xref: /linux-6.15/kernel/fork.c (revision 9211ddaa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107 
108 #include <trace/events/sched.h>
109 
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112 
113 /*
114  * Minimum number of threads to boot the kernel
115  */
116 #define MIN_THREADS 20
117 
118 /*
119  * Maximum number of threads
120  */
121 #define MAX_THREADS FUTEX_TID_MASK
122 
123 /*
124  * Protected counters by write_lock_irq(&tasklist_lock)
125  */
126 unsigned long total_forks;	/* Handle normal Linux uptimes. */
127 int nr_threads;			/* The idle threads do not count.. */
128 
129 static int max_threads;		/* tunable limit on nr_threads */
130 
131 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
132 
133 static const char * const resident_page_types[] = {
134 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139 
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141 
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
143 
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147 	return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151 
152 int nr_processes(void)
153 {
154 	int cpu;
155 	int total = 0;
156 
157 	for_each_possible_cpu(cpu)
158 		total += per_cpu(process_counts, cpu);
159 
160 	return total;
161 }
162 
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166 
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169 
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174 
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177 	kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180 
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182 
183 /*
184  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185  * kmemcache based allocator.
186  */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188 
189 #  ifdef CONFIG_VMAP_STACK
190 /*
191  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192  * flush.  Try to minimize the number of calls by caching stacks.
193  */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196 
197 struct vm_stack {
198 	struct rcu_head rcu;
199 	struct vm_struct *stack_vm_area;
200 };
201 
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204 	unsigned int i;
205 
206 	for (i = 0; i < NR_CACHED_STACKS; i++) {
207 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208 			continue;
209 		return true;
210 	}
211 	return false;
212 }
213 
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217 
218 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219 		return;
220 
221 	vfree(vm_stack);
222 }
223 
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226 	struct vm_stack *vm_stack = tsk->stack;
227 
228 	vm_stack->stack_vm_area = tsk->stack_vm_area;
229 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231 
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235 	int i;
236 
237 	for (i = 0; i < NR_CACHED_STACKS; i++) {
238 		struct vm_struct *vm_stack = cached_vm_stacks[i];
239 
240 		if (!vm_stack)
241 			continue;
242 
243 		vfree(vm_stack->addr);
244 		cached_vm_stacks[i] = NULL;
245 	}
246 
247 	return 0;
248 }
249 
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252 	int i;
253 	int ret;
254 
255 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257 
258 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260 		if (ret)
261 			goto err;
262 	}
263 	return 0;
264 err:
265 	/*
266 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268 	 * ignore this page.
269 	 */
270 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 		memcg_kmem_uncharge_page(vm->pages[i], 0);
272 	return ret;
273 }
274 
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277 	struct vm_struct *vm;
278 	void *stack;
279 	int i;
280 
281 	for (i = 0; i < NR_CACHED_STACKS; i++) {
282 		struct vm_struct *s;
283 
284 		s = this_cpu_xchg(cached_stacks[i], NULL);
285 
286 		if (!s)
287 			continue;
288 
289 		/* Reset stack metadata. */
290 		kasan_unpoison_range(s->addr, THREAD_SIZE);
291 
292 		stack = kasan_reset_tag(s->addr);
293 
294 		/* Clear stale pointers from reused stack. */
295 		memset(stack, 0, THREAD_SIZE);
296 
297 		if (memcg_charge_kernel_stack(s)) {
298 			vfree(s->addr);
299 			return -ENOMEM;
300 		}
301 
302 		tsk->stack_vm_area = s;
303 		tsk->stack = stack;
304 		return 0;
305 	}
306 
307 	/*
308 	 * Allocated stacks are cached and later reused by new threads,
309 	 * so memcg accounting is performed manually on assigning/releasing
310 	 * stacks to tasks. Drop __GFP_ACCOUNT.
311 	 */
312 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313 				     VMALLOC_START, VMALLOC_END,
314 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
315 				     PAGE_KERNEL,
316 				     0, node, __builtin_return_address(0));
317 	if (!stack)
318 		return -ENOMEM;
319 
320 	vm = find_vm_area(stack);
321 	if (memcg_charge_kernel_stack(vm)) {
322 		vfree(stack);
323 		return -ENOMEM;
324 	}
325 	/*
326 	 * We can't call find_vm_area() in interrupt context, and
327 	 * free_thread_stack() can be called in interrupt context,
328 	 * so cache the vm_struct.
329 	 */
330 	tsk->stack_vm_area = vm;
331 	stack = kasan_reset_tag(stack);
332 	tsk->stack = stack;
333 	return 0;
334 }
335 
336 static void free_thread_stack(struct task_struct *tsk)
337 {
338 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 		thread_stack_delayed_free(tsk);
340 
341 	tsk->stack = NULL;
342 	tsk->stack_vm_area = NULL;
343 }
344 
345 #  else /* !CONFIG_VMAP_STACK */
346 
347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351 
352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354 	struct rcu_head *rh = tsk->stack;
355 
356 	call_rcu(rh, thread_stack_free_rcu);
357 }
358 
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 					     THREAD_SIZE_ORDER);
363 
364 	if (likely(page)) {
365 		tsk->stack = kasan_reset_tag(page_address(page));
366 		return 0;
367 	}
368 	return -ENOMEM;
369 }
370 
371 static void free_thread_stack(struct task_struct *tsk)
372 {
373 	thread_stack_delayed_free(tsk);
374 	tsk->stack = NULL;
375 }
376 
377 #  endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379 
380 static struct kmem_cache *thread_stack_cache;
381 
382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384 	kmem_cache_free(thread_stack_cache, rh);
385 }
386 
387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389 	struct rcu_head *rh = tsk->stack;
390 
391 	call_rcu(rh, thread_stack_free_rcu);
392 }
393 
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396 	unsigned long *stack;
397 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 	stack = kasan_reset_tag(stack);
399 	tsk->stack = stack;
400 	return stack ? 0 : -ENOMEM;
401 }
402 
403 static void free_thread_stack(struct task_struct *tsk)
404 {
405 	thread_stack_delayed_free(tsk);
406 	tsk->stack = NULL;
407 }
408 
409 void thread_stack_cache_init(void)
410 {
411 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 					THREAD_SIZE, THREAD_SIZE, 0, 0,
413 					THREAD_SIZE, NULL);
414 	BUG_ON(thread_stack_cache == NULL);
415 }
416 
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419 
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 {
422 	unsigned long *stack;
423 
424 	stack = arch_alloc_thread_stack_node(tsk, node);
425 	tsk->stack = stack;
426 	return stack ? 0 : -ENOMEM;
427 }
428 
429 static void free_thread_stack(struct task_struct *tsk)
430 {
431 	arch_free_thread_stack(tsk);
432 	tsk->stack = NULL;
433 }
434 
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436 
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
439 
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
442 
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
445 
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
448 
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
451 
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
454 
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 {
457 	struct vm_area_struct *vma;
458 
459 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
460 	if (vma)
461 		vma_init(vma, mm);
462 	return vma;
463 }
464 
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 {
467 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468 
469 	if (new) {
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472 		/*
473 		 * orig->shared.rb may be modified concurrently, but the clone
474 		 * will be reinitialized.
475 		 */
476 		data_race(memcpy(new, orig, sizeof(*new)));
477 		INIT_LIST_HEAD(&new->anon_vma_chain);
478 		dup_anon_vma_name(orig, new);
479 	}
480 	return new;
481 }
482 
483 void vm_area_free(struct vm_area_struct *vma)
484 {
485 	free_anon_vma_name(vma);
486 	kmem_cache_free(vm_area_cachep, vma);
487 }
488 
489 static void account_kernel_stack(struct task_struct *tsk, int account)
490 {
491 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
492 		struct vm_struct *vm = task_stack_vm_area(tsk);
493 		int i;
494 
495 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
496 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
497 					      account * (PAGE_SIZE / 1024));
498 	} else {
499 		void *stack = task_stack_page(tsk);
500 
501 		/* All stack pages are in the same node. */
502 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
503 				      account * (THREAD_SIZE / 1024));
504 	}
505 }
506 
507 void exit_task_stack_account(struct task_struct *tsk)
508 {
509 	account_kernel_stack(tsk, -1);
510 
511 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
512 		struct vm_struct *vm;
513 		int i;
514 
515 		vm = task_stack_vm_area(tsk);
516 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
517 			memcg_kmem_uncharge_page(vm->pages[i], 0);
518 	}
519 }
520 
521 static void release_task_stack(struct task_struct *tsk)
522 {
523 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
524 		return;  /* Better to leak the stack than to free prematurely */
525 
526 	free_thread_stack(tsk);
527 }
528 
529 #ifdef CONFIG_THREAD_INFO_IN_TASK
530 void put_task_stack(struct task_struct *tsk)
531 {
532 	if (refcount_dec_and_test(&tsk->stack_refcount))
533 		release_task_stack(tsk);
534 }
535 #endif
536 
537 void free_task(struct task_struct *tsk)
538 {
539 #ifdef CONFIG_SECCOMP
540 	WARN_ON_ONCE(tsk->seccomp.filter);
541 #endif
542 	release_user_cpus_ptr(tsk);
543 	scs_release(tsk);
544 
545 #ifndef CONFIG_THREAD_INFO_IN_TASK
546 	/*
547 	 * The task is finally done with both the stack and thread_info,
548 	 * so free both.
549 	 */
550 	release_task_stack(tsk);
551 #else
552 	/*
553 	 * If the task had a separate stack allocation, it should be gone
554 	 * by now.
555 	 */
556 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
557 #endif
558 	rt_mutex_debug_task_free(tsk);
559 	ftrace_graph_exit_task(tsk);
560 	arch_release_task_struct(tsk);
561 	if (tsk->flags & PF_KTHREAD)
562 		free_kthread_struct(tsk);
563 	free_task_struct(tsk);
564 }
565 EXPORT_SYMBOL(free_task);
566 
567 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
568 {
569 	struct file *exe_file;
570 
571 	exe_file = get_mm_exe_file(oldmm);
572 	RCU_INIT_POINTER(mm->exe_file, exe_file);
573 	/*
574 	 * We depend on the oldmm having properly denied write access to the
575 	 * exe_file already.
576 	 */
577 	if (exe_file && deny_write_access(exe_file))
578 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
579 }
580 
581 #ifdef CONFIG_MMU
582 static __latent_entropy int dup_mmap(struct mm_struct *mm,
583 					struct mm_struct *oldmm)
584 {
585 	struct vm_area_struct *mpnt, *tmp;
586 	int retval;
587 	unsigned long charge = 0;
588 	LIST_HEAD(uf);
589 	VMA_ITERATOR(old_vmi, oldmm, 0);
590 	VMA_ITERATOR(vmi, mm, 0);
591 
592 	uprobe_start_dup_mmap();
593 	if (mmap_write_lock_killable(oldmm)) {
594 		retval = -EINTR;
595 		goto fail_uprobe_end;
596 	}
597 	flush_cache_dup_mm(oldmm);
598 	uprobe_dup_mmap(oldmm, mm);
599 	/*
600 	 * Not linked in yet - no deadlock potential:
601 	 */
602 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
603 
604 	/* No ordering required: file already has been exposed. */
605 	dup_mm_exe_file(mm, oldmm);
606 
607 	mm->total_vm = oldmm->total_vm;
608 	mm->data_vm = oldmm->data_vm;
609 	mm->exec_vm = oldmm->exec_vm;
610 	mm->stack_vm = oldmm->stack_vm;
611 
612 	retval = ksm_fork(mm, oldmm);
613 	if (retval)
614 		goto out;
615 	khugepaged_fork(mm, oldmm);
616 
617 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
618 	if (retval)
619 		goto out;
620 
621 	for_each_vma(old_vmi, mpnt) {
622 		struct file *file;
623 
624 		if (mpnt->vm_flags & VM_DONTCOPY) {
625 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
626 			continue;
627 		}
628 		charge = 0;
629 		/*
630 		 * Don't duplicate many vmas if we've been oom-killed (for
631 		 * example)
632 		 */
633 		if (fatal_signal_pending(current)) {
634 			retval = -EINTR;
635 			goto loop_out;
636 		}
637 		if (mpnt->vm_flags & VM_ACCOUNT) {
638 			unsigned long len = vma_pages(mpnt);
639 
640 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
641 				goto fail_nomem;
642 			charge = len;
643 		}
644 		tmp = vm_area_dup(mpnt);
645 		if (!tmp)
646 			goto fail_nomem;
647 		retval = vma_dup_policy(mpnt, tmp);
648 		if (retval)
649 			goto fail_nomem_policy;
650 		tmp->vm_mm = mm;
651 		retval = dup_userfaultfd(tmp, &uf);
652 		if (retval)
653 			goto fail_nomem_anon_vma_fork;
654 		if (tmp->vm_flags & VM_WIPEONFORK) {
655 			/*
656 			 * VM_WIPEONFORK gets a clean slate in the child.
657 			 * Don't prepare anon_vma until fault since we don't
658 			 * copy page for current vma.
659 			 */
660 			tmp->anon_vma = NULL;
661 		} else if (anon_vma_fork(tmp, mpnt))
662 			goto fail_nomem_anon_vma_fork;
663 		vm_flags_clear(tmp, VM_LOCKED_MASK);
664 		file = tmp->vm_file;
665 		if (file) {
666 			struct address_space *mapping = file->f_mapping;
667 
668 			get_file(file);
669 			i_mmap_lock_write(mapping);
670 			if (tmp->vm_flags & VM_SHARED)
671 				mapping_allow_writable(mapping);
672 			flush_dcache_mmap_lock(mapping);
673 			/* insert tmp into the share list, just after mpnt */
674 			vma_interval_tree_insert_after(tmp, mpnt,
675 					&mapping->i_mmap);
676 			flush_dcache_mmap_unlock(mapping);
677 			i_mmap_unlock_write(mapping);
678 		}
679 
680 		/*
681 		 * Copy/update hugetlb private vma information.
682 		 */
683 		if (is_vm_hugetlb_page(tmp))
684 			hugetlb_dup_vma_private(tmp);
685 
686 		/* Link the vma into the MT */
687 		if (vma_iter_bulk_store(&vmi, tmp))
688 			goto fail_nomem_vmi_store;
689 
690 		mm->map_count++;
691 		if (!(tmp->vm_flags & VM_WIPEONFORK))
692 			retval = copy_page_range(tmp, mpnt);
693 
694 		if (tmp->vm_ops && tmp->vm_ops->open)
695 			tmp->vm_ops->open(tmp);
696 
697 		if (retval)
698 			goto loop_out;
699 	}
700 	/* a new mm has just been created */
701 	retval = arch_dup_mmap(oldmm, mm);
702 loop_out:
703 	vma_iter_free(&vmi);
704 out:
705 	mmap_write_unlock(mm);
706 	flush_tlb_mm(oldmm);
707 	mmap_write_unlock(oldmm);
708 	dup_userfaultfd_complete(&uf);
709 fail_uprobe_end:
710 	uprobe_end_dup_mmap();
711 	return retval;
712 
713 fail_nomem_vmi_store:
714 	unlink_anon_vmas(tmp);
715 fail_nomem_anon_vma_fork:
716 	mpol_put(vma_policy(tmp));
717 fail_nomem_policy:
718 	vm_area_free(tmp);
719 fail_nomem:
720 	retval = -ENOMEM;
721 	vm_unacct_memory(charge);
722 	goto loop_out;
723 }
724 
725 static inline int mm_alloc_pgd(struct mm_struct *mm)
726 {
727 	mm->pgd = pgd_alloc(mm);
728 	if (unlikely(!mm->pgd))
729 		return -ENOMEM;
730 	return 0;
731 }
732 
733 static inline void mm_free_pgd(struct mm_struct *mm)
734 {
735 	pgd_free(mm, mm->pgd);
736 }
737 #else
738 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
739 {
740 	mmap_write_lock(oldmm);
741 	dup_mm_exe_file(mm, oldmm);
742 	mmap_write_unlock(oldmm);
743 	return 0;
744 }
745 #define mm_alloc_pgd(mm)	(0)
746 #define mm_free_pgd(mm)
747 #endif /* CONFIG_MMU */
748 
749 static void check_mm(struct mm_struct *mm)
750 {
751 	int i;
752 
753 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
754 			 "Please make sure 'struct resident_page_types[]' is updated as well");
755 
756 	for (i = 0; i < NR_MM_COUNTERS; i++) {
757 		long x = percpu_counter_sum(&mm->rss_stat[i]);
758 
759 		if (likely(!x))
760 			continue;
761 
762 		/* Making sure this is not due to race with CPU offlining. */
763 		x = percpu_counter_sum_all(&mm->rss_stat[i]);
764 		if (unlikely(x))
765 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
766 				 mm, resident_page_types[i], x);
767 	}
768 
769 	if (mm_pgtables_bytes(mm))
770 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
771 				mm_pgtables_bytes(mm));
772 
773 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
774 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
775 #endif
776 }
777 
778 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
779 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
780 
781 /*
782  * Called when the last reference to the mm
783  * is dropped: either by a lazy thread or by
784  * mmput. Free the page directory and the mm.
785  */
786 void __mmdrop(struct mm_struct *mm)
787 {
788 	int i;
789 
790 	BUG_ON(mm == &init_mm);
791 	WARN_ON_ONCE(mm == current->mm);
792 	WARN_ON_ONCE(mm == current->active_mm);
793 	mm_free_pgd(mm);
794 	destroy_context(mm);
795 	mmu_notifier_subscriptions_destroy(mm);
796 	check_mm(mm);
797 	put_user_ns(mm->user_ns);
798 	mm_pasid_drop(mm);
799 
800 	for (i = 0; i < NR_MM_COUNTERS; i++)
801 		percpu_counter_destroy(&mm->rss_stat[i]);
802 	free_mm(mm);
803 }
804 EXPORT_SYMBOL_GPL(__mmdrop);
805 
806 static void mmdrop_async_fn(struct work_struct *work)
807 {
808 	struct mm_struct *mm;
809 
810 	mm = container_of(work, struct mm_struct, async_put_work);
811 	__mmdrop(mm);
812 }
813 
814 static void mmdrop_async(struct mm_struct *mm)
815 {
816 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
817 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
818 		schedule_work(&mm->async_put_work);
819 	}
820 }
821 
822 static inline void free_signal_struct(struct signal_struct *sig)
823 {
824 	taskstats_tgid_free(sig);
825 	sched_autogroup_exit(sig);
826 	/*
827 	 * __mmdrop is not safe to call from softirq context on x86 due to
828 	 * pgd_dtor so postpone it to the async context
829 	 */
830 	if (sig->oom_mm)
831 		mmdrop_async(sig->oom_mm);
832 	kmem_cache_free(signal_cachep, sig);
833 }
834 
835 static inline void put_signal_struct(struct signal_struct *sig)
836 {
837 	if (refcount_dec_and_test(&sig->sigcnt))
838 		free_signal_struct(sig);
839 }
840 
841 void __put_task_struct(struct task_struct *tsk)
842 {
843 	WARN_ON(!tsk->exit_state);
844 	WARN_ON(refcount_read(&tsk->usage));
845 	WARN_ON(tsk == current);
846 
847 	io_uring_free(tsk);
848 	cgroup_free(tsk);
849 	task_numa_free(tsk, true);
850 	security_task_free(tsk);
851 	bpf_task_storage_free(tsk);
852 	exit_creds(tsk);
853 	delayacct_tsk_free(tsk);
854 	put_signal_struct(tsk->signal);
855 	sched_core_free(tsk);
856 	free_task(tsk);
857 }
858 EXPORT_SYMBOL_GPL(__put_task_struct);
859 
860 void __init __weak arch_task_cache_init(void) { }
861 
862 /*
863  * set_max_threads
864  */
865 static void set_max_threads(unsigned int max_threads_suggested)
866 {
867 	u64 threads;
868 	unsigned long nr_pages = totalram_pages();
869 
870 	/*
871 	 * The number of threads shall be limited such that the thread
872 	 * structures may only consume a small part of the available memory.
873 	 */
874 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
875 		threads = MAX_THREADS;
876 	else
877 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
878 				    (u64) THREAD_SIZE * 8UL);
879 
880 	if (threads > max_threads_suggested)
881 		threads = max_threads_suggested;
882 
883 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
884 }
885 
886 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
887 /* Initialized by the architecture: */
888 int arch_task_struct_size __read_mostly;
889 #endif
890 
891 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
892 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
893 {
894 	/* Fetch thread_struct whitelist for the architecture. */
895 	arch_thread_struct_whitelist(offset, size);
896 
897 	/*
898 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
899 	 * adjust offset to position of thread_struct in task_struct.
900 	 */
901 	if (unlikely(*size == 0))
902 		*offset = 0;
903 	else
904 		*offset += offsetof(struct task_struct, thread);
905 }
906 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
907 
908 void __init fork_init(void)
909 {
910 	int i;
911 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
912 #ifndef ARCH_MIN_TASKALIGN
913 #define ARCH_MIN_TASKALIGN	0
914 #endif
915 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
916 	unsigned long useroffset, usersize;
917 
918 	/* create a slab on which task_structs can be allocated */
919 	task_struct_whitelist(&useroffset, &usersize);
920 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
921 			arch_task_struct_size, align,
922 			SLAB_PANIC|SLAB_ACCOUNT,
923 			useroffset, usersize, NULL);
924 #endif
925 
926 	/* do the arch specific task caches init */
927 	arch_task_cache_init();
928 
929 	set_max_threads(MAX_THREADS);
930 
931 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
932 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
933 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
934 		init_task.signal->rlim[RLIMIT_NPROC];
935 
936 	for (i = 0; i < UCOUNT_COUNTS; i++)
937 		init_user_ns.ucount_max[i] = max_threads/2;
938 
939 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
940 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
941 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
942 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
943 
944 #ifdef CONFIG_VMAP_STACK
945 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
946 			  NULL, free_vm_stack_cache);
947 #endif
948 
949 	scs_init();
950 
951 	lockdep_init_task(&init_task);
952 	uprobes_init();
953 }
954 
955 int __weak arch_dup_task_struct(struct task_struct *dst,
956 					       struct task_struct *src)
957 {
958 	*dst = *src;
959 	return 0;
960 }
961 
962 void set_task_stack_end_magic(struct task_struct *tsk)
963 {
964 	unsigned long *stackend;
965 
966 	stackend = end_of_stack(tsk);
967 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
968 }
969 
970 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
971 {
972 	struct task_struct *tsk;
973 	int err;
974 
975 	if (node == NUMA_NO_NODE)
976 		node = tsk_fork_get_node(orig);
977 	tsk = alloc_task_struct_node(node);
978 	if (!tsk)
979 		return NULL;
980 
981 	err = arch_dup_task_struct(tsk, orig);
982 	if (err)
983 		goto free_tsk;
984 
985 	err = alloc_thread_stack_node(tsk, node);
986 	if (err)
987 		goto free_tsk;
988 
989 #ifdef CONFIG_THREAD_INFO_IN_TASK
990 	refcount_set(&tsk->stack_refcount, 1);
991 #endif
992 	account_kernel_stack(tsk, 1);
993 
994 	err = scs_prepare(tsk, node);
995 	if (err)
996 		goto free_stack;
997 
998 #ifdef CONFIG_SECCOMP
999 	/*
1000 	 * We must handle setting up seccomp filters once we're under
1001 	 * the sighand lock in case orig has changed between now and
1002 	 * then. Until then, filter must be NULL to avoid messing up
1003 	 * the usage counts on the error path calling free_task.
1004 	 */
1005 	tsk->seccomp.filter = NULL;
1006 #endif
1007 
1008 	setup_thread_stack(tsk, orig);
1009 	clear_user_return_notifier(tsk);
1010 	clear_tsk_need_resched(tsk);
1011 	set_task_stack_end_magic(tsk);
1012 	clear_syscall_work_syscall_user_dispatch(tsk);
1013 
1014 #ifdef CONFIG_STACKPROTECTOR
1015 	tsk->stack_canary = get_random_canary();
1016 #endif
1017 	if (orig->cpus_ptr == &orig->cpus_mask)
1018 		tsk->cpus_ptr = &tsk->cpus_mask;
1019 	dup_user_cpus_ptr(tsk, orig, node);
1020 
1021 	/*
1022 	 * One for the user space visible state that goes away when reaped.
1023 	 * One for the scheduler.
1024 	 */
1025 	refcount_set(&tsk->rcu_users, 2);
1026 	/* One for the rcu users */
1027 	refcount_set(&tsk->usage, 1);
1028 #ifdef CONFIG_BLK_DEV_IO_TRACE
1029 	tsk->btrace_seq = 0;
1030 #endif
1031 	tsk->splice_pipe = NULL;
1032 	tsk->task_frag.page = NULL;
1033 	tsk->wake_q.next = NULL;
1034 	tsk->worker_private = NULL;
1035 
1036 	kcov_task_init(tsk);
1037 	kmsan_task_create(tsk);
1038 	kmap_local_fork(tsk);
1039 
1040 #ifdef CONFIG_FAULT_INJECTION
1041 	tsk->fail_nth = 0;
1042 #endif
1043 
1044 #ifdef CONFIG_BLK_CGROUP
1045 	tsk->throttle_disk = NULL;
1046 	tsk->use_memdelay = 0;
1047 #endif
1048 
1049 #ifdef CONFIG_IOMMU_SVA
1050 	tsk->pasid_activated = 0;
1051 #endif
1052 
1053 #ifdef CONFIG_MEMCG
1054 	tsk->active_memcg = NULL;
1055 #endif
1056 
1057 #ifdef CONFIG_CPU_SUP_INTEL
1058 	tsk->reported_split_lock = 0;
1059 #endif
1060 
1061 #ifdef CONFIG_SCHED_MM_CID
1062 	tsk->mm_cid = -1;
1063 	tsk->mm_cid_active = 0;
1064 #endif
1065 	return tsk;
1066 
1067 free_stack:
1068 	exit_task_stack_account(tsk);
1069 	free_thread_stack(tsk);
1070 free_tsk:
1071 	free_task_struct(tsk);
1072 	return NULL;
1073 }
1074 
1075 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1076 
1077 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1078 
1079 static int __init coredump_filter_setup(char *s)
1080 {
1081 	default_dump_filter =
1082 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1083 		MMF_DUMP_FILTER_MASK;
1084 	return 1;
1085 }
1086 
1087 __setup("coredump_filter=", coredump_filter_setup);
1088 
1089 #include <linux/init_task.h>
1090 
1091 static void mm_init_aio(struct mm_struct *mm)
1092 {
1093 #ifdef CONFIG_AIO
1094 	spin_lock_init(&mm->ioctx_lock);
1095 	mm->ioctx_table = NULL;
1096 #endif
1097 }
1098 
1099 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1100 					   struct task_struct *p)
1101 {
1102 #ifdef CONFIG_MEMCG
1103 	if (mm->owner == p)
1104 		WRITE_ONCE(mm->owner, NULL);
1105 #endif
1106 }
1107 
1108 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1109 {
1110 #ifdef CONFIG_MEMCG
1111 	mm->owner = p;
1112 #endif
1113 }
1114 
1115 static void mm_init_uprobes_state(struct mm_struct *mm)
1116 {
1117 #ifdef CONFIG_UPROBES
1118 	mm->uprobes_state.xol_area = NULL;
1119 #endif
1120 }
1121 
1122 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1123 	struct user_namespace *user_ns)
1124 {
1125 	int i;
1126 
1127 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1128 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1129 	atomic_set(&mm->mm_users, 1);
1130 	atomic_set(&mm->mm_count, 1);
1131 	seqcount_init(&mm->write_protect_seq);
1132 	mmap_init_lock(mm);
1133 	INIT_LIST_HEAD(&mm->mmlist);
1134 	mm_pgtables_bytes_init(mm);
1135 	mm->map_count = 0;
1136 	mm->locked_vm = 0;
1137 	atomic64_set(&mm->pinned_vm, 0);
1138 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1139 	spin_lock_init(&mm->page_table_lock);
1140 	spin_lock_init(&mm->arg_lock);
1141 	mm_init_cpumask(mm);
1142 	mm_init_aio(mm);
1143 	mm_init_owner(mm, p);
1144 	mm_pasid_init(mm);
1145 	RCU_INIT_POINTER(mm->exe_file, NULL);
1146 	mmu_notifier_subscriptions_init(mm);
1147 	init_tlb_flush_pending(mm);
1148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1149 	mm->pmd_huge_pte = NULL;
1150 #endif
1151 	mm_init_uprobes_state(mm);
1152 	hugetlb_count_init(mm);
1153 
1154 	if (current->mm) {
1155 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1156 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1157 	} else {
1158 		mm->flags = default_dump_filter;
1159 		mm->def_flags = 0;
1160 	}
1161 
1162 	if (mm_alloc_pgd(mm))
1163 		goto fail_nopgd;
1164 
1165 	if (init_new_context(p, mm))
1166 		goto fail_nocontext;
1167 
1168 	for (i = 0; i < NR_MM_COUNTERS; i++)
1169 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1170 			goto fail_pcpu;
1171 
1172 	mm->user_ns = get_user_ns(user_ns);
1173 	lru_gen_init_mm(mm);
1174 	mm_init_cid(mm);
1175 	return mm;
1176 
1177 fail_pcpu:
1178 	while (i > 0)
1179 		percpu_counter_destroy(&mm->rss_stat[--i]);
1180 fail_nocontext:
1181 	mm_free_pgd(mm);
1182 fail_nopgd:
1183 	free_mm(mm);
1184 	return NULL;
1185 }
1186 
1187 /*
1188  * Allocate and initialize an mm_struct.
1189  */
1190 struct mm_struct *mm_alloc(void)
1191 {
1192 	struct mm_struct *mm;
1193 
1194 	mm = allocate_mm();
1195 	if (!mm)
1196 		return NULL;
1197 
1198 	memset(mm, 0, sizeof(*mm));
1199 	return mm_init(mm, current, current_user_ns());
1200 }
1201 
1202 static inline void __mmput(struct mm_struct *mm)
1203 {
1204 	VM_BUG_ON(atomic_read(&mm->mm_users));
1205 
1206 	uprobe_clear_state(mm);
1207 	exit_aio(mm);
1208 	ksm_exit(mm);
1209 	khugepaged_exit(mm); /* must run before exit_mmap */
1210 	exit_mmap(mm);
1211 	mm_put_huge_zero_page(mm);
1212 	set_mm_exe_file(mm, NULL);
1213 	if (!list_empty(&mm->mmlist)) {
1214 		spin_lock(&mmlist_lock);
1215 		list_del(&mm->mmlist);
1216 		spin_unlock(&mmlist_lock);
1217 	}
1218 	if (mm->binfmt)
1219 		module_put(mm->binfmt->module);
1220 	lru_gen_del_mm(mm);
1221 	mmdrop(mm);
1222 }
1223 
1224 /*
1225  * Decrement the use count and release all resources for an mm.
1226  */
1227 void mmput(struct mm_struct *mm)
1228 {
1229 	might_sleep();
1230 
1231 	if (atomic_dec_and_test(&mm->mm_users))
1232 		__mmput(mm);
1233 }
1234 EXPORT_SYMBOL_GPL(mmput);
1235 
1236 #ifdef CONFIG_MMU
1237 static void mmput_async_fn(struct work_struct *work)
1238 {
1239 	struct mm_struct *mm = container_of(work, struct mm_struct,
1240 					    async_put_work);
1241 
1242 	__mmput(mm);
1243 }
1244 
1245 void mmput_async(struct mm_struct *mm)
1246 {
1247 	if (atomic_dec_and_test(&mm->mm_users)) {
1248 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1249 		schedule_work(&mm->async_put_work);
1250 	}
1251 }
1252 EXPORT_SYMBOL_GPL(mmput_async);
1253 #endif
1254 
1255 /**
1256  * set_mm_exe_file - change a reference to the mm's executable file
1257  *
1258  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1259  *
1260  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1261  * invocations: in mmput() nobody alive left, in execve task is single
1262  * threaded.
1263  *
1264  * Can only fail if new_exe_file != NULL.
1265  */
1266 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1267 {
1268 	struct file *old_exe_file;
1269 
1270 	/*
1271 	 * It is safe to dereference the exe_file without RCU as
1272 	 * this function is only called if nobody else can access
1273 	 * this mm -- see comment above for justification.
1274 	 */
1275 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1276 
1277 	if (new_exe_file) {
1278 		/*
1279 		 * We expect the caller (i.e., sys_execve) to already denied
1280 		 * write access, so this is unlikely to fail.
1281 		 */
1282 		if (unlikely(deny_write_access(new_exe_file)))
1283 			return -EACCES;
1284 		get_file(new_exe_file);
1285 	}
1286 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1287 	if (old_exe_file) {
1288 		allow_write_access(old_exe_file);
1289 		fput(old_exe_file);
1290 	}
1291 	return 0;
1292 }
1293 
1294 /**
1295  * replace_mm_exe_file - replace a reference to the mm's executable file
1296  *
1297  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1298  * dealing with concurrent invocation and without grabbing the mmap lock in
1299  * write mode.
1300  *
1301  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1302  */
1303 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1304 {
1305 	struct vm_area_struct *vma;
1306 	struct file *old_exe_file;
1307 	int ret = 0;
1308 
1309 	/* Forbid mm->exe_file change if old file still mapped. */
1310 	old_exe_file = get_mm_exe_file(mm);
1311 	if (old_exe_file) {
1312 		VMA_ITERATOR(vmi, mm, 0);
1313 		mmap_read_lock(mm);
1314 		for_each_vma(vmi, vma) {
1315 			if (!vma->vm_file)
1316 				continue;
1317 			if (path_equal(&vma->vm_file->f_path,
1318 				       &old_exe_file->f_path)) {
1319 				ret = -EBUSY;
1320 				break;
1321 			}
1322 		}
1323 		mmap_read_unlock(mm);
1324 		fput(old_exe_file);
1325 		if (ret)
1326 			return ret;
1327 	}
1328 
1329 	/* set the new file, lockless */
1330 	ret = deny_write_access(new_exe_file);
1331 	if (ret)
1332 		return -EACCES;
1333 	get_file(new_exe_file);
1334 
1335 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1336 	if (old_exe_file) {
1337 		/*
1338 		 * Don't race with dup_mmap() getting the file and disallowing
1339 		 * write access while someone might open the file writable.
1340 		 */
1341 		mmap_read_lock(mm);
1342 		allow_write_access(old_exe_file);
1343 		fput(old_exe_file);
1344 		mmap_read_unlock(mm);
1345 	}
1346 	return 0;
1347 }
1348 
1349 /**
1350  * get_mm_exe_file - acquire a reference to the mm's executable file
1351  *
1352  * Returns %NULL if mm has no associated executable file.
1353  * User must release file via fput().
1354  */
1355 struct file *get_mm_exe_file(struct mm_struct *mm)
1356 {
1357 	struct file *exe_file;
1358 
1359 	rcu_read_lock();
1360 	exe_file = rcu_dereference(mm->exe_file);
1361 	if (exe_file && !get_file_rcu(exe_file))
1362 		exe_file = NULL;
1363 	rcu_read_unlock();
1364 	return exe_file;
1365 }
1366 
1367 /**
1368  * get_task_exe_file - acquire a reference to the task's executable file
1369  *
1370  * Returns %NULL if task's mm (if any) has no associated executable file or
1371  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1372  * User must release file via fput().
1373  */
1374 struct file *get_task_exe_file(struct task_struct *task)
1375 {
1376 	struct file *exe_file = NULL;
1377 	struct mm_struct *mm;
1378 
1379 	task_lock(task);
1380 	mm = task->mm;
1381 	if (mm) {
1382 		if (!(task->flags & PF_KTHREAD))
1383 			exe_file = get_mm_exe_file(mm);
1384 	}
1385 	task_unlock(task);
1386 	return exe_file;
1387 }
1388 
1389 /**
1390  * get_task_mm - acquire a reference to the task's mm
1391  *
1392  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1393  * this kernel workthread has transiently adopted a user mm with use_mm,
1394  * to do its AIO) is not set and if so returns a reference to it, after
1395  * bumping up the use count.  User must release the mm via mmput()
1396  * after use.  Typically used by /proc and ptrace.
1397  */
1398 struct mm_struct *get_task_mm(struct task_struct *task)
1399 {
1400 	struct mm_struct *mm;
1401 
1402 	task_lock(task);
1403 	mm = task->mm;
1404 	if (mm) {
1405 		if (task->flags & PF_KTHREAD)
1406 			mm = NULL;
1407 		else
1408 			mmget(mm);
1409 	}
1410 	task_unlock(task);
1411 	return mm;
1412 }
1413 EXPORT_SYMBOL_GPL(get_task_mm);
1414 
1415 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1416 {
1417 	struct mm_struct *mm;
1418 	int err;
1419 
1420 	err =  down_read_killable(&task->signal->exec_update_lock);
1421 	if (err)
1422 		return ERR_PTR(err);
1423 
1424 	mm = get_task_mm(task);
1425 	if (mm && mm != current->mm &&
1426 			!ptrace_may_access(task, mode)) {
1427 		mmput(mm);
1428 		mm = ERR_PTR(-EACCES);
1429 	}
1430 	up_read(&task->signal->exec_update_lock);
1431 
1432 	return mm;
1433 }
1434 
1435 static void complete_vfork_done(struct task_struct *tsk)
1436 {
1437 	struct completion *vfork;
1438 
1439 	task_lock(tsk);
1440 	vfork = tsk->vfork_done;
1441 	if (likely(vfork)) {
1442 		tsk->vfork_done = NULL;
1443 		complete(vfork);
1444 	}
1445 	task_unlock(tsk);
1446 }
1447 
1448 static int wait_for_vfork_done(struct task_struct *child,
1449 				struct completion *vfork)
1450 {
1451 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1452 	int killed;
1453 
1454 	cgroup_enter_frozen();
1455 	killed = wait_for_completion_state(vfork, state);
1456 	cgroup_leave_frozen(false);
1457 
1458 	if (killed) {
1459 		task_lock(child);
1460 		child->vfork_done = NULL;
1461 		task_unlock(child);
1462 	}
1463 
1464 	put_task_struct(child);
1465 	return killed;
1466 }
1467 
1468 /* Please note the differences between mmput and mm_release.
1469  * mmput is called whenever we stop holding onto a mm_struct,
1470  * error success whatever.
1471  *
1472  * mm_release is called after a mm_struct has been removed
1473  * from the current process.
1474  *
1475  * This difference is important for error handling, when we
1476  * only half set up a mm_struct for a new process and need to restore
1477  * the old one.  Because we mmput the new mm_struct before
1478  * restoring the old one. . .
1479  * Eric Biederman 10 January 1998
1480  */
1481 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1482 {
1483 	uprobe_free_utask(tsk);
1484 
1485 	/* Get rid of any cached register state */
1486 	deactivate_mm(tsk, mm);
1487 
1488 	/*
1489 	 * Signal userspace if we're not exiting with a core dump
1490 	 * because we want to leave the value intact for debugging
1491 	 * purposes.
1492 	 */
1493 	if (tsk->clear_child_tid) {
1494 		if (atomic_read(&mm->mm_users) > 1) {
1495 			/*
1496 			 * We don't check the error code - if userspace has
1497 			 * not set up a proper pointer then tough luck.
1498 			 */
1499 			put_user(0, tsk->clear_child_tid);
1500 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1501 					1, NULL, NULL, 0, 0);
1502 		}
1503 		tsk->clear_child_tid = NULL;
1504 	}
1505 
1506 	/*
1507 	 * All done, finally we can wake up parent and return this mm to him.
1508 	 * Also kthread_stop() uses this completion for synchronization.
1509 	 */
1510 	if (tsk->vfork_done)
1511 		complete_vfork_done(tsk);
1512 }
1513 
1514 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1515 {
1516 	futex_exit_release(tsk);
1517 	mm_release(tsk, mm);
1518 }
1519 
1520 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1521 {
1522 	futex_exec_release(tsk);
1523 	mm_release(tsk, mm);
1524 }
1525 
1526 /**
1527  * dup_mm() - duplicates an existing mm structure
1528  * @tsk: the task_struct with which the new mm will be associated.
1529  * @oldmm: the mm to duplicate.
1530  *
1531  * Allocates a new mm structure and duplicates the provided @oldmm structure
1532  * content into it.
1533  *
1534  * Return: the duplicated mm or NULL on failure.
1535  */
1536 static struct mm_struct *dup_mm(struct task_struct *tsk,
1537 				struct mm_struct *oldmm)
1538 {
1539 	struct mm_struct *mm;
1540 	int err;
1541 
1542 	mm = allocate_mm();
1543 	if (!mm)
1544 		goto fail_nomem;
1545 
1546 	memcpy(mm, oldmm, sizeof(*mm));
1547 
1548 	if (!mm_init(mm, tsk, mm->user_ns))
1549 		goto fail_nomem;
1550 
1551 	err = dup_mmap(mm, oldmm);
1552 	if (err)
1553 		goto free_pt;
1554 
1555 	mm->hiwater_rss = get_mm_rss(mm);
1556 	mm->hiwater_vm = mm->total_vm;
1557 
1558 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1559 		goto free_pt;
1560 
1561 	return mm;
1562 
1563 free_pt:
1564 	/* don't put binfmt in mmput, we haven't got module yet */
1565 	mm->binfmt = NULL;
1566 	mm_init_owner(mm, NULL);
1567 	mmput(mm);
1568 
1569 fail_nomem:
1570 	return NULL;
1571 }
1572 
1573 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1574 {
1575 	struct mm_struct *mm, *oldmm;
1576 
1577 	tsk->min_flt = tsk->maj_flt = 0;
1578 	tsk->nvcsw = tsk->nivcsw = 0;
1579 #ifdef CONFIG_DETECT_HUNG_TASK
1580 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1581 	tsk->last_switch_time = 0;
1582 #endif
1583 
1584 	tsk->mm = NULL;
1585 	tsk->active_mm = NULL;
1586 
1587 	/*
1588 	 * Are we cloning a kernel thread?
1589 	 *
1590 	 * We need to steal a active VM for that..
1591 	 */
1592 	oldmm = current->mm;
1593 	if (!oldmm)
1594 		return 0;
1595 
1596 	if (clone_flags & CLONE_VM) {
1597 		mmget(oldmm);
1598 		mm = oldmm;
1599 	} else {
1600 		mm = dup_mm(tsk, current->mm);
1601 		if (!mm)
1602 			return -ENOMEM;
1603 	}
1604 
1605 	tsk->mm = mm;
1606 	tsk->active_mm = mm;
1607 	sched_mm_cid_fork(tsk);
1608 	return 0;
1609 }
1610 
1611 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1612 {
1613 	struct fs_struct *fs = current->fs;
1614 	if (clone_flags & CLONE_FS) {
1615 		/* tsk->fs is already what we want */
1616 		spin_lock(&fs->lock);
1617 		if (fs->in_exec) {
1618 			spin_unlock(&fs->lock);
1619 			return -EAGAIN;
1620 		}
1621 		fs->users++;
1622 		spin_unlock(&fs->lock);
1623 		return 0;
1624 	}
1625 	tsk->fs = copy_fs_struct(fs);
1626 	if (!tsk->fs)
1627 		return -ENOMEM;
1628 	return 0;
1629 }
1630 
1631 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1632 {
1633 	struct files_struct *oldf, *newf;
1634 	int error = 0;
1635 
1636 	/*
1637 	 * A background process may not have any files ...
1638 	 */
1639 	oldf = current->files;
1640 	if (!oldf)
1641 		goto out;
1642 
1643 	if (clone_flags & CLONE_FILES) {
1644 		atomic_inc(&oldf->count);
1645 		goto out;
1646 	}
1647 
1648 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1649 	if (!newf)
1650 		goto out;
1651 
1652 	tsk->files = newf;
1653 	error = 0;
1654 out:
1655 	return error;
1656 }
1657 
1658 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1659 {
1660 	struct sighand_struct *sig;
1661 
1662 	if (clone_flags & CLONE_SIGHAND) {
1663 		refcount_inc(&current->sighand->count);
1664 		return 0;
1665 	}
1666 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1667 	RCU_INIT_POINTER(tsk->sighand, sig);
1668 	if (!sig)
1669 		return -ENOMEM;
1670 
1671 	refcount_set(&sig->count, 1);
1672 	spin_lock_irq(&current->sighand->siglock);
1673 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1674 	spin_unlock_irq(&current->sighand->siglock);
1675 
1676 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1677 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1678 		flush_signal_handlers(tsk, 0);
1679 
1680 	return 0;
1681 }
1682 
1683 void __cleanup_sighand(struct sighand_struct *sighand)
1684 {
1685 	if (refcount_dec_and_test(&sighand->count)) {
1686 		signalfd_cleanup(sighand);
1687 		/*
1688 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1689 		 * without an RCU grace period, see __lock_task_sighand().
1690 		 */
1691 		kmem_cache_free(sighand_cachep, sighand);
1692 	}
1693 }
1694 
1695 /*
1696  * Initialize POSIX timer handling for a thread group.
1697  */
1698 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1699 {
1700 	struct posix_cputimers *pct = &sig->posix_cputimers;
1701 	unsigned long cpu_limit;
1702 
1703 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1704 	posix_cputimers_group_init(pct, cpu_limit);
1705 }
1706 
1707 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1708 {
1709 	struct signal_struct *sig;
1710 
1711 	if (clone_flags & CLONE_THREAD)
1712 		return 0;
1713 
1714 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1715 	tsk->signal = sig;
1716 	if (!sig)
1717 		return -ENOMEM;
1718 
1719 	sig->nr_threads = 1;
1720 	sig->quick_threads = 1;
1721 	atomic_set(&sig->live, 1);
1722 	refcount_set(&sig->sigcnt, 1);
1723 
1724 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1725 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1726 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1727 
1728 	init_waitqueue_head(&sig->wait_chldexit);
1729 	sig->curr_target = tsk;
1730 	init_sigpending(&sig->shared_pending);
1731 	INIT_HLIST_HEAD(&sig->multiprocess);
1732 	seqlock_init(&sig->stats_lock);
1733 	prev_cputime_init(&sig->prev_cputime);
1734 
1735 #ifdef CONFIG_POSIX_TIMERS
1736 	INIT_LIST_HEAD(&sig->posix_timers);
1737 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1738 	sig->real_timer.function = it_real_fn;
1739 #endif
1740 
1741 	task_lock(current->group_leader);
1742 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1743 	task_unlock(current->group_leader);
1744 
1745 	posix_cpu_timers_init_group(sig);
1746 
1747 	tty_audit_fork(sig);
1748 	sched_autogroup_fork(sig);
1749 
1750 	sig->oom_score_adj = current->signal->oom_score_adj;
1751 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1752 
1753 	mutex_init(&sig->cred_guard_mutex);
1754 	init_rwsem(&sig->exec_update_lock);
1755 
1756 	return 0;
1757 }
1758 
1759 static void copy_seccomp(struct task_struct *p)
1760 {
1761 #ifdef CONFIG_SECCOMP
1762 	/*
1763 	 * Must be called with sighand->lock held, which is common to
1764 	 * all threads in the group. Holding cred_guard_mutex is not
1765 	 * needed because this new task is not yet running and cannot
1766 	 * be racing exec.
1767 	 */
1768 	assert_spin_locked(&current->sighand->siglock);
1769 
1770 	/* Ref-count the new filter user, and assign it. */
1771 	get_seccomp_filter(current);
1772 	p->seccomp = current->seccomp;
1773 
1774 	/*
1775 	 * Explicitly enable no_new_privs here in case it got set
1776 	 * between the task_struct being duplicated and holding the
1777 	 * sighand lock. The seccomp state and nnp must be in sync.
1778 	 */
1779 	if (task_no_new_privs(current))
1780 		task_set_no_new_privs(p);
1781 
1782 	/*
1783 	 * If the parent gained a seccomp mode after copying thread
1784 	 * flags and between before we held the sighand lock, we have
1785 	 * to manually enable the seccomp thread flag here.
1786 	 */
1787 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1788 		set_task_syscall_work(p, SECCOMP);
1789 #endif
1790 }
1791 
1792 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1793 {
1794 	current->clear_child_tid = tidptr;
1795 
1796 	return task_pid_vnr(current);
1797 }
1798 
1799 static void rt_mutex_init_task(struct task_struct *p)
1800 {
1801 	raw_spin_lock_init(&p->pi_lock);
1802 #ifdef CONFIG_RT_MUTEXES
1803 	p->pi_waiters = RB_ROOT_CACHED;
1804 	p->pi_top_task = NULL;
1805 	p->pi_blocked_on = NULL;
1806 #endif
1807 }
1808 
1809 static inline void init_task_pid_links(struct task_struct *task)
1810 {
1811 	enum pid_type type;
1812 
1813 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1814 		INIT_HLIST_NODE(&task->pid_links[type]);
1815 }
1816 
1817 static inline void
1818 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1819 {
1820 	if (type == PIDTYPE_PID)
1821 		task->thread_pid = pid;
1822 	else
1823 		task->signal->pids[type] = pid;
1824 }
1825 
1826 static inline void rcu_copy_process(struct task_struct *p)
1827 {
1828 #ifdef CONFIG_PREEMPT_RCU
1829 	p->rcu_read_lock_nesting = 0;
1830 	p->rcu_read_unlock_special.s = 0;
1831 	p->rcu_blocked_node = NULL;
1832 	INIT_LIST_HEAD(&p->rcu_node_entry);
1833 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1834 #ifdef CONFIG_TASKS_RCU
1835 	p->rcu_tasks_holdout = false;
1836 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1837 	p->rcu_tasks_idle_cpu = -1;
1838 #endif /* #ifdef CONFIG_TASKS_RCU */
1839 #ifdef CONFIG_TASKS_TRACE_RCU
1840 	p->trc_reader_nesting = 0;
1841 	p->trc_reader_special.s = 0;
1842 	INIT_LIST_HEAD(&p->trc_holdout_list);
1843 	INIT_LIST_HEAD(&p->trc_blkd_node);
1844 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1845 }
1846 
1847 struct pid *pidfd_pid(const struct file *file)
1848 {
1849 	if (file->f_op == &pidfd_fops)
1850 		return file->private_data;
1851 
1852 	return ERR_PTR(-EBADF);
1853 }
1854 
1855 static int pidfd_release(struct inode *inode, struct file *file)
1856 {
1857 	struct pid *pid = file->private_data;
1858 
1859 	file->private_data = NULL;
1860 	put_pid(pid);
1861 	return 0;
1862 }
1863 
1864 #ifdef CONFIG_PROC_FS
1865 /**
1866  * pidfd_show_fdinfo - print information about a pidfd
1867  * @m: proc fdinfo file
1868  * @f: file referencing a pidfd
1869  *
1870  * Pid:
1871  * This function will print the pid that a given pidfd refers to in the
1872  * pid namespace of the procfs instance.
1873  * If the pid namespace of the process is not a descendant of the pid
1874  * namespace of the procfs instance 0 will be shown as its pid. This is
1875  * similar to calling getppid() on a process whose parent is outside of
1876  * its pid namespace.
1877  *
1878  * NSpid:
1879  * If pid namespaces are supported then this function will also print
1880  * the pid of a given pidfd refers to for all descendant pid namespaces
1881  * starting from the current pid namespace of the instance, i.e. the
1882  * Pid field and the first entry in the NSpid field will be identical.
1883  * If the pid namespace of the process is not a descendant of the pid
1884  * namespace of the procfs instance 0 will be shown as its first NSpid
1885  * entry and no others will be shown.
1886  * Note that this differs from the Pid and NSpid fields in
1887  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1888  * the  pid namespace of the procfs instance. The difference becomes
1889  * obvious when sending around a pidfd between pid namespaces from a
1890  * different branch of the tree, i.e. where no ancestral relation is
1891  * present between the pid namespaces:
1892  * - create two new pid namespaces ns1 and ns2 in the initial pid
1893  *   namespace (also take care to create new mount namespaces in the
1894  *   new pid namespace and mount procfs)
1895  * - create a process with a pidfd in ns1
1896  * - send pidfd from ns1 to ns2
1897  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1898  *   have exactly one entry, which is 0
1899  */
1900 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1901 {
1902 	struct pid *pid = f->private_data;
1903 	struct pid_namespace *ns;
1904 	pid_t nr = -1;
1905 
1906 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1907 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1908 		nr = pid_nr_ns(pid, ns);
1909 	}
1910 
1911 	seq_put_decimal_ll(m, "Pid:\t", nr);
1912 
1913 #ifdef CONFIG_PID_NS
1914 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1915 	if (nr > 0) {
1916 		int i;
1917 
1918 		/* If nr is non-zero it means that 'pid' is valid and that
1919 		 * ns, i.e. the pid namespace associated with the procfs
1920 		 * instance, is in the pid namespace hierarchy of pid.
1921 		 * Start at one below the already printed level.
1922 		 */
1923 		for (i = ns->level + 1; i <= pid->level; i++)
1924 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1925 	}
1926 #endif
1927 	seq_putc(m, '\n');
1928 }
1929 #endif
1930 
1931 /*
1932  * Poll support for process exit notification.
1933  */
1934 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1935 {
1936 	struct pid *pid = file->private_data;
1937 	__poll_t poll_flags = 0;
1938 
1939 	poll_wait(file, &pid->wait_pidfd, pts);
1940 
1941 	/*
1942 	 * Inform pollers only when the whole thread group exits.
1943 	 * If the thread group leader exits before all other threads in the
1944 	 * group, then poll(2) should block, similar to the wait(2) family.
1945 	 */
1946 	if (thread_group_exited(pid))
1947 		poll_flags = EPOLLIN | EPOLLRDNORM;
1948 
1949 	return poll_flags;
1950 }
1951 
1952 const struct file_operations pidfd_fops = {
1953 	.release = pidfd_release,
1954 	.poll = pidfd_poll,
1955 #ifdef CONFIG_PROC_FS
1956 	.show_fdinfo = pidfd_show_fdinfo,
1957 #endif
1958 };
1959 
1960 static void __delayed_free_task(struct rcu_head *rhp)
1961 {
1962 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1963 
1964 	free_task(tsk);
1965 }
1966 
1967 static __always_inline void delayed_free_task(struct task_struct *tsk)
1968 {
1969 	if (IS_ENABLED(CONFIG_MEMCG))
1970 		call_rcu(&tsk->rcu, __delayed_free_task);
1971 	else
1972 		free_task(tsk);
1973 }
1974 
1975 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1976 {
1977 	/* Skip if kernel thread */
1978 	if (!tsk->mm)
1979 		return;
1980 
1981 	/* Skip if spawning a thread or using vfork */
1982 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1983 		return;
1984 
1985 	/* We need to synchronize with __set_oom_adj */
1986 	mutex_lock(&oom_adj_mutex);
1987 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1988 	/* Update the values in case they were changed after copy_signal */
1989 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1990 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1991 	mutex_unlock(&oom_adj_mutex);
1992 }
1993 
1994 #ifdef CONFIG_RV
1995 static void rv_task_fork(struct task_struct *p)
1996 {
1997 	int i;
1998 
1999 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2000 		p->rv[i].da_mon.monitoring = false;
2001 }
2002 #else
2003 #define rv_task_fork(p) do {} while (0)
2004 #endif
2005 
2006 /*
2007  * This creates a new process as a copy of the old one,
2008  * but does not actually start it yet.
2009  *
2010  * It copies the registers, and all the appropriate
2011  * parts of the process environment (as per the clone
2012  * flags). The actual kick-off is left to the caller.
2013  */
2014 static __latent_entropy struct task_struct *copy_process(
2015 					struct pid *pid,
2016 					int trace,
2017 					int node,
2018 					struct kernel_clone_args *args)
2019 {
2020 	int pidfd = -1, retval;
2021 	struct task_struct *p;
2022 	struct multiprocess_signals delayed;
2023 	struct file *pidfile = NULL;
2024 	const u64 clone_flags = args->flags;
2025 	struct nsproxy *nsp = current->nsproxy;
2026 
2027 	/*
2028 	 * Don't allow sharing the root directory with processes in a different
2029 	 * namespace
2030 	 */
2031 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2032 		return ERR_PTR(-EINVAL);
2033 
2034 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2035 		return ERR_PTR(-EINVAL);
2036 
2037 	/*
2038 	 * Thread groups must share signals as well, and detached threads
2039 	 * can only be started up within the thread group.
2040 	 */
2041 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2042 		return ERR_PTR(-EINVAL);
2043 
2044 	/*
2045 	 * Shared signal handlers imply shared VM. By way of the above,
2046 	 * thread groups also imply shared VM. Blocking this case allows
2047 	 * for various simplifications in other code.
2048 	 */
2049 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2050 		return ERR_PTR(-EINVAL);
2051 
2052 	/*
2053 	 * Siblings of global init remain as zombies on exit since they are
2054 	 * not reaped by their parent (swapper). To solve this and to avoid
2055 	 * multi-rooted process trees, prevent global and container-inits
2056 	 * from creating siblings.
2057 	 */
2058 	if ((clone_flags & CLONE_PARENT) &&
2059 				current->signal->flags & SIGNAL_UNKILLABLE)
2060 		return ERR_PTR(-EINVAL);
2061 
2062 	/*
2063 	 * If the new process will be in a different pid or user namespace
2064 	 * do not allow it to share a thread group with the forking task.
2065 	 */
2066 	if (clone_flags & CLONE_THREAD) {
2067 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2068 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2069 			return ERR_PTR(-EINVAL);
2070 	}
2071 
2072 	if (clone_flags & CLONE_PIDFD) {
2073 		/*
2074 		 * - CLONE_DETACHED is blocked so that we can potentially
2075 		 *   reuse it later for CLONE_PIDFD.
2076 		 * - CLONE_THREAD is blocked until someone really needs it.
2077 		 */
2078 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2079 			return ERR_PTR(-EINVAL);
2080 	}
2081 
2082 	/*
2083 	 * Force any signals received before this point to be delivered
2084 	 * before the fork happens.  Collect up signals sent to multiple
2085 	 * processes that happen during the fork and delay them so that
2086 	 * they appear to happen after the fork.
2087 	 */
2088 	sigemptyset(&delayed.signal);
2089 	INIT_HLIST_NODE(&delayed.node);
2090 
2091 	spin_lock_irq(&current->sighand->siglock);
2092 	if (!(clone_flags & CLONE_THREAD))
2093 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2094 	recalc_sigpending();
2095 	spin_unlock_irq(&current->sighand->siglock);
2096 	retval = -ERESTARTNOINTR;
2097 	if (task_sigpending(current))
2098 		goto fork_out;
2099 
2100 	retval = -ENOMEM;
2101 	p = dup_task_struct(current, node);
2102 	if (!p)
2103 		goto fork_out;
2104 	p->flags &= ~PF_KTHREAD;
2105 	if (args->kthread)
2106 		p->flags |= PF_KTHREAD;
2107 	if (args->io_thread) {
2108 		/*
2109 		 * Mark us an IO worker, and block any signal that isn't
2110 		 * fatal or STOP
2111 		 */
2112 		p->flags |= PF_IO_WORKER;
2113 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2114 	}
2115 
2116 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2117 	/*
2118 	 * Clear TID on mm_release()?
2119 	 */
2120 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2121 
2122 	ftrace_graph_init_task(p);
2123 
2124 	rt_mutex_init_task(p);
2125 
2126 	lockdep_assert_irqs_enabled();
2127 #ifdef CONFIG_PROVE_LOCKING
2128 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2129 #endif
2130 	retval = copy_creds(p, clone_flags);
2131 	if (retval < 0)
2132 		goto bad_fork_free;
2133 
2134 	retval = -EAGAIN;
2135 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2136 		if (p->real_cred->user != INIT_USER &&
2137 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2138 			goto bad_fork_cleanup_count;
2139 	}
2140 	current->flags &= ~PF_NPROC_EXCEEDED;
2141 
2142 	/*
2143 	 * If multiple threads are within copy_process(), then this check
2144 	 * triggers too late. This doesn't hurt, the check is only there
2145 	 * to stop root fork bombs.
2146 	 */
2147 	retval = -EAGAIN;
2148 	if (data_race(nr_threads >= max_threads))
2149 		goto bad_fork_cleanup_count;
2150 
2151 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2152 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2153 	p->flags |= PF_FORKNOEXEC;
2154 	INIT_LIST_HEAD(&p->children);
2155 	INIT_LIST_HEAD(&p->sibling);
2156 	rcu_copy_process(p);
2157 	p->vfork_done = NULL;
2158 	spin_lock_init(&p->alloc_lock);
2159 
2160 	init_sigpending(&p->pending);
2161 
2162 	p->utime = p->stime = p->gtime = 0;
2163 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2164 	p->utimescaled = p->stimescaled = 0;
2165 #endif
2166 	prev_cputime_init(&p->prev_cputime);
2167 
2168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2169 	seqcount_init(&p->vtime.seqcount);
2170 	p->vtime.starttime = 0;
2171 	p->vtime.state = VTIME_INACTIVE;
2172 #endif
2173 
2174 #ifdef CONFIG_IO_URING
2175 	p->io_uring = NULL;
2176 #endif
2177 
2178 #if defined(SPLIT_RSS_COUNTING)
2179 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2180 #endif
2181 
2182 	p->default_timer_slack_ns = current->timer_slack_ns;
2183 
2184 #ifdef CONFIG_PSI
2185 	p->psi_flags = 0;
2186 #endif
2187 
2188 	task_io_accounting_init(&p->ioac);
2189 	acct_clear_integrals(p);
2190 
2191 	posix_cputimers_init(&p->posix_cputimers);
2192 
2193 	p->io_context = NULL;
2194 	audit_set_context(p, NULL);
2195 	cgroup_fork(p);
2196 	if (args->kthread) {
2197 		if (!set_kthread_struct(p))
2198 			goto bad_fork_cleanup_delayacct;
2199 	}
2200 #ifdef CONFIG_NUMA
2201 	p->mempolicy = mpol_dup(p->mempolicy);
2202 	if (IS_ERR(p->mempolicy)) {
2203 		retval = PTR_ERR(p->mempolicy);
2204 		p->mempolicy = NULL;
2205 		goto bad_fork_cleanup_delayacct;
2206 	}
2207 #endif
2208 #ifdef CONFIG_CPUSETS
2209 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2210 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2211 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2212 #endif
2213 #ifdef CONFIG_TRACE_IRQFLAGS
2214 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2215 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2216 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2217 	p->softirqs_enabled		= 1;
2218 	p->softirq_context		= 0;
2219 #endif
2220 
2221 	p->pagefault_disabled = 0;
2222 
2223 #ifdef CONFIG_LOCKDEP
2224 	lockdep_init_task(p);
2225 #endif
2226 
2227 #ifdef CONFIG_DEBUG_MUTEXES
2228 	p->blocked_on = NULL; /* not blocked yet */
2229 #endif
2230 #ifdef CONFIG_BCACHE
2231 	p->sequential_io	= 0;
2232 	p->sequential_io_avg	= 0;
2233 #endif
2234 #ifdef CONFIG_BPF_SYSCALL
2235 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2236 	p->bpf_ctx = NULL;
2237 #endif
2238 
2239 	/* Perform scheduler related setup. Assign this task to a CPU. */
2240 	retval = sched_fork(clone_flags, p);
2241 	if (retval)
2242 		goto bad_fork_cleanup_policy;
2243 
2244 	retval = perf_event_init_task(p, clone_flags);
2245 	if (retval)
2246 		goto bad_fork_cleanup_policy;
2247 	retval = audit_alloc(p);
2248 	if (retval)
2249 		goto bad_fork_cleanup_perf;
2250 	/* copy all the process information */
2251 	shm_init_task(p);
2252 	retval = security_task_alloc(p, clone_flags);
2253 	if (retval)
2254 		goto bad_fork_cleanup_audit;
2255 	retval = copy_semundo(clone_flags, p);
2256 	if (retval)
2257 		goto bad_fork_cleanup_security;
2258 	retval = copy_files(clone_flags, p);
2259 	if (retval)
2260 		goto bad_fork_cleanup_semundo;
2261 	retval = copy_fs(clone_flags, p);
2262 	if (retval)
2263 		goto bad_fork_cleanup_files;
2264 	retval = copy_sighand(clone_flags, p);
2265 	if (retval)
2266 		goto bad_fork_cleanup_fs;
2267 	retval = copy_signal(clone_flags, p);
2268 	if (retval)
2269 		goto bad_fork_cleanup_sighand;
2270 	retval = copy_mm(clone_flags, p);
2271 	if (retval)
2272 		goto bad_fork_cleanup_signal;
2273 	retval = copy_namespaces(clone_flags, p);
2274 	if (retval)
2275 		goto bad_fork_cleanup_mm;
2276 	retval = copy_io(clone_flags, p);
2277 	if (retval)
2278 		goto bad_fork_cleanup_namespaces;
2279 	retval = copy_thread(p, args);
2280 	if (retval)
2281 		goto bad_fork_cleanup_io;
2282 
2283 	stackleak_task_init(p);
2284 
2285 	if (pid != &init_struct_pid) {
2286 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2287 				args->set_tid_size);
2288 		if (IS_ERR(pid)) {
2289 			retval = PTR_ERR(pid);
2290 			goto bad_fork_cleanup_thread;
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * This has to happen after we've potentially unshared the file
2296 	 * descriptor table (so that the pidfd doesn't leak into the child
2297 	 * if the fd table isn't shared).
2298 	 */
2299 	if (clone_flags & CLONE_PIDFD) {
2300 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2301 		if (retval < 0)
2302 			goto bad_fork_free_pid;
2303 
2304 		pidfd = retval;
2305 
2306 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2307 					      O_RDWR | O_CLOEXEC);
2308 		if (IS_ERR(pidfile)) {
2309 			put_unused_fd(pidfd);
2310 			retval = PTR_ERR(pidfile);
2311 			goto bad_fork_free_pid;
2312 		}
2313 		get_pid(pid);	/* held by pidfile now */
2314 
2315 		retval = put_user(pidfd, args->pidfd);
2316 		if (retval)
2317 			goto bad_fork_put_pidfd;
2318 	}
2319 
2320 #ifdef CONFIG_BLOCK
2321 	p->plug = NULL;
2322 #endif
2323 	futex_init_task(p);
2324 
2325 	/*
2326 	 * sigaltstack should be cleared when sharing the same VM
2327 	 */
2328 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2329 		sas_ss_reset(p);
2330 
2331 	/*
2332 	 * Syscall tracing and stepping should be turned off in the
2333 	 * child regardless of CLONE_PTRACE.
2334 	 */
2335 	user_disable_single_step(p);
2336 	clear_task_syscall_work(p, SYSCALL_TRACE);
2337 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2338 	clear_task_syscall_work(p, SYSCALL_EMU);
2339 #endif
2340 	clear_tsk_latency_tracing(p);
2341 
2342 	/* ok, now we should be set up.. */
2343 	p->pid = pid_nr(pid);
2344 	if (clone_flags & CLONE_THREAD) {
2345 		p->group_leader = current->group_leader;
2346 		p->tgid = current->tgid;
2347 	} else {
2348 		p->group_leader = p;
2349 		p->tgid = p->pid;
2350 	}
2351 
2352 	p->nr_dirtied = 0;
2353 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2354 	p->dirty_paused_when = 0;
2355 
2356 	p->pdeath_signal = 0;
2357 	INIT_LIST_HEAD(&p->thread_group);
2358 	p->task_works = NULL;
2359 	clear_posix_cputimers_work(p);
2360 
2361 #ifdef CONFIG_KRETPROBES
2362 	p->kretprobe_instances.first = NULL;
2363 #endif
2364 #ifdef CONFIG_RETHOOK
2365 	p->rethooks.first = NULL;
2366 #endif
2367 
2368 	/*
2369 	 * Ensure that the cgroup subsystem policies allow the new process to be
2370 	 * forked. It should be noted that the new process's css_set can be changed
2371 	 * between here and cgroup_post_fork() if an organisation operation is in
2372 	 * progress.
2373 	 */
2374 	retval = cgroup_can_fork(p, args);
2375 	if (retval)
2376 		goto bad_fork_put_pidfd;
2377 
2378 	/*
2379 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2380 	 * the new task on the correct runqueue. All this *before* the task
2381 	 * becomes visible.
2382 	 *
2383 	 * This isn't part of ->can_fork() because while the re-cloning is
2384 	 * cgroup specific, it unconditionally needs to place the task on a
2385 	 * runqueue.
2386 	 */
2387 	sched_cgroup_fork(p, args);
2388 
2389 	/*
2390 	 * From this point on we must avoid any synchronous user-space
2391 	 * communication until we take the tasklist-lock. In particular, we do
2392 	 * not want user-space to be able to predict the process start-time by
2393 	 * stalling fork(2) after we recorded the start_time but before it is
2394 	 * visible to the system.
2395 	 */
2396 
2397 	p->start_time = ktime_get_ns();
2398 	p->start_boottime = ktime_get_boottime_ns();
2399 
2400 	/*
2401 	 * Make it visible to the rest of the system, but dont wake it up yet.
2402 	 * Need tasklist lock for parent etc handling!
2403 	 */
2404 	write_lock_irq(&tasklist_lock);
2405 
2406 	/* CLONE_PARENT re-uses the old parent */
2407 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2408 		p->real_parent = current->real_parent;
2409 		p->parent_exec_id = current->parent_exec_id;
2410 		if (clone_flags & CLONE_THREAD)
2411 			p->exit_signal = -1;
2412 		else
2413 			p->exit_signal = current->group_leader->exit_signal;
2414 	} else {
2415 		p->real_parent = current;
2416 		p->parent_exec_id = current->self_exec_id;
2417 		p->exit_signal = args->exit_signal;
2418 	}
2419 
2420 	klp_copy_process(p);
2421 
2422 	sched_core_fork(p);
2423 
2424 	spin_lock(&current->sighand->siglock);
2425 
2426 	rv_task_fork(p);
2427 
2428 	rseq_fork(p, clone_flags);
2429 
2430 	/* Don't start children in a dying pid namespace */
2431 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2432 		retval = -ENOMEM;
2433 		goto bad_fork_cancel_cgroup;
2434 	}
2435 
2436 	/* Let kill terminate clone/fork in the middle */
2437 	if (fatal_signal_pending(current)) {
2438 		retval = -EINTR;
2439 		goto bad_fork_cancel_cgroup;
2440 	}
2441 
2442 	/* No more failure paths after this point. */
2443 
2444 	/*
2445 	 * Copy seccomp details explicitly here, in case they were changed
2446 	 * before holding sighand lock.
2447 	 */
2448 	copy_seccomp(p);
2449 
2450 	init_task_pid_links(p);
2451 	if (likely(p->pid)) {
2452 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2453 
2454 		init_task_pid(p, PIDTYPE_PID, pid);
2455 		if (thread_group_leader(p)) {
2456 			init_task_pid(p, PIDTYPE_TGID, pid);
2457 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2458 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2459 
2460 			if (is_child_reaper(pid)) {
2461 				ns_of_pid(pid)->child_reaper = p;
2462 				p->signal->flags |= SIGNAL_UNKILLABLE;
2463 			}
2464 			p->signal->shared_pending.signal = delayed.signal;
2465 			p->signal->tty = tty_kref_get(current->signal->tty);
2466 			/*
2467 			 * Inherit has_child_subreaper flag under the same
2468 			 * tasklist_lock with adding child to the process tree
2469 			 * for propagate_has_child_subreaper optimization.
2470 			 */
2471 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2472 							 p->real_parent->signal->is_child_subreaper;
2473 			list_add_tail(&p->sibling, &p->real_parent->children);
2474 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2475 			attach_pid(p, PIDTYPE_TGID);
2476 			attach_pid(p, PIDTYPE_PGID);
2477 			attach_pid(p, PIDTYPE_SID);
2478 			__this_cpu_inc(process_counts);
2479 		} else {
2480 			current->signal->nr_threads++;
2481 			current->signal->quick_threads++;
2482 			atomic_inc(&current->signal->live);
2483 			refcount_inc(&current->signal->sigcnt);
2484 			task_join_group_stop(p);
2485 			list_add_tail_rcu(&p->thread_group,
2486 					  &p->group_leader->thread_group);
2487 			list_add_tail_rcu(&p->thread_node,
2488 					  &p->signal->thread_head);
2489 		}
2490 		attach_pid(p, PIDTYPE_PID);
2491 		nr_threads++;
2492 	}
2493 	total_forks++;
2494 	hlist_del_init(&delayed.node);
2495 	spin_unlock(&current->sighand->siglock);
2496 	syscall_tracepoint_update(p);
2497 	write_unlock_irq(&tasklist_lock);
2498 
2499 	if (pidfile)
2500 		fd_install(pidfd, pidfile);
2501 
2502 	proc_fork_connector(p);
2503 	sched_post_fork(p);
2504 	cgroup_post_fork(p, args);
2505 	perf_event_fork(p);
2506 
2507 	trace_task_newtask(p, clone_flags);
2508 	uprobe_copy_process(p, clone_flags);
2509 	user_events_fork(p, clone_flags);
2510 
2511 	copy_oom_score_adj(clone_flags, p);
2512 
2513 	return p;
2514 
2515 bad_fork_cancel_cgroup:
2516 	sched_core_free(p);
2517 	spin_unlock(&current->sighand->siglock);
2518 	write_unlock_irq(&tasklist_lock);
2519 	cgroup_cancel_fork(p, args);
2520 bad_fork_put_pidfd:
2521 	if (clone_flags & CLONE_PIDFD) {
2522 		fput(pidfile);
2523 		put_unused_fd(pidfd);
2524 	}
2525 bad_fork_free_pid:
2526 	if (pid != &init_struct_pid)
2527 		free_pid(pid);
2528 bad_fork_cleanup_thread:
2529 	exit_thread(p);
2530 bad_fork_cleanup_io:
2531 	if (p->io_context)
2532 		exit_io_context(p);
2533 bad_fork_cleanup_namespaces:
2534 	exit_task_namespaces(p);
2535 bad_fork_cleanup_mm:
2536 	if (p->mm) {
2537 		mm_clear_owner(p->mm, p);
2538 		mmput(p->mm);
2539 	}
2540 bad_fork_cleanup_signal:
2541 	if (!(clone_flags & CLONE_THREAD))
2542 		free_signal_struct(p->signal);
2543 bad_fork_cleanup_sighand:
2544 	__cleanup_sighand(p->sighand);
2545 bad_fork_cleanup_fs:
2546 	exit_fs(p); /* blocking */
2547 bad_fork_cleanup_files:
2548 	exit_files(p); /* blocking */
2549 bad_fork_cleanup_semundo:
2550 	exit_sem(p);
2551 bad_fork_cleanup_security:
2552 	security_task_free(p);
2553 bad_fork_cleanup_audit:
2554 	audit_free(p);
2555 bad_fork_cleanup_perf:
2556 	perf_event_free_task(p);
2557 bad_fork_cleanup_policy:
2558 	lockdep_free_task(p);
2559 #ifdef CONFIG_NUMA
2560 	mpol_put(p->mempolicy);
2561 #endif
2562 bad_fork_cleanup_delayacct:
2563 	delayacct_tsk_free(p);
2564 bad_fork_cleanup_count:
2565 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2566 	exit_creds(p);
2567 bad_fork_free:
2568 	WRITE_ONCE(p->__state, TASK_DEAD);
2569 	exit_task_stack_account(p);
2570 	put_task_stack(p);
2571 	delayed_free_task(p);
2572 fork_out:
2573 	spin_lock_irq(&current->sighand->siglock);
2574 	hlist_del_init(&delayed.node);
2575 	spin_unlock_irq(&current->sighand->siglock);
2576 	return ERR_PTR(retval);
2577 }
2578 
2579 static inline void init_idle_pids(struct task_struct *idle)
2580 {
2581 	enum pid_type type;
2582 
2583 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2584 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2585 		init_task_pid(idle, type, &init_struct_pid);
2586 	}
2587 }
2588 
2589 static int idle_dummy(void *dummy)
2590 {
2591 	/* This function is never called */
2592 	return 0;
2593 }
2594 
2595 struct task_struct * __init fork_idle(int cpu)
2596 {
2597 	struct task_struct *task;
2598 	struct kernel_clone_args args = {
2599 		.flags		= CLONE_VM,
2600 		.fn		= &idle_dummy,
2601 		.fn_arg		= NULL,
2602 		.kthread	= 1,
2603 		.idle		= 1,
2604 	};
2605 
2606 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2607 	if (!IS_ERR(task)) {
2608 		init_idle_pids(task);
2609 		init_idle(task, cpu);
2610 	}
2611 
2612 	return task;
2613 }
2614 
2615 /*
2616  * This is like kernel_clone(), but shaved down and tailored to just
2617  * creating io_uring workers. It returns a created task, or an error pointer.
2618  * The returned task is inactive, and the caller must fire it up through
2619  * wake_up_new_task(p). All signals are blocked in the created task.
2620  */
2621 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2622 {
2623 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2624 				CLONE_IO;
2625 	struct kernel_clone_args args = {
2626 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2627 				    CLONE_UNTRACED) & ~CSIGNAL),
2628 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2629 		.fn		= fn,
2630 		.fn_arg		= arg,
2631 		.io_thread	= 1,
2632 	};
2633 
2634 	return copy_process(NULL, 0, node, &args);
2635 }
2636 
2637 /*
2638  *  Ok, this is the main fork-routine.
2639  *
2640  * It copies the process, and if successful kick-starts
2641  * it and waits for it to finish using the VM if required.
2642  *
2643  * args->exit_signal is expected to be checked for sanity by the caller.
2644  */
2645 pid_t kernel_clone(struct kernel_clone_args *args)
2646 {
2647 	u64 clone_flags = args->flags;
2648 	struct completion vfork;
2649 	struct pid *pid;
2650 	struct task_struct *p;
2651 	int trace = 0;
2652 	pid_t nr;
2653 
2654 	/*
2655 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2656 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2657 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2658 	 * field in struct clone_args and it still doesn't make sense to have
2659 	 * them both point at the same memory location. Performing this check
2660 	 * here has the advantage that we don't need to have a separate helper
2661 	 * to check for legacy clone().
2662 	 */
2663 	if ((args->flags & CLONE_PIDFD) &&
2664 	    (args->flags & CLONE_PARENT_SETTID) &&
2665 	    (args->pidfd == args->parent_tid))
2666 		return -EINVAL;
2667 
2668 	/*
2669 	 * Determine whether and which event to report to ptracer.  When
2670 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2671 	 * requested, no event is reported; otherwise, report if the event
2672 	 * for the type of forking is enabled.
2673 	 */
2674 	if (!(clone_flags & CLONE_UNTRACED)) {
2675 		if (clone_flags & CLONE_VFORK)
2676 			trace = PTRACE_EVENT_VFORK;
2677 		else if (args->exit_signal != SIGCHLD)
2678 			trace = PTRACE_EVENT_CLONE;
2679 		else
2680 			trace = PTRACE_EVENT_FORK;
2681 
2682 		if (likely(!ptrace_event_enabled(current, trace)))
2683 			trace = 0;
2684 	}
2685 
2686 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2687 	add_latent_entropy();
2688 
2689 	if (IS_ERR(p))
2690 		return PTR_ERR(p);
2691 
2692 	/*
2693 	 * Do this prior waking up the new thread - the thread pointer
2694 	 * might get invalid after that point, if the thread exits quickly.
2695 	 */
2696 	trace_sched_process_fork(current, p);
2697 
2698 	pid = get_task_pid(p, PIDTYPE_PID);
2699 	nr = pid_vnr(pid);
2700 
2701 	if (clone_flags & CLONE_PARENT_SETTID)
2702 		put_user(nr, args->parent_tid);
2703 
2704 	if (clone_flags & CLONE_VFORK) {
2705 		p->vfork_done = &vfork;
2706 		init_completion(&vfork);
2707 		get_task_struct(p);
2708 	}
2709 
2710 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2711 		/* lock the task to synchronize with memcg migration */
2712 		task_lock(p);
2713 		lru_gen_add_mm(p->mm);
2714 		task_unlock(p);
2715 	}
2716 
2717 	wake_up_new_task(p);
2718 
2719 	/* forking complete and child started to run, tell ptracer */
2720 	if (unlikely(trace))
2721 		ptrace_event_pid(trace, pid);
2722 
2723 	if (clone_flags & CLONE_VFORK) {
2724 		if (!wait_for_vfork_done(p, &vfork))
2725 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2726 	}
2727 
2728 	put_pid(pid);
2729 	return nr;
2730 }
2731 
2732 /*
2733  * Create a kernel thread.
2734  */
2735 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2736 {
2737 	struct kernel_clone_args args = {
2738 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2739 				    CLONE_UNTRACED) & ~CSIGNAL),
2740 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2741 		.fn		= fn,
2742 		.fn_arg		= arg,
2743 		.kthread	= 1,
2744 	};
2745 
2746 	return kernel_clone(&args);
2747 }
2748 
2749 /*
2750  * Create a user mode thread.
2751  */
2752 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2753 {
2754 	struct kernel_clone_args args = {
2755 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2756 				    CLONE_UNTRACED) & ~CSIGNAL),
2757 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2758 		.fn		= fn,
2759 		.fn_arg		= arg,
2760 	};
2761 
2762 	return kernel_clone(&args);
2763 }
2764 
2765 #ifdef __ARCH_WANT_SYS_FORK
2766 SYSCALL_DEFINE0(fork)
2767 {
2768 #ifdef CONFIG_MMU
2769 	struct kernel_clone_args args = {
2770 		.exit_signal = SIGCHLD,
2771 	};
2772 
2773 	return kernel_clone(&args);
2774 #else
2775 	/* can not support in nommu mode */
2776 	return -EINVAL;
2777 #endif
2778 }
2779 #endif
2780 
2781 #ifdef __ARCH_WANT_SYS_VFORK
2782 SYSCALL_DEFINE0(vfork)
2783 {
2784 	struct kernel_clone_args args = {
2785 		.flags		= CLONE_VFORK | CLONE_VM,
2786 		.exit_signal	= SIGCHLD,
2787 	};
2788 
2789 	return kernel_clone(&args);
2790 }
2791 #endif
2792 
2793 #ifdef __ARCH_WANT_SYS_CLONE
2794 #ifdef CONFIG_CLONE_BACKWARDS
2795 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2796 		 int __user *, parent_tidptr,
2797 		 unsigned long, tls,
2798 		 int __user *, child_tidptr)
2799 #elif defined(CONFIG_CLONE_BACKWARDS2)
2800 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2801 		 int __user *, parent_tidptr,
2802 		 int __user *, child_tidptr,
2803 		 unsigned long, tls)
2804 #elif defined(CONFIG_CLONE_BACKWARDS3)
2805 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2806 		int, stack_size,
2807 		int __user *, parent_tidptr,
2808 		int __user *, child_tidptr,
2809 		unsigned long, tls)
2810 #else
2811 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2812 		 int __user *, parent_tidptr,
2813 		 int __user *, child_tidptr,
2814 		 unsigned long, tls)
2815 #endif
2816 {
2817 	struct kernel_clone_args args = {
2818 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2819 		.pidfd		= parent_tidptr,
2820 		.child_tid	= child_tidptr,
2821 		.parent_tid	= parent_tidptr,
2822 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2823 		.stack		= newsp,
2824 		.tls		= tls,
2825 	};
2826 
2827 	return kernel_clone(&args);
2828 }
2829 #endif
2830 
2831 #ifdef __ARCH_WANT_SYS_CLONE3
2832 
2833 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2834 					      struct clone_args __user *uargs,
2835 					      size_t usize)
2836 {
2837 	int err;
2838 	struct clone_args args;
2839 	pid_t *kset_tid = kargs->set_tid;
2840 
2841 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2842 		     CLONE_ARGS_SIZE_VER0);
2843 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2844 		     CLONE_ARGS_SIZE_VER1);
2845 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2846 		     CLONE_ARGS_SIZE_VER2);
2847 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2848 
2849 	if (unlikely(usize > PAGE_SIZE))
2850 		return -E2BIG;
2851 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2852 		return -EINVAL;
2853 
2854 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2855 	if (err)
2856 		return err;
2857 
2858 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2859 		return -EINVAL;
2860 
2861 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2862 		return -EINVAL;
2863 
2864 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2865 		return -EINVAL;
2866 
2867 	/*
2868 	 * Verify that higher 32bits of exit_signal are unset and that
2869 	 * it is a valid signal
2870 	 */
2871 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2872 		     !valid_signal(args.exit_signal)))
2873 		return -EINVAL;
2874 
2875 	if ((args.flags & CLONE_INTO_CGROUP) &&
2876 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2877 		return -EINVAL;
2878 
2879 	*kargs = (struct kernel_clone_args){
2880 		.flags		= args.flags,
2881 		.pidfd		= u64_to_user_ptr(args.pidfd),
2882 		.child_tid	= u64_to_user_ptr(args.child_tid),
2883 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2884 		.exit_signal	= args.exit_signal,
2885 		.stack		= args.stack,
2886 		.stack_size	= args.stack_size,
2887 		.tls		= args.tls,
2888 		.set_tid_size	= args.set_tid_size,
2889 		.cgroup		= args.cgroup,
2890 	};
2891 
2892 	if (args.set_tid &&
2893 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2894 			(kargs->set_tid_size * sizeof(pid_t))))
2895 		return -EFAULT;
2896 
2897 	kargs->set_tid = kset_tid;
2898 
2899 	return 0;
2900 }
2901 
2902 /**
2903  * clone3_stack_valid - check and prepare stack
2904  * @kargs: kernel clone args
2905  *
2906  * Verify that the stack arguments userspace gave us are sane.
2907  * In addition, set the stack direction for userspace since it's easy for us to
2908  * determine.
2909  */
2910 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2911 {
2912 	if (kargs->stack == 0) {
2913 		if (kargs->stack_size > 0)
2914 			return false;
2915 	} else {
2916 		if (kargs->stack_size == 0)
2917 			return false;
2918 
2919 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2920 			return false;
2921 
2922 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2923 		kargs->stack += kargs->stack_size;
2924 #endif
2925 	}
2926 
2927 	return true;
2928 }
2929 
2930 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2931 {
2932 	/* Verify that no unknown flags are passed along. */
2933 	if (kargs->flags &
2934 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2935 		return false;
2936 
2937 	/*
2938 	 * - make the CLONE_DETACHED bit reusable for clone3
2939 	 * - make the CSIGNAL bits reusable for clone3
2940 	 */
2941 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2942 		return false;
2943 
2944 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2945 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2946 		return false;
2947 
2948 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2949 	    kargs->exit_signal)
2950 		return false;
2951 
2952 	if (!clone3_stack_valid(kargs))
2953 		return false;
2954 
2955 	return true;
2956 }
2957 
2958 /**
2959  * clone3 - create a new process with specific properties
2960  * @uargs: argument structure
2961  * @size:  size of @uargs
2962  *
2963  * clone3() is the extensible successor to clone()/clone2().
2964  * It takes a struct as argument that is versioned by its size.
2965  *
2966  * Return: On success, a positive PID for the child process.
2967  *         On error, a negative errno number.
2968  */
2969 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2970 {
2971 	int err;
2972 
2973 	struct kernel_clone_args kargs;
2974 	pid_t set_tid[MAX_PID_NS_LEVEL];
2975 
2976 	kargs.set_tid = set_tid;
2977 
2978 	err = copy_clone_args_from_user(&kargs, uargs, size);
2979 	if (err)
2980 		return err;
2981 
2982 	if (!clone3_args_valid(&kargs))
2983 		return -EINVAL;
2984 
2985 	return kernel_clone(&kargs);
2986 }
2987 #endif
2988 
2989 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2990 {
2991 	struct task_struct *leader, *parent, *child;
2992 	int res;
2993 
2994 	read_lock(&tasklist_lock);
2995 	leader = top = top->group_leader;
2996 down:
2997 	for_each_thread(leader, parent) {
2998 		list_for_each_entry(child, &parent->children, sibling) {
2999 			res = visitor(child, data);
3000 			if (res) {
3001 				if (res < 0)
3002 					goto out;
3003 				leader = child;
3004 				goto down;
3005 			}
3006 up:
3007 			;
3008 		}
3009 	}
3010 
3011 	if (leader != top) {
3012 		child = leader;
3013 		parent = child->real_parent;
3014 		leader = parent->group_leader;
3015 		goto up;
3016 	}
3017 out:
3018 	read_unlock(&tasklist_lock);
3019 }
3020 
3021 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3022 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3023 #endif
3024 
3025 static void sighand_ctor(void *data)
3026 {
3027 	struct sighand_struct *sighand = data;
3028 
3029 	spin_lock_init(&sighand->siglock);
3030 	init_waitqueue_head(&sighand->signalfd_wqh);
3031 }
3032 
3033 void __init mm_cache_init(void)
3034 {
3035 	unsigned int mm_size;
3036 
3037 	/*
3038 	 * The mm_cpumask is located at the end of mm_struct, and is
3039 	 * dynamically sized based on the maximum CPU number this system
3040 	 * can have, taking hotplug into account (nr_cpu_ids).
3041 	 */
3042 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3043 
3044 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3045 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3046 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3047 			offsetof(struct mm_struct, saved_auxv),
3048 			sizeof_field(struct mm_struct, saved_auxv),
3049 			NULL);
3050 }
3051 
3052 void __init proc_caches_init(void)
3053 {
3054 	sighand_cachep = kmem_cache_create("sighand_cache",
3055 			sizeof(struct sighand_struct), 0,
3056 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3057 			SLAB_ACCOUNT, sighand_ctor);
3058 	signal_cachep = kmem_cache_create("signal_cache",
3059 			sizeof(struct signal_struct), 0,
3060 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3061 			NULL);
3062 	files_cachep = kmem_cache_create("files_cache",
3063 			sizeof(struct files_struct), 0,
3064 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3065 			NULL);
3066 	fs_cachep = kmem_cache_create("fs_cache",
3067 			sizeof(struct fs_struct), 0,
3068 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3069 			NULL);
3070 
3071 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3072 	mmap_init();
3073 	nsproxy_cache_init();
3074 }
3075 
3076 /*
3077  * Check constraints on flags passed to the unshare system call.
3078  */
3079 static int check_unshare_flags(unsigned long unshare_flags)
3080 {
3081 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3082 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3083 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3084 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3085 				CLONE_NEWTIME))
3086 		return -EINVAL;
3087 	/*
3088 	 * Not implemented, but pretend it works if there is nothing
3089 	 * to unshare.  Note that unsharing the address space or the
3090 	 * signal handlers also need to unshare the signal queues (aka
3091 	 * CLONE_THREAD).
3092 	 */
3093 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3094 		if (!thread_group_empty(current))
3095 			return -EINVAL;
3096 	}
3097 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3098 		if (refcount_read(&current->sighand->count) > 1)
3099 			return -EINVAL;
3100 	}
3101 	if (unshare_flags & CLONE_VM) {
3102 		if (!current_is_single_threaded())
3103 			return -EINVAL;
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 /*
3110  * Unshare the filesystem structure if it is being shared
3111  */
3112 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3113 {
3114 	struct fs_struct *fs = current->fs;
3115 
3116 	if (!(unshare_flags & CLONE_FS) || !fs)
3117 		return 0;
3118 
3119 	/* don't need lock here; in the worst case we'll do useless copy */
3120 	if (fs->users == 1)
3121 		return 0;
3122 
3123 	*new_fsp = copy_fs_struct(fs);
3124 	if (!*new_fsp)
3125 		return -ENOMEM;
3126 
3127 	return 0;
3128 }
3129 
3130 /*
3131  * Unshare file descriptor table if it is being shared
3132  */
3133 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3134 	       struct files_struct **new_fdp)
3135 {
3136 	struct files_struct *fd = current->files;
3137 	int error = 0;
3138 
3139 	if ((unshare_flags & CLONE_FILES) &&
3140 	    (fd && atomic_read(&fd->count) > 1)) {
3141 		*new_fdp = dup_fd(fd, max_fds, &error);
3142 		if (!*new_fdp)
3143 			return error;
3144 	}
3145 
3146 	return 0;
3147 }
3148 
3149 /*
3150  * unshare allows a process to 'unshare' part of the process
3151  * context which was originally shared using clone.  copy_*
3152  * functions used by kernel_clone() cannot be used here directly
3153  * because they modify an inactive task_struct that is being
3154  * constructed. Here we are modifying the current, active,
3155  * task_struct.
3156  */
3157 int ksys_unshare(unsigned long unshare_flags)
3158 {
3159 	struct fs_struct *fs, *new_fs = NULL;
3160 	struct files_struct *new_fd = NULL;
3161 	struct cred *new_cred = NULL;
3162 	struct nsproxy *new_nsproxy = NULL;
3163 	int do_sysvsem = 0;
3164 	int err;
3165 
3166 	/*
3167 	 * If unsharing a user namespace must also unshare the thread group
3168 	 * and unshare the filesystem root and working directories.
3169 	 */
3170 	if (unshare_flags & CLONE_NEWUSER)
3171 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3172 	/*
3173 	 * If unsharing vm, must also unshare signal handlers.
3174 	 */
3175 	if (unshare_flags & CLONE_VM)
3176 		unshare_flags |= CLONE_SIGHAND;
3177 	/*
3178 	 * If unsharing a signal handlers, must also unshare the signal queues.
3179 	 */
3180 	if (unshare_flags & CLONE_SIGHAND)
3181 		unshare_flags |= CLONE_THREAD;
3182 	/*
3183 	 * If unsharing namespace, must also unshare filesystem information.
3184 	 */
3185 	if (unshare_flags & CLONE_NEWNS)
3186 		unshare_flags |= CLONE_FS;
3187 
3188 	err = check_unshare_flags(unshare_flags);
3189 	if (err)
3190 		goto bad_unshare_out;
3191 	/*
3192 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3193 	 * to a new ipc namespace, the semaphore arrays from the old
3194 	 * namespace are unreachable.
3195 	 */
3196 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3197 		do_sysvsem = 1;
3198 	err = unshare_fs(unshare_flags, &new_fs);
3199 	if (err)
3200 		goto bad_unshare_out;
3201 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3202 	if (err)
3203 		goto bad_unshare_cleanup_fs;
3204 	err = unshare_userns(unshare_flags, &new_cred);
3205 	if (err)
3206 		goto bad_unshare_cleanup_fd;
3207 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3208 					 new_cred, new_fs);
3209 	if (err)
3210 		goto bad_unshare_cleanup_cred;
3211 
3212 	if (new_cred) {
3213 		err = set_cred_ucounts(new_cred);
3214 		if (err)
3215 			goto bad_unshare_cleanup_cred;
3216 	}
3217 
3218 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3219 		if (do_sysvsem) {
3220 			/*
3221 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3222 			 */
3223 			exit_sem(current);
3224 		}
3225 		if (unshare_flags & CLONE_NEWIPC) {
3226 			/* Orphan segments in old ns (see sem above). */
3227 			exit_shm(current);
3228 			shm_init_task(current);
3229 		}
3230 
3231 		if (new_nsproxy)
3232 			switch_task_namespaces(current, new_nsproxy);
3233 
3234 		task_lock(current);
3235 
3236 		if (new_fs) {
3237 			fs = current->fs;
3238 			spin_lock(&fs->lock);
3239 			current->fs = new_fs;
3240 			if (--fs->users)
3241 				new_fs = NULL;
3242 			else
3243 				new_fs = fs;
3244 			spin_unlock(&fs->lock);
3245 		}
3246 
3247 		if (new_fd)
3248 			swap(current->files, new_fd);
3249 
3250 		task_unlock(current);
3251 
3252 		if (new_cred) {
3253 			/* Install the new user namespace */
3254 			commit_creds(new_cred);
3255 			new_cred = NULL;
3256 		}
3257 	}
3258 
3259 	perf_event_namespaces(current);
3260 
3261 bad_unshare_cleanup_cred:
3262 	if (new_cred)
3263 		put_cred(new_cred);
3264 bad_unshare_cleanup_fd:
3265 	if (new_fd)
3266 		put_files_struct(new_fd);
3267 
3268 bad_unshare_cleanup_fs:
3269 	if (new_fs)
3270 		free_fs_struct(new_fs);
3271 
3272 bad_unshare_out:
3273 	return err;
3274 }
3275 
3276 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3277 {
3278 	return ksys_unshare(unshare_flags);
3279 }
3280 
3281 /*
3282  *	Helper to unshare the files of the current task.
3283  *	We don't want to expose copy_files internals to
3284  *	the exec layer of the kernel.
3285  */
3286 
3287 int unshare_files(void)
3288 {
3289 	struct task_struct *task = current;
3290 	struct files_struct *old, *copy = NULL;
3291 	int error;
3292 
3293 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3294 	if (error || !copy)
3295 		return error;
3296 
3297 	old = task->files;
3298 	task_lock(task);
3299 	task->files = copy;
3300 	task_unlock(task);
3301 	put_files_struct(old);
3302 	return 0;
3303 }
3304 
3305 int sysctl_max_threads(struct ctl_table *table, int write,
3306 		       void *buffer, size_t *lenp, loff_t *ppos)
3307 {
3308 	struct ctl_table t;
3309 	int ret;
3310 	int threads = max_threads;
3311 	int min = 1;
3312 	int max = MAX_THREADS;
3313 
3314 	t = *table;
3315 	t.data = &threads;
3316 	t.extra1 = &min;
3317 	t.extra2 = &max;
3318 
3319 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3320 	if (ret || !write)
3321 		return ret;
3322 
3323 	max_threads = threads;
3324 
3325 	return 0;
3326 }
3327