1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 440 { 441 struct vm_area_struct *vma; 442 443 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 444 if (!vma) 445 return NULL; 446 447 vma_init(vma, mm); 448 449 return vma; 450 } 451 452 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 453 { 454 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 455 456 if (!new) 457 return NULL; 458 459 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 460 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 461 /* 462 * orig->shared.rb may be modified concurrently, but the clone 463 * will be reinitialized. 464 */ 465 data_race(memcpy(new, orig, sizeof(*new))); 466 vma_lock_init(new); 467 INIT_LIST_HEAD(&new->anon_vma_chain); 468 #ifdef CONFIG_PER_VMA_LOCK 469 /* vma is not locked, can't use vma_mark_detached() */ 470 new->detached = true; 471 #endif 472 vma_numab_state_init(new); 473 dup_anon_vma_name(orig, new); 474 475 return new; 476 } 477 478 void __vm_area_free(struct vm_area_struct *vma) 479 { 480 vma_numab_state_free(vma); 481 free_anon_vma_name(vma); 482 kmem_cache_free(vm_area_cachep, vma); 483 } 484 485 #ifdef CONFIG_PER_VMA_LOCK 486 static void vm_area_free_rcu_cb(struct rcu_head *head) 487 { 488 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 489 vm_rcu); 490 491 /* The vma should not be locked while being destroyed. */ 492 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock.lock), vma); 493 __vm_area_free(vma); 494 } 495 #endif 496 497 void vm_area_free(struct vm_area_struct *vma) 498 { 499 #ifdef CONFIG_PER_VMA_LOCK 500 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 501 #else 502 __vm_area_free(vma); 503 #endif 504 } 505 506 static void account_kernel_stack(struct task_struct *tsk, int account) 507 { 508 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 509 struct vm_struct *vm = task_stack_vm_area(tsk); 510 int i; 511 512 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 513 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 514 account * (PAGE_SIZE / 1024)); 515 } else { 516 void *stack = task_stack_page(tsk); 517 518 /* All stack pages are in the same node. */ 519 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 520 account * (THREAD_SIZE / 1024)); 521 } 522 } 523 524 void exit_task_stack_account(struct task_struct *tsk) 525 { 526 account_kernel_stack(tsk, -1); 527 528 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 529 struct vm_struct *vm; 530 int i; 531 532 vm = task_stack_vm_area(tsk); 533 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 534 memcg_kmem_uncharge_page(vm->pages[i], 0); 535 } 536 } 537 538 static void release_task_stack(struct task_struct *tsk) 539 { 540 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 541 return; /* Better to leak the stack than to free prematurely */ 542 543 free_thread_stack(tsk); 544 } 545 546 #ifdef CONFIG_THREAD_INFO_IN_TASK 547 void put_task_stack(struct task_struct *tsk) 548 { 549 if (refcount_dec_and_test(&tsk->stack_refcount)) 550 release_task_stack(tsk); 551 } 552 #endif 553 554 void free_task(struct task_struct *tsk) 555 { 556 #ifdef CONFIG_SECCOMP 557 WARN_ON_ONCE(tsk->seccomp.filter); 558 #endif 559 release_user_cpus_ptr(tsk); 560 scs_release(tsk); 561 562 #ifndef CONFIG_THREAD_INFO_IN_TASK 563 /* 564 * The task is finally done with both the stack and thread_info, 565 * so free both. 566 */ 567 release_task_stack(tsk); 568 #else 569 /* 570 * If the task had a separate stack allocation, it should be gone 571 * by now. 572 */ 573 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 574 #endif 575 rt_mutex_debug_task_free(tsk); 576 ftrace_graph_exit_task(tsk); 577 arch_release_task_struct(tsk); 578 if (tsk->flags & PF_KTHREAD) 579 free_kthread_struct(tsk); 580 bpf_task_storage_free(tsk); 581 free_task_struct(tsk); 582 } 583 EXPORT_SYMBOL(free_task); 584 585 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 586 { 587 struct file *exe_file; 588 589 exe_file = get_mm_exe_file(oldmm); 590 RCU_INIT_POINTER(mm->exe_file, exe_file); 591 /* 592 * We depend on the oldmm having properly denied write access to the 593 * exe_file already. 594 */ 595 if (exe_file && exe_file_deny_write_access(exe_file)) 596 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 597 } 598 599 #ifdef CONFIG_MMU 600 static __latent_entropy int dup_mmap(struct mm_struct *mm, 601 struct mm_struct *oldmm) 602 { 603 struct vm_area_struct *mpnt, *tmp; 604 int retval; 605 unsigned long charge = 0; 606 LIST_HEAD(uf); 607 VMA_ITERATOR(vmi, mm, 0); 608 609 if (mmap_write_lock_killable(oldmm)) 610 return -EINTR; 611 flush_cache_dup_mm(oldmm); 612 uprobe_dup_mmap(oldmm, mm); 613 /* 614 * Not linked in yet - no deadlock potential: 615 */ 616 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 617 618 /* No ordering required: file already has been exposed. */ 619 dup_mm_exe_file(mm, oldmm); 620 621 mm->total_vm = oldmm->total_vm; 622 mm->data_vm = oldmm->data_vm; 623 mm->exec_vm = oldmm->exec_vm; 624 mm->stack_vm = oldmm->stack_vm; 625 626 /* Use __mt_dup() to efficiently build an identical maple tree. */ 627 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 628 if (unlikely(retval)) 629 goto out; 630 631 mt_clear_in_rcu(vmi.mas.tree); 632 for_each_vma(vmi, mpnt) { 633 struct file *file; 634 635 vma_start_write(mpnt); 636 if (mpnt->vm_flags & VM_DONTCOPY) { 637 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 638 mpnt->vm_end, GFP_KERNEL); 639 if (retval) 640 goto loop_out; 641 642 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 643 continue; 644 } 645 charge = 0; 646 /* 647 * Don't duplicate many vmas if we've been oom-killed (for 648 * example) 649 */ 650 if (fatal_signal_pending(current)) { 651 retval = -EINTR; 652 goto loop_out; 653 } 654 if (mpnt->vm_flags & VM_ACCOUNT) { 655 unsigned long len = vma_pages(mpnt); 656 657 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 658 goto fail_nomem; 659 charge = len; 660 } 661 tmp = vm_area_dup(mpnt); 662 if (!tmp) 663 goto fail_nomem; 664 retval = vma_dup_policy(mpnt, tmp); 665 if (retval) 666 goto fail_nomem_policy; 667 tmp->vm_mm = mm; 668 retval = dup_userfaultfd(tmp, &uf); 669 if (retval) 670 goto fail_nomem_anon_vma_fork; 671 if (tmp->vm_flags & VM_WIPEONFORK) { 672 /* 673 * VM_WIPEONFORK gets a clean slate in the child. 674 * Don't prepare anon_vma until fault since we don't 675 * copy page for current vma. 676 */ 677 tmp->anon_vma = NULL; 678 } else if (anon_vma_fork(tmp, mpnt)) 679 goto fail_nomem_anon_vma_fork; 680 vm_flags_clear(tmp, VM_LOCKED_MASK); 681 /* 682 * Copy/update hugetlb private vma information. 683 */ 684 if (is_vm_hugetlb_page(tmp)) 685 hugetlb_dup_vma_private(tmp); 686 687 /* 688 * Link the vma into the MT. After using __mt_dup(), memory 689 * allocation is not necessary here, so it cannot fail. 690 */ 691 vma_iter_bulk_store(&vmi, tmp); 692 693 mm->map_count++; 694 695 if (tmp->vm_ops && tmp->vm_ops->open) 696 tmp->vm_ops->open(tmp); 697 698 file = tmp->vm_file; 699 if (file) { 700 struct address_space *mapping = file->f_mapping; 701 702 get_file(file); 703 i_mmap_lock_write(mapping); 704 if (vma_is_shared_maywrite(tmp)) 705 mapping_allow_writable(mapping); 706 flush_dcache_mmap_lock(mapping); 707 /* insert tmp into the share list, just after mpnt */ 708 vma_interval_tree_insert_after(tmp, mpnt, 709 &mapping->i_mmap); 710 flush_dcache_mmap_unlock(mapping); 711 i_mmap_unlock_write(mapping); 712 } 713 714 if (!(tmp->vm_flags & VM_WIPEONFORK)) 715 retval = copy_page_range(tmp, mpnt); 716 717 if (retval) { 718 mpnt = vma_next(&vmi); 719 goto loop_out; 720 } 721 } 722 /* a new mm has just been created */ 723 retval = arch_dup_mmap(oldmm, mm); 724 loop_out: 725 vma_iter_free(&vmi); 726 if (!retval) { 727 mt_set_in_rcu(vmi.mas.tree); 728 ksm_fork(mm, oldmm); 729 khugepaged_fork(mm, oldmm); 730 } else { 731 732 /* 733 * The entire maple tree has already been duplicated. If the 734 * mmap duplication fails, mark the failure point with 735 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 736 * stop releasing VMAs that have not been duplicated after this 737 * point. 738 */ 739 if (mpnt) { 740 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 741 mas_store(&vmi.mas, XA_ZERO_ENTRY); 742 /* Avoid OOM iterating a broken tree */ 743 set_bit(MMF_OOM_SKIP, &mm->flags); 744 } 745 /* 746 * The mm_struct is going to exit, but the locks will be dropped 747 * first. Set the mm_struct as unstable is advisable as it is 748 * not fully initialised. 749 */ 750 set_bit(MMF_UNSTABLE, &mm->flags); 751 } 752 out: 753 mmap_write_unlock(mm); 754 flush_tlb_mm(oldmm); 755 mmap_write_unlock(oldmm); 756 if (!retval) 757 dup_userfaultfd_complete(&uf); 758 else 759 dup_userfaultfd_fail(&uf); 760 return retval; 761 762 fail_nomem_anon_vma_fork: 763 mpol_put(vma_policy(tmp)); 764 fail_nomem_policy: 765 vm_area_free(tmp); 766 fail_nomem: 767 retval = -ENOMEM; 768 vm_unacct_memory(charge); 769 goto loop_out; 770 } 771 772 static inline int mm_alloc_pgd(struct mm_struct *mm) 773 { 774 mm->pgd = pgd_alloc(mm); 775 if (unlikely(!mm->pgd)) 776 return -ENOMEM; 777 return 0; 778 } 779 780 static inline void mm_free_pgd(struct mm_struct *mm) 781 { 782 pgd_free(mm, mm->pgd); 783 } 784 #else 785 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 786 { 787 mmap_write_lock(oldmm); 788 dup_mm_exe_file(mm, oldmm); 789 mmap_write_unlock(oldmm); 790 return 0; 791 } 792 #define mm_alloc_pgd(mm) (0) 793 #define mm_free_pgd(mm) 794 #endif /* CONFIG_MMU */ 795 796 static void check_mm(struct mm_struct *mm) 797 { 798 int i; 799 800 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 801 "Please make sure 'struct resident_page_types[]' is updated as well"); 802 803 for (i = 0; i < NR_MM_COUNTERS; i++) { 804 long x = percpu_counter_sum(&mm->rss_stat[i]); 805 806 if (unlikely(x)) 807 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 808 mm, resident_page_types[i], x); 809 } 810 811 if (mm_pgtables_bytes(mm)) 812 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 813 mm_pgtables_bytes(mm)); 814 815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 816 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 817 #endif 818 } 819 820 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 821 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 822 823 static void do_check_lazy_tlb(void *arg) 824 { 825 struct mm_struct *mm = arg; 826 827 WARN_ON_ONCE(current->active_mm == mm); 828 } 829 830 static void do_shoot_lazy_tlb(void *arg) 831 { 832 struct mm_struct *mm = arg; 833 834 if (current->active_mm == mm) { 835 WARN_ON_ONCE(current->mm); 836 current->active_mm = &init_mm; 837 switch_mm(mm, &init_mm, current); 838 } 839 } 840 841 static void cleanup_lazy_tlbs(struct mm_struct *mm) 842 { 843 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 844 /* 845 * In this case, lazy tlb mms are refounted and would not reach 846 * __mmdrop until all CPUs have switched away and mmdrop()ed. 847 */ 848 return; 849 } 850 851 /* 852 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 853 * requires lazy mm users to switch to another mm when the refcount 854 * drops to zero, before the mm is freed. This requires IPIs here to 855 * switch kernel threads to init_mm. 856 * 857 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 858 * switch with the final userspace teardown TLB flush which leaves the 859 * mm lazy on this CPU but no others, reducing the need for additional 860 * IPIs here. There are cases where a final IPI is still required here, 861 * such as the final mmdrop being performed on a different CPU than the 862 * one exiting, or kernel threads using the mm when userspace exits. 863 * 864 * IPI overheads have not found to be expensive, but they could be 865 * reduced in a number of possible ways, for example (roughly 866 * increasing order of complexity): 867 * - The last lazy reference created by exit_mm() could instead switch 868 * to init_mm, however it's probable this will run on the same CPU 869 * immediately afterwards, so this may not reduce IPIs much. 870 * - A batch of mms requiring IPIs could be gathered and freed at once. 871 * - CPUs store active_mm where it can be remotely checked without a 872 * lock, to filter out false-positives in the cpumask. 873 * - After mm_users or mm_count reaches zero, switching away from the 874 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 875 * with some batching or delaying of the final IPIs. 876 * - A delayed freeing and RCU-like quiescing sequence based on mm 877 * switching to avoid IPIs completely. 878 */ 879 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 880 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 881 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 882 } 883 884 /* 885 * Called when the last reference to the mm 886 * is dropped: either by a lazy thread or by 887 * mmput. Free the page directory and the mm. 888 */ 889 void __mmdrop(struct mm_struct *mm) 890 { 891 BUG_ON(mm == &init_mm); 892 WARN_ON_ONCE(mm == current->mm); 893 894 /* Ensure no CPUs are using this as their lazy tlb mm */ 895 cleanup_lazy_tlbs(mm); 896 897 WARN_ON_ONCE(mm == current->active_mm); 898 mm_free_pgd(mm); 899 destroy_context(mm); 900 mmu_notifier_subscriptions_destroy(mm); 901 check_mm(mm); 902 put_user_ns(mm->user_ns); 903 mm_pasid_drop(mm); 904 mm_destroy_cid(mm); 905 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 906 907 free_mm(mm); 908 } 909 EXPORT_SYMBOL_GPL(__mmdrop); 910 911 static void mmdrop_async_fn(struct work_struct *work) 912 { 913 struct mm_struct *mm; 914 915 mm = container_of(work, struct mm_struct, async_put_work); 916 __mmdrop(mm); 917 } 918 919 static void mmdrop_async(struct mm_struct *mm) 920 { 921 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 922 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 923 schedule_work(&mm->async_put_work); 924 } 925 } 926 927 static inline void free_signal_struct(struct signal_struct *sig) 928 { 929 taskstats_tgid_free(sig); 930 sched_autogroup_exit(sig); 931 /* 932 * __mmdrop is not safe to call from softirq context on x86 due to 933 * pgd_dtor so postpone it to the async context 934 */ 935 if (sig->oom_mm) 936 mmdrop_async(sig->oom_mm); 937 kmem_cache_free(signal_cachep, sig); 938 } 939 940 static inline void put_signal_struct(struct signal_struct *sig) 941 { 942 if (refcount_dec_and_test(&sig->sigcnt)) 943 free_signal_struct(sig); 944 } 945 946 void __put_task_struct(struct task_struct *tsk) 947 { 948 WARN_ON(!tsk->exit_state); 949 WARN_ON(refcount_read(&tsk->usage)); 950 WARN_ON(tsk == current); 951 952 sched_ext_free(tsk); 953 io_uring_free(tsk); 954 cgroup_free(tsk); 955 task_numa_free(tsk, true); 956 security_task_free(tsk); 957 exit_creds(tsk); 958 delayacct_tsk_free(tsk); 959 put_signal_struct(tsk->signal); 960 sched_core_free(tsk); 961 free_task(tsk); 962 } 963 EXPORT_SYMBOL_GPL(__put_task_struct); 964 965 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 966 { 967 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 968 969 __put_task_struct(task); 970 } 971 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 972 973 void __init __weak arch_task_cache_init(void) { } 974 975 /* 976 * set_max_threads 977 */ 978 static void __init set_max_threads(unsigned int max_threads_suggested) 979 { 980 u64 threads; 981 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 982 983 /* 984 * The number of threads shall be limited such that the thread 985 * structures may only consume a small part of the available memory. 986 */ 987 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 988 threads = MAX_THREADS; 989 else 990 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 991 (u64) THREAD_SIZE * 8UL); 992 993 if (threads > max_threads_suggested) 994 threads = max_threads_suggested; 995 996 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 997 } 998 999 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1000 /* Initialized by the architecture: */ 1001 int arch_task_struct_size __read_mostly; 1002 #endif 1003 1004 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1005 { 1006 /* Fetch thread_struct whitelist for the architecture. */ 1007 arch_thread_struct_whitelist(offset, size); 1008 1009 /* 1010 * Handle zero-sized whitelist or empty thread_struct, otherwise 1011 * adjust offset to position of thread_struct in task_struct. 1012 */ 1013 if (unlikely(*size == 0)) 1014 *offset = 0; 1015 else 1016 *offset += offsetof(struct task_struct, thread); 1017 } 1018 1019 void __init fork_init(void) 1020 { 1021 int i; 1022 #ifndef ARCH_MIN_TASKALIGN 1023 #define ARCH_MIN_TASKALIGN 0 1024 #endif 1025 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1026 unsigned long useroffset, usersize; 1027 1028 /* create a slab on which task_structs can be allocated */ 1029 task_struct_whitelist(&useroffset, &usersize); 1030 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1031 arch_task_struct_size, align, 1032 SLAB_PANIC|SLAB_ACCOUNT, 1033 useroffset, usersize, NULL); 1034 1035 /* do the arch specific task caches init */ 1036 arch_task_cache_init(); 1037 1038 set_max_threads(MAX_THREADS); 1039 1040 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1041 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1042 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1043 init_task.signal->rlim[RLIMIT_NPROC]; 1044 1045 for (i = 0; i < UCOUNT_COUNTS; i++) 1046 init_user_ns.ucount_max[i] = max_threads/2; 1047 1048 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1049 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1050 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1051 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1052 1053 #ifdef CONFIG_VMAP_STACK 1054 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1055 NULL, free_vm_stack_cache); 1056 #endif 1057 1058 scs_init(); 1059 1060 lockdep_init_task(&init_task); 1061 uprobes_init(); 1062 } 1063 1064 int __weak arch_dup_task_struct(struct task_struct *dst, 1065 struct task_struct *src) 1066 { 1067 *dst = *src; 1068 return 0; 1069 } 1070 1071 void set_task_stack_end_magic(struct task_struct *tsk) 1072 { 1073 unsigned long *stackend; 1074 1075 stackend = end_of_stack(tsk); 1076 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1077 } 1078 1079 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1080 { 1081 struct task_struct *tsk; 1082 int err; 1083 1084 if (node == NUMA_NO_NODE) 1085 node = tsk_fork_get_node(orig); 1086 tsk = alloc_task_struct_node(node); 1087 if (!tsk) 1088 return NULL; 1089 1090 err = arch_dup_task_struct(tsk, orig); 1091 if (err) 1092 goto free_tsk; 1093 1094 err = alloc_thread_stack_node(tsk, node); 1095 if (err) 1096 goto free_tsk; 1097 1098 #ifdef CONFIG_THREAD_INFO_IN_TASK 1099 refcount_set(&tsk->stack_refcount, 1); 1100 #endif 1101 account_kernel_stack(tsk, 1); 1102 1103 err = scs_prepare(tsk, node); 1104 if (err) 1105 goto free_stack; 1106 1107 #ifdef CONFIG_SECCOMP 1108 /* 1109 * We must handle setting up seccomp filters once we're under 1110 * the sighand lock in case orig has changed between now and 1111 * then. Until then, filter must be NULL to avoid messing up 1112 * the usage counts on the error path calling free_task. 1113 */ 1114 tsk->seccomp.filter = NULL; 1115 #endif 1116 1117 setup_thread_stack(tsk, orig); 1118 clear_user_return_notifier(tsk); 1119 clear_tsk_need_resched(tsk); 1120 set_task_stack_end_magic(tsk); 1121 clear_syscall_work_syscall_user_dispatch(tsk); 1122 1123 #ifdef CONFIG_STACKPROTECTOR 1124 tsk->stack_canary = get_random_canary(); 1125 #endif 1126 if (orig->cpus_ptr == &orig->cpus_mask) 1127 tsk->cpus_ptr = &tsk->cpus_mask; 1128 dup_user_cpus_ptr(tsk, orig, node); 1129 1130 /* 1131 * One for the user space visible state that goes away when reaped. 1132 * One for the scheduler. 1133 */ 1134 refcount_set(&tsk->rcu_users, 2); 1135 /* One for the rcu users */ 1136 refcount_set(&tsk->usage, 1); 1137 #ifdef CONFIG_BLK_DEV_IO_TRACE 1138 tsk->btrace_seq = 0; 1139 #endif 1140 tsk->splice_pipe = NULL; 1141 tsk->task_frag.page = NULL; 1142 tsk->wake_q.next = NULL; 1143 tsk->worker_private = NULL; 1144 1145 kcov_task_init(tsk); 1146 kmsan_task_create(tsk); 1147 kmap_local_fork(tsk); 1148 1149 #ifdef CONFIG_FAULT_INJECTION 1150 tsk->fail_nth = 0; 1151 #endif 1152 1153 #ifdef CONFIG_BLK_CGROUP 1154 tsk->throttle_disk = NULL; 1155 tsk->use_memdelay = 0; 1156 #endif 1157 1158 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1159 tsk->pasid_activated = 0; 1160 #endif 1161 1162 #ifdef CONFIG_MEMCG 1163 tsk->active_memcg = NULL; 1164 #endif 1165 1166 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1167 tsk->reported_split_lock = 0; 1168 #endif 1169 1170 #ifdef CONFIG_SCHED_MM_CID 1171 tsk->mm_cid = -1; 1172 tsk->last_mm_cid = -1; 1173 tsk->mm_cid_active = 0; 1174 tsk->migrate_from_cpu = -1; 1175 #endif 1176 return tsk; 1177 1178 free_stack: 1179 exit_task_stack_account(tsk); 1180 free_thread_stack(tsk); 1181 free_tsk: 1182 free_task_struct(tsk); 1183 return NULL; 1184 } 1185 1186 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1187 1188 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1189 1190 static int __init coredump_filter_setup(char *s) 1191 { 1192 default_dump_filter = 1193 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1194 MMF_DUMP_FILTER_MASK; 1195 return 1; 1196 } 1197 1198 __setup("coredump_filter=", coredump_filter_setup); 1199 1200 #include <linux/init_task.h> 1201 1202 static void mm_init_aio(struct mm_struct *mm) 1203 { 1204 #ifdef CONFIG_AIO 1205 spin_lock_init(&mm->ioctx_lock); 1206 mm->ioctx_table = NULL; 1207 #endif 1208 } 1209 1210 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1211 struct task_struct *p) 1212 { 1213 #ifdef CONFIG_MEMCG 1214 if (mm->owner == p) 1215 WRITE_ONCE(mm->owner, NULL); 1216 #endif 1217 } 1218 1219 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1220 { 1221 #ifdef CONFIG_MEMCG 1222 mm->owner = p; 1223 #endif 1224 } 1225 1226 static void mm_init_uprobes_state(struct mm_struct *mm) 1227 { 1228 #ifdef CONFIG_UPROBES 1229 mm->uprobes_state.xol_area = NULL; 1230 #endif 1231 } 1232 1233 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1234 struct user_namespace *user_ns) 1235 { 1236 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1237 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1238 atomic_set(&mm->mm_users, 1); 1239 atomic_set(&mm->mm_count, 1); 1240 seqcount_init(&mm->write_protect_seq); 1241 mmap_init_lock(mm); 1242 INIT_LIST_HEAD(&mm->mmlist); 1243 mm_pgtables_bytes_init(mm); 1244 mm->map_count = 0; 1245 mm->locked_vm = 0; 1246 atomic64_set(&mm->pinned_vm, 0); 1247 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1248 spin_lock_init(&mm->page_table_lock); 1249 spin_lock_init(&mm->arg_lock); 1250 mm_init_cpumask(mm); 1251 mm_init_aio(mm); 1252 mm_init_owner(mm, p); 1253 mm_pasid_init(mm); 1254 RCU_INIT_POINTER(mm->exe_file, NULL); 1255 mmu_notifier_subscriptions_init(mm); 1256 init_tlb_flush_pending(mm); 1257 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1258 mm->pmd_huge_pte = NULL; 1259 #endif 1260 mm_init_uprobes_state(mm); 1261 hugetlb_count_init(mm); 1262 1263 if (current->mm) { 1264 mm->flags = mmf_init_flags(current->mm->flags); 1265 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1266 } else { 1267 mm->flags = default_dump_filter; 1268 mm->def_flags = 0; 1269 } 1270 1271 if (mm_alloc_pgd(mm)) 1272 goto fail_nopgd; 1273 1274 if (init_new_context(p, mm)) 1275 goto fail_nocontext; 1276 1277 if (mm_alloc_cid(mm, p)) 1278 goto fail_cid; 1279 1280 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1281 NR_MM_COUNTERS)) 1282 goto fail_pcpu; 1283 1284 mm->user_ns = get_user_ns(user_ns); 1285 lru_gen_init_mm(mm); 1286 return mm; 1287 1288 fail_pcpu: 1289 mm_destroy_cid(mm); 1290 fail_cid: 1291 destroy_context(mm); 1292 fail_nocontext: 1293 mm_free_pgd(mm); 1294 fail_nopgd: 1295 free_mm(mm); 1296 return NULL; 1297 } 1298 1299 /* 1300 * Allocate and initialize an mm_struct. 1301 */ 1302 struct mm_struct *mm_alloc(void) 1303 { 1304 struct mm_struct *mm; 1305 1306 mm = allocate_mm(); 1307 if (!mm) 1308 return NULL; 1309 1310 memset(mm, 0, sizeof(*mm)); 1311 return mm_init(mm, current, current_user_ns()); 1312 } 1313 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1314 1315 static inline void __mmput(struct mm_struct *mm) 1316 { 1317 VM_BUG_ON(atomic_read(&mm->mm_users)); 1318 1319 uprobe_clear_state(mm); 1320 exit_aio(mm); 1321 ksm_exit(mm); 1322 khugepaged_exit(mm); /* must run before exit_mmap */ 1323 exit_mmap(mm); 1324 mm_put_huge_zero_folio(mm); 1325 set_mm_exe_file(mm, NULL); 1326 if (!list_empty(&mm->mmlist)) { 1327 spin_lock(&mmlist_lock); 1328 list_del(&mm->mmlist); 1329 spin_unlock(&mmlist_lock); 1330 } 1331 if (mm->binfmt) 1332 module_put(mm->binfmt->module); 1333 lru_gen_del_mm(mm); 1334 mmdrop(mm); 1335 } 1336 1337 /* 1338 * Decrement the use count and release all resources for an mm. 1339 */ 1340 void mmput(struct mm_struct *mm) 1341 { 1342 might_sleep(); 1343 1344 if (atomic_dec_and_test(&mm->mm_users)) 1345 __mmput(mm); 1346 } 1347 EXPORT_SYMBOL_GPL(mmput); 1348 1349 #ifdef CONFIG_MMU 1350 static void mmput_async_fn(struct work_struct *work) 1351 { 1352 struct mm_struct *mm = container_of(work, struct mm_struct, 1353 async_put_work); 1354 1355 __mmput(mm); 1356 } 1357 1358 void mmput_async(struct mm_struct *mm) 1359 { 1360 if (atomic_dec_and_test(&mm->mm_users)) { 1361 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1362 schedule_work(&mm->async_put_work); 1363 } 1364 } 1365 EXPORT_SYMBOL_GPL(mmput_async); 1366 #endif 1367 1368 /** 1369 * set_mm_exe_file - change a reference to the mm's executable file 1370 * @mm: The mm to change. 1371 * @new_exe_file: The new file to use. 1372 * 1373 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1374 * 1375 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1376 * invocations: in mmput() nobody alive left, in execve it happens before 1377 * the new mm is made visible to anyone. 1378 * 1379 * Can only fail if new_exe_file != NULL. 1380 */ 1381 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1382 { 1383 struct file *old_exe_file; 1384 1385 /* 1386 * It is safe to dereference the exe_file without RCU as 1387 * this function is only called if nobody else can access 1388 * this mm -- see comment above for justification. 1389 */ 1390 old_exe_file = rcu_dereference_raw(mm->exe_file); 1391 1392 if (new_exe_file) { 1393 /* 1394 * We expect the caller (i.e., sys_execve) to already denied 1395 * write access, so this is unlikely to fail. 1396 */ 1397 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1398 return -EACCES; 1399 get_file(new_exe_file); 1400 } 1401 rcu_assign_pointer(mm->exe_file, new_exe_file); 1402 if (old_exe_file) { 1403 exe_file_allow_write_access(old_exe_file); 1404 fput(old_exe_file); 1405 } 1406 return 0; 1407 } 1408 1409 /** 1410 * replace_mm_exe_file - replace a reference to the mm's executable file 1411 * @mm: The mm to change. 1412 * @new_exe_file: The new file to use. 1413 * 1414 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1415 * 1416 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1417 */ 1418 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1419 { 1420 struct vm_area_struct *vma; 1421 struct file *old_exe_file; 1422 int ret = 0; 1423 1424 /* Forbid mm->exe_file change if old file still mapped. */ 1425 old_exe_file = get_mm_exe_file(mm); 1426 if (old_exe_file) { 1427 VMA_ITERATOR(vmi, mm, 0); 1428 mmap_read_lock(mm); 1429 for_each_vma(vmi, vma) { 1430 if (!vma->vm_file) 1431 continue; 1432 if (path_equal(&vma->vm_file->f_path, 1433 &old_exe_file->f_path)) { 1434 ret = -EBUSY; 1435 break; 1436 } 1437 } 1438 mmap_read_unlock(mm); 1439 fput(old_exe_file); 1440 if (ret) 1441 return ret; 1442 } 1443 1444 ret = exe_file_deny_write_access(new_exe_file); 1445 if (ret) 1446 return -EACCES; 1447 get_file(new_exe_file); 1448 1449 /* set the new file */ 1450 mmap_write_lock(mm); 1451 old_exe_file = rcu_dereference_raw(mm->exe_file); 1452 rcu_assign_pointer(mm->exe_file, new_exe_file); 1453 mmap_write_unlock(mm); 1454 1455 if (old_exe_file) { 1456 exe_file_allow_write_access(old_exe_file); 1457 fput(old_exe_file); 1458 } 1459 return 0; 1460 } 1461 1462 /** 1463 * get_mm_exe_file - acquire a reference to the mm's executable file 1464 * @mm: The mm of interest. 1465 * 1466 * Returns %NULL if mm has no associated executable file. 1467 * User must release file via fput(). 1468 */ 1469 struct file *get_mm_exe_file(struct mm_struct *mm) 1470 { 1471 struct file *exe_file; 1472 1473 rcu_read_lock(); 1474 exe_file = get_file_rcu(&mm->exe_file); 1475 rcu_read_unlock(); 1476 return exe_file; 1477 } 1478 1479 /** 1480 * get_task_exe_file - acquire a reference to the task's executable file 1481 * @task: The task. 1482 * 1483 * Returns %NULL if task's mm (if any) has no associated executable file or 1484 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1485 * User must release file via fput(). 1486 */ 1487 struct file *get_task_exe_file(struct task_struct *task) 1488 { 1489 struct file *exe_file = NULL; 1490 struct mm_struct *mm; 1491 1492 if (task->flags & PF_KTHREAD) 1493 return NULL; 1494 1495 task_lock(task); 1496 mm = task->mm; 1497 if (mm) 1498 exe_file = get_mm_exe_file(mm); 1499 task_unlock(task); 1500 return exe_file; 1501 } 1502 1503 /** 1504 * get_task_mm - acquire a reference to the task's mm 1505 * @task: The task. 1506 * 1507 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1508 * this kernel workthread has transiently adopted a user mm with use_mm, 1509 * to do its AIO) is not set and if so returns a reference to it, after 1510 * bumping up the use count. User must release the mm via mmput() 1511 * after use. Typically used by /proc and ptrace. 1512 */ 1513 struct mm_struct *get_task_mm(struct task_struct *task) 1514 { 1515 struct mm_struct *mm; 1516 1517 if (task->flags & PF_KTHREAD) 1518 return NULL; 1519 1520 task_lock(task); 1521 mm = task->mm; 1522 if (mm) 1523 mmget(mm); 1524 task_unlock(task); 1525 return mm; 1526 } 1527 EXPORT_SYMBOL_GPL(get_task_mm); 1528 1529 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1530 { 1531 struct mm_struct *mm; 1532 int err; 1533 1534 err = down_read_killable(&task->signal->exec_update_lock); 1535 if (err) 1536 return ERR_PTR(err); 1537 1538 mm = get_task_mm(task); 1539 if (!mm) { 1540 mm = ERR_PTR(-ESRCH); 1541 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1542 mmput(mm); 1543 mm = ERR_PTR(-EACCES); 1544 } 1545 up_read(&task->signal->exec_update_lock); 1546 1547 return mm; 1548 } 1549 1550 static void complete_vfork_done(struct task_struct *tsk) 1551 { 1552 struct completion *vfork; 1553 1554 task_lock(tsk); 1555 vfork = tsk->vfork_done; 1556 if (likely(vfork)) { 1557 tsk->vfork_done = NULL; 1558 complete(vfork); 1559 } 1560 task_unlock(tsk); 1561 } 1562 1563 static int wait_for_vfork_done(struct task_struct *child, 1564 struct completion *vfork) 1565 { 1566 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1567 int killed; 1568 1569 cgroup_enter_frozen(); 1570 killed = wait_for_completion_state(vfork, state); 1571 cgroup_leave_frozen(false); 1572 1573 if (killed) { 1574 task_lock(child); 1575 child->vfork_done = NULL; 1576 task_unlock(child); 1577 } 1578 1579 put_task_struct(child); 1580 return killed; 1581 } 1582 1583 /* Please note the differences between mmput and mm_release. 1584 * mmput is called whenever we stop holding onto a mm_struct, 1585 * error success whatever. 1586 * 1587 * mm_release is called after a mm_struct has been removed 1588 * from the current process. 1589 * 1590 * This difference is important for error handling, when we 1591 * only half set up a mm_struct for a new process and need to restore 1592 * the old one. Because we mmput the new mm_struct before 1593 * restoring the old one. . . 1594 * Eric Biederman 10 January 1998 1595 */ 1596 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1597 { 1598 uprobe_free_utask(tsk); 1599 1600 /* Get rid of any cached register state */ 1601 deactivate_mm(tsk, mm); 1602 1603 /* 1604 * Signal userspace if we're not exiting with a core dump 1605 * because we want to leave the value intact for debugging 1606 * purposes. 1607 */ 1608 if (tsk->clear_child_tid) { 1609 if (atomic_read(&mm->mm_users) > 1) { 1610 /* 1611 * We don't check the error code - if userspace has 1612 * not set up a proper pointer then tough luck. 1613 */ 1614 put_user(0, tsk->clear_child_tid); 1615 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1616 1, NULL, NULL, 0, 0); 1617 } 1618 tsk->clear_child_tid = NULL; 1619 } 1620 1621 /* 1622 * All done, finally we can wake up parent and return this mm to him. 1623 * Also kthread_stop() uses this completion for synchronization. 1624 */ 1625 if (tsk->vfork_done) 1626 complete_vfork_done(tsk); 1627 } 1628 1629 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1630 { 1631 futex_exit_release(tsk); 1632 mm_release(tsk, mm); 1633 } 1634 1635 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1636 { 1637 futex_exec_release(tsk); 1638 mm_release(tsk, mm); 1639 } 1640 1641 /** 1642 * dup_mm() - duplicates an existing mm structure 1643 * @tsk: the task_struct with which the new mm will be associated. 1644 * @oldmm: the mm to duplicate. 1645 * 1646 * Allocates a new mm structure and duplicates the provided @oldmm structure 1647 * content into it. 1648 * 1649 * Return: the duplicated mm or NULL on failure. 1650 */ 1651 static struct mm_struct *dup_mm(struct task_struct *tsk, 1652 struct mm_struct *oldmm) 1653 { 1654 struct mm_struct *mm; 1655 int err; 1656 1657 mm = allocate_mm(); 1658 if (!mm) 1659 goto fail_nomem; 1660 1661 memcpy(mm, oldmm, sizeof(*mm)); 1662 1663 if (!mm_init(mm, tsk, mm->user_ns)) 1664 goto fail_nomem; 1665 1666 uprobe_start_dup_mmap(); 1667 err = dup_mmap(mm, oldmm); 1668 if (err) 1669 goto free_pt; 1670 uprobe_end_dup_mmap(); 1671 1672 mm->hiwater_rss = get_mm_rss(mm); 1673 mm->hiwater_vm = mm->total_vm; 1674 1675 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1676 goto free_pt; 1677 1678 return mm; 1679 1680 free_pt: 1681 /* don't put binfmt in mmput, we haven't got module yet */ 1682 mm->binfmt = NULL; 1683 mm_init_owner(mm, NULL); 1684 mmput(mm); 1685 if (err) 1686 uprobe_end_dup_mmap(); 1687 1688 fail_nomem: 1689 return NULL; 1690 } 1691 1692 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1693 { 1694 struct mm_struct *mm, *oldmm; 1695 1696 tsk->min_flt = tsk->maj_flt = 0; 1697 tsk->nvcsw = tsk->nivcsw = 0; 1698 #ifdef CONFIG_DETECT_HUNG_TASK 1699 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1700 tsk->last_switch_time = 0; 1701 #endif 1702 1703 tsk->mm = NULL; 1704 tsk->active_mm = NULL; 1705 1706 /* 1707 * Are we cloning a kernel thread? 1708 * 1709 * We need to steal a active VM for that.. 1710 */ 1711 oldmm = current->mm; 1712 if (!oldmm) 1713 return 0; 1714 1715 if (clone_flags & CLONE_VM) { 1716 mmget(oldmm); 1717 mm = oldmm; 1718 } else { 1719 mm = dup_mm(tsk, current->mm); 1720 if (!mm) 1721 return -ENOMEM; 1722 } 1723 1724 tsk->mm = mm; 1725 tsk->active_mm = mm; 1726 sched_mm_cid_fork(tsk); 1727 return 0; 1728 } 1729 1730 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1731 { 1732 struct fs_struct *fs = current->fs; 1733 if (clone_flags & CLONE_FS) { 1734 /* tsk->fs is already what we want */ 1735 spin_lock(&fs->lock); 1736 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1737 if (fs->in_exec) { 1738 spin_unlock(&fs->lock); 1739 return -EAGAIN; 1740 } 1741 fs->users++; 1742 spin_unlock(&fs->lock); 1743 return 0; 1744 } 1745 tsk->fs = copy_fs_struct(fs); 1746 if (!tsk->fs) 1747 return -ENOMEM; 1748 return 0; 1749 } 1750 1751 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1752 int no_files) 1753 { 1754 struct files_struct *oldf, *newf; 1755 1756 /* 1757 * A background process may not have any files ... 1758 */ 1759 oldf = current->files; 1760 if (!oldf) 1761 return 0; 1762 1763 if (no_files) { 1764 tsk->files = NULL; 1765 return 0; 1766 } 1767 1768 if (clone_flags & CLONE_FILES) { 1769 atomic_inc(&oldf->count); 1770 return 0; 1771 } 1772 1773 newf = dup_fd(oldf, NULL); 1774 if (IS_ERR(newf)) 1775 return PTR_ERR(newf); 1776 1777 tsk->files = newf; 1778 return 0; 1779 } 1780 1781 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1782 { 1783 struct sighand_struct *sig; 1784 1785 if (clone_flags & CLONE_SIGHAND) { 1786 refcount_inc(¤t->sighand->count); 1787 return 0; 1788 } 1789 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1790 RCU_INIT_POINTER(tsk->sighand, sig); 1791 if (!sig) 1792 return -ENOMEM; 1793 1794 refcount_set(&sig->count, 1); 1795 spin_lock_irq(¤t->sighand->siglock); 1796 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1797 spin_unlock_irq(¤t->sighand->siglock); 1798 1799 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1800 if (clone_flags & CLONE_CLEAR_SIGHAND) 1801 flush_signal_handlers(tsk, 0); 1802 1803 return 0; 1804 } 1805 1806 void __cleanup_sighand(struct sighand_struct *sighand) 1807 { 1808 if (refcount_dec_and_test(&sighand->count)) { 1809 signalfd_cleanup(sighand); 1810 /* 1811 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1812 * without an RCU grace period, see __lock_task_sighand(). 1813 */ 1814 kmem_cache_free(sighand_cachep, sighand); 1815 } 1816 } 1817 1818 /* 1819 * Initialize POSIX timer handling for a thread group. 1820 */ 1821 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1822 { 1823 struct posix_cputimers *pct = &sig->posix_cputimers; 1824 unsigned long cpu_limit; 1825 1826 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1827 posix_cputimers_group_init(pct, cpu_limit); 1828 } 1829 1830 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1831 { 1832 struct signal_struct *sig; 1833 1834 if (clone_flags & CLONE_THREAD) 1835 return 0; 1836 1837 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1838 tsk->signal = sig; 1839 if (!sig) 1840 return -ENOMEM; 1841 1842 sig->nr_threads = 1; 1843 sig->quick_threads = 1; 1844 atomic_set(&sig->live, 1); 1845 refcount_set(&sig->sigcnt, 1); 1846 1847 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1848 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1849 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1850 1851 init_waitqueue_head(&sig->wait_chldexit); 1852 sig->curr_target = tsk; 1853 init_sigpending(&sig->shared_pending); 1854 INIT_HLIST_HEAD(&sig->multiprocess); 1855 seqlock_init(&sig->stats_lock); 1856 prev_cputime_init(&sig->prev_cputime); 1857 1858 #ifdef CONFIG_POSIX_TIMERS 1859 INIT_HLIST_HEAD(&sig->posix_timers); 1860 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1861 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1862 sig->real_timer.function = it_real_fn; 1863 #endif 1864 1865 task_lock(current->group_leader); 1866 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1867 task_unlock(current->group_leader); 1868 1869 posix_cpu_timers_init_group(sig); 1870 1871 tty_audit_fork(sig); 1872 sched_autogroup_fork(sig); 1873 1874 sig->oom_score_adj = current->signal->oom_score_adj; 1875 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1876 1877 mutex_init(&sig->cred_guard_mutex); 1878 init_rwsem(&sig->exec_update_lock); 1879 1880 return 0; 1881 } 1882 1883 static void copy_seccomp(struct task_struct *p) 1884 { 1885 #ifdef CONFIG_SECCOMP 1886 /* 1887 * Must be called with sighand->lock held, which is common to 1888 * all threads in the group. Holding cred_guard_mutex is not 1889 * needed because this new task is not yet running and cannot 1890 * be racing exec. 1891 */ 1892 assert_spin_locked(¤t->sighand->siglock); 1893 1894 /* Ref-count the new filter user, and assign it. */ 1895 get_seccomp_filter(current); 1896 p->seccomp = current->seccomp; 1897 1898 /* 1899 * Explicitly enable no_new_privs here in case it got set 1900 * between the task_struct being duplicated and holding the 1901 * sighand lock. The seccomp state and nnp must be in sync. 1902 */ 1903 if (task_no_new_privs(current)) 1904 task_set_no_new_privs(p); 1905 1906 /* 1907 * If the parent gained a seccomp mode after copying thread 1908 * flags and between before we held the sighand lock, we have 1909 * to manually enable the seccomp thread flag here. 1910 */ 1911 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1912 set_task_syscall_work(p, SECCOMP); 1913 #endif 1914 } 1915 1916 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1917 { 1918 current->clear_child_tid = tidptr; 1919 1920 return task_pid_vnr(current); 1921 } 1922 1923 static void rt_mutex_init_task(struct task_struct *p) 1924 { 1925 raw_spin_lock_init(&p->pi_lock); 1926 #ifdef CONFIG_RT_MUTEXES 1927 p->pi_waiters = RB_ROOT_CACHED; 1928 p->pi_top_task = NULL; 1929 p->pi_blocked_on = NULL; 1930 #endif 1931 } 1932 1933 static inline void init_task_pid_links(struct task_struct *task) 1934 { 1935 enum pid_type type; 1936 1937 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1938 INIT_HLIST_NODE(&task->pid_links[type]); 1939 } 1940 1941 static inline void 1942 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1943 { 1944 if (type == PIDTYPE_PID) 1945 task->thread_pid = pid; 1946 else 1947 task->signal->pids[type] = pid; 1948 } 1949 1950 static inline void rcu_copy_process(struct task_struct *p) 1951 { 1952 #ifdef CONFIG_PREEMPT_RCU 1953 p->rcu_read_lock_nesting = 0; 1954 p->rcu_read_unlock_special.s = 0; 1955 p->rcu_blocked_node = NULL; 1956 INIT_LIST_HEAD(&p->rcu_node_entry); 1957 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1958 #ifdef CONFIG_TASKS_RCU 1959 p->rcu_tasks_holdout = false; 1960 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1961 p->rcu_tasks_idle_cpu = -1; 1962 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1963 #endif /* #ifdef CONFIG_TASKS_RCU */ 1964 #ifdef CONFIG_TASKS_TRACE_RCU 1965 p->trc_reader_nesting = 0; 1966 p->trc_reader_special.s = 0; 1967 INIT_LIST_HEAD(&p->trc_holdout_list); 1968 INIT_LIST_HEAD(&p->trc_blkd_node); 1969 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1970 } 1971 1972 /** 1973 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1974 * @pid: the struct pid for which to create a pidfd 1975 * @flags: flags of the new @pidfd 1976 * @ret: Where to return the file for the pidfd. 1977 * 1978 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1979 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1980 * 1981 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1982 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1983 * pidfd file are prepared. 1984 * 1985 * If this function returns successfully the caller is responsible to either 1986 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1987 * order to install the pidfd into its file descriptor table or they must use 1988 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1989 * respectively. 1990 * 1991 * This function is useful when a pidfd must already be reserved but there 1992 * might still be points of failure afterwards and the caller wants to ensure 1993 * that no pidfd is leaked into its file descriptor table. 1994 * 1995 * Return: On success, a reserved pidfd is returned from the function and a new 1996 * pidfd file is returned in the last argument to the function. On 1997 * error, a negative error code is returned from the function and the 1998 * last argument remains unchanged. 1999 */ 2000 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2001 { 2002 int pidfd; 2003 struct file *pidfd_file; 2004 2005 pidfd = get_unused_fd_flags(O_CLOEXEC); 2006 if (pidfd < 0) 2007 return pidfd; 2008 2009 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2010 if (IS_ERR(pidfd_file)) { 2011 put_unused_fd(pidfd); 2012 return PTR_ERR(pidfd_file); 2013 } 2014 /* 2015 * anon_inode_getfile() ignores everything outside of the 2016 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2017 */ 2018 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2019 *ret = pidfd_file; 2020 return pidfd; 2021 } 2022 2023 /** 2024 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2025 * @pid: the struct pid for which to create a pidfd 2026 * @flags: flags of the new @pidfd 2027 * @ret: Where to return the pidfd. 2028 * 2029 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2030 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2031 * 2032 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2033 * task identified by @pid must be a thread-group leader. 2034 * 2035 * If this function returns successfully the caller is responsible to either 2036 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2037 * order to install the pidfd into its file descriptor table or they must use 2038 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2039 * respectively. 2040 * 2041 * This function is useful when a pidfd must already be reserved but there 2042 * might still be points of failure afterwards and the caller wants to ensure 2043 * that no pidfd is leaked into its file descriptor table. 2044 * 2045 * Return: On success, a reserved pidfd is returned from the function and a new 2046 * pidfd file is returned in the last argument to the function. On 2047 * error, a negative error code is returned from the function and the 2048 * last argument remains unchanged. 2049 */ 2050 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2051 { 2052 bool thread = flags & PIDFD_THREAD; 2053 2054 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2055 return -EINVAL; 2056 2057 return __pidfd_prepare(pid, flags, ret); 2058 } 2059 2060 static void __delayed_free_task(struct rcu_head *rhp) 2061 { 2062 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2063 2064 free_task(tsk); 2065 } 2066 2067 static __always_inline void delayed_free_task(struct task_struct *tsk) 2068 { 2069 if (IS_ENABLED(CONFIG_MEMCG)) 2070 call_rcu(&tsk->rcu, __delayed_free_task); 2071 else 2072 free_task(tsk); 2073 } 2074 2075 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2076 { 2077 /* Skip if kernel thread */ 2078 if (!tsk->mm) 2079 return; 2080 2081 /* Skip if spawning a thread or using vfork */ 2082 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2083 return; 2084 2085 /* We need to synchronize with __set_oom_adj */ 2086 mutex_lock(&oom_adj_mutex); 2087 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2088 /* Update the values in case they were changed after copy_signal */ 2089 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2090 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2091 mutex_unlock(&oom_adj_mutex); 2092 } 2093 2094 #ifdef CONFIG_RV 2095 static void rv_task_fork(struct task_struct *p) 2096 { 2097 int i; 2098 2099 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2100 p->rv[i].da_mon.monitoring = false; 2101 } 2102 #else 2103 #define rv_task_fork(p) do {} while (0) 2104 #endif 2105 2106 /* 2107 * This creates a new process as a copy of the old one, 2108 * but does not actually start it yet. 2109 * 2110 * It copies the registers, and all the appropriate 2111 * parts of the process environment (as per the clone 2112 * flags). The actual kick-off is left to the caller. 2113 */ 2114 __latent_entropy struct task_struct *copy_process( 2115 struct pid *pid, 2116 int trace, 2117 int node, 2118 struct kernel_clone_args *args) 2119 { 2120 int pidfd = -1, retval; 2121 struct task_struct *p; 2122 struct multiprocess_signals delayed; 2123 struct file *pidfile = NULL; 2124 const u64 clone_flags = args->flags; 2125 struct nsproxy *nsp = current->nsproxy; 2126 2127 /* 2128 * Don't allow sharing the root directory with processes in a different 2129 * namespace 2130 */ 2131 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2132 return ERR_PTR(-EINVAL); 2133 2134 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2135 return ERR_PTR(-EINVAL); 2136 2137 /* 2138 * Thread groups must share signals as well, and detached threads 2139 * can only be started up within the thread group. 2140 */ 2141 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2142 return ERR_PTR(-EINVAL); 2143 2144 /* 2145 * Shared signal handlers imply shared VM. By way of the above, 2146 * thread groups also imply shared VM. Blocking this case allows 2147 * for various simplifications in other code. 2148 */ 2149 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2150 return ERR_PTR(-EINVAL); 2151 2152 /* 2153 * Siblings of global init remain as zombies on exit since they are 2154 * not reaped by their parent (swapper). To solve this and to avoid 2155 * multi-rooted process trees, prevent global and container-inits 2156 * from creating siblings. 2157 */ 2158 if ((clone_flags & CLONE_PARENT) && 2159 current->signal->flags & SIGNAL_UNKILLABLE) 2160 return ERR_PTR(-EINVAL); 2161 2162 /* 2163 * If the new process will be in a different pid or user namespace 2164 * do not allow it to share a thread group with the forking task. 2165 */ 2166 if (clone_flags & CLONE_THREAD) { 2167 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2168 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2169 return ERR_PTR(-EINVAL); 2170 } 2171 2172 if (clone_flags & CLONE_PIDFD) { 2173 /* 2174 * - CLONE_DETACHED is blocked so that we can potentially 2175 * reuse it later for CLONE_PIDFD. 2176 */ 2177 if (clone_flags & CLONE_DETACHED) 2178 return ERR_PTR(-EINVAL); 2179 } 2180 2181 /* 2182 * Force any signals received before this point to be delivered 2183 * before the fork happens. Collect up signals sent to multiple 2184 * processes that happen during the fork and delay them so that 2185 * they appear to happen after the fork. 2186 */ 2187 sigemptyset(&delayed.signal); 2188 INIT_HLIST_NODE(&delayed.node); 2189 2190 spin_lock_irq(¤t->sighand->siglock); 2191 if (!(clone_flags & CLONE_THREAD)) 2192 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2193 recalc_sigpending(); 2194 spin_unlock_irq(¤t->sighand->siglock); 2195 retval = -ERESTARTNOINTR; 2196 if (task_sigpending(current)) 2197 goto fork_out; 2198 2199 retval = -ENOMEM; 2200 p = dup_task_struct(current, node); 2201 if (!p) 2202 goto fork_out; 2203 p->flags &= ~PF_KTHREAD; 2204 if (args->kthread) 2205 p->flags |= PF_KTHREAD; 2206 if (args->user_worker) { 2207 /* 2208 * Mark us a user worker, and block any signal that isn't 2209 * fatal or STOP 2210 */ 2211 p->flags |= PF_USER_WORKER; 2212 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2213 } 2214 if (args->io_thread) 2215 p->flags |= PF_IO_WORKER; 2216 2217 if (args->name) 2218 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2219 2220 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2221 /* 2222 * Clear TID on mm_release()? 2223 */ 2224 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2225 2226 ftrace_graph_init_task(p); 2227 2228 rt_mutex_init_task(p); 2229 2230 lockdep_assert_irqs_enabled(); 2231 #ifdef CONFIG_PROVE_LOCKING 2232 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2233 #endif 2234 retval = copy_creds(p, clone_flags); 2235 if (retval < 0) 2236 goto bad_fork_free; 2237 2238 retval = -EAGAIN; 2239 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2240 if (p->real_cred->user != INIT_USER && 2241 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2242 goto bad_fork_cleanup_count; 2243 } 2244 current->flags &= ~PF_NPROC_EXCEEDED; 2245 2246 /* 2247 * If multiple threads are within copy_process(), then this check 2248 * triggers too late. This doesn't hurt, the check is only there 2249 * to stop root fork bombs. 2250 */ 2251 retval = -EAGAIN; 2252 if (data_race(nr_threads >= max_threads)) 2253 goto bad_fork_cleanup_count; 2254 2255 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2256 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2257 p->flags |= PF_FORKNOEXEC; 2258 INIT_LIST_HEAD(&p->children); 2259 INIT_LIST_HEAD(&p->sibling); 2260 rcu_copy_process(p); 2261 p->vfork_done = NULL; 2262 spin_lock_init(&p->alloc_lock); 2263 2264 init_sigpending(&p->pending); 2265 2266 p->utime = p->stime = p->gtime = 0; 2267 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2268 p->utimescaled = p->stimescaled = 0; 2269 #endif 2270 prev_cputime_init(&p->prev_cputime); 2271 2272 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2273 seqcount_init(&p->vtime.seqcount); 2274 p->vtime.starttime = 0; 2275 p->vtime.state = VTIME_INACTIVE; 2276 #endif 2277 2278 #ifdef CONFIG_IO_URING 2279 p->io_uring = NULL; 2280 #endif 2281 2282 p->default_timer_slack_ns = current->timer_slack_ns; 2283 2284 #ifdef CONFIG_PSI 2285 p->psi_flags = 0; 2286 #endif 2287 2288 task_io_accounting_init(&p->ioac); 2289 acct_clear_integrals(p); 2290 2291 posix_cputimers_init(&p->posix_cputimers); 2292 tick_dep_init_task(p); 2293 2294 p->io_context = NULL; 2295 audit_set_context(p, NULL); 2296 cgroup_fork(p); 2297 if (args->kthread) { 2298 if (!set_kthread_struct(p)) 2299 goto bad_fork_cleanup_delayacct; 2300 } 2301 #ifdef CONFIG_NUMA 2302 p->mempolicy = mpol_dup(p->mempolicy); 2303 if (IS_ERR(p->mempolicy)) { 2304 retval = PTR_ERR(p->mempolicy); 2305 p->mempolicy = NULL; 2306 goto bad_fork_cleanup_delayacct; 2307 } 2308 #endif 2309 #ifdef CONFIG_CPUSETS 2310 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2311 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2312 #endif 2313 #ifdef CONFIG_TRACE_IRQFLAGS 2314 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2315 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2316 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2317 p->softirqs_enabled = 1; 2318 p->softirq_context = 0; 2319 #endif 2320 2321 p->pagefault_disabled = 0; 2322 2323 #ifdef CONFIG_LOCKDEP 2324 lockdep_init_task(p); 2325 #endif 2326 2327 #ifdef CONFIG_DEBUG_MUTEXES 2328 p->blocked_on = NULL; /* not blocked yet */ 2329 #endif 2330 #ifdef CONFIG_BCACHE 2331 p->sequential_io = 0; 2332 p->sequential_io_avg = 0; 2333 #endif 2334 #ifdef CONFIG_BPF_SYSCALL 2335 RCU_INIT_POINTER(p->bpf_storage, NULL); 2336 p->bpf_ctx = NULL; 2337 #endif 2338 2339 /* Perform scheduler related setup. Assign this task to a CPU. */ 2340 retval = sched_fork(clone_flags, p); 2341 if (retval) 2342 goto bad_fork_cleanup_policy; 2343 2344 retval = perf_event_init_task(p, clone_flags); 2345 if (retval) 2346 goto bad_fork_sched_cancel_fork; 2347 retval = audit_alloc(p); 2348 if (retval) 2349 goto bad_fork_cleanup_perf; 2350 /* copy all the process information */ 2351 shm_init_task(p); 2352 retval = security_task_alloc(p, clone_flags); 2353 if (retval) 2354 goto bad_fork_cleanup_audit; 2355 retval = copy_semundo(clone_flags, p); 2356 if (retval) 2357 goto bad_fork_cleanup_security; 2358 retval = copy_files(clone_flags, p, args->no_files); 2359 if (retval) 2360 goto bad_fork_cleanup_semundo; 2361 retval = copy_fs(clone_flags, p); 2362 if (retval) 2363 goto bad_fork_cleanup_files; 2364 retval = copy_sighand(clone_flags, p); 2365 if (retval) 2366 goto bad_fork_cleanup_fs; 2367 retval = copy_signal(clone_flags, p); 2368 if (retval) 2369 goto bad_fork_cleanup_sighand; 2370 retval = copy_mm(clone_flags, p); 2371 if (retval) 2372 goto bad_fork_cleanup_signal; 2373 retval = copy_namespaces(clone_flags, p); 2374 if (retval) 2375 goto bad_fork_cleanup_mm; 2376 retval = copy_io(clone_flags, p); 2377 if (retval) 2378 goto bad_fork_cleanup_namespaces; 2379 retval = copy_thread(p, args); 2380 if (retval) 2381 goto bad_fork_cleanup_io; 2382 2383 stackleak_task_init(p); 2384 2385 if (pid != &init_struct_pid) { 2386 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2387 args->set_tid_size); 2388 if (IS_ERR(pid)) { 2389 retval = PTR_ERR(pid); 2390 goto bad_fork_cleanup_thread; 2391 } 2392 } 2393 2394 /* 2395 * This has to happen after we've potentially unshared the file 2396 * descriptor table (so that the pidfd doesn't leak into the child 2397 * if the fd table isn't shared). 2398 */ 2399 if (clone_flags & CLONE_PIDFD) { 2400 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2401 2402 /* Note that no task has been attached to @pid yet. */ 2403 retval = __pidfd_prepare(pid, flags, &pidfile); 2404 if (retval < 0) 2405 goto bad_fork_free_pid; 2406 pidfd = retval; 2407 2408 retval = put_user(pidfd, args->pidfd); 2409 if (retval) 2410 goto bad_fork_put_pidfd; 2411 } 2412 2413 #ifdef CONFIG_BLOCK 2414 p->plug = NULL; 2415 #endif 2416 futex_init_task(p); 2417 2418 /* 2419 * sigaltstack should be cleared when sharing the same VM 2420 */ 2421 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2422 sas_ss_reset(p); 2423 2424 /* 2425 * Syscall tracing and stepping should be turned off in the 2426 * child regardless of CLONE_PTRACE. 2427 */ 2428 user_disable_single_step(p); 2429 clear_task_syscall_work(p, SYSCALL_TRACE); 2430 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2431 clear_task_syscall_work(p, SYSCALL_EMU); 2432 #endif 2433 clear_tsk_latency_tracing(p); 2434 2435 /* ok, now we should be set up.. */ 2436 p->pid = pid_nr(pid); 2437 if (clone_flags & CLONE_THREAD) { 2438 p->group_leader = current->group_leader; 2439 p->tgid = current->tgid; 2440 } else { 2441 p->group_leader = p; 2442 p->tgid = p->pid; 2443 } 2444 2445 p->nr_dirtied = 0; 2446 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2447 p->dirty_paused_when = 0; 2448 2449 p->pdeath_signal = 0; 2450 p->task_works = NULL; 2451 clear_posix_cputimers_work(p); 2452 2453 #ifdef CONFIG_KRETPROBES 2454 p->kretprobe_instances.first = NULL; 2455 #endif 2456 #ifdef CONFIG_RETHOOK 2457 p->rethooks.first = NULL; 2458 #endif 2459 2460 /* 2461 * Ensure that the cgroup subsystem policies allow the new process to be 2462 * forked. It should be noted that the new process's css_set can be changed 2463 * between here and cgroup_post_fork() if an organisation operation is in 2464 * progress. 2465 */ 2466 retval = cgroup_can_fork(p, args); 2467 if (retval) 2468 goto bad_fork_put_pidfd; 2469 2470 /* 2471 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2472 * the new task on the correct runqueue. All this *before* the task 2473 * becomes visible. 2474 * 2475 * This isn't part of ->can_fork() because while the re-cloning is 2476 * cgroup specific, it unconditionally needs to place the task on a 2477 * runqueue. 2478 */ 2479 retval = sched_cgroup_fork(p, args); 2480 if (retval) 2481 goto bad_fork_cancel_cgroup; 2482 2483 /* 2484 * From this point on we must avoid any synchronous user-space 2485 * communication until we take the tasklist-lock. In particular, we do 2486 * not want user-space to be able to predict the process start-time by 2487 * stalling fork(2) after we recorded the start_time but before it is 2488 * visible to the system. 2489 */ 2490 2491 p->start_time = ktime_get_ns(); 2492 p->start_boottime = ktime_get_boottime_ns(); 2493 2494 /* 2495 * Make it visible to the rest of the system, but dont wake it up yet. 2496 * Need tasklist lock for parent etc handling! 2497 */ 2498 write_lock_irq(&tasklist_lock); 2499 2500 /* CLONE_PARENT re-uses the old parent */ 2501 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2502 p->real_parent = current->real_parent; 2503 p->parent_exec_id = current->parent_exec_id; 2504 if (clone_flags & CLONE_THREAD) 2505 p->exit_signal = -1; 2506 else 2507 p->exit_signal = current->group_leader->exit_signal; 2508 } else { 2509 p->real_parent = current; 2510 p->parent_exec_id = current->self_exec_id; 2511 p->exit_signal = args->exit_signal; 2512 } 2513 2514 klp_copy_process(p); 2515 2516 sched_core_fork(p); 2517 2518 spin_lock(¤t->sighand->siglock); 2519 2520 rv_task_fork(p); 2521 2522 rseq_fork(p, clone_flags); 2523 2524 /* Don't start children in a dying pid namespace */ 2525 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2526 retval = -ENOMEM; 2527 goto bad_fork_core_free; 2528 } 2529 2530 /* Let kill terminate clone/fork in the middle */ 2531 if (fatal_signal_pending(current)) { 2532 retval = -EINTR; 2533 goto bad_fork_core_free; 2534 } 2535 2536 /* No more failure paths after this point. */ 2537 2538 /* 2539 * Copy seccomp details explicitly here, in case they were changed 2540 * before holding sighand lock. 2541 */ 2542 copy_seccomp(p); 2543 2544 init_task_pid_links(p); 2545 if (likely(p->pid)) { 2546 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2547 2548 init_task_pid(p, PIDTYPE_PID, pid); 2549 if (thread_group_leader(p)) { 2550 init_task_pid(p, PIDTYPE_TGID, pid); 2551 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2552 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2553 2554 if (is_child_reaper(pid)) { 2555 ns_of_pid(pid)->child_reaper = p; 2556 p->signal->flags |= SIGNAL_UNKILLABLE; 2557 } 2558 p->signal->shared_pending.signal = delayed.signal; 2559 p->signal->tty = tty_kref_get(current->signal->tty); 2560 /* 2561 * Inherit has_child_subreaper flag under the same 2562 * tasklist_lock with adding child to the process tree 2563 * for propagate_has_child_subreaper optimization. 2564 */ 2565 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2566 p->real_parent->signal->is_child_subreaper; 2567 list_add_tail(&p->sibling, &p->real_parent->children); 2568 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2569 attach_pid(p, PIDTYPE_TGID); 2570 attach_pid(p, PIDTYPE_PGID); 2571 attach_pid(p, PIDTYPE_SID); 2572 __this_cpu_inc(process_counts); 2573 } else { 2574 current->signal->nr_threads++; 2575 current->signal->quick_threads++; 2576 atomic_inc(¤t->signal->live); 2577 refcount_inc(¤t->signal->sigcnt); 2578 task_join_group_stop(p); 2579 list_add_tail_rcu(&p->thread_node, 2580 &p->signal->thread_head); 2581 } 2582 attach_pid(p, PIDTYPE_PID); 2583 nr_threads++; 2584 } 2585 total_forks++; 2586 hlist_del_init(&delayed.node); 2587 spin_unlock(¤t->sighand->siglock); 2588 syscall_tracepoint_update(p); 2589 write_unlock_irq(&tasklist_lock); 2590 2591 if (pidfile) 2592 fd_install(pidfd, pidfile); 2593 2594 proc_fork_connector(p); 2595 sched_post_fork(p); 2596 cgroup_post_fork(p, args); 2597 perf_event_fork(p); 2598 2599 trace_task_newtask(p, clone_flags); 2600 uprobe_copy_process(p, clone_flags); 2601 user_events_fork(p, clone_flags); 2602 2603 copy_oom_score_adj(clone_flags, p); 2604 2605 return p; 2606 2607 bad_fork_core_free: 2608 sched_core_free(p); 2609 spin_unlock(¤t->sighand->siglock); 2610 write_unlock_irq(&tasklist_lock); 2611 bad_fork_cancel_cgroup: 2612 cgroup_cancel_fork(p, args); 2613 bad_fork_put_pidfd: 2614 if (clone_flags & CLONE_PIDFD) { 2615 fput(pidfile); 2616 put_unused_fd(pidfd); 2617 } 2618 bad_fork_free_pid: 2619 if (pid != &init_struct_pid) 2620 free_pid(pid); 2621 bad_fork_cleanup_thread: 2622 exit_thread(p); 2623 bad_fork_cleanup_io: 2624 if (p->io_context) 2625 exit_io_context(p); 2626 bad_fork_cleanup_namespaces: 2627 exit_task_namespaces(p); 2628 bad_fork_cleanup_mm: 2629 if (p->mm) { 2630 mm_clear_owner(p->mm, p); 2631 mmput(p->mm); 2632 } 2633 bad_fork_cleanup_signal: 2634 if (!(clone_flags & CLONE_THREAD)) 2635 free_signal_struct(p->signal); 2636 bad_fork_cleanup_sighand: 2637 __cleanup_sighand(p->sighand); 2638 bad_fork_cleanup_fs: 2639 exit_fs(p); /* blocking */ 2640 bad_fork_cleanup_files: 2641 exit_files(p); /* blocking */ 2642 bad_fork_cleanup_semundo: 2643 exit_sem(p); 2644 bad_fork_cleanup_security: 2645 security_task_free(p); 2646 bad_fork_cleanup_audit: 2647 audit_free(p); 2648 bad_fork_cleanup_perf: 2649 perf_event_free_task(p); 2650 bad_fork_sched_cancel_fork: 2651 sched_cancel_fork(p); 2652 bad_fork_cleanup_policy: 2653 lockdep_free_task(p); 2654 #ifdef CONFIG_NUMA 2655 mpol_put(p->mempolicy); 2656 #endif 2657 bad_fork_cleanup_delayacct: 2658 delayacct_tsk_free(p); 2659 bad_fork_cleanup_count: 2660 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2661 exit_creds(p); 2662 bad_fork_free: 2663 WRITE_ONCE(p->__state, TASK_DEAD); 2664 exit_task_stack_account(p); 2665 put_task_stack(p); 2666 delayed_free_task(p); 2667 fork_out: 2668 spin_lock_irq(¤t->sighand->siglock); 2669 hlist_del_init(&delayed.node); 2670 spin_unlock_irq(¤t->sighand->siglock); 2671 return ERR_PTR(retval); 2672 } 2673 2674 static inline void init_idle_pids(struct task_struct *idle) 2675 { 2676 enum pid_type type; 2677 2678 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2679 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2680 init_task_pid(idle, type, &init_struct_pid); 2681 } 2682 } 2683 2684 static int idle_dummy(void *dummy) 2685 { 2686 /* This function is never called */ 2687 return 0; 2688 } 2689 2690 struct task_struct * __init fork_idle(int cpu) 2691 { 2692 struct task_struct *task; 2693 struct kernel_clone_args args = { 2694 .flags = CLONE_VM, 2695 .fn = &idle_dummy, 2696 .fn_arg = NULL, 2697 .kthread = 1, 2698 .idle = 1, 2699 }; 2700 2701 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2702 if (!IS_ERR(task)) { 2703 init_idle_pids(task); 2704 init_idle(task, cpu); 2705 } 2706 2707 return task; 2708 } 2709 2710 /* 2711 * This is like kernel_clone(), but shaved down and tailored to just 2712 * creating io_uring workers. It returns a created task, or an error pointer. 2713 * The returned task is inactive, and the caller must fire it up through 2714 * wake_up_new_task(p). All signals are blocked in the created task. 2715 */ 2716 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2717 { 2718 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2719 CLONE_IO; 2720 struct kernel_clone_args args = { 2721 .flags = ((lower_32_bits(flags) | CLONE_VM | 2722 CLONE_UNTRACED) & ~CSIGNAL), 2723 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2724 .fn = fn, 2725 .fn_arg = arg, 2726 .io_thread = 1, 2727 .user_worker = 1, 2728 }; 2729 2730 return copy_process(NULL, 0, node, &args); 2731 } 2732 2733 /* 2734 * Ok, this is the main fork-routine. 2735 * 2736 * It copies the process, and if successful kick-starts 2737 * it and waits for it to finish using the VM if required. 2738 * 2739 * args->exit_signal is expected to be checked for sanity by the caller. 2740 */ 2741 pid_t kernel_clone(struct kernel_clone_args *args) 2742 { 2743 u64 clone_flags = args->flags; 2744 struct completion vfork; 2745 struct pid *pid; 2746 struct task_struct *p; 2747 int trace = 0; 2748 pid_t nr; 2749 2750 /* 2751 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2752 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2753 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2754 * field in struct clone_args and it still doesn't make sense to have 2755 * them both point at the same memory location. Performing this check 2756 * here has the advantage that we don't need to have a separate helper 2757 * to check for legacy clone(). 2758 */ 2759 if ((clone_flags & CLONE_PIDFD) && 2760 (clone_flags & CLONE_PARENT_SETTID) && 2761 (args->pidfd == args->parent_tid)) 2762 return -EINVAL; 2763 2764 /* 2765 * Determine whether and which event to report to ptracer. When 2766 * called from kernel_thread or CLONE_UNTRACED is explicitly 2767 * requested, no event is reported; otherwise, report if the event 2768 * for the type of forking is enabled. 2769 */ 2770 if (!(clone_flags & CLONE_UNTRACED)) { 2771 if (clone_flags & CLONE_VFORK) 2772 trace = PTRACE_EVENT_VFORK; 2773 else if (args->exit_signal != SIGCHLD) 2774 trace = PTRACE_EVENT_CLONE; 2775 else 2776 trace = PTRACE_EVENT_FORK; 2777 2778 if (likely(!ptrace_event_enabled(current, trace))) 2779 trace = 0; 2780 } 2781 2782 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2783 add_latent_entropy(); 2784 2785 if (IS_ERR(p)) 2786 return PTR_ERR(p); 2787 2788 /* 2789 * Do this prior waking up the new thread - the thread pointer 2790 * might get invalid after that point, if the thread exits quickly. 2791 */ 2792 trace_sched_process_fork(current, p); 2793 2794 pid = get_task_pid(p, PIDTYPE_PID); 2795 nr = pid_vnr(pid); 2796 2797 if (clone_flags & CLONE_PARENT_SETTID) 2798 put_user(nr, args->parent_tid); 2799 2800 if (clone_flags & CLONE_VFORK) { 2801 p->vfork_done = &vfork; 2802 init_completion(&vfork); 2803 get_task_struct(p); 2804 } 2805 2806 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2807 /* lock the task to synchronize with memcg migration */ 2808 task_lock(p); 2809 lru_gen_add_mm(p->mm); 2810 task_unlock(p); 2811 } 2812 2813 wake_up_new_task(p); 2814 2815 /* forking complete and child started to run, tell ptracer */ 2816 if (unlikely(trace)) 2817 ptrace_event_pid(trace, pid); 2818 2819 if (clone_flags & CLONE_VFORK) { 2820 if (!wait_for_vfork_done(p, &vfork)) 2821 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2822 } 2823 2824 put_pid(pid); 2825 return nr; 2826 } 2827 2828 /* 2829 * Create a kernel thread. 2830 */ 2831 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2832 unsigned long flags) 2833 { 2834 struct kernel_clone_args args = { 2835 .flags = ((lower_32_bits(flags) | CLONE_VM | 2836 CLONE_UNTRACED) & ~CSIGNAL), 2837 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2838 .fn = fn, 2839 .fn_arg = arg, 2840 .name = name, 2841 .kthread = 1, 2842 }; 2843 2844 return kernel_clone(&args); 2845 } 2846 2847 /* 2848 * Create a user mode thread. 2849 */ 2850 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2851 { 2852 struct kernel_clone_args args = { 2853 .flags = ((lower_32_bits(flags) | CLONE_VM | 2854 CLONE_UNTRACED) & ~CSIGNAL), 2855 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2856 .fn = fn, 2857 .fn_arg = arg, 2858 }; 2859 2860 return kernel_clone(&args); 2861 } 2862 2863 #ifdef __ARCH_WANT_SYS_FORK 2864 SYSCALL_DEFINE0(fork) 2865 { 2866 #ifdef CONFIG_MMU 2867 struct kernel_clone_args args = { 2868 .exit_signal = SIGCHLD, 2869 }; 2870 2871 return kernel_clone(&args); 2872 #else 2873 /* can not support in nommu mode */ 2874 return -EINVAL; 2875 #endif 2876 } 2877 #endif 2878 2879 #ifdef __ARCH_WANT_SYS_VFORK 2880 SYSCALL_DEFINE0(vfork) 2881 { 2882 struct kernel_clone_args args = { 2883 .flags = CLONE_VFORK | CLONE_VM, 2884 .exit_signal = SIGCHLD, 2885 }; 2886 2887 return kernel_clone(&args); 2888 } 2889 #endif 2890 2891 #ifdef __ARCH_WANT_SYS_CLONE 2892 #ifdef CONFIG_CLONE_BACKWARDS 2893 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2894 int __user *, parent_tidptr, 2895 unsigned long, tls, 2896 int __user *, child_tidptr) 2897 #elif defined(CONFIG_CLONE_BACKWARDS2) 2898 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2899 int __user *, parent_tidptr, 2900 int __user *, child_tidptr, 2901 unsigned long, tls) 2902 #elif defined(CONFIG_CLONE_BACKWARDS3) 2903 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2904 int, stack_size, 2905 int __user *, parent_tidptr, 2906 int __user *, child_tidptr, 2907 unsigned long, tls) 2908 #else 2909 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2910 int __user *, parent_tidptr, 2911 int __user *, child_tidptr, 2912 unsigned long, tls) 2913 #endif 2914 { 2915 struct kernel_clone_args args = { 2916 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2917 .pidfd = parent_tidptr, 2918 .child_tid = child_tidptr, 2919 .parent_tid = parent_tidptr, 2920 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2921 .stack = newsp, 2922 .tls = tls, 2923 }; 2924 2925 return kernel_clone(&args); 2926 } 2927 #endif 2928 2929 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2930 struct clone_args __user *uargs, 2931 size_t usize) 2932 { 2933 int err; 2934 struct clone_args args; 2935 pid_t *kset_tid = kargs->set_tid; 2936 2937 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2938 CLONE_ARGS_SIZE_VER0); 2939 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2940 CLONE_ARGS_SIZE_VER1); 2941 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2942 CLONE_ARGS_SIZE_VER2); 2943 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2944 2945 if (unlikely(usize > PAGE_SIZE)) 2946 return -E2BIG; 2947 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2948 return -EINVAL; 2949 2950 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2951 if (err) 2952 return err; 2953 2954 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2955 return -EINVAL; 2956 2957 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2958 return -EINVAL; 2959 2960 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2961 return -EINVAL; 2962 2963 /* 2964 * Verify that higher 32bits of exit_signal are unset and that 2965 * it is a valid signal 2966 */ 2967 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2968 !valid_signal(args.exit_signal))) 2969 return -EINVAL; 2970 2971 if ((args.flags & CLONE_INTO_CGROUP) && 2972 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2973 return -EINVAL; 2974 2975 *kargs = (struct kernel_clone_args){ 2976 .flags = args.flags, 2977 .pidfd = u64_to_user_ptr(args.pidfd), 2978 .child_tid = u64_to_user_ptr(args.child_tid), 2979 .parent_tid = u64_to_user_ptr(args.parent_tid), 2980 .exit_signal = args.exit_signal, 2981 .stack = args.stack, 2982 .stack_size = args.stack_size, 2983 .tls = args.tls, 2984 .set_tid_size = args.set_tid_size, 2985 .cgroup = args.cgroup, 2986 }; 2987 2988 if (args.set_tid && 2989 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2990 (kargs->set_tid_size * sizeof(pid_t)))) 2991 return -EFAULT; 2992 2993 kargs->set_tid = kset_tid; 2994 2995 return 0; 2996 } 2997 2998 /** 2999 * clone3_stack_valid - check and prepare stack 3000 * @kargs: kernel clone args 3001 * 3002 * Verify that the stack arguments userspace gave us are sane. 3003 * In addition, set the stack direction for userspace since it's easy for us to 3004 * determine. 3005 */ 3006 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3007 { 3008 if (kargs->stack == 0) { 3009 if (kargs->stack_size > 0) 3010 return false; 3011 } else { 3012 if (kargs->stack_size == 0) 3013 return false; 3014 3015 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3016 return false; 3017 3018 #if !defined(CONFIG_STACK_GROWSUP) 3019 kargs->stack += kargs->stack_size; 3020 #endif 3021 } 3022 3023 return true; 3024 } 3025 3026 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3027 { 3028 /* Verify that no unknown flags are passed along. */ 3029 if (kargs->flags & 3030 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3031 return false; 3032 3033 /* 3034 * - make the CLONE_DETACHED bit reusable for clone3 3035 * - make the CSIGNAL bits reusable for clone3 3036 */ 3037 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3038 return false; 3039 3040 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3041 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3042 return false; 3043 3044 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3045 kargs->exit_signal) 3046 return false; 3047 3048 if (!clone3_stack_valid(kargs)) 3049 return false; 3050 3051 return true; 3052 } 3053 3054 /** 3055 * sys_clone3 - create a new process with specific properties 3056 * @uargs: argument structure 3057 * @size: size of @uargs 3058 * 3059 * clone3() is the extensible successor to clone()/clone2(). 3060 * It takes a struct as argument that is versioned by its size. 3061 * 3062 * Return: On success, a positive PID for the child process. 3063 * On error, a negative errno number. 3064 */ 3065 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3066 { 3067 int err; 3068 3069 struct kernel_clone_args kargs; 3070 pid_t set_tid[MAX_PID_NS_LEVEL]; 3071 3072 #ifdef __ARCH_BROKEN_SYS_CLONE3 3073 #warning clone3() entry point is missing, please fix 3074 return -ENOSYS; 3075 #endif 3076 3077 kargs.set_tid = set_tid; 3078 3079 err = copy_clone_args_from_user(&kargs, uargs, size); 3080 if (err) 3081 return err; 3082 3083 if (!clone3_args_valid(&kargs)) 3084 return -EINVAL; 3085 3086 return kernel_clone(&kargs); 3087 } 3088 3089 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3090 { 3091 struct task_struct *leader, *parent, *child; 3092 int res; 3093 3094 read_lock(&tasklist_lock); 3095 leader = top = top->group_leader; 3096 down: 3097 for_each_thread(leader, parent) { 3098 list_for_each_entry(child, &parent->children, sibling) { 3099 res = visitor(child, data); 3100 if (res) { 3101 if (res < 0) 3102 goto out; 3103 leader = child; 3104 goto down; 3105 } 3106 up: 3107 ; 3108 } 3109 } 3110 3111 if (leader != top) { 3112 child = leader; 3113 parent = child->real_parent; 3114 leader = parent->group_leader; 3115 goto up; 3116 } 3117 out: 3118 read_unlock(&tasklist_lock); 3119 } 3120 3121 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3122 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3123 #endif 3124 3125 static void sighand_ctor(void *data) 3126 { 3127 struct sighand_struct *sighand = data; 3128 3129 spin_lock_init(&sighand->siglock); 3130 init_waitqueue_head(&sighand->signalfd_wqh); 3131 } 3132 3133 void __init mm_cache_init(void) 3134 { 3135 unsigned int mm_size; 3136 3137 /* 3138 * The mm_cpumask is located at the end of mm_struct, and is 3139 * dynamically sized based on the maximum CPU number this system 3140 * can have, taking hotplug into account (nr_cpu_ids). 3141 */ 3142 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3143 3144 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3145 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3146 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3147 offsetof(struct mm_struct, saved_auxv), 3148 sizeof_field(struct mm_struct, saved_auxv), 3149 NULL); 3150 } 3151 3152 void __init proc_caches_init(void) 3153 { 3154 sighand_cachep = kmem_cache_create("sighand_cache", 3155 sizeof(struct sighand_struct), 0, 3156 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3157 SLAB_ACCOUNT, sighand_ctor); 3158 signal_cachep = kmem_cache_create("signal_cache", 3159 sizeof(struct signal_struct), 0, 3160 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3161 NULL); 3162 files_cachep = kmem_cache_create("files_cache", 3163 sizeof(struct files_struct), 0, 3164 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3165 NULL); 3166 fs_cachep = kmem_cache_create("fs_cache", 3167 sizeof(struct fs_struct), 0, 3168 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3169 NULL); 3170 vm_area_cachep = KMEM_CACHE(vm_area_struct, 3171 SLAB_HWCACHE_ALIGN|SLAB_NO_MERGE|SLAB_PANIC| 3172 SLAB_ACCOUNT); 3173 mmap_init(); 3174 nsproxy_cache_init(); 3175 } 3176 3177 /* 3178 * Check constraints on flags passed to the unshare system call. 3179 */ 3180 static int check_unshare_flags(unsigned long unshare_flags) 3181 { 3182 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3183 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3184 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3185 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3186 CLONE_NEWTIME)) 3187 return -EINVAL; 3188 /* 3189 * Not implemented, but pretend it works if there is nothing 3190 * to unshare. Note that unsharing the address space or the 3191 * signal handlers also need to unshare the signal queues (aka 3192 * CLONE_THREAD). 3193 */ 3194 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3195 if (!thread_group_empty(current)) 3196 return -EINVAL; 3197 } 3198 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3199 if (refcount_read(¤t->sighand->count) > 1) 3200 return -EINVAL; 3201 } 3202 if (unshare_flags & CLONE_VM) { 3203 if (!current_is_single_threaded()) 3204 return -EINVAL; 3205 } 3206 3207 return 0; 3208 } 3209 3210 /* 3211 * Unshare the filesystem structure if it is being shared 3212 */ 3213 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3214 { 3215 struct fs_struct *fs = current->fs; 3216 3217 if (!(unshare_flags & CLONE_FS) || !fs) 3218 return 0; 3219 3220 /* don't need lock here; in the worst case we'll do useless copy */ 3221 if (fs->users == 1) 3222 return 0; 3223 3224 *new_fsp = copy_fs_struct(fs); 3225 if (!*new_fsp) 3226 return -ENOMEM; 3227 3228 return 0; 3229 } 3230 3231 /* 3232 * Unshare file descriptor table if it is being shared 3233 */ 3234 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3235 { 3236 struct files_struct *fd = current->files; 3237 3238 if ((unshare_flags & CLONE_FILES) && 3239 (fd && atomic_read(&fd->count) > 1)) { 3240 fd = dup_fd(fd, NULL); 3241 if (IS_ERR(fd)) 3242 return PTR_ERR(fd); 3243 *new_fdp = fd; 3244 } 3245 3246 return 0; 3247 } 3248 3249 /* 3250 * unshare allows a process to 'unshare' part of the process 3251 * context which was originally shared using clone. copy_* 3252 * functions used by kernel_clone() cannot be used here directly 3253 * because they modify an inactive task_struct that is being 3254 * constructed. Here we are modifying the current, active, 3255 * task_struct. 3256 */ 3257 int ksys_unshare(unsigned long unshare_flags) 3258 { 3259 struct fs_struct *fs, *new_fs = NULL; 3260 struct files_struct *new_fd = NULL; 3261 struct cred *new_cred = NULL; 3262 struct nsproxy *new_nsproxy = NULL; 3263 int do_sysvsem = 0; 3264 int err; 3265 3266 /* 3267 * If unsharing a user namespace must also unshare the thread group 3268 * and unshare the filesystem root and working directories. 3269 */ 3270 if (unshare_flags & CLONE_NEWUSER) 3271 unshare_flags |= CLONE_THREAD | CLONE_FS; 3272 /* 3273 * If unsharing vm, must also unshare signal handlers. 3274 */ 3275 if (unshare_flags & CLONE_VM) 3276 unshare_flags |= CLONE_SIGHAND; 3277 /* 3278 * If unsharing a signal handlers, must also unshare the signal queues. 3279 */ 3280 if (unshare_flags & CLONE_SIGHAND) 3281 unshare_flags |= CLONE_THREAD; 3282 /* 3283 * If unsharing namespace, must also unshare filesystem information. 3284 */ 3285 if (unshare_flags & CLONE_NEWNS) 3286 unshare_flags |= CLONE_FS; 3287 3288 err = check_unshare_flags(unshare_flags); 3289 if (err) 3290 goto bad_unshare_out; 3291 /* 3292 * CLONE_NEWIPC must also detach from the undolist: after switching 3293 * to a new ipc namespace, the semaphore arrays from the old 3294 * namespace are unreachable. 3295 */ 3296 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3297 do_sysvsem = 1; 3298 err = unshare_fs(unshare_flags, &new_fs); 3299 if (err) 3300 goto bad_unshare_out; 3301 err = unshare_fd(unshare_flags, &new_fd); 3302 if (err) 3303 goto bad_unshare_cleanup_fs; 3304 err = unshare_userns(unshare_flags, &new_cred); 3305 if (err) 3306 goto bad_unshare_cleanup_fd; 3307 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3308 new_cred, new_fs); 3309 if (err) 3310 goto bad_unshare_cleanup_cred; 3311 3312 if (new_cred) { 3313 err = set_cred_ucounts(new_cred); 3314 if (err) 3315 goto bad_unshare_cleanup_cred; 3316 } 3317 3318 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3319 if (do_sysvsem) { 3320 /* 3321 * CLONE_SYSVSEM is equivalent to sys_exit(). 3322 */ 3323 exit_sem(current); 3324 } 3325 if (unshare_flags & CLONE_NEWIPC) { 3326 /* Orphan segments in old ns (see sem above). */ 3327 exit_shm(current); 3328 shm_init_task(current); 3329 } 3330 3331 if (new_nsproxy) 3332 switch_task_namespaces(current, new_nsproxy); 3333 3334 task_lock(current); 3335 3336 if (new_fs) { 3337 fs = current->fs; 3338 spin_lock(&fs->lock); 3339 current->fs = new_fs; 3340 if (--fs->users) 3341 new_fs = NULL; 3342 else 3343 new_fs = fs; 3344 spin_unlock(&fs->lock); 3345 } 3346 3347 if (new_fd) 3348 swap(current->files, new_fd); 3349 3350 task_unlock(current); 3351 3352 if (new_cred) { 3353 /* Install the new user namespace */ 3354 commit_creds(new_cred); 3355 new_cred = NULL; 3356 } 3357 } 3358 3359 perf_event_namespaces(current); 3360 3361 bad_unshare_cleanup_cred: 3362 if (new_cred) 3363 put_cred(new_cred); 3364 bad_unshare_cleanup_fd: 3365 if (new_fd) 3366 put_files_struct(new_fd); 3367 3368 bad_unshare_cleanup_fs: 3369 if (new_fs) 3370 free_fs_struct(new_fs); 3371 3372 bad_unshare_out: 3373 return err; 3374 } 3375 3376 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3377 { 3378 return ksys_unshare(unshare_flags); 3379 } 3380 3381 /* 3382 * Helper to unshare the files of the current task. 3383 * We don't want to expose copy_files internals to 3384 * the exec layer of the kernel. 3385 */ 3386 3387 int unshare_files(void) 3388 { 3389 struct task_struct *task = current; 3390 struct files_struct *old, *copy = NULL; 3391 int error; 3392 3393 error = unshare_fd(CLONE_FILES, ©); 3394 if (error || !copy) 3395 return error; 3396 3397 old = task->files; 3398 task_lock(task); 3399 task->files = copy; 3400 task_unlock(task); 3401 put_files_struct(old); 3402 return 0; 3403 } 3404 3405 int sysctl_max_threads(const struct ctl_table *table, int write, 3406 void *buffer, size_t *lenp, loff_t *ppos) 3407 { 3408 struct ctl_table t; 3409 int ret; 3410 int threads = max_threads; 3411 int min = 1; 3412 int max = MAX_THREADS; 3413 3414 t = *table; 3415 t.data = &threads; 3416 t.extra1 = &min; 3417 t.extra2 = &max; 3418 3419 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3420 if (ret || !write) 3421 return ret; 3422 3423 max_threads = threads; 3424 3425 return 0; 3426 } 3427