_SYS_FORK 2859 SYSCALL_DEFINE0(fork) 2860 { 2861 #ifdef CONFIG_MMU 2862 struct kernel_clone_args args = { 2863 .exit_signal = SIGCHLD, 2864 }; 2865 2866 return kernel_clone(&args); 2867 #else 2868 /* can not support in nommu mode */ 2869 return -EINVAL; 2870 #endif 2871 } 2872 #endif 2873 2874 #ifdef __ARCH_WANT_SYS_VFORK 2875 SYSCALL_DEFINE0(vfork) 2876 { 2877 struct kernel_clone_args args = { 2878 .flags = CLONE_VFORK | CLONE_VM, 2879 .exit_signal = SIGCHLD, 2880 }; 2881 2882 return kernel_clone(&args); 2883 } 2884 #endif 2885 2886 #ifdef __ARCH_WANT_SYS_CLONE 2887 #ifdef CONFIG_CLONE_BACKWARDS 2888 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2889 int __user *, parent_tidptr, 2890 unsigned long, tls, 2891 int __user *, child_tidptr) 2892 #elif defined(CONFIG_CLONE_BACKWARDS2) 2893 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2894 int __user *, parent_tidptr, 2895 int __user *, child_tidptr, 2896 unsigned long, tls) 2897 #elif defined(CONFIG_CLONE_BACKWARDS3) 2898 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2899 int, stack_size, 2900 int __user *, parent_tidptr, 2901 int __user *, child_tidptr, 2902 unsigned long, tls) 2903 #else 2904 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2905 int __user *, parent_tidptr, 2906 int __user *, child_tidptr, 2907 unsigned long, tls) 2908 #endif 2909 { 2910 struct kernel_clone_args args = { 2911 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2912 .pidfd = parent_tidptr, 2913 .child_tid = child_tidptr, 2914 .parent_tid = parent_tidptr, 2915 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2916 .stack = newsp, 2917 .tls = tls, 2918 }; 2919 2920 return kernel_clone(&args); 2921 } 2922 #endif 2923 2924 #ifdef __ARCH_WANT_SYS_CLONE3 2925 2926 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2927 struct clone_args __user *uargs, 2928 size_t usize) 2929 { 2930 int err; 2931 struct clone_args args; 2932 pid_t *kset_tid = kargs->set_tid; 2933 2934 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2935 CLONE_ARGS_SIZE_VER0); 2936 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2937 CLONE_ARGS_SIZE_VER1); 2938 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2939 CLONE_ARGS_SIZE_VER2); 2940 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2941 2942 if (unlikely(usize > PAGE_SIZE)) 2943 return -E2BIG; 2944 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2945 return -EINVAL; 2946 2947 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2948 if (err) 2949 return err; 2950 2951 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2952 return -EINVAL; 2953 2954 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2955 return -EINVAL; 2956 2957 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2958 return -EINVAL; 2959 2960 /* 2961 * Verify that higher 32bits of exit_signal are unset and that 2962 * it is a valid signal 2963 */ 2964 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2965 !valid_signal(args.exit_signal))) 2966 return -EINVAL; 2967 2968 if ((args.flags & CLONE_INTO_CGROUP) && 2969 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2970 return -EINVAL; 2971 2972 *kargs = (struct kernel_clone_args){ 2973 .flags = args.flags, 2974 .pidfd = u64_to_user_ptr(args.pidfd), 2975 .child_tid = u64_to_user_ptr(args.child_tid), 2976 .parent_tid = u64_to_user_ptr(args.parent_tid), 2977 .exit_signal = args.exit_signal, 2978 .stack = args.stack, 2979 .stack_size = args.stack_size, 2980 .tls = args.tls, 2981 .set_tid_size = args.set_tid_size, 2982 .cgroup = args.cgroup, 2983 }; 2984 2985 if (args.set_tid && 2986 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2987 (kargs->set_tid_size * sizeof(pid_t)))) 2988 return -EFAULT; 2989 2990 kargs->set_tid = kset_tid; 2991 2992 return 0; 2993 } 2994 2995 /** 2996 * clone3_stack_valid - check and prepare stack 2997 * @kargs: kernel clone args 2998 * 2999 * Verify that the stack arguments userspace gave us are sane. 3000 * In addition, set the stack direction for userspace since it's easy for us to 3001 * determine. 3002 */ 3003 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3004 { 3005 if (kargs->stack == 0) { 3006 if (kargs->stack_size > 0) 3007 return false; 3008 } else { 3009 if (kargs->stack_size == 0) 3010 return false; 3011 3012 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3013 return false; 3014 3015 #if !defined(CONFIG_STACK_GROWSUP) 3016 kargs->stack += kargs->stack_size; 3017 #endif 3018 } 3019 3020 return true; 3021 } 3022 3023 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3024 { 3025 /* Verify that no unknown flags are passed along. */ 3026 if (kargs->flags & 3027 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3028 return false; 3029 3030 /* 3031 * - make the CLONE_DETACHED bit reusable for clone3 3032 * - make the CSIGNAL bits reusable for clone3 3033 */ 3034 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3035 return false; 3036 3037 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3038 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3039 return false; 3040 3041 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3042 kargs->exit_signal) 3043 return false; 3044 3045 if (!clone3_stack_valid(kargs)) 3046 return false; 3047 3048 return true; 3049 } 3050 3051 /** 3052 * sys_clone3 - create a new process with specific properties 3053 * @uargs: argument structure 3054 * @size: size of @uargs 3055 * 3056 * clone3() is the extensible successor to clone()/clone2(). 3057 * It takes a struct as argument that is versioned by its size. 3058 * 3059 * Return: On success, a positive PID for the child process. 3060 * On error, a negative errno number. 3061 */ 3062 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3063 { 3064 int err; 3065 3066 struct kernel_clone_args kargs; 3067 pid_t set_tid[MAX_PID_NS_LEVEL]; 3068 3069 kargs.set_tid = set_tid; 3070 3071 err = copy_clone_args_from_user(&kargs, uargs, size); 3072 if (err) 3073 return err; 3074 3075 if (!clone3_args_valid(&kargs)) 3076 return -EINVAL; 3077 3078 return kernel_clone(&kargs); 3079 } 3080 #endif 3081 3082 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3083 { 3084 struct task_struct *leader, *parent, *child; 3085 int res; 3086 3087 read_lock(&tasklist_lock); 3088 leader = top = top->group_leader; 3089 down: 3090 for_each_thread(leader, parent) { 3091 list_for_each_entry(child, &parent->children, sibling) { 3092 res = visitor(child, data); 3093 if (res) { 3094 if (res < 0) 3095 goto out; 3096 leader = child; 3097 goto down; 3098 } 3099 up: 3100 ; 3101 } 3102 } 3103 3104 if (leader != top) { 3105 child = leader; 3106 parent = child->real_parent; 3107 leader = parent->group_leader; 3108 goto up; 3109 } 3110 out: 3111 read_unlock(&tasklist_lock); 3112 } 3113 3114 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3115 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3116 #endif 3117 3118 static void sighand_ctor(void *data) 3119 { 3120 struct sighand_struct *sighand = data; 3121 3122 spin_lock_init(&sighand->siglock); 3123 init_waitqueue_head(&sighand->signalfd_wqh); 3124 } 3125 3126 void __init mm_cache_init(void) 3127 { 3128 unsigned int mm_size; 3129 3130 /* 3131 * The mm_cpumask is located at the end of mm_struct, and is 3132 * dynamically sized based on the maximum CPU number this system 3133 * can have, taking hotplug into account (nr_cpu_ids). 3134 */ 3135 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3136 3137 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3138 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3139 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3140 offsetof(struct mm_struct, saved_auxv), 3141 sizeof_field(struct mm_struct, saved_auxv), 3142 NULL); 3143 } 3144 3145 void __init proc_caches_init(void) 3146 { 3147 sighand_cachep = kmem_cache_create("sighand_cache", 3148 sizeof(struct sighand_struct), 0, 3149 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3150 SLAB_ACCOUNT, sighand_ctor); 3151 signal_cachep = kmem_cache_create("signal_cache", 3152 sizeof(struct signal_struct), 0, 3153 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3154 NULL); 3155 files_cachep = kmem_cache_create("files_cache", 3156 sizeof(struct files_struct), 0, 3157 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3158 NULL); 3159 fs_cachep = kmem_cache_create("fs_cache", 3160 sizeof(struct fs_struct), 0, 3161 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3162 NULL); 3163 3164 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3165 #ifdef CONFIG_PER_VMA_LOCK 3166 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3167 #endif 3168 mmap_init(); 3169 nsproxy_cache_init(); 3170 } 3171 3172 /* 3173 * Check constraints on flags passed to the unshare system call. 3174 */ 3175 static int check_unshare_flags(unsigned long unshare_flags) 3176 { 3177 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3178 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3179 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3180 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3181 CLONE_NEWTIME)) 3182 return -EINVAL; 3183 /* 3184 * Not implemented, but pretend it works if there is nothing 3185 * to unshare. Note that unsharing the address space or the 3186 * signal handlers also need to unshare the signal queues (aka 3187 * CLONE_THREAD). 3188 */ 3189 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3190 if (!thread_group_empty(current)) 3191 return -EINVAL; 3192 } 3193 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3194 if (refcount_read(¤t->sighand->count) > 1) 3195 return -EINVAL; 3196 } 3197 if (unshare_flags & CLONE_VM) { 3198 if (!current_is_single_threaded()) 3199 return -EINVAL; 3200 } 3201 3202 return 0; 3203 } 3204 3205 /* 3206 * Unshare the filesystem structure if it is being shared 3207 */ 3208 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3209 { 3210 struct fs_struct *fs = current->fs; 3211 3212 if (!(unshare_flags & CLONE_FS) || !fs) 3213 return 0; 3214 3215 /* don't need lock here; in the worst case we'll do useless copy */ 3216 if (fs->users == 1) 3217 return 0; 3218 3219 *new_fsp = copy_fs_struct(fs); 3220 if (!*new_fsp) 3221 return -ENOMEM; 3222 3223 return 0; 3224 } 3225 3226 /* 3227 * Unshare file descriptor table if it is being shared 3228 */ 3229 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3230 struct files_struct **new_fdp) 3231 { 3232 struct files_struct *fd = current->files; 3233 int error = 0; 3234 3235 if ((unshare_flags & CLONE_FILES) && 3236 (fd && atomic_read(&fd->count) > 1)) { 3237 *new_fdp = dup_fd(fd, max_fds, &error); 3238 if (!*new_fdp) 3239 return error; 3240 } 3241 3242 return 0; 3243 } 3244 3245 /* 3246 * unshare allows a process to 'unshare' part of the process 3247 * context which was originally shared using clone. copy_* 3248 * functions used by kernel_clone() cannot be used here directly 3249 * because they modify an inactive task_struct that is being 3250 * constructed. Here we are modifying the current, active, 3251 * task_struct. 3252 */ 3253 int ksys_unshare(unsigned long unshare_flags) 3254 { 3255 struct fs_struct *fs, *new_fs = NULL; 3256 struct files_struct *new_fd = NULL; 3257 struct cred *new_cred = NULL; 3258 struct nsproxy *new_nsproxy = NULL; 3259 int do_sysvsem = 0; 3260 int err; 3261 3262 /* 3263 * If unsharing a user namespace must also unshare the thread group 3264 * and unshare the filesystem root and working directories. 3265 */ 3266 if (unshare_flags & CLONE_NEWUSER) 3267 unshare_flags |= CLONE_THREAD | CLONE_FS; 3268 /* 3269 * If unsharing vm, must also unshare signal handlers. 3270 */ 3271 if (unshare_flags & CLONE_VM) 3272 unshare_flags |= CLONE_SIGHAND; 3273 /* 3274 * If unsharing a signal handlers, must also unshare the signal queues. 3275 */ 3276 if (unshare_flags & CLONE_SIGHAND) 3277 unshare_flags |= CLONE_THREAD; 3278 /* 3279 * If unsharing namespace, must also unshare filesystem information. 3280 */ 3281 if (unshare_flags & CLONE_NEWNS) 3282 unshare_flags |= CLONE_FS; 3283 3284 err = check_unshare_flags(unshare_flags); 3285 if (err) 3286 goto bad_unshare_out; 3287 /* 3288 * CLONE_NEWIPC must also detach from the undolist: after switching 3289 * to a new ipc namespace, the semaphore arrays from the old 3290 * namespace are unreachable. 3291 */ 3292 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3293 do_sysvsem = 1; 3294 err = unshare_fs(unshare_flags, &new_fs); 3295 if (err) 3296 goto bad_unshare_out; 3297 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3298 if (err) 3299 goto bad_unshare_cleanup_fs; 3300 err = unshare_userns(unshare_flags, &new_cred); 3301 if (err) 3302 goto bad_unshare_cleanup_fd; 3303 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3304 new_cred, new_fs); 3305 if (err) 3306 goto bad_unshare_cleanup_cred; 3307 3308 if (new_cred) { 3309 err = set_cred_ucounts(new_cred); 3310 if (err) 3311 goto bad_unshare_cleanup_cred; 3312 } 3313 3314 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3315 if (do_sysvsem) { 3316 /* 3317 * CLONE_SYSVSEM is equivalent to sys_exit(). 3318 */ 3319 exit_sem(current); 3320 } 3321 if (unshare_flags & CLONE_NEWIPC) { 3322 /* Orphan segments in old ns (see sem above). */ 3323 exit_shm(current); 3324 shm_init_task(current); 3325 } 3326 3327 if (new_nsproxy) 3328 switch_task_namespaces(current, new_nsproxy); 3329 3330 task_lock(current); 3331 3332 if (new_fs) { 3333 fs = current->fs; 3334 spin_lock(&fs->lock); 3335 current->fs = new_fs; 3336 if (--fs->users) 3337 new_fs = NULL; 3338 else 3339 new_fs = fs; 3340 spin_unlock(&fs->lock); 3341 } 3342 3343 if (new_fd) 3344 swap(current->files, new_fd); 3345 3346 task_unlock(current); 3347 3348 if (new_cred) { 3349 /* Install the new user namespace */ 3350 commit_creds(new_cred); 3351 new_cred = NULL; 3352 } 3353 } 3354 3355 perf_event_namespaces(current); 3356 3357 bad_unshare_cleanup_cred: 3358 if (new_cred) 3359 put_cred(new_cred); 3360 bad_unshare_cleanup_fd: 3361 if (new_fd) 3362 put_files_struct(new_fd); 3363 3364 bad_unshare_cleanup_fs: 3365 if (new_fs) 3366 free_fs_struct(new_fs); 3367 3368 bad_unshare_out: 3369 return err; 3370 } 3371 3372 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3373 { 3374 return ksys_unshare(unshare_flags); 3375 } 3376 3377 /* 3378 * Helper to unshare the files of the current task. 3379 * We don't want to expose copy_files internals to 3380 * the exec layer of the kernel. 3381 */ 3382 3383 int unshare_files(void) 3384 { 3385 struct task_struct *task = current; 3386 struct files_struct *old, *copy = NULL; 3387 int error; 3388 3389 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3390 if (error || !copy) 3391 return error; 3392 3393 old = task->files; 3394 task_lock(task); 3395 task->files = copy; 3396 task_unlock(task); 3397 put_files_struct(old); 3398 return 0; 3399 } 3400 3401 int sysctl_max_threads(struct ctl_table *table, int write, 3402 void *buffer, size_t *lenp, loff_t *ppos) 3403 { 3404 struct ctl_table t; 3405 int ret; 3406 int threads = max_threads; 3407 int min = 1; 3408 int max = MAX_THREADS; 3409 3410 t = *table; 3411 t.data = &threads; 3412 t.extra1 = &min; 3413 t.extra2 = &max; 3414 3415 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3416 if (ret || !write) 3417 return ret; 3418 3419 max_threads = threads; 3420 3421 return 0; 3422 } 3423