1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 102 #include <asm/pgalloc.h> 103 #include <linux/uaccess.h> 104 #include <asm/mmu_context.h> 105 #include <asm/cacheflush.h> 106 #include <asm/tlbflush.h> 107 108 #include <trace/events/sched.h> 109 110 #define CREATE_TRACE_POINTS 111 #include <trace/events/task.h> 112 113 /* 114 * Minimum number of threads to boot the kernel 115 */ 116 #define MIN_THREADS 20 117 118 /* 119 * Maximum number of threads 120 */ 121 #define MAX_THREADS FUTEX_TID_MASK 122 123 /* 124 * Protected counters by write_lock_irq(&tasklist_lock) 125 */ 126 unsigned long total_forks; /* Handle normal Linux uptimes. */ 127 int nr_threads; /* The idle threads do not count.. */ 128 129 static int max_threads; /* tunable limit on nr_threads */ 130 131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 132 133 static const char * const resident_page_types[] = { 134 NAMED_ARRAY_INDEX(MM_FILEPAGES), 135 NAMED_ARRAY_INDEX(MM_ANONPAGES), 136 NAMED_ARRAY_INDEX(MM_SWAPENTS), 137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 138 }; 139 140 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 141 142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 143 144 #ifdef CONFIG_PROVE_RCU 145 int lockdep_tasklist_lock_is_held(void) 146 { 147 return lockdep_is_held(&tasklist_lock); 148 } 149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 150 #endif /* #ifdef CONFIG_PROVE_RCU */ 151 152 int nr_processes(void) 153 { 154 int cpu; 155 int total = 0; 156 157 for_each_possible_cpu(cpu) 158 total += per_cpu(process_counts, cpu); 159 160 return total; 161 } 162 163 void __weak arch_release_task_struct(struct task_struct *tsk) 164 { 165 } 166 167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 #endif 180 181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 182 183 /* 184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 185 * kmemcache based allocator. 186 */ 187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 188 189 # ifdef CONFIG_VMAP_STACK 190 /* 191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 192 * flush. Try to minimize the number of calls by caching stacks. 193 */ 194 #define NR_CACHED_STACKS 2 195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 196 197 struct vm_stack { 198 struct rcu_head rcu; 199 struct vm_struct *stack_vm_area; 200 }; 201 202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 203 { 204 unsigned int i; 205 206 for (i = 0; i < NR_CACHED_STACKS; i++) { 207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 208 continue; 209 return true; 210 } 211 return false; 212 } 213 214 static void thread_stack_free_rcu(struct rcu_head *rh) 215 { 216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 217 218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 219 return; 220 221 vfree(vm_stack); 222 } 223 224 static void thread_stack_delayed_free(struct task_struct *tsk) 225 { 226 struct vm_stack *vm_stack = tsk->stack; 227 228 vm_stack->stack_vm_area = tsk->stack_vm_area; 229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 230 } 231 232 static int free_vm_stack_cache(unsigned int cpu) 233 { 234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 235 int i; 236 237 for (i = 0; i < NR_CACHED_STACKS; i++) { 238 struct vm_struct *vm_stack = cached_vm_stacks[i]; 239 240 if (!vm_stack) 241 continue; 242 243 vfree(vm_stack->addr); 244 cached_vm_stacks[i] = NULL; 245 } 246 247 return 0; 248 } 249 250 static int memcg_charge_kernel_stack(struct vm_struct *vm) 251 { 252 int i; 253 int ret; 254 255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 257 258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 260 if (ret) 261 goto err; 262 } 263 return 0; 264 err: 265 /* 266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 268 * ignore this page. 269 */ 270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 271 memcg_kmem_uncharge_page(vm->pages[i], 0); 272 return ret; 273 } 274 275 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 276 { 277 struct vm_struct *vm; 278 void *stack; 279 int i; 280 281 for (i = 0; i < NR_CACHED_STACKS; i++) { 282 struct vm_struct *s; 283 284 s = this_cpu_xchg(cached_stacks[i], NULL); 285 286 if (!s) 287 continue; 288 289 /* Reset stack metadata. */ 290 kasan_unpoison_range(s->addr, THREAD_SIZE); 291 292 stack = kasan_reset_tag(s->addr); 293 294 /* Clear stale pointers from reused stack. */ 295 memset(stack, 0, THREAD_SIZE); 296 297 if (memcg_charge_kernel_stack(s)) { 298 vfree(s->addr); 299 return -ENOMEM; 300 } 301 302 tsk->stack_vm_area = s; 303 tsk->stack = stack; 304 return 0; 305 } 306 307 /* 308 * Allocated stacks are cached and later reused by new threads, 309 * so memcg accounting is performed manually on assigning/releasing 310 * stacks to tasks. Drop __GFP_ACCOUNT. 311 */ 312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 313 VMALLOC_START, VMALLOC_END, 314 THREADINFO_GFP & ~__GFP_ACCOUNT, 315 PAGE_KERNEL, 316 0, node, __builtin_return_address(0)); 317 if (!stack) 318 return -ENOMEM; 319 320 vm = find_vm_area(stack); 321 if (memcg_charge_kernel_stack(vm)) { 322 vfree(stack); 323 return -ENOMEM; 324 } 325 /* 326 * We can't call find_vm_area() in interrupt context, and 327 * free_thread_stack() can be called in interrupt context, 328 * so cache the vm_struct. 329 */ 330 tsk->stack_vm_area = vm; 331 stack = kasan_reset_tag(stack); 332 tsk->stack = stack; 333 return 0; 334 } 335 336 static void free_thread_stack(struct task_struct *tsk) 337 { 338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 339 thread_stack_delayed_free(tsk); 340 341 tsk->stack = NULL; 342 tsk->stack_vm_area = NULL; 343 } 344 345 # else /* !CONFIG_VMAP_STACK */ 346 347 static void thread_stack_free_rcu(struct rcu_head *rh) 348 { 349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 350 } 351 352 static void thread_stack_delayed_free(struct task_struct *tsk) 353 { 354 struct rcu_head *rh = tsk->stack; 355 356 call_rcu(rh, thread_stack_free_rcu); 357 } 358 359 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 360 { 361 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 362 THREAD_SIZE_ORDER); 363 364 if (likely(page)) { 365 tsk->stack = kasan_reset_tag(page_address(page)); 366 return 0; 367 } 368 return -ENOMEM; 369 } 370 371 static void free_thread_stack(struct task_struct *tsk) 372 { 373 thread_stack_delayed_free(tsk); 374 tsk->stack = NULL; 375 } 376 377 # endif /* CONFIG_VMAP_STACK */ 378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 379 380 static struct kmem_cache *thread_stack_cache; 381 382 static void thread_stack_free_rcu(struct rcu_head *rh) 383 { 384 kmem_cache_free(thread_stack_cache, rh); 385 } 386 387 static void thread_stack_delayed_free(struct task_struct *tsk) 388 { 389 struct rcu_head *rh = tsk->stack; 390 391 call_rcu(rh, thread_stack_free_rcu); 392 } 393 394 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 395 { 396 unsigned long *stack; 397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 398 stack = kasan_reset_tag(stack); 399 tsk->stack = stack; 400 return stack ? 0 : -ENOMEM; 401 } 402 403 static void free_thread_stack(struct task_struct *tsk) 404 { 405 thread_stack_delayed_free(tsk); 406 tsk->stack = NULL; 407 } 408 409 void thread_stack_cache_init(void) 410 { 411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 412 THREAD_SIZE, THREAD_SIZE, 0, 0, 413 THREAD_SIZE, NULL); 414 BUG_ON(thread_stack_cache == NULL); 415 } 416 417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 419 420 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 421 { 422 unsigned long *stack; 423 424 stack = arch_alloc_thread_stack_node(tsk, node); 425 tsk->stack = stack; 426 return stack ? 0 : -ENOMEM; 427 } 428 429 static void free_thread_stack(struct task_struct *tsk) 430 { 431 arch_free_thread_stack(tsk); 432 tsk->stack = NULL; 433 } 434 435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 436 437 /* SLAB cache for signal_struct structures (tsk->signal) */ 438 static struct kmem_cache *signal_cachep; 439 440 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 441 struct kmem_cache *sighand_cachep; 442 443 /* SLAB cache for files_struct structures (tsk->files) */ 444 struct kmem_cache *files_cachep; 445 446 /* SLAB cache for fs_struct structures (tsk->fs) */ 447 struct kmem_cache *fs_cachep; 448 449 /* SLAB cache for vm_area_struct structures */ 450 static struct kmem_cache *vm_area_cachep; 451 452 /* SLAB cache for mm_struct structures (tsk->mm) */ 453 static struct kmem_cache *mm_cachep; 454 455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 456 { 457 struct vm_area_struct *vma; 458 459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 460 if (vma) 461 vma_init(vma, mm); 462 return vma; 463 } 464 465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 466 { 467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 469 if (new) { 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 472 /* 473 * orig->shared.rb may be modified concurrently, but the clone 474 * will be reinitialized. 475 */ 476 data_race(memcpy(new, orig, sizeof(*new))); 477 INIT_LIST_HEAD(&new->anon_vma_chain); 478 dup_anon_vma_name(orig, new); 479 } 480 return new; 481 } 482 483 void vm_area_free(struct vm_area_struct *vma) 484 { 485 free_anon_vma_name(vma); 486 kmem_cache_free(vm_area_cachep, vma); 487 } 488 489 static void account_kernel_stack(struct task_struct *tsk, int account) 490 { 491 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 492 struct vm_struct *vm = task_stack_vm_area(tsk); 493 int i; 494 495 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 496 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 497 account * (PAGE_SIZE / 1024)); 498 } else { 499 void *stack = task_stack_page(tsk); 500 501 /* All stack pages are in the same node. */ 502 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 503 account * (THREAD_SIZE / 1024)); 504 } 505 } 506 507 void exit_task_stack_account(struct task_struct *tsk) 508 { 509 account_kernel_stack(tsk, -1); 510 511 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 512 struct vm_struct *vm; 513 int i; 514 515 vm = task_stack_vm_area(tsk); 516 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 517 memcg_kmem_uncharge_page(vm->pages[i], 0); 518 } 519 } 520 521 static void release_task_stack(struct task_struct *tsk) 522 { 523 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 524 return; /* Better to leak the stack than to free prematurely */ 525 526 free_thread_stack(tsk); 527 } 528 529 #ifdef CONFIG_THREAD_INFO_IN_TASK 530 void put_task_stack(struct task_struct *tsk) 531 { 532 if (refcount_dec_and_test(&tsk->stack_refcount)) 533 release_task_stack(tsk); 534 } 535 #endif 536 537 void free_task(struct task_struct *tsk) 538 { 539 #ifdef CONFIG_SECCOMP 540 WARN_ON_ONCE(tsk->seccomp.filter); 541 #endif 542 release_user_cpus_ptr(tsk); 543 scs_release(tsk); 544 545 #ifndef CONFIG_THREAD_INFO_IN_TASK 546 /* 547 * The task is finally done with both the stack and thread_info, 548 * so free both. 549 */ 550 release_task_stack(tsk); 551 #else 552 /* 553 * If the task had a separate stack allocation, it should be gone 554 * by now. 555 */ 556 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 557 #endif 558 rt_mutex_debug_task_free(tsk); 559 ftrace_graph_exit_task(tsk); 560 arch_release_task_struct(tsk); 561 if (tsk->flags & PF_KTHREAD) 562 free_kthread_struct(tsk); 563 free_task_struct(tsk); 564 } 565 EXPORT_SYMBOL(free_task); 566 567 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 568 { 569 struct file *exe_file; 570 571 exe_file = get_mm_exe_file(oldmm); 572 RCU_INIT_POINTER(mm->exe_file, exe_file); 573 /* 574 * We depend on the oldmm having properly denied write access to the 575 * exe_file already. 576 */ 577 if (exe_file && deny_write_access(exe_file)) 578 pr_warn_once("deny_write_access() failed in %s\n", __func__); 579 } 580 581 #ifdef CONFIG_MMU 582 static __latent_entropy int dup_mmap(struct mm_struct *mm, 583 struct mm_struct *oldmm) 584 { 585 struct vm_area_struct *mpnt, *tmp; 586 int retval; 587 unsigned long charge = 0; 588 LIST_HEAD(uf); 589 VMA_ITERATOR(old_vmi, oldmm, 0); 590 VMA_ITERATOR(vmi, mm, 0); 591 592 uprobe_start_dup_mmap(); 593 if (mmap_write_lock_killable(oldmm)) { 594 retval = -EINTR; 595 goto fail_uprobe_end; 596 } 597 flush_cache_dup_mm(oldmm); 598 uprobe_dup_mmap(oldmm, mm); 599 /* 600 * Not linked in yet - no deadlock potential: 601 */ 602 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 603 604 /* No ordering required: file already has been exposed. */ 605 dup_mm_exe_file(mm, oldmm); 606 607 mm->total_vm = oldmm->total_vm; 608 mm->data_vm = oldmm->data_vm; 609 mm->exec_vm = oldmm->exec_vm; 610 mm->stack_vm = oldmm->stack_vm; 611 612 retval = ksm_fork(mm, oldmm); 613 if (retval) 614 goto out; 615 khugepaged_fork(mm, oldmm); 616 617 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 618 if (retval) 619 goto out; 620 621 for_each_vma(old_vmi, mpnt) { 622 struct file *file; 623 624 if (mpnt->vm_flags & VM_DONTCOPY) { 625 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 626 continue; 627 } 628 charge = 0; 629 /* 630 * Don't duplicate many vmas if we've been oom-killed (for 631 * example) 632 */ 633 if (fatal_signal_pending(current)) { 634 retval = -EINTR; 635 goto loop_out; 636 } 637 if (mpnt->vm_flags & VM_ACCOUNT) { 638 unsigned long len = vma_pages(mpnt); 639 640 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 641 goto fail_nomem; 642 charge = len; 643 } 644 tmp = vm_area_dup(mpnt); 645 if (!tmp) 646 goto fail_nomem; 647 retval = vma_dup_policy(mpnt, tmp); 648 if (retval) 649 goto fail_nomem_policy; 650 tmp->vm_mm = mm; 651 retval = dup_userfaultfd(tmp, &uf); 652 if (retval) 653 goto fail_nomem_anon_vma_fork; 654 if (tmp->vm_flags & VM_WIPEONFORK) { 655 /* 656 * VM_WIPEONFORK gets a clean slate in the child. 657 * Don't prepare anon_vma until fault since we don't 658 * copy page for current vma. 659 */ 660 tmp->anon_vma = NULL; 661 } else if (anon_vma_fork(tmp, mpnt)) 662 goto fail_nomem_anon_vma_fork; 663 vm_flags_clear(tmp, VM_LOCKED_MASK); 664 file = tmp->vm_file; 665 if (file) { 666 struct address_space *mapping = file->f_mapping; 667 668 get_file(file); 669 i_mmap_lock_write(mapping); 670 if (tmp->vm_flags & VM_SHARED) 671 mapping_allow_writable(mapping); 672 flush_dcache_mmap_lock(mapping); 673 /* insert tmp into the share list, just after mpnt */ 674 vma_interval_tree_insert_after(tmp, mpnt, 675 &mapping->i_mmap); 676 flush_dcache_mmap_unlock(mapping); 677 i_mmap_unlock_write(mapping); 678 } 679 680 /* 681 * Copy/update hugetlb private vma information. 682 */ 683 if (is_vm_hugetlb_page(tmp)) 684 hugetlb_dup_vma_private(tmp); 685 686 /* Link the vma into the MT */ 687 if (vma_iter_bulk_store(&vmi, tmp)) 688 goto fail_nomem_vmi_store; 689 690 mm->map_count++; 691 if (!(tmp->vm_flags & VM_WIPEONFORK)) 692 retval = copy_page_range(tmp, mpnt); 693 694 if (tmp->vm_ops && tmp->vm_ops->open) 695 tmp->vm_ops->open(tmp); 696 697 if (retval) 698 goto loop_out; 699 } 700 /* a new mm has just been created */ 701 retval = arch_dup_mmap(oldmm, mm); 702 loop_out: 703 vma_iter_free(&vmi); 704 out: 705 mmap_write_unlock(mm); 706 flush_tlb_mm(oldmm); 707 mmap_write_unlock(oldmm); 708 dup_userfaultfd_complete(&uf); 709 fail_uprobe_end: 710 uprobe_end_dup_mmap(); 711 return retval; 712 713 fail_nomem_vmi_store: 714 unlink_anon_vmas(tmp); 715 fail_nomem_anon_vma_fork: 716 mpol_put(vma_policy(tmp)); 717 fail_nomem_policy: 718 vm_area_free(tmp); 719 fail_nomem: 720 retval = -ENOMEM; 721 vm_unacct_memory(charge); 722 goto loop_out; 723 } 724 725 static inline int mm_alloc_pgd(struct mm_struct *mm) 726 { 727 mm->pgd = pgd_alloc(mm); 728 if (unlikely(!mm->pgd)) 729 return -ENOMEM; 730 return 0; 731 } 732 733 static inline void mm_free_pgd(struct mm_struct *mm) 734 { 735 pgd_free(mm, mm->pgd); 736 } 737 #else 738 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 739 { 740 mmap_write_lock(oldmm); 741 dup_mm_exe_file(mm, oldmm); 742 mmap_write_unlock(oldmm); 743 return 0; 744 } 745 #define mm_alloc_pgd(mm) (0) 746 #define mm_free_pgd(mm) 747 #endif /* CONFIG_MMU */ 748 749 static void check_mm(struct mm_struct *mm) 750 { 751 int i; 752 753 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 754 "Please make sure 'struct resident_page_types[]' is updated as well"); 755 756 for (i = 0; i < NR_MM_COUNTERS; i++) { 757 long x = percpu_counter_sum(&mm->rss_stat[i]); 758 759 if (likely(!x)) 760 continue; 761 762 /* Making sure this is not due to race with CPU offlining. */ 763 x = percpu_counter_sum_all(&mm->rss_stat[i]); 764 if (unlikely(x)) 765 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 766 mm, resident_page_types[i], x); 767 } 768 769 if (mm_pgtables_bytes(mm)) 770 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 771 mm_pgtables_bytes(mm)); 772 773 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 774 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 775 #endif 776 } 777 778 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 779 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 780 781 /* 782 * Called when the last reference to the mm 783 * is dropped: either by a lazy thread or by 784 * mmput. Free the page directory and the mm. 785 */ 786 void __mmdrop(struct mm_struct *mm) 787 { 788 int i; 789 790 BUG_ON(mm == &init_mm); 791 WARN_ON_ONCE(mm == current->mm); 792 WARN_ON_ONCE(mm == current->active_mm); 793 mm_free_pgd(mm); 794 destroy_context(mm); 795 mmu_notifier_subscriptions_destroy(mm); 796 check_mm(mm); 797 put_user_ns(mm->user_ns); 798 mm_pasid_drop(mm); 799 800 for (i = 0; i < NR_MM_COUNTERS; i++) 801 percpu_counter_destroy(&mm->rss_stat[i]); 802 free_mm(mm); 803 } 804 EXPORT_SYMBOL_GPL(__mmdrop); 805 806 static void mmdrop_async_fn(struct work_struct *work) 807 { 808 struct mm_struct *mm; 809 810 mm = container_of(work, struct mm_struct, async_put_work); 811 __mmdrop(mm); 812 } 813 814 static void mmdrop_async(struct mm_struct *mm) 815 { 816 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 817 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 818 schedule_work(&mm->async_put_work); 819 } 820 } 821 822 static inline void free_signal_struct(struct signal_struct *sig) 823 { 824 taskstats_tgid_free(sig); 825 sched_autogroup_exit(sig); 826 /* 827 * __mmdrop is not safe to call from softirq context on x86 due to 828 * pgd_dtor so postpone it to the async context 829 */ 830 if (sig->oom_mm) 831 mmdrop_async(sig->oom_mm); 832 kmem_cache_free(signal_cachep, sig); 833 } 834 835 static inline void put_signal_struct(struct signal_struct *sig) 836 { 837 if (refcount_dec_and_test(&sig->sigcnt)) 838 free_signal_struct(sig); 839 } 840 841 void __put_task_struct(struct task_struct *tsk) 842 { 843 WARN_ON(!tsk->exit_state); 844 WARN_ON(refcount_read(&tsk->usage)); 845 WARN_ON(tsk == current); 846 847 io_uring_free(tsk); 848 cgroup_free(tsk); 849 task_numa_free(tsk, true); 850 security_task_free(tsk); 851 bpf_task_storage_free(tsk); 852 exit_creds(tsk); 853 delayacct_tsk_free(tsk); 854 put_signal_struct(tsk->signal); 855 sched_core_free(tsk); 856 free_task(tsk); 857 } 858 EXPORT_SYMBOL_GPL(__put_task_struct); 859 860 void __init __weak arch_task_cache_init(void) { } 861 862 /* 863 * set_max_threads 864 */ 865 static void set_max_threads(unsigned int max_threads_suggested) 866 { 867 u64 threads; 868 unsigned long nr_pages = totalram_pages(); 869 870 /* 871 * The number of threads shall be limited such that the thread 872 * structures may only consume a small part of the available memory. 873 */ 874 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 875 threads = MAX_THREADS; 876 else 877 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 878 (u64) THREAD_SIZE * 8UL); 879 880 if (threads > max_threads_suggested) 881 threads = max_threads_suggested; 882 883 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 884 } 885 886 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 887 /* Initialized by the architecture: */ 888 int arch_task_struct_size __read_mostly; 889 #endif 890 891 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 892 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 893 { 894 /* Fetch thread_struct whitelist for the architecture. */ 895 arch_thread_struct_whitelist(offset, size); 896 897 /* 898 * Handle zero-sized whitelist or empty thread_struct, otherwise 899 * adjust offset to position of thread_struct in task_struct. 900 */ 901 if (unlikely(*size == 0)) 902 *offset = 0; 903 else 904 *offset += offsetof(struct task_struct, thread); 905 } 906 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 907 908 void __init fork_init(void) 909 { 910 int i; 911 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 912 #ifndef ARCH_MIN_TASKALIGN 913 #define ARCH_MIN_TASKALIGN 0 914 #endif 915 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 916 unsigned long useroffset, usersize; 917 918 /* create a slab on which task_structs can be allocated */ 919 task_struct_whitelist(&useroffset, &usersize); 920 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 921 arch_task_struct_size, align, 922 SLAB_PANIC|SLAB_ACCOUNT, 923 useroffset, usersize, NULL); 924 #endif 925 926 /* do the arch specific task caches init */ 927 arch_task_cache_init(); 928 929 set_max_threads(MAX_THREADS); 930 931 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 932 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 933 init_task.signal->rlim[RLIMIT_SIGPENDING] = 934 init_task.signal->rlim[RLIMIT_NPROC]; 935 936 for (i = 0; i < UCOUNT_COUNTS; i++) 937 init_user_ns.ucount_max[i] = max_threads/2; 938 939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 940 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 941 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 942 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 943 944 #ifdef CONFIG_VMAP_STACK 945 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 946 NULL, free_vm_stack_cache); 947 #endif 948 949 scs_init(); 950 951 lockdep_init_task(&init_task); 952 uprobes_init(); 953 } 954 955 int __weak arch_dup_task_struct(struct task_struct *dst, 956 struct task_struct *src) 957 { 958 *dst = *src; 959 return 0; 960 } 961 962 void set_task_stack_end_magic(struct task_struct *tsk) 963 { 964 unsigned long *stackend; 965 966 stackend = end_of_stack(tsk); 967 *stackend = STACK_END_MAGIC; /* for overflow detection */ 968 } 969 970 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 971 { 972 struct task_struct *tsk; 973 int err; 974 975 if (node == NUMA_NO_NODE) 976 node = tsk_fork_get_node(orig); 977 tsk = alloc_task_struct_node(node); 978 if (!tsk) 979 return NULL; 980 981 err = arch_dup_task_struct(tsk, orig); 982 if (err) 983 goto free_tsk; 984 985 err = alloc_thread_stack_node(tsk, node); 986 if (err) 987 goto free_tsk; 988 989 #ifdef CONFIG_THREAD_INFO_IN_TASK 990 refcount_set(&tsk->stack_refcount, 1); 991 #endif 992 account_kernel_stack(tsk, 1); 993 994 err = scs_prepare(tsk, node); 995 if (err) 996 goto free_stack; 997 998 #ifdef CONFIG_SECCOMP 999 /* 1000 * We must handle setting up seccomp filters once we're under 1001 * the sighand lock in case orig has changed between now and 1002 * then. Until then, filter must be NULL to avoid messing up 1003 * the usage counts on the error path calling free_task. 1004 */ 1005 tsk->seccomp.filter = NULL; 1006 #endif 1007 1008 setup_thread_stack(tsk, orig); 1009 clear_user_return_notifier(tsk); 1010 clear_tsk_need_resched(tsk); 1011 set_task_stack_end_magic(tsk); 1012 clear_syscall_work_syscall_user_dispatch(tsk); 1013 1014 #ifdef CONFIG_STACKPROTECTOR 1015 tsk->stack_canary = get_random_canary(); 1016 #endif 1017 if (orig->cpus_ptr == &orig->cpus_mask) 1018 tsk->cpus_ptr = &tsk->cpus_mask; 1019 dup_user_cpus_ptr(tsk, orig, node); 1020 1021 /* 1022 * One for the user space visible state that goes away when reaped. 1023 * One for the scheduler. 1024 */ 1025 refcount_set(&tsk->rcu_users, 2); 1026 /* One for the rcu users */ 1027 refcount_set(&tsk->usage, 1); 1028 #ifdef CONFIG_BLK_DEV_IO_TRACE 1029 tsk->btrace_seq = 0; 1030 #endif 1031 tsk->splice_pipe = NULL; 1032 tsk->task_frag.page = NULL; 1033 tsk->wake_q.next = NULL; 1034 tsk->worker_private = NULL; 1035 1036 kcov_task_init(tsk); 1037 kmsan_task_create(tsk); 1038 kmap_local_fork(tsk); 1039 1040 #ifdef CONFIG_FAULT_INJECTION 1041 tsk->fail_nth = 0; 1042 #endif 1043 1044 #ifdef CONFIG_BLK_CGROUP 1045 tsk->throttle_disk = NULL; 1046 tsk->use_memdelay = 0; 1047 #endif 1048 1049 #ifdef CONFIG_IOMMU_SVA 1050 tsk->pasid_activated = 0; 1051 #endif 1052 1053 #ifdef CONFIG_MEMCG 1054 tsk->active_memcg = NULL; 1055 #endif 1056 1057 #ifdef CONFIG_CPU_SUP_INTEL 1058 tsk->reported_split_lock = 0; 1059 #endif 1060 1061 #ifdef CONFIG_SCHED_MM_CID 1062 tsk->mm_cid = -1; 1063 tsk->mm_cid_active = 0; 1064 #endif 1065 return tsk; 1066 1067 free_stack: 1068 exit_task_stack_account(tsk); 1069 free_thread_stack(tsk); 1070 free_tsk: 1071 free_task_struct(tsk); 1072 return NULL; 1073 } 1074 1075 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1076 1077 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1078 1079 static int __init coredump_filter_setup(char *s) 1080 { 1081 default_dump_filter = 1082 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1083 MMF_DUMP_FILTER_MASK; 1084 return 1; 1085 } 1086 1087 __setup("coredump_filter=", coredump_filter_setup); 1088 1089 #include <linux/init_task.h> 1090 1091 static void mm_init_aio(struct mm_struct *mm) 1092 { 1093 #ifdef CONFIG_AIO 1094 spin_lock_init(&mm->ioctx_lock); 1095 mm->ioctx_table = NULL; 1096 #endif 1097 } 1098 1099 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1100 struct task_struct *p) 1101 { 1102 #ifdef CONFIG_MEMCG 1103 if (mm->owner == p) 1104 WRITE_ONCE(mm->owner, NULL); 1105 #endif 1106 } 1107 1108 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1109 { 1110 #ifdef CONFIG_MEMCG 1111 mm->owner = p; 1112 #endif 1113 } 1114 1115 static void mm_init_uprobes_state(struct mm_struct *mm) 1116 { 1117 #ifdef CONFIG_UPROBES 1118 mm->uprobes_state.xol_area = NULL; 1119 #endif 1120 } 1121 1122 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1123 struct user_namespace *user_ns) 1124 { 1125 int i; 1126 1127 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1128 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1129 atomic_set(&mm->mm_users, 1); 1130 atomic_set(&mm->mm_count, 1); 1131 seqcount_init(&mm->write_protect_seq); 1132 mmap_init_lock(mm); 1133 INIT_LIST_HEAD(&mm->mmlist); 1134 mm_pgtables_bytes_init(mm); 1135 mm->map_count = 0; 1136 mm->locked_vm = 0; 1137 atomic64_set(&mm->pinned_vm, 0); 1138 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1139 spin_lock_init(&mm->page_table_lock); 1140 spin_lock_init(&mm->arg_lock); 1141 mm_init_cpumask(mm); 1142 mm_init_aio(mm); 1143 mm_init_owner(mm, p); 1144 mm_pasid_init(mm); 1145 RCU_INIT_POINTER(mm->exe_file, NULL); 1146 mmu_notifier_subscriptions_init(mm); 1147 init_tlb_flush_pending(mm); 1148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1149 mm->pmd_huge_pte = NULL; 1150 #endif 1151 mm_init_uprobes_state(mm); 1152 hugetlb_count_init(mm); 1153 1154 if (current->mm) { 1155 mm->flags = current->mm->flags & MMF_INIT_MASK; 1156 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1157 } else { 1158 mm->flags = default_dump_filter; 1159 mm->def_flags = 0; 1160 } 1161 1162 if (mm_alloc_pgd(mm)) 1163 goto fail_nopgd; 1164 1165 if (init_new_context(p, mm)) 1166 goto fail_nocontext; 1167 1168 for (i = 0; i < NR_MM_COUNTERS; i++) 1169 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1170 goto fail_pcpu; 1171 1172 mm->user_ns = get_user_ns(user_ns); 1173 lru_gen_init_mm(mm); 1174 mm_init_cid(mm); 1175 return mm; 1176 1177 fail_pcpu: 1178 while (i > 0) 1179 percpu_counter_destroy(&mm->rss_stat[--i]); 1180 fail_nocontext: 1181 mm_free_pgd(mm); 1182 fail_nopgd: 1183 free_mm(mm); 1184 return NULL; 1185 } 1186 1187 /* 1188 * Allocate and initialize an mm_struct. 1189 */ 1190 struct mm_struct *mm_alloc(void) 1191 { 1192 struct mm_struct *mm; 1193 1194 mm = allocate_mm(); 1195 if (!mm) 1196 return NULL; 1197 1198 memset(mm, 0, sizeof(*mm)); 1199 return mm_init(mm, current, current_user_ns()); 1200 } 1201 1202 static inline void __mmput(struct mm_struct *mm) 1203 { 1204 VM_BUG_ON(atomic_read(&mm->mm_users)); 1205 1206 uprobe_clear_state(mm); 1207 exit_aio(mm); 1208 ksm_exit(mm); 1209 khugepaged_exit(mm); /* must run before exit_mmap */ 1210 exit_mmap(mm); 1211 mm_put_huge_zero_page(mm); 1212 set_mm_exe_file(mm, NULL); 1213 if (!list_empty(&mm->mmlist)) { 1214 spin_lock(&mmlist_lock); 1215 list_del(&mm->mmlist); 1216 spin_unlock(&mmlist_lock); 1217 } 1218 if (mm->binfmt) 1219 module_put(mm->binfmt->module); 1220 lru_gen_del_mm(mm); 1221 mmdrop(mm); 1222 } 1223 1224 /* 1225 * Decrement the use count and release all resources for an mm. 1226 */ 1227 void mmput(struct mm_struct *mm) 1228 { 1229 might_sleep(); 1230 1231 if (atomic_dec_and_test(&mm->mm_users)) 1232 __mmput(mm); 1233 } 1234 EXPORT_SYMBOL_GPL(mmput); 1235 1236 #ifdef CONFIG_MMU 1237 static void mmput_async_fn(struct work_struct *work) 1238 { 1239 struct mm_struct *mm = container_of(work, struct mm_struct, 1240 async_put_work); 1241 1242 __mmput(mm); 1243 } 1244 1245 void mmput_async(struct mm_struct *mm) 1246 { 1247 if (atomic_dec_and_test(&mm->mm_users)) { 1248 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1249 schedule_work(&mm->async_put_work); 1250 } 1251 } 1252 EXPORT_SYMBOL_GPL(mmput_async); 1253 #endif 1254 1255 /** 1256 * set_mm_exe_file - change a reference to the mm's executable file 1257 * 1258 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1259 * 1260 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1261 * invocations: in mmput() nobody alive left, in execve task is single 1262 * threaded. 1263 * 1264 * Can only fail if new_exe_file != NULL. 1265 */ 1266 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1267 { 1268 struct file *old_exe_file; 1269 1270 /* 1271 * It is safe to dereference the exe_file without RCU as 1272 * this function is only called if nobody else can access 1273 * this mm -- see comment above for justification. 1274 */ 1275 old_exe_file = rcu_dereference_raw(mm->exe_file); 1276 1277 if (new_exe_file) { 1278 /* 1279 * We expect the caller (i.e., sys_execve) to already denied 1280 * write access, so this is unlikely to fail. 1281 */ 1282 if (unlikely(deny_write_access(new_exe_file))) 1283 return -EACCES; 1284 get_file(new_exe_file); 1285 } 1286 rcu_assign_pointer(mm->exe_file, new_exe_file); 1287 if (old_exe_file) { 1288 allow_write_access(old_exe_file); 1289 fput(old_exe_file); 1290 } 1291 return 0; 1292 } 1293 1294 /** 1295 * replace_mm_exe_file - replace a reference to the mm's executable file 1296 * 1297 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1298 * dealing with concurrent invocation and without grabbing the mmap lock in 1299 * write mode. 1300 * 1301 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1302 */ 1303 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1304 { 1305 struct vm_area_struct *vma; 1306 struct file *old_exe_file; 1307 int ret = 0; 1308 1309 /* Forbid mm->exe_file change if old file still mapped. */ 1310 old_exe_file = get_mm_exe_file(mm); 1311 if (old_exe_file) { 1312 VMA_ITERATOR(vmi, mm, 0); 1313 mmap_read_lock(mm); 1314 for_each_vma(vmi, vma) { 1315 if (!vma->vm_file) 1316 continue; 1317 if (path_equal(&vma->vm_file->f_path, 1318 &old_exe_file->f_path)) { 1319 ret = -EBUSY; 1320 break; 1321 } 1322 } 1323 mmap_read_unlock(mm); 1324 fput(old_exe_file); 1325 if (ret) 1326 return ret; 1327 } 1328 1329 /* set the new file, lockless */ 1330 ret = deny_write_access(new_exe_file); 1331 if (ret) 1332 return -EACCES; 1333 get_file(new_exe_file); 1334 1335 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1336 if (old_exe_file) { 1337 /* 1338 * Don't race with dup_mmap() getting the file and disallowing 1339 * write access while someone might open the file writable. 1340 */ 1341 mmap_read_lock(mm); 1342 allow_write_access(old_exe_file); 1343 fput(old_exe_file); 1344 mmap_read_unlock(mm); 1345 } 1346 return 0; 1347 } 1348 1349 /** 1350 * get_mm_exe_file - acquire a reference to the mm's executable file 1351 * 1352 * Returns %NULL if mm has no associated executable file. 1353 * User must release file via fput(). 1354 */ 1355 struct file *get_mm_exe_file(struct mm_struct *mm) 1356 { 1357 struct file *exe_file; 1358 1359 rcu_read_lock(); 1360 exe_file = rcu_dereference(mm->exe_file); 1361 if (exe_file && !get_file_rcu(exe_file)) 1362 exe_file = NULL; 1363 rcu_read_unlock(); 1364 return exe_file; 1365 } 1366 1367 /** 1368 * get_task_exe_file - acquire a reference to the task's executable file 1369 * 1370 * Returns %NULL if task's mm (if any) has no associated executable file or 1371 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1372 * User must release file via fput(). 1373 */ 1374 struct file *get_task_exe_file(struct task_struct *task) 1375 { 1376 struct file *exe_file = NULL; 1377 struct mm_struct *mm; 1378 1379 task_lock(task); 1380 mm = task->mm; 1381 if (mm) { 1382 if (!(task->flags & PF_KTHREAD)) 1383 exe_file = get_mm_exe_file(mm); 1384 } 1385 task_unlock(task); 1386 return exe_file; 1387 } 1388 1389 /** 1390 * get_task_mm - acquire a reference to the task's mm 1391 * 1392 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1393 * this kernel workthread has transiently adopted a user mm with use_mm, 1394 * to do its AIO) is not set and if so returns a reference to it, after 1395 * bumping up the use count. User must release the mm via mmput() 1396 * after use. Typically used by /proc and ptrace. 1397 */ 1398 struct mm_struct *get_task_mm(struct task_struct *task) 1399 { 1400 struct mm_struct *mm; 1401 1402 task_lock(task); 1403 mm = task->mm; 1404 if (mm) { 1405 if (task->flags & PF_KTHREAD) 1406 mm = NULL; 1407 else 1408 mmget(mm); 1409 } 1410 task_unlock(task); 1411 return mm; 1412 } 1413 EXPORT_SYMBOL_GPL(get_task_mm); 1414 1415 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1416 { 1417 struct mm_struct *mm; 1418 int err; 1419 1420 err = down_read_killable(&task->signal->exec_update_lock); 1421 if (err) 1422 return ERR_PTR(err); 1423 1424 mm = get_task_mm(task); 1425 if (mm && mm != current->mm && 1426 !ptrace_may_access(task, mode)) { 1427 mmput(mm); 1428 mm = ERR_PTR(-EACCES); 1429 } 1430 up_read(&task->signal->exec_update_lock); 1431 1432 return mm; 1433 } 1434 1435 static void complete_vfork_done(struct task_struct *tsk) 1436 { 1437 struct completion *vfork; 1438 1439 task_lock(tsk); 1440 vfork = tsk->vfork_done; 1441 if (likely(vfork)) { 1442 tsk->vfork_done = NULL; 1443 complete(vfork); 1444 } 1445 task_unlock(tsk); 1446 } 1447 1448 static int wait_for_vfork_done(struct task_struct *child, 1449 struct completion *vfork) 1450 { 1451 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1452 int killed; 1453 1454 cgroup_enter_frozen(); 1455 killed = wait_for_completion_state(vfork, state); 1456 cgroup_leave_frozen(false); 1457 1458 if (killed) { 1459 task_lock(child); 1460 child->vfork_done = NULL; 1461 task_unlock(child); 1462 } 1463 1464 put_task_struct(child); 1465 return killed; 1466 } 1467 1468 /* Please note the differences between mmput and mm_release. 1469 * mmput is called whenever we stop holding onto a mm_struct, 1470 * error success whatever. 1471 * 1472 * mm_release is called after a mm_struct has been removed 1473 * from the current process. 1474 * 1475 * This difference is important for error handling, when we 1476 * only half set up a mm_struct for a new process and need to restore 1477 * the old one. Because we mmput the new mm_struct before 1478 * restoring the old one. . . 1479 * Eric Biederman 10 January 1998 1480 */ 1481 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1482 { 1483 uprobe_free_utask(tsk); 1484 1485 /* Get rid of any cached register state */ 1486 deactivate_mm(tsk, mm); 1487 1488 /* 1489 * Signal userspace if we're not exiting with a core dump 1490 * because we want to leave the value intact for debugging 1491 * purposes. 1492 */ 1493 if (tsk->clear_child_tid) { 1494 if (atomic_read(&mm->mm_users) > 1) { 1495 /* 1496 * We don't check the error code - if userspace has 1497 * not set up a proper pointer then tough luck. 1498 */ 1499 put_user(0, tsk->clear_child_tid); 1500 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1501 1, NULL, NULL, 0, 0); 1502 } 1503 tsk->clear_child_tid = NULL; 1504 } 1505 1506 /* 1507 * All done, finally we can wake up parent and return this mm to him. 1508 * Also kthread_stop() uses this completion for synchronization. 1509 */ 1510 if (tsk->vfork_done) 1511 complete_vfork_done(tsk); 1512 } 1513 1514 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1515 { 1516 futex_exit_release(tsk); 1517 mm_release(tsk, mm); 1518 } 1519 1520 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1521 { 1522 futex_exec_release(tsk); 1523 mm_release(tsk, mm); 1524 } 1525 1526 /** 1527 * dup_mm() - duplicates an existing mm structure 1528 * @tsk: the task_struct with which the new mm will be associated. 1529 * @oldmm: the mm to duplicate. 1530 * 1531 * Allocates a new mm structure and duplicates the provided @oldmm structure 1532 * content into it. 1533 * 1534 * Return: the duplicated mm or NULL on failure. 1535 */ 1536 static struct mm_struct *dup_mm(struct task_struct *tsk, 1537 struct mm_struct *oldmm) 1538 { 1539 struct mm_struct *mm; 1540 int err; 1541 1542 mm = allocate_mm(); 1543 if (!mm) 1544 goto fail_nomem; 1545 1546 memcpy(mm, oldmm, sizeof(*mm)); 1547 1548 if (!mm_init(mm, tsk, mm->user_ns)) 1549 goto fail_nomem; 1550 1551 err = dup_mmap(mm, oldmm); 1552 if (err) 1553 goto free_pt; 1554 1555 mm->hiwater_rss = get_mm_rss(mm); 1556 mm->hiwater_vm = mm->total_vm; 1557 1558 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1559 goto free_pt; 1560 1561 return mm; 1562 1563 free_pt: 1564 /* don't put binfmt in mmput, we haven't got module yet */ 1565 mm->binfmt = NULL; 1566 mm_init_owner(mm, NULL); 1567 mmput(mm); 1568 1569 fail_nomem: 1570 return NULL; 1571 } 1572 1573 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1574 { 1575 struct mm_struct *mm, *oldmm; 1576 1577 tsk->min_flt = tsk->maj_flt = 0; 1578 tsk->nvcsw = tsk->nivcsw = 0; 1579 #ifdef CONFIG_DETECT_HUNG_TASK 1580 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1581 tsk->last_switch_time = 0; 1582 #endif 1583 1584 tsk->mm = NULL; 1585 tsk->active_mm = NULL; 1586 1587 /* 1588 * Are we cloning a kernel thread? 1589 * 1590 * We need to steal a active VM for that.. 1591 */ 1592 oldmm = current->mm; 1593 if (!oldmm) 1594 return 0; 1595 1596 if (clone_flags & CLONE_VM) { 1597 mmget(oldmm); 1598 mm = oldmm; 1599 } else { 1600 mm = dup_mm(tsk, current->mm); 1601 if (!mm) 1602 return -ENOMEM; 1603 } 1604 1605 tsk->mm = mm; 1606 tsk->active_mm = mm; 1607 sched_mm_cid_fork(tsk); 1608 return 0; 1609 } 1610 1611 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1612 { 1613 struct fs_struct *fs = current->fs; 1614 if (clone_flags & CLONE_FS) { 1615 /* tsk->fs is already what we want */ 1616 spin_lock(&fs->lock); 1617 if (fs->in_exec) { 1618 spin_unlock(&fs->lock); 1619 return -EAGAIN; 1620 } 1621 fs->users++; 1622 spin_unlock(&fs->lock); 1623 return 0; 1624 } 1625 tsk->fs = copy_fs_struct(fs); 1626 if (!tsk->fs) 1627 return -ENOMEM; 1628 return 0; 1629 } 1630 1631 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1632 { 1633 struct files_struct *oldf, *newf; 1634 int error = 0; 1635 1636 /* 1637 * A background process may not have any files ... 1638 */ 1639 oldf = current->files; 1640 if (!oldf) 1641 goto out; 1642 1643 if (clone_flags & CLONE_FILES) { 1644 atomic_inc(&oldf->count); 1645 goto out; 1646 } 1647 1648 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1649 if (!newf) 1650 goto out; 1651 1652 tsk->files = newf; 1653 error = 0; 1654 out: 1655 return error; 1656 } 1657 1658 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1659 { 1660 struct sighand_struct *sig; 1661 1662 if (clone_flags & CLONE_SIGHAND) { 1663 refcount_inc(¤t->sighand->count); 1664 return 0; 1665 } 1666 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1667 RCU_INIT_POINTER(tsk->sighand, sig); 1668 if (!sig) 1669 return -ENOMEM; 1670 1671 refcount_set(&sig->count, 1); 1672 spin_lock_irq(¤t->sighand->siglock); 1673 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1674 spin_unlock_irq(¤t->sighand->siglock); 1675 1676 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1677 if (clone_flags & CLONE_CLEAR_SIGHAND) 1678 flush_signal_handlers(tsk, 0); 1679 1680 return 0; 1681 } 1682 1683 void __cleanup_sighand(struct sighand_struct *sighand) 1684 { 1685 if (refcount_dec_and_test(&sighand->count)) { 1686 signalfd_cleanup(sighand); 1687 /* 1688 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1689 * without an RCU grace period, see __lock_task_sighand(). 1690 */ 1691 kmem_cache_free(sighand_cachep, sighand); 1692 } 1693 } 1694 1695 /* 1696 * Initialize POSIX timer handling for a thread group. 1697 */ 1698 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1699 { 1700 struct posix_cputimers *pct = &sig->posix_cputimers; 1701 unsigned long cpu_limit; 1702 1703 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1704 posix_cputimers_group_init(pct, cpu_limit); 1705 } 1706 1707 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1708 { 1709 struct signal_struct *sig; 1710 1711 if (clone_flags & CLONE_THREAD) 1712 return 0; 1713 1714 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1715 tsk->signal = sig; 1716 if (!sig) 1717 return -ENOMEM; 1718 1719 sig->nr_threads = 1; 1720 sig->quick_threads = 1; 1721 atomic_set(&sig->live, 1); 1722 refcount_set(&sig->sigcnt, 1); 1723 1724 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1725 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1726 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1727 1728 init_waitqueue_head(&sig->wait_chldexit); 1729 sig->curr_target = tsk; 1730 init_sigpending(&sig->shared_pending); 1731 INIT_HLIST_HEAD(&sig->multiprocess); 1732 seqlock_init(&sig->stats_lock); 1733 prev_cputime_init(&sig->prev_cputime); 1734 1735 #ifdef CONFIG_POSIX_TIMERS 1736 INIT_LIST_HEAD(&sig->posix_timers); 1737 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1738 sig->real_timer.function = it_real_fn; 1739 #endif 1740 1741 task_lock(current->group_leader); 1742 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1743 task_unlock(current->group_leader); 1744 1745 posix_cpu_timers_init_group(sig); 1746 1747 tty_audit_fork(sig); 1748 sched_autogroup_fork(sig); 1749 1750 sig->oom_score_adj = current->signal->oom_score_adj; 1751 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1752 1753 mutex_init(&sig->cred_guard_mutex); 1754 init_rwsem(&sig->exec_update_lock); 1755 1756 return 0; 1757 } 1758 1759 static void copy_seccomp(struct task_struct *p) 1760 { 1761 #ifdef CONFIG_SECCOMP 1762 /* 1763 * Must be called with sighand->lock held, which is common to 1764 * all threads in the group. Holding cred_guard_mutex is not 1765 * needed because this new task is not yet running and cannot 1766 * be racing exec. 1767 */ 1768 assert_spin_locked(¤t->sighand->siglock); 1769 1770 /* Ref-count the new filter user, and assign it. */ 1771 get_seccomp_filter(current); 1772 p->seccomp = current->seccomp; 1773 1774 /* 1775 * Explicitly enable no_new_privs here in case it got set 1776 * between the task_struct being duplicated and holding the 1777 * sighand lock. The seccomp state and nnp must be in sync. 1778 */ 1779 if (task_no_new_privs(current)) 1780 task_set_no_new_privs(p); 1781 1782 /* 1783 * If the parent gained a seccomp mode after copying thread 1784 * flags and between before we held the sighand lock, we have 1785 * to manually enable the seccomp thread flag here. 1786 */ 1787 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1788 set_task_syscall_work(p, SECCOMP); 1789 #endif 1790 } 1791 1792 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1793 { 1794 current->clear_child_tid = tidptr; 1795 1796 return task_pid_vnr(current); 1797 } 1798 1799 static void rt_mutex_init_task(struct task_struct *p) 1800 { 1801 raw_spin_lock_init(&p->pi_lock); 1802 #ifdef CONFIG_RT_MUTEXES 1803 p->pi_waiters = RB_ROOT_CACHED; 1804 p->pi_top_task = NULL; 1805 p->pi_blocked_on = NULL; 1806 #endif 1807 } 1808 1809 static inline void init_task_pid_links(struct task_struct *task) 1810 { 1811 enum pid_type type; 1812 1813 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1814 INIT_HLIST_NODE(&task->pid_links[type]); 1815 } 1816 1817 static inline void 1818 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1819 { 1820 if (type == PIDTYPE_PID) 1821 task->thread_pid = pid; 1822 else 1823 task->signal->pids[type] = pid; 1824 } 1825 1826 static inline void rcu_copy_process(struct task_struct *p) 1827 { 1828 #ifdef CONFIG_PREEMPT_RCU 1829 p->rcu_read_lock_nesting = 0; 1830 p->rcu_read_unlock_special.s = 0; 1831 p->rcu_blocked_node = NULL; 1832 INIT_LIST_HEAD(&p->rcu_node_entry); 1833 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1834 #ifdef CONFIG_TASKS_RCU 1835 p->rcu_tasks_holdout = false; 1836 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1837 p->rcu_tasks_idle_cpu = -1; 1838 #endif /* #ifdef CONFIG_TASKS_RCU */ 1839 #ifdef CONFIG_TASKS_TRACE_RCU 1840 p->trc_reader_nesting = 0; 1841 p->trc_reader_special.s = 0; 1842 INIT_LIST_HEAD(&p->trc_holdout_list); 1843 INIT_LIST_HEAD(&p->trc_blkd_node); 1844 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1845 } 1846 1847 struct pid *pidfd_pid(const struct file *file) 1848 { 1849 if (file->f_op == &pidfd_fops) 1850 return file->private_data; 1851 1852 return ERR_PTR(-EBADF); 1853 } 1854 1855 static int pidfd_release(struct inode *inode, struct file *file) 1856 { 1857 struct pid *pid = file->private_data; 1858 1859 file->private_data = NULL; 1860 put_pid(pid); 1861 return 0; 1862 } 1863 1864 #ifdef CONFIG_PROC_FS 1865 /** 1866 * pidfd_show_fdinfo - print information about a pidfd 1867 * @m: proc fdinfo file 1868 * @f: file referencing a pidfd 1869 * 1870 * Pid: 1871 * This function will print the pid that a given pidfd refers to in the 1872 * pid namespace of the procfs instance. 1873 * If the pid namespace of the process is not a descendant of the pid 1874 * namespace of the procfs instance 0 will be shown as its pid. This is 1875 * similar to calling getppid() on a process whose parent is outside of 1876 * its pid namespace. 1877 * 1878 * NSpid: 1879 * If pid namespaces are supported then this function will also print 1880 * the pid of a given pidfd refers to for all descendant pid namespaces 1881 * starting from the current pid namespace of the instance, i.e. the 1882 * Pid field and the first entry in the NSpid field will be identical. 1883 * If the pid namespace of the process is not a descendant of the pid 1884 * namespace of the procfs instance 0 will be shown as its first NSpid 1885 * entry and no others will be shown. 1886 * Note that this differs from the Pid and NSpid fields in 1887 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1888 * the pid namespace of the procfs instance. The difference becomes 1889 * obvious when sending around a pidfd between pid namespaces from a 1890 * different branch of the tree, i.e. where no ancestral relation is 1891 * present between the pid namespaces: 1892 * - create two new pid namespaces ns1 and ns2 in the initial pid 1893 * namespace (also take care to create new mount namespaces in the 1894 * new pid namespace and mount procfs) 1895 * - create a process with a pidfd in ns1 1896 * - send pidfd from ns1 to ns2 1897 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1898 * have exactly one entry, which is 0 1899 */ 1900 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1901 { 1902 struct pid *pid = f->private_data; 1903 struct pid_namespace *ns; 1904 pid_t nr = -1; 1905 1906 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1907 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1908 nr = pid_nr_ns(pid, ns); 1909 } 1910 1911 seq_put_decimal_ll(m, "Pid:\t", nr); 1912 1913 #ifdef CONFIG_PID_NS 1914 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1915 if (nr > 0) { 1916 int i; 1917 1918 /* If nr is non-zero it means that 'pid' is valid and that 1919 * ns, i.e. the pid namespace associated with the procfs 1920 * instance, is in the pid namespace hierarchy of pid. 1921 * Start at one below the already printed level. 1922 */ 1923 for (i = ns->level + 1; i <= pid->level; i++) 1924 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1925 } 1926 #endif 1927 seq_putc(m, '\n'); 1928 } 1929 #endif 1930 1931 /* 1932 * Poll support for process exit notification. 1933 */ 1934 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1935 { 1936 struct pid *pid = file->private_data; 1937 __poll_t poll_flags = 0; 1938 1939 poll_wait(file, &pid->wait_pidfd, pts); 1940 1941 /* 1942 * Inform pollers only when the whole thread group exits. 1943 * If the thread group leader exits before all other threads in the 1944 * group, then poll(2) should block, similar to the wait(2) family. 1945 */ 1946 if (thread_group_exited(pid)) 1947 poll_flags = EPOLLIN | EPOLLRDNORM; 1948 1949 return poll_flags; 1950 } 1951 1952 const struct file_operations pidfd_fops = { 1953 .release = pidfd_release, 1954 .poll = pidfd_poll, 1955 #ifdef CONFIG_PROC_FS 1956 .show_fdinfo = pidfd_show_fdinfo, 1957 #endif 1958 }; 1959 1960 static void __delayed_free_task(struct rcu_head *rhp) 1961 { 1962 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1963 1964 free_task(tsk); 1965 } 1966 1967 static __always_inline void delayed_free_task(struct task_struct *tsk) 1968 { 1969 if (IS_ENABLED(CONFIG_MEMCG)) 1970 call_rcu(&tsk->rcu, __delayed_free_task); 1971 else 1972 free_task(tsk); 1973 } 1974 1975 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1976 { 1977 /* Skip if kernel thread */ 1978 if (!tsk->mm) 1979 return; 1980 1981 /* Skip if spawning a thread or using vfork */ 1982 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1983 return; 1984 1985 /* We need to synchronize with __set_oom_adj */ 1986 mutex_lock(&oom_adj_mutex); 1987 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1988 /* Update the values in case they were changed after copy_signal */ 1989 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1990 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1991 mutex_unlock(&oom_adj_mutex); 1992 } 1993 1994 #ifdef CONFIG_RV 1995 static void rv_task_fork(struct task_struct *p) 1996 { 1997 int i; 1998 1999 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2000 p->rv[i].da_mon.monitoring = false; 2001 } 2002 #else 2003 #define rv_task_fork(p) do {} while (0) 2004 #endif 2005 2006 /* 2007 * This creates a new process as a copy of the old one, 2008 * but does not actually start it yet. 2009 * 2010 * It copies the registers, and all the appropriate 2011 * parts of the process environment (as per the clone 2012 * flags). The actual kick-off is left to the caller. 2013 */ 2014 static __latent_entropy struct task_struct *copy_process( 2015 struct pid *pid, 2016 int trace, 2017 int node, 2018 struct kernel_clone_args *args) 2019 { 2020 int pidfd = -1, retval; 2021 struct task_struct *p; 2022 struct multiprocess_signals delayed; 2023 struct file *pidfile = NULL; 2024 const u64 clone_flags = args->flags; 2025 struct nsproxy *nsp = current->nsproxy; 2026 2027 /* 2028 * Don't allow sharing the root directory with processes in a different 2029 * namespace 2030 */ 2031 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2032 return ERR_PTR(-EINVAL); 2033 2034 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2035 return ERR_PTR(-EINVAL); 2036 2037 /* 2038 * Thread groups must share signals as well, and detached threads 2039 * can only be started up within the thread group. 2040 */ 2041 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2042 return ERR_PTR(-EINVAL); 2043 2044 /* 2045 * Shared signal handlers imply shared VM. By way of the above, 2046 * thread groups also imply shared VM. Blocking this case allows 2047 * for various simplifications in other code. 2048 */ 2049 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2050 return ERR_PTR(-EINVAL); 2051 2052 /* 2053 * Siblings of global init remain as zombies on exit since they are 2054 * not reaped by their parent (swapper). To solve this and to avoid 2055 * multi-rooted process trees, prevent global and container-inits 2056 * from creating siblings. 2057 */ 2058 if ((clone_flags & CLONE_PARENT) && 2059 current->signal->flags & SIGNAL_UNKILLABLE) 2060 return ERR_PTR(-EINVAL); 2061 2062 /* 2063 * If the new process will be in a different pid or user namespace 2064 * do not allow it to share a thread group with the forking task. 2065 */ 2066 if (clone_flags & CLONE_THREAD) { 2067 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2068 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2069 return ERR_PTR(-EINVAL); 2070 } 2071 2072 if (clone_flags & CLONE_PIDFD) { 2073 /* 2074 * - CLONE_DETACHED is blocked so that we can potentially 2075 * reuse it later for CLONE_PIDFD. 2076 * - CLONE_THREAD is blocked until someone really needs it. 2077 */ 2078 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2079 return ERR_PTR(-EINVAL); 2080 } 2081 2082 /* 2083 * Force any signals received before this point to be delivered 2084 * before the fork happens. Collect up signals sent to multiple 2085 * processes that happen during the fork and delay them so that 2086 * they appear to happen after the fork. 2087 */ 2088 sigemptyset(&delayed.signal); 2089 INIT_HLIST_NODE(&delayed.node); 2090 2091 spin_lock_irq(¤t->sighand->siglock); 2092 if (!(clone_flags & CLONE_THREAD)) 2093 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2094 recalc_sigpending(); 2095 spin_unlock_irq(¤t->sighand->siglock); 2096 retval = -ERESTARTNOINTR; 2097 if (task_sigpending(current)) 2098 goto fork_out; 2099 2100 retval = -ENOMEM; 2101 p = dup_task_struct(current, node); 2102 if (!p) 2103 goto fork_out; 2104 p->flags &= ~PF_KTHREAD; 2105 if (args->kthread) 2106 p->flags |= PF_KTHREAD; 2107 if (args->io_thread) { 2108 /* 2109 * Mark us an IO worker, and block any signal that isn't 2110 * fatal or STOP 2111 */ 2112 p->flags |= PF_IO_WORKER; 2113 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2114 } 2115 2116 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2117 /* 2118 * Clear TID on mm_release()? 2119 */ 2120 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2121 2122 ftrace_graph_init_task(p); 2123 2124 rt_mutex_init_task(p); 2125 2126 lockdep_assert_irqs_enabled(); 2127 #ifdef CONFIG_PROVE_LOCKING 2128 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2129 #endif 2130 retval = copy_creds(p, clone_flags); 2131 if (retval < 0) 2132 goto bad_fork_free; 2133 2134 retval = -EAGAIN; 2135 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2136 if (p->real_cred->user != INIT_USER && 2137 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2138 goto bad_fork_cleanup_count; 2139 } 2140 current->flags &= ~PF_NPROC_EXCEEDED; 2141 2142 /* 2143 * If multiple threads are within copy_process(), then this check 2144 * triggers too late. This doesn't hurt, the check is only there 2145 * to stop root fork bombs. 2146 */ 2147 retval = -EAGAIN; 2148 if (data_race(nr_threads >= max_threads)) 2149 goto bad_fork_cleanup_count; 2150 2151 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2152 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2153 p->flags |= PF_FORKNOEXEC; 2154 INIT_LIST_HEAD(&p->children); 2155 INIT_LIST_HEAD(&p->sibling); 2156 rcu_copy_process(p); 2157 p->vfork_done = NULL; 2158 spin_lock_init(&p->alloc_lock); 2159 2160 init_sigpending(&p->pending); 2161 2162 p->utime = p->stime = p->gtime = 0; 2163 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2164 p->utimescaled = p->stimescaled = 0; 2165 #endif 2166 prev_cputime_init(&p->prev_cputime); 2167 2168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2169 seqcount_init(&p->vtime.seqcount); 2170 p->vtime.starttime = 0; 2171 p->vtime.state = VTIME_INACTIVE; 2172 #endif 2173 2174 #ifdef CONFIG_IO_URING 2175 p->io_uring = NULL; 2176 #endif 2177 2178 #if defined(SPLIT_RSS_COUNTING) 2179 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2180 #endif 2181 2182 p->default_timer_slack_ns = current->timer_slack_ns; 2183 2184 #ifdef CONFIG_PSI 2185 p->psi_flags = 0; 2186 #endif 2187 2188 task_io_accounting_init(&p->ioac); 2189 acct_clear_integrals(p); 2190 2191 posix_cputimers_init(&p->posix_cputimers); 2192 2193 p->io_context = NULL; 2194 audit_set_context(p, NULL); 2195 cgroup_fork(p); 2196 if (args->kthread) { 2197 if (!set_kthread_struct(p)) 2198 goto bad_fork_cleanup_delayacct; 2199 } 2200 #ifdef CONFIG_NUMA 2201 p->mempolicy = mpol_dup(p->mempolicy); 2202 if (IS_ERR(p->mempolicy)) { 2203 retval = PTR_ERR(p->mempolicy); 2204 p->mempolicy = NULL; 2205 goto bad_fork_cleanup_delayacct; 2206 } 2207 #endif 2208 #ifdef CONFIG_CPUSETS 2209 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2210 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2211 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2212 #endif 2213 #ifdef CONFIG_TRACE_IRQFLAGS 2214 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2215 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2216 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2217 p->softirqs_enabled = 1; 2218 p->softirq_context = 0; 2219 #endif 2220 2221 p->pagefault_disabled = 0; 2222 2223 #ifdef CONFIG_LOCKDEP 2224 lockdep_init_task(p); 2225 #endif 2226 2227 #ifdef CONFIG_DEBUG_MUTEXES 2228 p->blocked_on = NULL; /* not blocked yet */ 2229 #endif 2230 #ifdef CONFIG_BCACHE 2231 p->sequential_io = 0; 2232 p->sequential_io_avg = 0; 2233 #endif 2234 #ifdef CONFIG_BPF_SYSCALL 2235 RCU_INIT_POINTER(p->bpf_storage, NULL); 2236 p->bpf_ctx = NULL; 2237 #endif 2238 2239 /* Perform scheduler related setup. Assign this task to a CPU. */ 2240 retval = sched_fork(clone_flags, p); 2241 if (retval) 2242 goto bad_fork_cleanup_policy; 2243 2244 retval = perf_event_init_task(p, clone_flags); 2245 if (retval) 2246 goto bad_fork_cleanup_policy; 2247 retval = audit_alloc(p); 2248 if (retval) 2249 goto bad_fork_cleanup_perf; 2250 /* copy all the process information */ 2251 shm_init_task(p); 2252 retval = security_task_alloc(p, clone_flags); 2253 if (retval) 2254 goto bad_fork_cleanup_audit; 2255 retval = copy_semundo(clone_flags, p); 2256 if (retval) 2257 goto bad_fork_cleanup_security; 2258 retval = copy_files(clone_flags, p); 2259 if (retval) 2260 goto bad_fork_cleanup_semundo; 2261 retval = copy_fs(clone_flags, p); 2262 if (retval) 2263 goto bad_fork_cleanup_files; 2264 retval = copy_sighand(clone_flags, p); 2265 if (retval) 2266 goto bad_fork_cleanup_fs; 2267 retval = copy_signal(clone_flags, p); 2268 if (retval) 2269 goto bad_fork_cleanup_sighand; 2270 retval = copy_mm(clone_flags, p); 2271 if (retval) 2272 goto bad_fork_cleanup_signal; 2273 retval = copy_namespaces(clone_flags, p); 2274 if (retval) 2275 goto bad_fork_cleanup_mm; 2276 retval = copy_io(clone_flags, p); 2277 if (retval) 2278 goto bad_fork_cleanup_namespaces; 2279 retval = copy_thread(p, args); 2280 if (retval) 2281 goto bad_fork_cleanup_io; 2282 2283 stackleak_task_init(p); 2284 2285 if (pid != &init_struct_pid) { 2286 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2287 args->set_tid_size); 2288 if (IS_ERR(pid)) { 2289 retval = PTR_ERR(pid); 2290 goto bad_fork_cleanup_thread; 2291 } 2292 } 2293 2294 /* 2295 * This has to happen after we've potentially unshared the file 2296 * descriptor table (so that the pidfd doesn't leak into the child 2297 * if the fd table isn't shared). 2298 */ 2299 if (clone_flags & CLONE_PIDFD) { 2300 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2301 if (retval < 0) 2302 goto bad_fork_free_pid; 2303 2304 pidfd = retval; 2305 2306 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2307 O_RDWR | O_CLOEXEC); 2308 if (IS_ERR(pidfile)) { 2309 put_unused_fd(pidfd); 2310 retval = PTR_ERR(pidfile); 2311 goto bad_fork_free_pid; 2312 } 2313 get_pid(pid); /* held by pidfile now */ 2314 2315 retval = put_user(pidfd, args->pidfd); 2316 if (retval) 2317 goto bad_fork_put_pidfd; 2318 } 2319 2320 #ifdef CONFIG_BLOCK 2321 p->plug = NULL; 2322 #endif 2323 futex_init_task(p); 2324 2325 /* 2326 * sigaltstack should be cleared when sharing the same VM 2327 */ 2328 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2329 sas_ss_reset(p); 2330 2331 /* 2332 * Syscall tracing and stepping should be turned off in the 2333 * child regardless of CLONE_PTRACE. 2334 */ 2335 user_disable_single_step(p); 2336 clear_task_syscall_work(p, SYSCALL_TRACE); 2337 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2338 clear_task_syscall_work(p, SYSCALL_EMU); 2339 #endif 2340 clear_tsk_latency_tracing(p); 2341 2342 /* ok, now we should be set up.. */ 2343 p->pid = pid_nr(pid); 2344 if (clone_flags & CLONE_THREAD) { 2345 p->group_leader = current->group_leader; 2346 p->tgid = current->tgid; 2347 } else { 2348 p->group_leader = p; 2349 p->tgid = p->pid; 2350 } 2351 2352 p->nr_dirtied = 0; 2353 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2354 p->dirty_paused_when = 0; 2355 2356 p->pdeath_signal = 0; 2357 INIT_LIST_HEAD(&p->thread_group); 2358 p->task_works = NULL; 2359 clear_posix_cputimers_work(p); 2360 2361 #ifdef CONFIG_KRETPROBES 2362 p->kretprobe_instances.first = NULL; 2363 #endif 2364 #ifdef CONFIG_RETHOOK 2365 p->rethooks.first = NULL; 2366 #endif 2367 2368 /* 2369 * Ensure that the cgroup subsystem policies allow the new process to be 2370 * forked. It should be noted that the new process's css_set can be changed 2371 * between here and cgroup_post_fork() if an organisation operation is in 2372 * progress. 2373 */ 2374 retval = cgroup_can_fork(p, args); 2375 if (retval) 2376 goto bad_fork_put_pidfd; 2377 2378 /* 2379 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2380 * the new task on the correct runqueue. All this *before* the task 2381 * becomes visible. 2382 * 2383 * This isn't part of ->can_fork() because while the re-cloning is 2384 * cgroup specific, it unconditionally needs to place the task on a 2385 * runqueue. 2386 */ 2387 sched_cgroup_fork(p, args); 2388 2389 /* 2390 * From this point on we must avoid any synchronous user-space 2391 * communication until we take the tasklist-lock. In particular, we do 2392 * not want user-space to be able to predict the process start-time by 2393 * stalling fork(2) after we recorded the start_time but before it is 2394 * visible to the system. 2395 */ 2396 2397 p->start_time = ktime_get_ns(); 2398 p->start_boottime = ktime_get_boottime_ns(); 2399 2400 /* 2401 * Make it visible to the rest of the system, but dont wake it up yet. 2402 * Need tasklist lock for parent etc handling! 2403 */ 2404 write_lock_irq(&tasklist_lock); 2405 2406 /* CLONE_PARENT re-uses the old parent */ 2407 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2408 p->real_parent = current->real_parent; 2409 p->parent_exec_id = current->parent_exec_id; 2410 if (clone_flags & CLONE_THREAD) 2411 p->exit_signal = -1; 2412 else 2413 p->exit_signal = current->group_leader->exit_signal; 2414 } else { 2415 p->real_parent = current; 2416 p->parent_exec_id = current->self_exec_id; 2417 p->exit_signal = args->exit_signal; 2418 } 2419 2420 klp_copy_process(p); 2421 2422 sched_core_fork(p); 2423 2424 spin_lock(¤t->sighand->siglock); 2425 2426 rv_task_fork(p); 2427 2428 rseq_fork(p, clone_flags); 2429 2430 /* Don't start children in a dying pid namespace */ 2431 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2432 retval = -ENOMEM; 2433 goto bad_fork_cancel_cgroup; 2434 } 2435 2436 /* Let kill terminate clone/fork in the middle */ 2437 if (fatal_signal_pending(current)) { 2438 retval = -EINTR; 2439 goto bad_fork_cancel_cgroup; 2440 } 2441 2442 /* No more failure paths after this point. */ 2443 2444 /* 2445 * Copy seccomp details explicitly here, in case they were changed 2446 * before holding sighand lock. 2447 */ 2448 copy_seccomp(p); 2449 2450 init_task_pid_links(p); 2451 if (likely(p->pid)) { 2452 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2453 2454 init_task_pid(p, PIDTYPE_PID, pid); 2455 if (thread_group_leader(p)) { 2456 init_task_pid(p, PIDTYPE_TGID, pid); 2457 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2458 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2459 2460 if (is_child_reaper(pid)) { 2461 ns_of_pid(pid)->child_reaper = p; 2462 p->signal->flags |= SIGNAL_UNKILLABLE; 2463 } 2464 p->signal->shared_pending.signal = delayed.signal; 2465 p->signal->tty = tty_kref_get(current->signal->tty); 2466 /* 2467 * Inherit has_child_subreaper flag under the same 2468 * tasklist_lock with adding child to the process tree 2469 * for propagate_has_child_subreaper optimization. 2470 */ 2471 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2472 p->real_parent->signal->is_child_subreaper; 2473 list_add_tail(&p->sibling, &p->real_parent->children); 2474 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2475 attach_pid(p, PIDTYPE_TGID); 2476 attach_pid(p, PIDTYPE_PGID); 2477 attach_pid(p, PIDTYPE_SID); 2478 __this_cpu_inc(process_counts); 2479 } else { 2480 current->signal->nr_threads++; 2481 current->signal->quick_threads++; 2482 atomic_inc(¤t->signal->live); 2483 refcount_inc(¤t->signal->sigcnt); 2484 task_join_group_stop(p); 2485 list_add_tail_rcu(&p->thread_group, 2486 &p->group_leader->thread_group); 2487 list_add_tail_rcu(&p->thread_node, 2488 &p->signal->thread_head); 2489 } 2490 attach_pid(p, PIDTYPE_PID); 2491 nr_threads++; 2492 } 2493 total_forks++; 2494 hlist_del_init(&delayed.node); 2495 spin_unlock(¤t->sighand->siglock); 2496 syscall_tracepoint_update(p); 2497 write_unlock_irq(&tasklist_lock); 2498 2499 if (pidfile) 2500 fd_install(pidfd, pidfile); 2501 2502 proc_fork_connector(p); 2503 sched_post_fork(p); 2504 cgroup_post_fork(p, args); 2505 perf_event_fork(p); 2506 2507 trace_task_newtask(p, clone_flags); 2508 uprobe_copy_process(p, clone_flags); 2509 user_events_fork(p, clone_flags); 2510 2511 copy_oom_score_adj(clone_flags, p); 2512 2513 return p; 2514 2515 bad_fork_cancel_cgroup: 2516 sched_core_free(p); 2517 spin_unlock(¤t->sighand->siglock); 2518 write_unlock_irq(&tasklist_lock); 2519 cgroup_cancel_fork(p, args); 2520 bad_fork_put_pidfd: 2521 if (clone_flags & CLONE_PIDFD) { 2522 fput(pidfile); 2523 put_unused_fd(pidfd); 2524 } 2525 bad_fork_free_pid: 2526 if (pid != &init_struct_pid) 2527 free_pid(pid); 2528 bad_fork_cleanup_thread: 2529 exit_thread(p); 2530 bad_fork_cleanup_io: 2531 if (p->io_context) 2532 exit_io_context(p); 2533 bad_fork_cleanup_namespaces: 2534 exit_task_namespaces(p); 2535 bad_fork_cleanup_mm: 2536 if (p->mm) { 2537 mm_clear_owner(p->mm, p); 2538 mmput(p->mm); 2539 } 2540 bad_fork_cleanup_signal: 2541 if (!(clone_flags & CLONE_THREAD)) 2542 free_signal_struct(p->signal); 2543 bad_fork_cleanup_sighand: 2544 __cleanup_sighand(p->sighand); 2545 bad_fork_cleanup_fs: 2546 exit_fs(p); /* blocking */ 2547 bad_fork_cleanup_files: 2548 exit_files(p); /* blocking */ 2549 bad_fork_cleanup_semundo: 2550 exit_sem(p); 2551 bad_fork_cleanup_security: 2552 security_task_free(p); 2553 bad_fork_cleanup_audit: 2554 audit_free(p); 2555 bad_fork_cleanup_perf: 2556 perf_event_free_task(p); 2557 bad_fork_cleanup_policy: 2558 lockdep_free_task(p); 2559 #ifdef CONFIG_NUMA 2560 mpol_put(p->mempolicy); 2561 #endif 2562 bad_fork_cleanup_delayacct: 2563 delayacct_tsk_free(p); 2564 bad_fork_cleanup_count: 2565 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2566 exit_creds(p); 2567 bad_fork_free: 2568 WRITE_ONCE(p->__state, TASK_DEAD); 2569 exit_task_stack_account(p); 2570 put_task_stack(p); 2571 delayed_free_task(p); 2572 fork_out: 2573 spin_lock_irq(¤t->sighand->siglock); 2574 hlist_del_init(&delayed.node); 2575 spin_unlock_irq(¤t->sighand->siglock); 2576 return ERR_PTR(retval); 2577 } 2578 2579 static inline void init_idle_pids(struct task_struct *idle) 2580 { 2581 enum pid_type type; 2582 2583 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2584 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2585 init_task_pid(idle, type, &init_struct_pid); 2586 } 2587 } 2588 2589 static int idle_dummy(void *dummy) 2590 { 2591 /* This function is never called */ 2592 return 0; 2593 } 2594 2595 struct task_struct * __init fork_idle(int cpu) 2596 { 2597 struct task_struct *task; 2598 struct kernel_clone_args args = { 2599 .flags = CLONE_VM, 2600 .fn = &idle_dummy, 2601 .fn_arg = NULL, 2602 .kthread = 1, 2603 .idle = 1, 2604 }; 2605 2606 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2607 if (!IS_ERR(task)) { 2608 init_idle_pids(task); 2609 init_idle(task, cpu); 2610 } 2611 2612 return task; 2613 } 2614 2615 /* 2616 * This is like kernel_clone(), but shaved down and tailored to just 2617 * creating io_uring workers. It returns a created task, or an error pointer. 2618 * The returned task is inactive, and the caller must fire it up through 2619 * wake_up_new_task(p). All signals are blocked in the created task. 2620 */ 2621 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2622 { 2623 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2624 CLONE_IO; 2625 struct kernel_clone_args args = { 2626 .flags = ((lower_32_bits(flags) | CLONE_VM | 2627 CLONE_UNTRACED) & ~CSIGNAL), 2628 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2629 .fn = fn, 2630 .fn_arg = arg, 2631 .io_thread = 1, 2632 }; 2633 2634 return copy_process(NULL, 0, node, &args); 2635 } 2636 2637 /* 2638 * Ok, this is the main fork-routine. 2639 * 2640 * It copies the process, and if successful kick-starts 2641 * it and waits for it to finish using the VM if required. 2642 * 2643 * args->exit_signal is expected to be checked for sanity by the caller. 2644 */ 2645 pid_t kernel_clone(struct kernel_clone_args *args) 2646 { 2647 u64 clone_flags = args->flags; 2648 struct completion vfork; 2649 struct pid *pid; 2650 struct task_struct *p; 2651 int trace = 0; 2652 pid_t nr; 2653 2654 /* 2655 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2656 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2657 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2658 * field in struct clone_args and it still doesn't make sense to have 2659 * them both point at the same memory location. Performing this check 2660 * here has the advantage that we don't need to have a separate helper 2661 * to check for legacy clone(). 2662 */ 2663 if ((args->flags & CLONE_PIDFD) && 2664 (args->flags & CLONE_PARENT_SETTID) && 2665 (args->pidfd == args->parent_tid)) 2666 return -EINVAL; 2667 2668 /* 2669 * Determine whether and which event to report to ptracer. When 2670 * called from kernel_thread or CLONE_UNTRACED is explicitly 2671 * requested, no event is reported; otherwise, report if the event 2672 * for the type of forking is enabled. 2673 */ 2674 if (!(clone_flags & CLONE_UNTRACED)) { 2675 if (clone_flags & CLONE_VFORK) 2676 trace = PTRACE_EVENT_VFORK; 2677 else if (args->exit_signal != SIGCHLD) 2678 trace = PTRACE_EVENT_CLONE; 2679 else 2680 trace = PTRACE_EVENT_FORK; 2681 2682 if (likely(!ptrace_event_enabled(current, trace))) 2683 trace = 0; 2684 } 2685 2686 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2687 add_latent_entropy(); 2688 2689 if (IS_ERR(p)) 2690 return PTR_ERR(p); 2691 2692 /* 2693 * Do this prior waking up the new thread - the thread pointer 2694 * might get invalid after that point, if the thread exits quickly. 2695 */ 2696 trace_sched_process_fork(current, p); 2697 2698 pid = get_task_pid(p, PIDTYPE_PID); 2699 nr = pid_vnr(pid); 2700 2701 if (clone_flags & CLONE_PARENT_SETTID) 2702 put_user(nr, args->parent_tid); 2703 2704 if (clone_flags & CLONE_VFORK) { 2705 p->vfork_done = &vfork; 2706 init_completion(&vfork); 2707 get_task_struct(p); 2708 } 2709 2710 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2711 /* lock the task to synchronize with memcg migration */ 2712 task_lock(p); 2713 lru_gen_add_mm(p->mm); 2714 task_unlock(p); 2715 } 2716 2717 wake_up_new_task(p); 2718 2719 /* forking complete and child started to run, tell ptracer */ 2720 if (unlikely(trace)) 2721 ptrace_event_pid(trace, pid); 2722 2723 if (clone_flags & CLONE_VFORK) { 2724 if (!wait_for_vfork_done(p, &vfork)) 2725 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2726 } 2727 2728 put_pid(pid); 2729 return nr; 2730 } 2731 2732 /* 2733 * Create a kernel thread. 2734 */ 2735 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2736 { 2737 struct kernel_clone_args args = { 2738 .flags = ((lower_32_bits(flags) | CLONE_VM | 2739 CLONE_UNTRACED) & ~CSIGNAL), 2740 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2741 .fn = fn, 2742 .fn_arg = arg, 2743 .kthread = 1, 2744 }; 2745 2746 return kernel_clone(&args); 2747 } 2748 2749 /* 2750 * Create a user mode thread. 2751 */ 2752 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2753 { 2754 struct kernel_clone_args args = { 2755 .flags = ((lower_32_bits(flags) | CLONE_VM | 2756 CLONE_UNTRACED) & ~CSIGNAL), 2757 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2758 .fn = fn, 2759 .fn_arg = arg, 2760 }; 2761 2762 return kernel_clone(&args); 2763 } 2764 2765 #ifdef __ARCH_WANT_SYS_FORK 2766 SYSCALL_DEFINE0(fork) 2767 { 2768 #ifdef CONFIG_MMU 2769 struct kernel_clone_args args = { 2770 .exit_signal = SIGCHLD, 2771 }; 2772 2773 return kernel_clone(&args); 2774 #else 2775 /* can not support in nommu mode */ 2776 return -EINVAL; 2777 #endif 2778 } 2779 #endif 2780 2781 #ifdef __ARCH_WANT_SYS_VFORK 2782 SYSCALL_DEFINE0(vfork) 2783 { 2784 struct kernel_clone_args args = { 2785 .flags = CLONE_VFORK | CLONE_VM, 2786 .exit_signal = SIGCHLD, 2787 }; 2788 2789 return kernel_clone(&args); 2790 } 2791 #endif 2792 2793 #ifdef __ARCH_WANT_SYS_CLONE 2794 #ifdef CONFIG_CLONE_BACKWARDS 2795 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2796 int __user *, parent_tidptr, 2797 unsigned long, tls, 2798 int __user *, child_tidptr) 2799 #elif defined(CONFIG_CLONE_BACKWARDS2) 2800 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2801 int __user *, parent_tidptr, 2802 int __user *, child_tidptr, 2803 unsigned long, tls) 2804 #elif defined(CONFIG_CLONE_BACKWARDS3) 2805 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2806 int, stack_size, 2807 int __user *, parent_tidptr, 2808 int __user *, child_tidptr, 2809 unsigned long, tls) 2810 #else 2811 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2812 int __user *, parent_tidptr, 2813 int __user *, child_tidptr, 2814 unsigned long, tls) 2815 #endif 2816 { 2817 struct kernel_clone_args args = { 2818 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2819 .pidfd = parent_tidptr, 2820 .child_tid = child_tidptr, 2821 .parent_tid = parent_tidptr, 2822 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2823 .stack = newsp, 2824 .tls = tls, 2825 }; 2826 2827 return kernel_clone(&args); 2828 } 2829 #endif 2830 2831 #ifdef __ARCH_WANT_SYS_CLONE3 2832 2833 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2834 struct clone_args __user *uargs, 2835 size_t usize) 2836 { 2837 int err; 2838 struct clone_args args; 2839 pid_t *kset_tid = kargs->set_tid; 2840 2841 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2842 CLONE_ARGS_SIZE_VER0); 2843 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2844 CLONE_ARGS_SIZE_VER1); 2845 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2846 CLONE_ARGS_SIZE_VER2); 2847 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2848 2849 if (unlikely(usize > PAGE_SIZE)) 2850 return -E2BIG; 2851 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2852 return -EINVAL; 2853 2854 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2855 if (err) 2856 return err; 2857 2858 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2859 return -EINVAL; 2860 2861 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2862 return -EINVAL; 2863 2864 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2865 return -EINVAL; 2866 2867 /* 2868 * Verify that higher 32bits of exit_signal are unset and that 2869 * it is a valid signal 2870 */ 2871 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2872 !valid_signal(args.exit_signal))) 2873 return -EINVAL; 2874 2875 if ((args.flags & CLONE_INTO_CGROUP) && 2876 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2877 return -EINVAL; 2878 2879 *kargs = (struct kernel_clone_args){ 2880 .flags = args.flags, 2881 .pidfd = u64_to_user_ptr(args.pidfd), 2882 .child_tid = u64_to_user_ptr(args.child_tid), 2883 .parent_tid = u64_to_user_ptr(args.parent_tid), 2884 .exit_signal = args.exit_signal, 2885 .stack = args.stack, 2886 .stack_size = args.stack_size, 2887 .tls = args.tls, 2888 .set_tid_size = args.set_tid_size, 2889 .cgroup = args.cgroup, 2890 }; 2891 2892 if (args.set_tid && 2893 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2894 (kargs->set_tid_size * sizeof(pid_t)))) 2895 return -EFAULT; 2896 2897 kargs->set_tid = kset_tid; 2898 2899 return 0; 2900 } 2901 2902 /** 2903 * clone3_stack_valid - check and prepare stack 2904 * @kargs: kernel clone args 2905 * 2906 * Verify that the stack arguments userspace gave us are sane. 2907 * In addition, set the stack direction for userspace since it's easy for us to 2908 * determine. 2909 */ 2910 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2911 { 2912 if (kargs->stack == 0) { 2913 if (kargs->stack_size > 0) 2914 return false; 2915 } else { 2916 if (kargs->stack_size == 0) 2917 return false; 2918 2919 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2920 return false; 2921 2922 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2923 kargs->stack += kargs->stack_size; 2924 #endif 2925 } 2926 2927 return true; 2928 } 2929 2930 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2931 { 2932 /* Verify that no unknown flags are passed along. */ 2933 if (kargs->flags & 2934 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2935 return false; 2936 2937 /* 2938 * - make the CLONE_DETACHED bit reusable for clone3 2939 * - make the CSIGNAL bits reusable for clone3 2940 */ 2941 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2942 return false; 2943 2944 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2945 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2946 return false; 2947 2948 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2949 kargs->exit_signal) 2950 return false; 2951 2952 if (!clone3_stack_valid(kargs)) 2953 return false; 2954 2955 return true; 2956 } 2957 2958 /** 2959 * clone3 - create a new process with specific properties 2960 * @uargs: argument structure 2961 * @size: size of @uargs 2962 * 2963 * clone3() is the extensible successor to clone()/clone2(). 2964 * It takes a struct as argument that is versioned by its size. 2965 * 2966 * Return: On success, a positive PID for the child process. 2967 * On error, a negative errno number. 2968 */ 2969 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2970 { 2971 int err; 2972 2973 struct kernel_clone_args kargs; 2974 pid_t set_tid[MAX_PID_NS_LEVEL]; 2975 2976 kargs.set_tid = set_tid; 2977 2978 err = copy_clone_args_from_user(&kargs, uargs, size); 2979 if (err) 2980 return err; 2981 2982 if (!clone3_args_valid(&kargs)) 2983 return -EINVAL; 2984 2985 return kernel_clone(&kargs); 2986 } 2987 #endif 2988 2989 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2990 { 2991 struct task_struct *leader, *parent, *child; 2992 int res; 2993 2994 read_lock(&tasklist_lock); 2995 leader = top = top->group_leader; 2996 down: 2997 for_each_thread(leader, parent) { 2998 list_for_each_entry(child, &parent->children, sibling) { 2999 res = visitor(child, data); 3000 if (res) { 3001 if (res < 0) 3002 goto out; 3003 leader = child; 3004 goto down; 3005 } 3006 up: 3007 ; 3008 } 3009 } 3010 3011 if (leader != top) { 3012 child = leader; 3013 parent = child->real_parent; 3014 leader = parent->group_leader; 3015 goto up; 3016 } 3017 out: 3018 read_unlock(&tasklist_lock); 3019 } 3020 3021 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3022 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3023 #endif 3024 3025 static void sighand_ctor(void *data) 3026 { 3027 struct sighand_struct *sighand = data; 3028 3029 spin_lock_init(&sighand->siglock); 3030 init_waitqueue_head(&sighand->signalfd_wqh); 3031 } 3032 3033 void __init mm_cache_init(void) 3034 { 3035 unsigned int mm_size; 3036 3037 /* 3038 * The mm_cpumask is located at the end of mm_struct, and is 3039 * dynamically sized based on the maximum CPU number this system 3040 * can have, taking hotplug into account (nr_cpu_ids). 3041 */ 3042 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3043 3044 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3045 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3046 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3047 offsetof(struct mm_struct, saved_auxv), 3048 sizeof_field(struct mm_struct, saved_auxv), 3049 NULL); 3050 } 3051 3052 void __init proc_caches_init(void) 3053 { 3054 sighand_cachep = kmem_cache_create("sighand_cache", 3055 sizeof(struct sighand_struct), 0, 3056 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3057 SLAB_ACCOUNT, sighand_ctor); 3058 signal_cachep = kmem_cache_create("signal_cache", 3059 sizeof(struct signal_struct), 0, 3060 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3061 NULL); 3062 files_cachep = kmem_cache_create("files_cache", 3063 sizeof(struct files_struct), 0, 3064 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3065 NULL); 3066 fs_cachep = kmem_cache_create("fs_cache", 3067 sizeof(struct fs_struct), 0, 3068 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3069 NULL); 3070 3071 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3072 mmap_init(); 3073 nsproxy_cache_init(); 3074 } 3075 3076 /* 3077 * Check constraints on flags passed to the unshare system call. 3078 */ 3079 static int check_unshare_flags(unsigned long unshare_flags) 3080 { 3081 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3082 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3083 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3084 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3085 CLONE_NEWTIME)) 3086 return -EINVAL; 3087 /* 3088 * Not implemented, but pretend it works if there is nothing 3089 * to unshare. Note that unsharing the address space or the 3090 * signal handlers also need to unshare the signal queues (aka 3091 * CLONE_THREAD). 3092 */ 3093 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3094 if (!thread_group_empty(current)) 3095 return -EINVAL; 3096 } 3097 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3098 if (refcount_read(¤t->sighand->count) > 1) 3099 return -EINVAL; 3100 } 3101 if (unshare_flags & CLONE_VM) { 3102 if (!current_is_single_threaded()) 3103 return -EINVAL; 3104 } 3105 3106 return 0; 3107 } 3108 3109 /* 3110 * Unshare the filesystem structure if it is being shared 3111 */ 3112 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3113 { 3114 struct fs_struct *fs = current->fs; 3115 3116 if (!(unshare_flags & CLONE_FS) || !fs) 3117 return 0; 3118 3119 /* don't need lock here; in the worst case we'll do useless copy */ 3120 if (fs->users == 1) 3121 return 0; 3122 3123 *new_fsp = copy_fs_struct(fs); 3124 if (!*new_fsp) 3125 return -ENOMEM; 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * Unshare file descriptor table if it is being shared 3132 */ 3133 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3134 struct files_struct **new_fdp) 3135 { 3136 struct files_struct *fd = current->files; 3137 int error = 0; 3138 3139 if ((unshare_flags & CLONE_FILES) && 3140 (fd && atomic_read(&fd->count) > 1)) { 3141 *new_fdp = dup_fd(fd, max_fds, &error); 3142 if (!*new_fdp) 3143 return error; 3144 } 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * unshare allows a process to 'unshare' part of the process 3151 * context which was originally shared using clone. copy_* 3152 * functions used by kernel_clone() cannot be used here directly 3153 * because they modify an inactive task_struct that is being 3154 * constructed. Here we are modifying the current, active, 3155 * task_struct. 3156 */ 3157 int ksys_unshare(unsigned long unshare_flags) 3158 { 3159 struct fs_struct *fs, *new_fs = NULL; 3160 struct files_struct *new_fd = NULL; 3161 struct cred *new_cred = NULL; 3162 struct nsproxy *new_nsproxy = NULL; 3163 int do_sysvsem = 0; 3164 int err; 3165 3166 /* 3167 * If unsharing a user namespace must also unshare the thread group 3168 * and unshare the filesystem root and working directories. 3169 */ 3170 if (unshare_flags & CLONE_NEWUSER) 3171 unshare_flags |= CLONE_THREAD | CLONE_FS; 3172 /* 3173 * If unsharing vm, must also unshare signal handlers. 3174 */ 3175 if (unshare_flags & CLONE_VM) 3176 unshare_flags |= CLONE_SIGHAND; 3177 /* 3178 * If unsharing a signal handlers, must also unshare the signal queues. 3179 */ 3180 if (unshare_flags & CLONE_SIGHAND) 3181 unshare_flags |= CLONE_THREAD; 3182 /* 3183 * If unsharing namespace, must also unshare filesystem information. 3184 */ 3185 if (unshare_flags & CLONE_NEWNS) 3186 unshare_flags |= CLONE_FS; 3187 3188 err = check_unshare_flags(unshare_flags); 3189 if (err) 3190 goto bad_unshare_out; 3191 /* 3192 * CLONE_NEWIPC must also detach from the undolist: after switching 3193 * to a new ipc namespace, the semaphore arrays from the old 3194 * namespace are unreachable. 3195 */ 3196 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3197 do_sysvsem = 1; 3198 err = unshare_fs(unshare_flags, &new_fs); 3199 if (err) 3200 goto bad_unshare_out; 3201 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3202 if (err) 3203 goto bad_unshare_cleanup_fs; 3204 err = unshare_userns(unshare_flags, &new_cred); 3205 if (err) 3206 goto bad_unshare_cleanup_fd; 3207 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3208 new_cred, new_fs); 3209 if (err) 3210 goto bad_unshare_cleanup_cred; 3211 3212 if (new_cred) { 3213 err = set_cred_ucounts(new_cred); 3214 if (err) 3215 goto bad_unshare_cleanup_cred; 3216 } 3217 3218 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3219 if (do_sysvsem) { 3220 /* 3221 * CLONE_SYSVSEM is equivalent to sys_exit(). 3222 */ 3223 exit_sem(current); 3224 } 3225 if (unshare_flags & CLONE_NEWIPC) { 3226 /* Orphan segments in old ns (see sem above). */ 3227 exit_shm(current); 3228 shm_init_task(current); 3229 } 3230 3231 if (new_nsproxy) 3232 switch_task_namespaces(current, new_nsproxy); 3233 3234 task_lock(current); 3235 3236 if (new_fs) { 3237 fs = current->fs; 3238 spin_lock(&fs->lock); 3239 current->fs = new_fs; 3240 if (--fs->users) 3241 new_fs = NULL; 3242 else 3243 new_fs = fs; 3244 spin_unlock(&fs->lock); 3245 } 3246 3247 if (new_fd) 3248 swap(current->files, new_fd); 3249 3250 task_unlock(current); 3251 3252 if (new_cred) { 3253 /* Install the new user namespace */ 3254 commit_creds(new_cred); 3255 new_cred = NULL; 3256 } 3257 } 3258 3259 perf_event_namespaces(current); 3260 3261 bad_unshare_cleanup_cred: 3262 if (new_cred) 3263 put_cred(new_cred); 3264 bad_unshare_cleanup_fd: 3265 if (new_fd) 3266 put_files_struct(new_fd); 3267 3268 bad_unshare_cleanup_fs: 3269 if (new_fs) 3270 free_fs_struct(new_fs); 3271 3272 bad_unshare_out: 3273 return err; 3274 } 3275 3276 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3277 { 3278 return ksys_unshare(unshare_flags); 3279 } 3280 3281 /* 3282 * Helper to unshare the files of the current task. 3283 * We don't want to expose copy_files internals to 3284 * the exec layer of the kernel. 3285 */ 3286 3287 int unshare_files(void) 3288 { 3289 struct task_struct *task = current; 3290 struct files_struct *old, *copy = NULL; 3291 int error; 3292 3293 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3294 if (error || !copy) 3295 return error; 3296 3297 old = task->files; 3298 task_lock(task); 3299 task->files = copy; 3300 task_unlock(task); 3301 put_files_struct(old); 3302 return 0; 3303 } 3304 3305 int sysctl_max_threads(struct ctl_table *table, int write, 3306 void *buffer, size_t *lenp, loff_t *ppos) 3307 { 3308 struct ctl_table t; 3309 int ret; 3310 int threads = max_threads; 3311 int min = 1; 3312 int max = MAX_THREADS; 3313 3314 t = *table; 3315 t.data = &threads; 3316 t.extra1 = &min; 3317 t.extra2 = &max; 3318 3319 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3320 if (ret || !write) 3321 return ret; 3322 3323 max_threads = threads; 3324 3325 return 0; 3326 } 3327