xref: /linux-6.15/kernel/fork.c (revision a115bc07)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75 
76 #include <trace/events/sched.h>
77 
78 /*
79  * Protected counters by write_lock_irq(&tasklist_lock)
80  */
81 unsigned long total_forks;	/* Handle normal Linux uptimes. */
82 int nr_threads; 		/* The idle threads do not count.. */
83 
84 int max_threads;		/* tunable limit on nr_threads */
85 
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
89 EXPORT_SYMBOL_GPL(tasklist_lock);
90 
91 int nr_processes(void)
92 {
93 	int cpu;
94 	int total = 0;
95 
96 	for_each_possible_cpu(cpu)
97 		total += per_cpu(process_counts, cpu);
98 
99 	return total;
100 }
101 
102 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
103 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
104 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
105 static struct kmem_cache *task_struct_cachep;
106 #endif
107 
108 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
109 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
110 {
111 #ifdef CONFIG_DEBUG_STACK_USAGE
112 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
113 #else
114 	gfp_t mask = GFP_KERNEL;
115 #endif
116 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 }
118 
119 static inline void free_thread_info(struct thread_info *ti)
120 {
121 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
122 }
123 #endif
124 
125 /* SLAB cache for signal_struct structures (tsk->signal) */
126 static struct kmem_cache *signal_cachep;
127 
128 /* SLAB cache for sighand_struct structures (tsk->sighand) */
129 struct kmem_cache *sighand_cachep;
130 
131 /* SLAB cache for files_struct structures (tsk->files) */
132 struct kmem_cache *files_cachep;
133 
134 /* SLAB cache for fs_struct structures (tsk->fs) */
135 struct kmem_cache *fs_cachep;
136 
137 /* SLAB cache for vm_area_struct structures */
138 struct kmem_cache *vm_area_cachep;
139 
140 /* SLAB cache for mm_struct structures (tsk->mm) */
141 static struct kmem_cache *mm_cachep;
142 
143 static void account_kernel_stack(struct thread_info *ti, int account)
144 {
145 	struct zone *zone = page_zone(virt_to_page(ti));
146 
147 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 }
149 
150 void free_task(struct task_struct *tsk)
151 {
152 	prop_local_destroy_single(&tsk->dirties);
153 	account_kernel_stack(tsk->stack, -1);
154 	free_thread_info(tsk->stack);
155 	rt_mutex_debug_task_free(tsk);
156 	ftrace_graph_exit_task(tsk);
157 	free_task_struct(tsk);
158 }
159 EXPORT_SYMBOL(free_task);
160 
161 void __put_task_struct(struct task_struct *tsk)
162 {
163 	WARN_ON(!tsk->exit_state);
164 	WARN_ON(atomic_read(&tsk->usage));
165 	WARN_ON(tsk == current);
166 
167 	exit_creds(tsk);
168 	delayacct_tsk_free(tsk);
169 
170 	if (!profile_handoff_task(tsk))
171 		free_task(tsk);
172 }
173 
174 /*
175  * macro override instead of weak attribute alias, to workaround
176  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
177  */
178 #ifndef arch_task_cache_init
179 #define arch_task_cache_init()
180 #endif
181 
182 void __init fork_init(unsigned long mempages)
183 {
184 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
185 #ifndef ARCH_MIN_TASKALIGN
186 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
187 #endif
188 	/* create a slab on which task_structs can be allocated */
189 	task_struct_cachep =
190 		kmem_cache_create("task_struct", sizeof(struct task_struct),
191 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
192 #endif
193 
194 	/* do the arch specific task caches init */
195 	arch_task_cache_init();
196 
197 	/*
198 	 * The default maximum number of threads is set to a safe
199 	 * value: the thread structures can take up at most half
200 	 * of memory.
201 	 */
202 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
203 
204 	/*
205 	 * we need to allow at least 20 threads to boot a system
206 	 */
207 	if(max_threads < 20)
208 		max_threads = 20;
209 
210 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
211 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
212 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
213 		init_task.signal->rlim[RLIMIT_NPROC];
214 }
215 
216 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
217 					       struct task_struct *src)
218 {
219 	*dst = *src;
220 	return 0;
221 }
222 
223 static struct task_struct *dup_task_struct(struct task_struct *orig)
224 {
225 	struct task_struct *tsk;
226 	struct thread_info *ti;
227 	unsigned long *stackend;
228 
229 	int err;
230 
231 	prepare_to_copy(orig);
232 
233 	tsk = alloc_task_struct();
234 	if (!tsk)
235 		return NULL;
236 
237 	ti = alloc_thread_info(tsk);
238 	if (!ti) {
239 		free_task_struct(tsk);
240 		return NULL;
241 	}
242 
243  	err = arch_dup_task_struct(tsk, orig);
244 	if (err)
245 		goto out;
246 
247 	tsk->stack = ti;
248 
249 	err = prop_local_init_single(&tsk->dirties);
250 	if (err)
251 		goto out;
252 
253 	setup_thread_stack(tsk, orig);
254 	clear_user_return_notifier(tsk);
255 	stackend = end_of_stack(tsk);
256 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
257 
258 #ifdef CONFIG_CC_STACKPROTECTOR
259 	tsk->stack_canary = get_random_int();
260 #endif
261 
262 	/* One for us, one for whoever does the "release_task()" (usually parent) */
263 	atomic_set(&tsk->usage,2);
264 	atomic_set(&tsk->fs_excl, 0);
265 #ifdef CONFIG_BLK_DEV_IO_TRACE
266 	tsk->btrace_seq = 0;
267 #endif
268 	tsk->splice_pipe = NULL;
269 
270 	account_kernel_stack(ti, 1);
271 
272 	return tsk;
273 
274 out:
275 	free_thread_info(ti);
276 	free_task_struct(tsk);
277 	return NULL;
278 }
279 
280 #ifdef CONFIG_MMU
281 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
282 {
283 	struct vm_area_struct *mpnt, *tmp, **pprev;
284 	struct rb_node **rb_link, *rb_parent;
285 	int retval;
286 	unsigned long charge;
287 	struct mempolicy *pol;
288 
289 	down_write(&oldmm->mmap_sem);
290 	flush_cache_dup_mm(oldmm);
291 	/*
292 	 * Not linked in yet - no deadlock potential:
293 	 */
294 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
295 
296 	mm->locked_vm = 0;
297 	mm->mmap = NULL;
298 	mm->mmap_cache = NULL;
299 	mm->free_area_cache = oldmm->mmap_base;
300 	mm->cached_hole_size = ~0UL;
301 	mm->map_count = 0;
302 	cpumask_clear(mm_cpumask(mm));
303 	mm->mm_rb = RB_ROOT;
304 	rb_link = &mm->mm_rb.rb_node;
305 	rb_parent = NULL;
306 	pprev = &mm->mmap;
307 	retval = ksm_fork(mm, oldmm);
308 	if (retval)
309 		goto out;
310 
311 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
312 		struct file *file;
313 
314 		if (mpnt->vm_flags & VM_DONTCOPY) {
315 			long pages = vma_pages(mpnt);
316 			mm->total_vm -= pages;
317 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
318 								-pages);
319 			continue;
320 		}
321 		charge = 0;
322 		if (mpnt->vm_flags & VM_ACCOUNT) {
323 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
324 			if (security_vm_enough_memory(len))
325 				goto fail_nomem;
326 			charge = len;
327 		}
328 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
329 		if (!tmp)
330 			goto fail_nomem;
331 		*tmp = *mpnt;
332 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
333 		pol = mpol_dup(vma_policy(mpnt));
334 		retval = PTR_ERR(pol);
335 		if (IS_ERR(pol))
336 			goto fail_nomem_policy;
337 		vma_set_policy(tmp, pol);
338 		if (anon_vma_fork(tmp, mpnt))
339 			goto fail_nomem_anon_vma_fork;
340 		tmp->vm_flags &= ~VM_LOCKED;
341 		tmp->vm_mm = mm;
342 		tmp->vm_next = NULL;
343 		file = tmp->vm_file;
344 		if (file) {
345 			struct inode *inode = file->f_path.dentry->d_inode;
346 			struct address_space *mapping = file->f_mapping;
347 
348 			get_file(file);
349 			if (tmp->vm_flags & VM_DENYWRITE)
350 				atomic_dec(&inode->i_writecount);
351 			spin_lock(&mapping->i_mmap_lock);
352 			if (tmp->vm_flags & VM_SHARED)
353 				mapping->i_mmap_writable++;
354 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
355 			flush_dcache_mmap_lock(mapping);
356 			/* insert tmp into the share list, just after mpnt */
357 			vma_prio_tree_add(tmp, mpnt);
358 			flush_dcache_mmap_unlock(mapping);
359 			spin_unlock(&mapping->i_mmap_lock);
360 		}
361 
362 		/*
363 		 * Clear hugetlb-related page reserves for children. This only
364 		 * affects MAP_PRIVATE mappings. Faults generated by the child
365 		 * are not guaranteed to succeed, even if read-only
366 		 */
367 		if (is_vm_hugetlb_page(tmp))
368 			reset_vma_resv_huge_pages(tmp);
369 
370 		/*
371 		 * Link in the new vma and copy the page table entries.
372 		 */
373 		*pprev = tmp;
374 		pprev = &tmp->vm_next;
375 
376 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
377 		rb_link = &tmp->vm_rb.rb_right;
378 		rb_parent = &tmp->vm_rb;
379 
380 		mm->map_count++;
381 		retval = copy_page_range(mm, oldmm, mpnt);
382 
383 		if (tmp->vm_ops && tmp->vm_ops->open)
384 			tmp->vm_ops->open(tmp);
385 
386 		if (retval)
387 			goto out;
388 	}
389 	/* a new mm has just been created */
390 	arch_dup_mmap(oldmm, mm);
391 	retval = 0;
392 out:
393 	up_write(&mm->mmap_sem);
394 	flush_tlb_mm(oldmm);
395 	up_write(&oldmm->mmap_sem);
396 	return retval;
397 fail_nomem_anon_vma_fork:
398 	mpol_put(pol);
399 fail_nomem_policy:
400 	kmem_cache_free(vm_area_cachep, tmp);
401 fail_nomem:
402 	retval = -ENOMEM;
403 	vm_unacct_memory(charge);
404 	goto out;
405 }
406 
407 static inline int mm_alloc_pgd(struct mm_struct * mm)
408 {
409 	mm->pgd = pgd_alloc(mm);
410 	if (unlikely(!mm->pgd))
411 		return -ENOMEM;
412 	return 0;
413 }
414 
415 static inline void mm_free_pgd(struct mm_struct * mm)
416 {
417 	pgd_free(mm, mm->pgd);
418 }
419 #else
420 #define dup_mmap(mm, oldmm)	(0)
421 #define mm_alloc_pgd(mm)	(0)
422 #define mm_free_pgd(mm)
423 #endif /* CONFIG_MMU */
424 
425 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
426 
427 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
428 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
429 
430 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
431 
432 static int __init coredump_filter_setup(char *s)
433 {
434 	default_dump_filter =
435 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
436 		MMF_DUMP_FILTER_MASK;
437 	return 1;
438 }
439 
440 __setup("coredump_filter=", coredump_filter_setup);
441 
442 #include <linux/init_task.h>
443 
444 static void mm_init_aio(struct mm_struct *mm)
445 {
446 #ifdef CONFIG_AIO
447 	spin_lock_init(&mm->ioctx_lock);
448 	INIT_HLIST_HEAD(&mm->ioctx_list);
449 #endif
450 }
451 
452 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
453 {
454 	atomic_set(&mm->mm_users, 1);
455 	atomic_set(&mm->mm_count, 1);
456 	init_rwsem(&mm->mmap_sem);
457 	INIT_LIST_HEAD(&mm->mmlist);
458 	mm->flags = (current->mm) ?
459 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
460 	mm->core_state = NULL;
461 	mm->nr_ptes = 0;
462 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
463 	spin_lock_init(&mm->page_table_lock);
464 	mm->free_area_cache = TASK_UNMAPPED_BASE;
465 	mm->cached_hole_size = ~0UL;
466 	mm_init_aio(mm);
467 	mm_init_owner(mm, p);
468 
469 	if (likely(!mm_alloc_pgd(mm))) {
470 		mm->def_flags = 0;
471 		mmu_notifier_mm_init(mm);
472 		return mm;
473 	}
474 
475 	free_mm(mm);
476 	return NULL;
477 }
478 
479 /*
480  * Allocate and initialize an mm_struct.
481  */
482 struct mm_struct * mm_alloc(void)
483 {
484 	struct mm_struct * mm;
485 
486 	mm = allocate_mm();
487 	if (mm) {
488 		memset(mm, 0, sizeof(*mm));
489 		mm = mm_init(mm, current);
490 	}
491 	return mm;
492 }
493 
494 /*
495  * Called when the last reference to the mm
496  * is dropped: either by a lazy thread or by
497  * mmput. Free the page directory and the mm.
498  */
499 void __mmdrop(struct mm_struct *mm)
500 {
501 	BUG_ON(mm == &init_mm);
502 	mm_free_pgd(mm);
503 	destroy_context(mm);
504 	mmu_notifier_mm_destroy(mm);
505 	free_mm(mm);
506 }
507 EXPORT_SYMBOL_GPL(__mmdrop);
508 
509 /*
510  * Decrement the use count and release all resources for an mm.
511  */
512 void mmput(struct mm_struct *mm)
513 {
514 	might_sleep();
515 
516 	if (atomic_dec_and_test(&mm->mm_users)) {
517 		exit_aio(mm);
518 		ksm_exit(mm);
519 		exit_mmap(mm);
520 		set_mm_exe_file(mm, NULL);
521 		if (!list_empty(&mm->mmlist)) {
522 			spin_lock(&mmlist_lock);
523 			list_del(&mm->mmlist);
524 			spin_unlock(&mmlist_lock);
525 		}
526 		put_swap_token(mm);
527 		if (mm->binfmt)
528 			module_put(mm->binfmt->module);
529 		mmdrop(mm);
530 	}
531 }
532 EXPORT_SYMBOL_GPL(mmput);
533 
534 /**
535  * get_task_mm - acquire a reference to the task's mm
536  *
537  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
538  * this kernel workthread has transiently adopted a user mm with use_mm,
539  * to do its AIO) is not set and if so returns a reference to it, after
540  * bumping up the use count.  User must release the mm via mmput()
541  * after use.  Typically used by /proc and ptrace.
542  */
543 struct mm_struct *get_task_mm(struct task_struct *task)
544 {
545 	struct mm_struct *mm;
546 
547 	task_lock(task);
548 	mm = task->mm;
549 	if (mm) {
550 		if (task->flags & PF_KTHREAD)
551 			mm = NULL;
552 		else
553 			atomic_inc(&mm->mm_users);
554 	}
555 	task_unlock(task);
556 	return mm;
557 }
558 EXPORT_SYMBOL_GPL(get_task_mm);
559 
560 /* Please note the differences between mmput and mm_release.
561  * mmput is called whenever we stop holding onto a mm_struct,
562  * error success whatever.
563  *
564  * mm_release is called after a mm_struct has been removed
565  * from the current process.
566  *
567  * This difference is important for error handling, when we
568  * only half set up a mm_struct for a new process and need to restore
569  * the old one.  Because we mmput the new mm_struct before
570  * restoring the old one. . .
571  * Eric Biederman 10 January 1998
572  */
573 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
574 {
575 	struct completion *vfork_done = tsk->vfork_done;
576 
577 	/* Get rid of any futexes when releasing the mm */
578 #ifdef CONFIG_FUTEX
579 	if (unlikely(tsk->robust_list)) {
580 		exit_robust_list(tsk);
581 		tsk->robust_list = NULL;
582 	}
583 #ifdef CONFIG_COMPAT
584 	if (unlikely(tsk->compat_robust_list)) {
585 		compat_exit_robust_list(tsk);
586 		tsk->compat_robust_list = NULL;
587 	}
588 #endif
589 	if (unlikely(!list_empty(&tsk->pi_state_list)))
590 		exit_pi_state_list(tsk);
591 #endif
592 
593 	/* Get rid of any cached register state */
594 	deactivate_mm(tsk, mm);
595 
596 	/* notify parent sleeping on vfork() */
597 	if (vfork_done) {
598 		tsk->vfork_done = NULL;
599 		complete(vfork_done);
600 	}
601 
602 	/*
603 	 * If we're exiting normally, clear a user-space tid field if
604 	 * requested.  We leave this alone when dying by signal, to leave
605 	 * the value intact in a core dump, and to save the unnecessary
606 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
607 	 */
608 	if (tsk->clear_child_tid) {
609 		if (!(tsk->flags & PF_SIGNALED) &&
610 		    atomic_read(&mm->mm_users) > 1) {
611 			/*
612 			 * We don't check the error code - if userspace has
613 			 * not set up a proper pointer then tough luck.
614 			 */
615 			put_user(0, tsk->clear_child_tid);
616 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
617 					1, NULL, NULL, 0);
618 		}
619 		tsk->clear_child_tid = NULL;
620 	}
621 }
622 
623 /*
624  * Allocate a new mm structure and copy contents from the
625  * mm structure of the passed in task structure.
626  */
627 struct mm_struct *dup_mm(struct task_struct *tsk)
628 {
629 	struct mm_struct *mm, *oldmm = current->mm;
630 	int err;
631 
632 	if (!oldmm)
633 		return NULL;
634 
635 	mm = allocate_mm();
636 	if (!mm)
637 		goto fail_nomem;
638 
639 	memcpy(mm, oldmm, sizeof(*mm));
640 
641 	/* Initializing for Swap token stuff */
642 	mm->token_priority = 0;
643 	mm->last_interval = 0;
644 
645 	if (!mm_init(mm, tsk))
646 		goto fail_nomem;
647 
648 	if (init_new_context(tsk, mm))
649 		goto fail_nocontext;
650 
651 	dup_mm_exe_file(oldmm, mm);
652 
653 	err = dup_mmap(mm, oldmm);
654 	if (err)
655 		goto free_pt;
656 
657 	mm->hiwater_rss = get_mm_rss(mm);
658 	mm->hiwater_vm = mm->total_vm;
659 
660 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
661 		goto free_pt;
662 
663 	return mm;
664 
665 free_pt:
666 	/* don't put binfmt in mmput, we haven't got module yet */
667 	mm->binfmt = NULL;
668 	mmput(mm);
669 
670 fail_nomem:
671 	return NULL;
672 
673 fail_nocontext:
674 	/*
675 	 * If init_new_context() failed, we cannot use mmput() to free the mm
676 	 * because it calls destroy_context()
677 	 */
678 	mm_free_pgd(mm);
679 	free_mm(mm);
680 	return NULL;
681 }
682 
683 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
684 {
685 	struct mm_struct * mm, *oldmm;
686 	int retval;
687 
688 	tsk->min_flt = tsk->maj_flt = 0;
689 	tsk->nvcsw = tsk->nivcsw = 0;
690 #ifdef CONFIG_DETECT_HUNG_TASK
691 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
692 #endif
693 
694 	tsk->mm = NULL;
695 	tsk->active_mm = NULL;
696 
697 	/*
698 	 * Are we cloning a kernel thread?
699 	 *
700 	 * We need to steal a active VM for that..
701 	 */
702 	oldmm = current->mm;
703 	if (!oldmm)
704 		return 0;
705 
706 	if (clone_flags & CLONE_VM) {
707 		atomic_inc(&oldmm->mm_users);
708 		mm = oldmm;
709 		goto good_mm;
710 	}
711 
712 	retval = -ENOMEM;
713 	mm = dup_mm(tsk);
714 	if (!mm)
715 		goto fail_nomem;
716 
717 good_mm:
718 	/* Initializing for Swap token stuff */
719 	mm->token_priority = 0;
720 	mm->last_interval = 0;
721 
722 	tsk->mm = mm;
723 	tsk->active_mm = mm;
724 	return 0;
725 
726 fail_nomem:
727 	return retval;
728 }
729 
730 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
731 {
732 	struct fs_struct *fs = current->fs;
733 	if (clone_flags & CLONE_FS) {
734 		/* tsk->fs is already what we want */
735 		write_lock(&fs->lock);
736 		if (fs->in_exec) {
737 			write_unlock(&fs->lock);
738 			return -EAGAIN;
739 		}
740 		fs->users++;
741 		write_unlock(&fs->lock);
742 		return 0;
743 	}
744 	tsk->fs = copy_fs_struct(fs);
745 	if (!tsk->fs)
746 		return -ENOMEM;
747 	return 0;
748 }
749 
750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
751 {
752 	struct files_struct *oldf, *newf;
753 	int error = 0;
754 
755 	/*
756 	 * A background process may not have any files ...
757 	 */
758 	oldf = current->files;
759 	if (!oldf)
760 		goto out;
761 
762 	if (clone_flags & CLONE_FILES) {
763 		atomic_inc(&oldf->count);
764 		goto out;
765 	}
766 
767 	newf = dup_fd(oldf, &error);
768 	if (!newf)
769 		goto out;
770 
771 	tsk->files = newf;
772 	error = 0;
773 out:
774 	return error;
775 }
776 
777 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
778 {
779 #ifdef CONFIG_BLOCK
780 	struct io_context *ioc = current->io_context;
781 
782 	if (!ioc)
783 		return 0;
784 	/*
785 	 * Share io context with parent, if CLONE_IO is set
786 	 */
787 	if (clone_flags & CLONE_IO) {
788 		tsk->io_context = ioc_task_link(ioc);
789 		if (unlikely(!tsk->io_context))
790 			return -ENOMEM;
791 	} else if (ioprio_valid(ioc->ioprio)) {
792 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
793 		if (unlikely(!tsk->io_context))
794 			return -ENOMEM;
795 
796 		tsk->io_context->ioprio = ioc->ioprio;
797 	}
798 #endif
799 	return 0;
800 }
801 
802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
803 {
804 	struct sighand_struct *sig;
805 
806 	if (clone_flags & CLONE_SIGHAND) {
807 		atomic_inc(&current->sighand->count);
808 		return 0;
809 	}
810 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
811 	rcu_assign_pointer(tsk->sighand, sig);
812 	if (!sig)
813 		return -ENOMEM;
814 	atomic_set(&sig->count, 1);
815 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
816 	return 0;
817 }
818 
819 void __cleanup_sighand(struct sighand_struct *sighand)
820 {
821 	if (atomic_dec_and_test(&sighand->count))
822 		kmem_cache_free(sighand_cachep, sighand);
823 }
824 
825 
826 /*
827  * Initialize POSIX timer handling for a thread group.
828  */
829 static void posix_cpu_timers_init_group(struct signal_struct *sig)
830 {
831 	unsigned long cpu_limit;
832 
833 	/* Thread group counters. */
834 	thread_group_cputime_init(sig);
835 
836 	/* Expiration times and increments. */
837 	sig->it[CPUCLOCK_PROF].expires = cputime_zero;
838 	sig->it[CPUCLOCK_PROF].incr = cputime_zero;
839 	sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
840 	sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
841 
842 	/* Cached expiration times. */
843 	sig->cputime_expires.prof_exp = cputime_zero;
844 	sig->cputime_expires.virt_exp = cputime_zero;
845 	sig->cputime_expires.sched_exp = 0;
846 
847 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
848 	if (cpu_limit != RLIM_INFINITY) {
849 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
850 		sig->cputimer.running = 1;
851 	}
852 
853 	/* The timer lists. */
854 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
855 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
856 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
857 }
858 
859 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
860 {
861 	struct signal_struct *sig;
862 
863 	if (clone_flags & CLONE_THREAD)
864 		return 0;
865 
866 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
867 	tsk->signal = sig;
868 	if (!sig)
869 		return -ENOMEM;
870 
871 	atomic_set(&sig->count, 1);
872 	atomic_set(&sig->live, 1);
873 	init_waitqueue_head(&sig->wait_chldexit);
874 	sig->flags = 0;
875 	if (clone_flags & CLONE_NEWPID)
876 		sig->flags |= SIGNAL_UNKILLABLE;
877 	sig->group_exit_code = 0;
878 	sig->group_exit_task = NULL;
879 	sig->group_stop_count = 0;
880 	sig->curr_target = tsk;
881 	init_sigpending(&sig->shared_pending);
882 	INIT_LIST_HEAD(&sig->posix_timers);
883 
884 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
885 	sig->it_real_incr.tv64 = 0;
886 	sig->real_timer.function = it_real_fn;
887 
888 	sig->leader = 0;	/* session leadership doesn't inherit */
889 	sig->tty_old_pgrp = NULL;
890 	sig->tty = NULL;
891 
892 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
893 	sig->gtime = cputime_zero;
894 	sig->cgtime = cputime_zero;
895 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
896 	sig->prev_utime = sig->prev_stime = cputime_zero;
897 #endif
898 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
899 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
900 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
901 	sig->maxrss = sig->cmaxrss = 0;
902 	task_io_accounting_init(&sig->ioac);
903 	sig->sum_sched_runtime = 0;
904 	taskstats_tgid_init(sig);
905 
906 	task_lock(current->group_leader);
907 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
908 	task_unlock(current->group_leader);
909 
910 	posix_cpu_timers_init_group(sig);
911 
912 	acct_init_pacct(&sig->pacct);
913 
914 	tty_audit_fork(sig);
915 
916 	sig->oom_adj = current->signal->oom_adj;
917 
918 	return 0;
919 }
920 
921 void __cleanup_signal(struct signal_struct *sig)
922 {
923 	thread_group_cputime_free(sig);
924 	tty_kref_put(sig->tty);
925 	kmem_cache_free(signal_cachep, sig);
926 }
927 
928 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
929 {
930 	unsigned long new_flags = p->flags;
931 
932 	new_flags &= ~PF_SUPERPRIV;
933 	new_flags |= PF_FORKNOEXEC;
934 	new_flags |= PF_STARTING;
935 	p->flags = new_flags;
936 	clear_freeze_flag(p);
937 }
938 
939 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
940 {
941 	current->clear_child_tid = tidptr;
942 
943 	return task_pid_vnr(current);
944 }
945 
946 static void rt_mutex_init_task(struct task_struct *p)
947 {
948 	raw_spin_lock_init(&p->pi_lock);
949 #ifdef CONFIG_RT_MUTEXES
950 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
951 	p->pi_blocked_on = NULL;
952 #endif
953 }
954 
955 #ifdef CONFIG_MM_OWNER
956 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
957 {
958 	mm->owner = p;
959 }
960 #endif /* CONFIG_MM_OWNER */
961 
962 /*
963  * Initialize POSIX timer handling for a single task.
964  */
965 static void posix_cpu_timers_init(struct task_struct *tsk)
966 {
967 	tsk->cputime_expires.prof_exp = cputime_zero;
968 	tsk->cputime_expires.virt_exp = cputime_zero;
969 	tsk->cputime_expires.sched_exp = 0;
970 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
971 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
972 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
973 }
974 
975 /*
976  * This creates a new process as a copy of the old one,
977  * but does not actually start it yet.
978  *
979  * It copies the registers, and all the appropriate
980  * parts of the process environment (as per the clone
981  * flags). The actual kick-off is left to the caller.
982  */
983 static struct task_struct *copy_process(unsigned long clone_flags,
984 					unsigned long stack_start,
985 					struct pt_regs *regs,
986 					unsigned long stack_size,
987 					int __user *child_tidptr,
988 					struct pid *pid,
989 					int trace)
990 {
991 	int retval;
992 	struct task_struct *p;
993 	int cgroup_callbacks_done = 0;
994 
995 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
996 		return ERR_PTR(-EINVAL);
997 
998 	/*
999 	 * Thread groups must share signals as well, and detached threads
1000 	 * can only be started up within the thread group.
1001 	 */
1002 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	/*
1006 	 * Shared signal handlers imply shared VM. By way of the above,
1007 	 * thread groups also imply shared VM. Blocking this case allows
1008 	 * for various simplifications in other code.
1009 	 */
1010 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	/*
1014 	 * Siblings of global init remain as zombies on exit since they are
1015 	 * not reaped by their parent (swapper). To solve this and to avoid
1016 	 * multi-rooted process trees, prevent global and container-inits
1017 	 * from creating siblings.
1018 	 */
1019 	if ((clone_flags & CLONE_PARENT) &&
1020 				current->signal->flags & SIGNAL_UNKILLABLE)
1021 		return ERR_PTR(-EINVAL);
1022 
1023 	retval = security_task_create(clone_flags);
1024 	if (retval)
1025 		goto fork_out;
1026 
1027 	retval = -ENOMEM;
1028 	p = dup_task_struct(current);
1029 	if (!p)
1030 		goto fork_out;
1031 
1032 	ftrace_graph_init_task(p);
1033 
1034 	rt_mutex_init_task(p);
1035 
1036 #ifdef CONFIG_PROVE_LOCKING
1037 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1038 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1039 #endif
1040 	retval = -EAGAIN;
1041 	if (atomic_read(&p->real_cred->user->processes) >=
1042 			task_rlimit(p, RLIMIT_NPROC)) {
1043 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1044 		    p->real_cred->user != INIT_USER)
1045 			goto bad_fork_free;
1046 	}
1047 
1048 	retval = copy_creds(p, clone_flags);
1049 	if (retval < 0)
1050 		goto bad_fork_free;
1051 
1052 	/*
1053 	 * If multiple threads are within copy_process(), then this check
1054 	 * triggers too late. This doesn't hurt, the check is only there
1055 	 * to stop root fork bombs.
1056 	 */
1057 	retval = -EAGAIN;
1058 	if (nr_threads >= max_threads)
1059 		goto bad_fork_cleanup_count;
1060 
1061 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1062 		goto bad_fork_cleanup_count;
1063 
1064 	p->did_exec = 0;
1065 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1066 	copy_flags(clone_flags, p);
1067 	INIT_LIST_HEAD(&p->children);
1068 	INIT_LIST_HEAD(&p->sibling);
1069 	rcu_copy_process(p);
1070 	p->vfork_done = NULL;
1071 	spin_lock_init(&p->alloc_lock);
1072 
1073 	init_sigpending(&p->pending);
1074 
1075 	p->utime = cputime_zero;
1076 	p->stime = cputime_zero;
1077 	p->gtime = cputime_zero;
1078 	p->utimescaled = cputime_zero;
1079 	p->stimescaled = cputime_zero;
1080 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1081 	p->prev_utime = cputime_zero;
1082 	p->prev_stime = cputime_zero;
1083 #endif
1084 
1085 	p->default_timer_slack_ns = current->timer_slack_ns;
1086 
1087 	task_io_accounting_init(&p->ioac);
1088 	acct_clear_integrals(p);
1089 
1090 	posix_cpu_timers_init(p);
1091 
1092 	p->lock_depth = -1;		/* -1 = no lock */
1093 	do_posix_clock_monotonic_gettime(&p->start_time);
1094 	p->real_start_time = p->start_time;
1095 	monotonic_to_bootbased(&p->real_start_time);
1096 	p->io_context = NULL;
1097 	p->audit_context = NULL;
1098 	cgroup_fork(p);
1099 #ifdef CONFIG_NUMA
1100 	p->mempolicy = mpol_dup(p->mempolicy);
1101  	if (IS_ERR(p->mempolicy)) {
1102  		retval = PTR_ERR(p->mempolicy);
1103  		p->mempolicy = NULL;
1104  		goto bad_fork_cleanup_cgroup;
1105  	}
1106 	mpol_fix_fork_child_flag(p);
1107 #endif
1108 #ifdef CONFIG_TRACE_IRQFLAGS
1109 	p->irq_events = 0;
1110 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1111 	p->hardirqs_enabled = 1;
1112 #else
1113 	p->hardirqs_enabled = 0;
1114 #endif
1115 	p->hardirq_enable_ip = 0;
1116 	p->hardirq_enable_event = 0;
1117 	p->hardirq_disable_ip = _THIS_IP_;
1118 	p->hardirq_disable_event = 0;
1119 	p->softirqs_enabled = 1;
1120 	p->softirq_enable_ip = _THIS_IP_;
1121 	p->softirq_enable_event = 0;
1122 	p->softirq_disable_ip = 0;
1123 	p->softirq_disable_event = 0;
1124 	p->hardirq_context = 0;
1125 	p->softirq_context = 0;
1126 #endif
1127 #ifdef CONFIG_LOCKDEP
1128 	p->lockdep_depth = 0; /* no locks held yet */
1129 	p->curr_chain_key = 0;
1130 	p->lockdep_recursion = 0;
1131 #endif
1132 
1133 #ifdef CONFIG_DEBUG_MUTEXES
1134 	p->blocked_on = NULL; /* not blocked yet */
1135 #endif
1136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1137 	p->memcg_batch.do_batch = 0;
1138 	p->memcg_batch.memcg = NULL;
1139 #endif
1140 
1141 	p->bts = NULL;
1142 
1143 	p->stack_start = stack_start;
1144 
1145 	/* Perform scheduler related setup. Assign this task to a CPU. */
1146 	sched_fork(p, clone_flags);
1147 
1148 	retval = perf_event_init_task(p);
1149 	if (retval)
1150 		goto bad_fork_cleanup_policy;
1151 
1152 	if ((retval = audit_alloc(p)))
1153 		goto bad_fork_cleanup_policy;
1154 	/* copy all the process information */
1155 	if ((retval = copy_semundo(clone_flags, p)))
1156 		goto bad_fork_cleanup_audit;
1157 	if ((retval = copy_files(clone_flags, p)))
1158 		goto bad_fork_cleanup_semundo;
1159 	if ((retval = copy_fs(clone_flags, p)))
1160 		goto bad_fork_cleanup_files;
1161 	if ((retval = copy_sighand(clone_flags, p)))
1162 		goto bad_fork_cleanup_fs;
1163 	if ((retval = copy_signal(clone_flags, p)))
1164 		goto bad_fork_cleanup_sighand;
1165 	if ((retval = copy_mm(clone_flags, p)))
1166 		goto bad_fork_cleanup_signal;
1167 	if ((retval = copy_namespaces(clone_flags, p)))
1168 		goto bad_fork_cleanup_mm;
1169 	if ((retval = copy_io(clone_flags, p)))
1170 		goto bad_fork_cleanup_namespaces;
1171 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1172 	if (retval)
1173 		goto bad_fork_cleanup_io;
1174 
1175 	if (pid != &init_struct_pid) {
1176 		retval = -ENOMEM;
1177 		pid = alloc_pid(p->nsproxy->pid_ns);
1178 		if (!pid)
1179 			goto bad_fork_cleanup_io;
1180 
1181 		if (clone_flags & CLONE_NEWPID) {
1182 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1183 			if (retval < 0)
1184 				goto bad_fork_free_pid;
1185 		}
1186 	}
1187 
1188 	p->pid = pid_nr(pid);
1189 	p->tgid = p->pid;
1190 	if (clone_flags & CLONE_THREAD)
1191 		p->tgid = current->tgid;
1192 
1193 	if (current->nsproxy != p->nsproxy) {
1194 		retval = ns_cgroup_clone(p, pid);
1195 		if (retval)
1196 			goto bad_fork_free_pid;
1197 	}
1198 
1199 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1200 	/*
1201 	 * Clear TID on mm_release()?
1202 	 */
1203 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1204 #ifdef CONFIG_FUTEX
1205 	p->robust_list = NULL;
1206 #ifdef CONFIG_COMPAT
1207 	p->compat_robust_list = NULL;
1208 #endif
1209 	INIT_LIST_HEAD(&p->pi_state_list);
1210 	p->pi_state_cache = NULL;
1211 #endif
1212 	/*
1213 	 * sigaltstack should be cleared when sharing the same VM
1214 	 */
1215 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1216 		p->sas_ss_sp = p->sas_ss_size = 0;
1217 
1218 	/*
1219 	 * Syscall tracing and stepping should be turned off in the
1220 	 * child regardless of CLONE_PTRACE.
1221 	 */
1222 	user_disable_single_step(p);
1223 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1224 #ifdef TIF_SYSCALL_EMU
1225 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1226 #endif
1227 	clear_all_latency_tracing(p);
1228 
1229 	/* ok, now we should be set up.. */
1230 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1231 	p->pdeath_signal = 0;
1232 	p->exit_state = 0;
1233 
1234 	/*
1235 	 * Ok, make it visible to the rest of the system.
1236 	 * We dont wake it up yet.
1237 	 */
1238 	p->group_leader = p;
1239 	INIT_LIST_HEAD(&p->thread_group);
1240 
1241 	/* Now that the task is set up, run cgroup callbacks if
1242 	 * necessary. We need to run them before the task is visible
1243 	 * on the tasklist. */
1244 	cgroup_fork_callbacks(p);
1245 	cgroup_callbacks_done = 1;
1246 
1247 	/* Need tasklist lock for parent etc handling! */
1248 	write_lock_irq(&tasklist_lock);
1249 
1250 	/* CLONE_PARENT re-uses the old parent */
1251 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1252 		p->real_parent = current->real_parent;
1253 		p->parent_exec_id = current->parent_exec_id;
1254 	} else {
1255 		p->real_parent = current;
1256 		p->parent_exec_id = current->self_exec_id;
1257 	}
1258 
1259 	spin_lock(&current->sighand->siglock);
1260 
1261 	/*
1262 	 * Process group and session signals need to be delivered to just the
1263 	 * parent before the fork or both the parent and the child after the
1264 	 * fork. Restart if a signal comes in before we add the new process to
1265 	 * it's process group.
1266 	 * A fatal signal pending means that current will exit, so the new
1267 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1268  	 */
1269 	recalc_sigpending();
1270 	if (signal_pending(current)) {
1271 		spin_unlock(&current->sighand->siglock);
1272 		write_unlock_irq(&tasklist_lock);
1273 		retval = -ERESTARTNOINTR;
1274 		goto bad_fork_free_pid;
1275 	}
1276 
1277 	if (clone_flags & CLONE_THREAD) {
1278 		atomic_inc(&current->signal->count);
1279 		atomic_inc(&current->signal->live);
1280 		p->group_leader = current->group_leader;
1281 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1282 	}
1283 
1284 	if (likely(p->pid)) {
1285 		tracehook_finish_clone(p, clone_flags, trace);
1286 
1287 		if (thread_group_leader(p)) {
1288 			if (clone_flags & CLONE_NEWPID)
1289 				p->nsproxy->pid_ns->child_reaper = p;
1290 
1291 			p->signal->leader_pid = pid;
1292 			tty_kref_put(p->signal->tty);
1293 			p->signal->tty = tty_kref_get(current->signal->tty);
1294 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1295 			attach_pid(p, PIDTYPE_SID, task_session(current));
1296 			list_add_tail(&p->sibling, &p->real_parent->children);
1297 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1298 			__get_cpu_var(process_counts)++;
1299 		}
1300 		attach_pid(p, PIDTYPE_PID, pid);
1301 		nr_threads++;
1302 	}
1303 
1304 	total_forks++;
1305 	spin_unlock(&current->sighand->siglock);
1306 	write_unlock_irq(&tasklist_lock);
1307 	proc_fork_connector(p);
1308 	cgroup_post_fork(p);
1309 	perf_event_fork(p);
1310 	return p;
1311 
1312 bad_fork_free_pid:
1313 	if (pid != &init_struct_pid)
1314 		free_pid(pid);
1315 bad_fork_cleanup_io:
1316 	if (p->io_context)
1317 		exit_io_context(p);
1318 bad_fork_cleanup_namespaces:
1319 	exit_task_namespaces(p);
1320 bad_fork_cleanup_mm:
1321 	if (p->mm)
1322 		mmput(p->mm);
1323 bad_fork_cleanup_signal:
1324 	if (!(clone_flags & CLONE_THREAD))
1325 		__cleanup_signal(p->signal);
1326 bad_fork_cleanup_sighand:
1327 	__cleanup_sighand(p->sighand);
1328 bad_fork_cleanup_fs:
1329 	exit_fs(p); /* blocking */
1330 bad_fork_cleanup_files:
1331 	exit_files(p); /* blocking */
1332 bad_fork_cleanup_semundo:
1333 	exit_sem(p);
1334 bad_fork_cleanup_audit:
1335 	audit_free(p);
1336 bad_fork_cleanup_policy:
1337 	perf_event_free_task(p);
1338 #ifdef CONFIG_NUMA
1339 	mpol_put(p->mempolicy);
1340 bad_fork_cleanup_cgroup:
1341 #endif
1342 	cgroup_exit(p, cgroup_callbacks_done);
1343 	delayacct_tsk_free(p);
1344 	module_put(task_thread_info(p)->exec_domain->module);
1345 bad_fork_cleanup_count:
1346 	atomic_dec(&p->cred->user->processes);
1347 	exit_creds(p);
1348 bad_fork_free:
1349 	free_task(p);
1350 fork_out:
1351 	return ERR_PTR(retval);
1352 }
1353 
1354 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1355 {
1356 	memset(regs, 0, sizeof(struct pt_regs));
1357 	return regs;
1358 }
1359 
1360 struct task_struct * __cpuinit fork_idle(int cpu)
1361 {
1362 	struct task_struct *task;
1363 	struct pt_regs regs;
1364 
1365 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1366 			    &init_struct_pid, 0);
1367 	if (!IS_ERR(task))
1368 		init_idle(task, cpu);
1369 
1370 	return task;
1371 }
1372 
1373 /*
1374  *  Ok, this is the main fork-routine.
1375  *
1376  * It copies the process, and if successful kick-starts
1377  * it and waits for it to finish using the VM if required.
1378  */
1379 long do_fork(unsigned long clone_flags,
1380 	      unsigned long stack_start,
1381 	      struct pt_regs *regs,
1382 	      unsigned long stack_size,
1383 	      int __user *parent_tidptr,
1384 	      int __user *child_tidptr)
1385 {
1386 	struct task_struct *p;
1387 	int trace = 0;
1388 	long nr;
1389 
1390 	/*
1391 	 * Do some preliminary argument and permissions checking before we
1392 	 * actually start allocating stuff
1393 	 */
1394 	if (clone_flags & CLONE_NEWUSER) {
1395 		if (clone_flags & CLONE_THREAD)
1396 			return -EINVAL;
1397 		/* hopefully this check will go away when userns support is
1398 		 * complete
1399 		 */
1400 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1401 				!capable(CAP_SETGID))
1402 			return -EPERM;
1403 	}
1404 
1405 	/*
1406 	 * We hope to recycle these flags after 2.6.26
1407 	 */
1408 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1409 		static int __read_mostly count = 100;
1410 
1411 		if (count > 0 && printk_ratelimit()) {
1412 			char comm[TASK_COMM_LEN];
1413 
1414 			count--;
1415 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1416 					"clone flags 0x%lx\n",
1417 				get_task_comm(comm, current),
1418 				clone_flags & CLONE_STOPPED);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * When called from kernel_thread, don't do user tracing stuff.
1424 	 */
1425 	if (likely(user_mode(regs)))
1426 		trace = tracehook_prepare_clone(clone_flags);
1427 
1428 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1429 			 child_tidptr, NULL, trace);
1430 	/*
1431 	 * Do this prior waking up the new thread - the thread pointer
1432 	 * might get invalid after that point, if the thread exits quickly.
1433 	 */
1434 	if (!IS_ERR(p)) {
1435 		struct completion vfork;
1436 
1437 		trace_sched_process_fork(current, p);
1438 
1439 		nr = task_pid_vnr(p);
1440 
1441 		if (clone_flags & CLONE_PARENT_SETTID)
1442 			put_user(nr, parent_tidptr);
1443 
1444 		if (clone_flags & CLONE_VFORK) {
1445 			p->vfork_done = &vfork;
1446 			init_completion(&vfork);
1447 		}
1448 
1449 		audit_finish_fork(p);
1450 		tracehook_report_clone(regs, clone_flags, nr, p);
1451 
1452 		/*
1453 		 * We set PF_STARTING at creation in case tracing wants to
1454 		 * use this to distinguish a fully live task from one that
1455 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1456 		 * clear it and set the child going.
1457 		 */
1458 		p->flags &= ~PF_STARTING;
1459 
1460 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1461 			/*
1462 			 * We'll start up with an immediate SIGSTOP.
1463 			 */
1464 			sigaddset(&p->pending.signal, SIGSTOP);
1465 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1466 			__set_task_state(p, TASK_STOPPED);
1467 		} else {
1468 			wake_up_new_task(p, clone_flags);
1469 		}
1470 
1471 		tracehook_report_clone_complete(trace, regs,
1472 						clone_flags, nr, p);
1473 
1474 		if (clone_flags & CLONE_VFORK) {
1475 			freezer_do_not_count();
1476 			wait_for_completion(&vfork);
1477 			freezer_count();
1478 			tracehook_report_vfork_done(p, nr);
1479 		}
1480 	} else {
1481 		nr = PTR_ERR(p);
1482 	}
1483 	return nr;
1484 }
1485 
1486 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1487 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1488 #endif
1489 
1490 static void sighand_ctor(void *data)
1491 {
1492 	struct sighand_struct *sighand = data;
1493 
1494 	spin_lock_init(&sighand->siglock);
1495 	init_waitqueue_head(&sighand->signalfd_wqh);
1496 }
1497 
1498 void __init proc_caches_init(void)
1499 {
1500 	sighand_cachep = kmem_cache_create("sighand_cache",
1501 			sizeof(struct sighand_struct), 0,
1502 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1503 			SLAB_NOTRACK, sighand_ctor);
1504 	signal_cachep = kmem_cache_create("signal_cache",
1505 			sizeof(struct signal_struct), 0,
1506 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1507 	files_cachep = kmem_cache_create("files_cache",
1508 			sizeof(struct files_struct), 0,
1509 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1510 	fs_cachep = kmem_cache_create("fs_cache",
1511 			sizeof(struct fs_struct), 0,
1512 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1513 	mm_cachep = kmem_cache_create("mm_struct",
1514 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1515 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1516 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1517 	mmap_init();
1518 }
1519 
1520 /*
1521  * Check constraints on flags passed to the unshare system call and
1522  * force unsharing of additional process context as appropriate.
1523  */
1524 static void check_unshare_flags(unsigned long *flags_ptr)
1525 {
1526 	/*
1527 	 * If unsharing a thread from a thread group, must also
1528 	 * unshare vm.
1529 	 */
1530 	if (*flags_ptr & CLONE_THREAD)
1531 		*flags_ptr |= CLONE_VM;
1532 
1533 	/*
1534 	 * If unsharing vm, must also unshare signal handlers.
1535 	 */
1536 	if (*flags_ptr & CLONE_VM)
1537 		*flags_ptr |= CLONE_SIGHAND;
1538 
1539 	/*
1540 	 * If unsharing signal handlers and the task was created
1541 	 * using CLONE_THREAD, then must unshare the thread
1542 	 */
1543 	if ((*flags_ptr & CLONE_SIGHAND) &&
1544 	    (atomic_read(&current->signal->count) > 1))
1545 		*flags_ptr |= CLONE_THREAD;
1546 
1547 	/*
1548 	 * If unsharing namespace, must also unshare filesystem information.
1549 	 */
1550 	if (*flags_ptr & CLONE_NEWNS)
1551 		*flags_ptr |= CLONE_FS;
1552 }
1553 
1554 /*
1555  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1556  */
1557 static int unshare_thread(unsigned long unshare_flags)
1558 {
1559 	if (unshare_flags & CLONE_THREAD)
1560 		return -EINVAL;
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Unshare the filesystem structure if it is being shared
1567  */
1568 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1569 {
1570 	struct fs_struct *fs = current->fs;
1571 
1572 	if (!(unshare_flags & CLONE_FS) || !fs)
1573 		return 0;
1574 
1575 	/* don't need lock here; in the worst case we'll do useless copy */
1576 	if (fs->users == 1)
1577 		return 0;
1578 
1579 	*new_fsp = copy_fs_struct(fs);
1580 	if (!*new_fsp)
1581 		return -ENOMEM;
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Unsharing of sighand is not supported yet
1588  */
1589 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1590 {
1591 	struct sighand_struct *sigh = current->sighand;
1592 
1593 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1594 		return -EINVAL;
1595 	else
1596 		return 0;
1597 }
1598 
1599 /*
1600  * Unshare vm if it is being shared
1601  */
1602 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1603 {
1604 	struct mm_struct *mm = current->mm;
1605 
1606 	if ((unshare_flags & CLONE_VM) &&
1607 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1608 		return -EINVAL;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 /*
1615  * Unshare file descriptor table if it is being shared
1616  */
1617 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1618 {
1619 	struct files_struct *fd = current->files;
1620 	int error = 0;
1621 
1622 	if ((unshare_flags & CLONE_FILES) &&
1623 	    (fd && atomic_read(&fd->count) > 1)) {
1624 		*new_fdp = dup_fd(fd, &error);
1625 		if (!*new_fdp)
1626 			return error;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 /*
1633  * unshare allows a process to 'unshare' part of the process
1634  * context which was originally shared using clone.  copy_*
1635  * functions used by do_fork() cannot be used here directly
1636  * because they modify an inactive task_struct that is being
1637  * constructed. Here we are modifying the current, active,
1638  * task_struct.
1639  */
1640 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1641 {
1642 	int err = 0;
1643 	struct fs_struct *fs, *new_fs = NULL;
1644 	struct sighand_struct *new_sigh = NULL;
1645 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1646 	struct files_struct *fd, *new_fd = NULL;
1647 	struct nsproxy *new_nsproxy = NULL;
1648 	int do_sysvsem = 0;
1649 
1650 	check_unshare_flags(&unshare_flags);
1651 
1652 	/* Return -EINVAL for all unsupported flags */
1653 	err = -EINVAL;
1654 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1655 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1656 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1657 		goto bad_unshare_out;
1658 
1659 	/*
1660 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1661 	 * to a new ipc namespace, the semaphore arrays from the old
1662 	 * namespace are unreachable.
1663 	 */
1664 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1665 		do_sysvsem = 1;
1666 	if ((err = unshare_thread(unshare_flags)))
1667 		goto bad_unshare_out;
1668 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1669 		goto bad_unshare_cleanup_thread;
1670 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1671 		goto bad_unshare_cleanup_fs;
1672 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1673 		goto bad_unshare_cleanup_sigh;
1674 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1675 		goto bad_unshare_cleanup_vm;
1676 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1677 			new_fs)))
1678 		goto bad_unshare_cleanup_fd;
1679 
1680 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1681 		if (do_sysvsem) {
1682 			/*
1683 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1684 			 */
1685 			exit_sem(current);
1686 		}
1687 
1688 		if (new_nsproxy) {
1689 			switch_task_namespaces(current, new_nsproxy);
1690 			new_nsproxy = NULL;
1691 		}
1692 
1693 		task_lock(current);
1694 
1695 		if (new_fs) {
1696 			fs = current->fs;
1697 			write_lock(&fs->lock);
1698 			current->fs = new_fs;
1699 			if (--fs->users)
1700 				new_fs = NULL;
1701 			else
1702 				new_fs = fs;
1703 			write_unlock(&fs->lock);
1704 		}
1705 
1706 		if (new_mm) {
1707 			mm = current->mm;
1708 			active_mm = current->active_mm;
1709 			current->mm = new_mm;
1710 			current->active_mm = new_mm;
1711 			activate_mm(active_mm, new_mm);
1712 			new_mm = mm;
1713 		}
1714 
1715 		if (new_fd) {
1716 			fd = current->files;
1717 			current->files = new_fd;
1718 			new_fd = fd;
1719 		}
1720 
1721 		task_unlock(current);
1722 	}
1723 
1724 	if (new_nsproxy)
1725 		put_nsproxy(new_nsproxy);
1726 
1727 bad_unshare_cleanup_fd:
1728 	if (new_fd)
1729 		put_files_struct(new_fd);
1730 
1731 bad_unshare_cleanup_vm:
1732 	if (new_mm)
1733 		mmput(new_mm);
1734 
1735 bad_unshare_cleanup_sigh:
1736 	if (new_sigh)
1737 		if (atomic_dec_and_test(&new_sigh->count))
1738 			kmem_cache_free(sighand_cachep, new_sigh);
1739 
1740 bad_unshare_cleanup_fs:
1741 	if (new_fs)
1742 		free_fs_struct(new_fs);
1743 
1744 bad_unshare_cleanup_thread:
1745 bad_unshare_out:
1746 	return err;
1747 }
1748 
1749 /*
1750  *	Helper to unshare the files of the current task.
1751  *	We don't want to expose copy_files internals to
1752  *	the exec layer of the kernel.
1753  */
1754 
1755 int unshare_files(struct files_struct **displaced)
1756 {
1757 	struct task_struct *task = current;
1758 	struct files_struct *copy = NULL;
1759 	int error;
1760 
1761 	error = unshare_fd(CLONE_FILES, &copy);
1762 	if (error || !copy) {
1763 		*displaced = NULL;
1764 		return error;
1765 	}
1766 	*displaced = task->files;
1767 	task_lock(task);
1768 	task->files = copy;
1769 	task_unlock(task);
1770 	return 0;
1771 }
1772