1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 104 #include <asm/pgalloc.h> 105 #include <linux/uaccess.h> 106 #include <asm/mmu_context.h> 107 #include <asm/cacheflush.h> 108 #include <asm/tlbflush.h> 109 110 #include <trace/events/sched.h> 111 112 #define CREATE_TRACE_POINTS 113 #include <trace/events/task.h> 114 115 /* 116 * Minimum number of threads to boot the kernel 117 */ 118 #define MIN_THREADS 20 119 120 /* 121 * Maximum number of threads 122 */ 123 #define MAX_THREADS FUTEX_TID_MASK 124 125 /* 126 * Protected counters by write_lock_irq(&tasklist_lock) 127 */ 128 unsigned long total_forks; /* Handle normal Linux uptimes. */ 129 int nr_threads; /* The idle threads do not count.. */ 130 131 static int max_threads; /* tunable limit on nr_threads */ 132 133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 134 135 static const char * const resident_page_types[] = { 136 NAMED_ARRAY_INDEX(MM_FILEPAGES), 137 NAMED_ARRAY_INDEX(MM_ANONPAGES), 138 NAMED_ARRAY_INDEX(MM_SWAPENTS), 139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 140 }; 141 142 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 143 144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 145 146 #ifdef CONFIG_PROVE_RCU 147 int lockdep_tasklist_lock_is_held(void) 148 { 149 return lockdep_is_held(&tasklist_lock); 150 } 151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 152 #endif /* #ifdef CONFIG_PROVE_RCU */ 153 154 int nr_processes(void) 155 { 156 int cpu; 157 int total = 0; 158 159 for_each_possible_cpu(cpu) 160 total += per_cpu(process_counts, cpu); 161 162 return total; 163 } 164 165 void __weak arch_release_task_struct(struct task_struct *tsk) 166 { 167 } 168 169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 170 static struct kmem_cache *task_struct_cachep; 171 172 static inline struct task_struct *alloc_task_struct_node(int node) 173 { 174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 175 } 176 177 static inline void free_task_struct(struct task_struct *tsk) 178 { 179 kmem_cache_free(task_struct_cachep, tsk); 180 } 181 #endif 182 183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 184 185 /* 186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 187 * kmemcache based allocator. 188 */ 189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 190 191 # ifdef CONFIG_VMAP_STACK 192 /* 193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 194 * flush. Try to minimize the number of calls by caching stacks. 195 */ 196 #define NR_CACHED_STACKS 2 197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 198 199 struct vm_stack { 200 struct rcu_head rcu; 201 struct vm_struct *stack_vm_area; 202 }; 203 204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 205 { 206 unsigned int i; 207 208 for (i = 0; i < NR_CACHED_STACKS; i++) { 209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 210 continue; 211 return true; 212 } 213 return false; 214 } 215 216 static void thread_stack_free_rcu(struct rcu_head *rh) 217 { 218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 219 220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 221 return; 222 223 vfree(vm_stack); 224 } 225 226 static void thread_stack_delayed_free(struct task_struct *tsk) 227 { 228 struct vm_stack *vm_stack = tsk->stack; 229 230 vm_stack->stack_vm_area = tsk->stack_vm_area; 231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 232 } 233 234 static int free_vm_stack_cache(unsigned int cpu) 235 { 236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 237 int i; 238 239 for (i = 0; i < NR_CACHED_STACKS; i++) { 240 struct vm_struct *vm_stack = cached_vm_stacks[i]; 241 242 if (!vm_stack) 243 continue; 244 245 vfree(vm_stack->addr); 246 cached_vm_stacks[i] = NULL; 247 } 248 249 return 0; 250 } 251 252 static int memcg_charge_kernel_stack(struct vm_struct *vm) 253 { 254 int i; 255 int ret; 256 int nr_charged = 0; 257 258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 259 260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 262 if (ret) 263 goto err; 264 nr_charged++; 265 } 266 return 0; 267 err: 268 for (i = 0; i < nr_charged; i++) 269 memcg_kmem_uncharge_page(vm->pages[i], 0); 270 return ret; 271 } 272 273 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 274 { 275 struct vm_struct *vm; 276 void *stack; 277 int i; 278 279 for (i = 0; i < NR_CACHED_STACKS; i++) { 280 struct vm_struct *s; 281 282 s = this_cpu_xchg(cached_stacks[i], NULL); 283 284 if (!s) 285 continue; 286 287 /* Reset stack metadata. */ 288 kasan_unpoison_range(s->addr, THREAD_SIZE); 289 290 stack = kasan_reset_tag(s->addr); 291 292 /* Clear stale pointers from reused stack. */ 293 memset(stack, 0, THREAD_SIZE); 294 295 if (memcg_charge_kernel_stack(s)) { 296 vfree(s->addr); 297 return -ENOMEM; 298 } 299 300 tsk->stack_vm_area = s; 301 tsk->stack = stack; 302 return 0; 303 } 304 305 /* 306 * Allocated stacks are cached and later reused by new threads, 307 * so memcg accounting is performed manually on assigning/releasing 308 * stacks to tasks. Drop __GFP_ACCOUNT. 309 */ 310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 311 VMALLOC_START, VMALLOC_END, 312 THREADINFO_GFP & ~__GFP_ACCOUNT, 313 PAGE_KERNEL, 314 0, node, __builtin_return_address(0)); 315 if (!stack) 316 return -ENOMEM; 317 318 vm = find_vm_area(stack); 319 if (memcg_charge_kernel_stack(vm)) { 320 vfree(stack); 321 return -ENOMEM; 322 } 323 /* 324 * We can't call find_vm_area() in interrupt context, and 325 * free_thread_stack() can be called in interrupt context, 326 * so cache the vm_struct. 327 */ 328 tsk->stack_vm_area = vm; 329 stack = kasan_reset_tag(stack); 330 tsk->stack = stack; 331 return 0; 332 } 333 334 static void free_thread_stack(struct task_struct *tsk) 335 { 336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 337 thread_stack_delayed_free(tsk); 338 339 tsk->stack = NULL; 340 tsk->stack_vm_area = NULL; 341 } 342 343 # else /* !CONFIG_VMAP_STACK */ 344 345 static void thread_stack_free_rcu(struct rcu_head *rh) 346 { 347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 348 } 349 350 static void thread_stack_delayed_free(struct task_struct *tsk) 351 { 352 struct rcu_head *rh = tsk->stack; 353 354 call_rcu(rh, thread_stack_free_rcu); 355 } 356 357 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 358 { 359 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 360 THREAD_SIZE_ORDER); 361 362 if (likely(page)) { 363 tsk->stack = kasan_reset_tag(page_address(page)); 364 return 0; 365 } 366 return -ENOMEM; 367 } 368 369 static void free_thread_stack(struct task_struct *tsk) 370 { 371 thread_stack_delayed_free(tsk); 372 tsk->stack = NULL; 373 } 374 375 # endif /* CONFIG_VMAP_STACK */ 376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 377 378 static struct kmem_cache *thread_stack_cache; 379 380 static void thread_stack_free_rcu(struct rcu_head *rh) 381 { 382 kmem_cache_free(thread_stack_cache, rh); 383 } 384 385 static void thread_stack_delayed_free(struct task_struct *tsk) 386 { 387 struct rcu_head *rh = tsk->stack; 388 389 call_rcu(rh, thread_stack_free_rcu); 390 } 391 392 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 393 { 394 unsigned long *stack; 395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 396 stack = kasan_reset_tag(stack); 397 tsk->stack = stack; 398 return stack ? 0 : -ENOMEM; 399 } 400 401 static void free_thread_stack(struct task_struct *tsk) 402 { 403 thread_stack_delayed_free(tsk); 404 tsk->stack = NULL; 405 } 406 407 void thread_stack_cache_init(void) 408 { 409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 410 THREAD_SIZE, THREAD_SIZE, 0, 0, 411 THREAD_SIZE, NULL); 412 BUG_ON(thread_stack_cache == NULL); 413 } 414 415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 417 418 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 419 { 420 unsigned long *stack; 421 422 stack = arch_alloc_thread_stack_node(tsk, node); 423 tsk->stack = stack; 424 return stack ? 0 : -ENOMEM; 425 } 426 427 static void free_thread_stack(struct task_struct *tsk) 428 { 429 arch_free_thread_stack(tsk); 430 tsk->stack = NULL; 431 } 432 433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 434 435 /* SLAB cache for signal_struct structures (tsk->signal) */ 436 static struct kmem_cache *signal_cachep; 437 438 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 439 struct kmem_cache *sighand_cachep; 440 441 /* SLAB cache for files_struct structures (tsk->files) */ 442 struct kmem_cache *files_cachep; 443 444 /* SLAB cache for fs_struct structures (tsk->fs) */ 445 struct kmem_cache *fs_cachep; 446 447 /* SLAB cache for vm_area_struct structures */ 448 static struct kmem_cache *vm_area_cachep; 449 450 /* SLAB cache for mm_struct structures (tsk->mm) */ 451 static struct kmem_cache *mm_cachep; 452 453 #ifdef CONFIG_PER_VMA_LOCK 454 455 /* SLAB cache for vm_area_struct.lock */ 456 static struct kmem_cache *vma_lock_cachep; 457 458 static bool vma_lock_alloc(struct vm_area_struct *vma) 459 { 460 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 461 if (!vma->vm_lock) 462 return false; 463 464 init_rwsem(&vma->vm_lock->lock); 465 vma->vm_lock_seq = -1; 466 467 return true; 468 } 469 470 static inline void vma_lock_free(struct vm_area_struct *vma) 471 { 472 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 473 } 474 475 #else /* CONFIG_PER_VMA_LOCK */ 476 477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 478 static inline void vma_lock_free(struct vm_area_struct *vma) {} 479 480 #endif /* CONFIG_PER_VMA_LOCK */ 481 482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 483 { 484 struct vm_area_struct *vma; 485 486 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 487 if (!vma) 488 return NULL; 489 490 vma_init(vma, mm); 491 if (!vma_lock_alloc(vma)) { 492 kmem_cache_free(vm_area_cachep, vma); 493 return NULL; 494 } 495 496 return vma; 497 } 498 499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 500 { 501 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 502 503 if (!new) 504 return NULL; 505 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 507 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 508 /* 509 * orig->shared.rb may be modified concurrently, but the clone 510 * will be reinitialized. 511 */ 512 data_race(memcpy(new, orig, sizeof(*new))); 513 if (!vma_lock_alloc(new)) { 514 kmem_cache_free(vm_area_cachep, new); 515 return NULL; 516 } 517 INIT_LIST_HEAD(&new->anon_vma_chain); 518 vma_numab_state_init(new); 519 dup_anon_vma_name(orig, new); 520 521 return new; 522 } 523 524 void __vm_area_free(struct vm_area_struct *vma) 525 { 526 vma_numab_state_free(vma); 527 free_anon_vma_name(vma); 528 vma_lock_free(vma); 529 kmem_cache_free(vm_area_cachep, vma); 530 } 531 532 #ifdef CONFIG_PER_VMA_LOCK 533 static void vm_area_free_rcu_cb(struct rcu_head *head) 534 { 535 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 536 vm_rcu); 537 538 /* The vma should not be locked while being destroyed. */ 539 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 540 __vm_area_free(vma); 541 } 542 #endif 543 544 void vm_area_free(struct vm_area_struct *vma) 545 { 546 #ifdef CONFIG_PER_VMA_LOCK 547 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 548 #else 549 __vm_area_free(vma); 550 #endif 551 } 552 553 static void account_kernel_stack(struct task_struct *tsk, int account) 554 { 555 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 556 struct vm_struct *vm = task_stack_vm_area(tsk); 557 int i; 558 559 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 560 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 561 account * (PAGE_SIZE / 1024)); 562 } else { 563 void *stack = task_stack_page(tsk); 564 565 /* All stack pages are in the same node. */ 566 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 567 account * (THREAD_SIZE / 1024)); 568 } 569 } 570 571 void exit_task_stack_account(struct task_struct *tsk) 572 { 573 account_kernel_stack(tsk, -1); 574 575 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 576 struct vm_struct *vm; 577 int i; 578 579 vm = task_stack_vm_area(tsk); 580 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 581 memcg_kmem_uncharge_page(vm->pages[i], 0); 582 } 583 } 584 585 static void release_task_stack(struct task_struct *tsk) 586 { 587 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 588 return; /* Better to leak the stack than to free prematurely */ 589 590 free_thread_stack(tsk); 591 } 592 593 #ifdef CONFIG_THREAD_INFO_IN_TASK 594 void put_task_stack(struct task_struct *tsk) 595 { 596 if (refcount_dec_and_test(&tsk->stack_refcount)) 597 release_task_stack(tsk); 598 } 599 #endif 600 601 void free_task(struct task_struct *tsk) 602 { 603 #ifdef CONFIG_SECCOMP 604 WARN_ON_ONCE(tsk->seccomp.filter); 605 #endif 606 release_user_cpus_ptr(tsk); 607 scs_release(tsk); 608 609 #ifndef CONFIG_THREAD_INFO_IN_TASK 610 /* 611 * The task is finally done with both the stack and thread_info, 612 * so free both. 613 */ 614 release_task_stack(tsk); 615 #else 616 /* 617 * If the task had a separate stack allocation, it should be gone 618 * by now. 619 */ 620 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 621 #endif 622 rt_mutex_debug_task_free(tsk); 623 ftrace_graph_exit_task(tsk); 624 arch_release_task_struct(tsk); 625 if (tsk->flags & PF_KTHREAD) 626 free_kthread_struct(tsk); 627 bpf_task_storage_free(tsk); 628 free_task_struct(tsk); 629 } 630 EXPORT_SYMBOL(free_task); 631 632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 633 { 634 struct file *exe_file; 635 636 exe_file = get_mm_exe_file(oldmm); 637 RCU_INIT_POINTER(mm->exe_file, exe_file); 638 /* 639 * We depend on the oldmm having properly denied write access to the 640 * exe_file already. 641 */ 642 if (exe_file && deny_write_access(exe_file)) 643 pr_warn_once("deny_write_access() failed in %s\n", __func__); 644 } 645 646 #ifdef CONFIG_MMU 647 static __latent_entropy int dup_mmap(struct mm_struct *mm, 648 struct mm_struct *oldmm) 649 { 650 struct vm_area_struct *mpnt, *tmp; 651 int retval; 652 unsigned long charge = 0; 653 LIST_HEAD(uf); 654 VMA_ITERATOR(old_vmi, oldmm, 0); 655 VMA_ITERATOR(vmi, mm, 0); 656 657 uprobe_start_dup_mmap(); 658 if (mmap_write_lock_killable(oldmm)) { 659 retval = -EINTR; 660 goto fail_uprobe_end; 661 } 662 flush_cache_dup_mm(oldmm); 663 uprobe_dup_mmap(oldmm, mm); 664 /* 665 * Not linked in yet - no deadlock potential: 666 */ 667 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 668 669 /* No ordering required: file already has been exposed. */ 670 dup_mm_exe_file(mm, oldmm); 671 672 mm->total_vm = oldmm->total_vm; 673 mm->data_vm = oldmm->data_vm; 674 mm->exec_vm = oldmm->exec_vm; 675 mm->stack_vm = oldmm->stack_vm; 676 677 retval = ksm_fork(mm, oldmm); 678 if (retval) 679 goto out; 680 khugepaged_fork(mm, oldmm); 681 682 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 683 if (retval) 684 goto out; 685 686 mt_clear_in_rcu(vmi.mas.tree); 687 for_each_vma(old_vmi, mpnt) { 688 struct file *file; 689 690 vma_start_write(mpnt); 691 if (mpnt->vm_flags & VM_DONTCOPY) { 692 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 693 continue; 694 } 695 charge = 0; 696 /* 697 * Don't duplicate many vmas if we've been oom-killed (for 698 * example) 699 */ 700 if (fatal_signal_pending(current)) { 701 retval = -EINTR; 702 goto loop_out; 703 } 704 if (mpnt->vm_flags & VM_ACCOUNT) { 705 unsigned long len = vma_pages(mpnt); 706 707 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 708 goto fail_nomem; 709 charge = len; 710 } 711 tmp = vm_area_dup(mpnt); 712 if (!tmp) 713 goto fail_nomem; 714 retval = vma_dup_policy(mpnt, tmp); 715 if (retval) 716 goto fail_nomem_policy; 717 tmp->vm_mm = mm; 718 retval = dup_userfaultfd(tmp, &uf); 719 if (retval) 720 goto fail_nomem_anon_vma_fork; 721 if (tmp->vm_flags & VM_WIPEONFORK) { 722 /* 723 * VM_WIPEONFORK gets a clean slate in the child. 724 * Don't prepare anon_vma until fault since we don't 725 * copy page for current vma. 726 */ 727 tmp->anon_vma = NULL; 728 } else if (anon_vma_fork(tmp, mpnt)) 729 goto fail_nomem_anon_vma_fork; 730 vm_flags_clear(tmp, VM_LOCKED_MASK); 731 file = tmp->vm_file; 732 if (file) { 733 struct address_space *mapping = file->f_mapping; 734 735 get_file(file); 736 i_mmap_lock_write(mapping); 737 if (vma_is_shared_maywrite(tmp)) 738 mapping_allow_writable(mapping); 739 flush_dcache_mmap_lock(mapping); 740 /* insert tmp into the share list, just after mpnt */ 741 vma_interval_tree_insert_after(tmp, mpnt, 742 &mapping->i_mmap); 743 flush_dcache_mmap_unlock(mapping); 744 i_mmap_unlock_write(mapping); 745 } 746 747 /* 748 * Copy/update hugetlb private vma information. 749 */ 750 if (is_vm_hugetlb_page(tmp)) 751 hugetlb_dup_vma_private(tmp); 752 753 /* Link the vma into the MT */ 754 if (vma_iter_bulk_store(&vmi, tmp)) 755 goto fail_nomem_vmi_store; 756 757 mm->map_count++; 758 if (!(tmp->vm_flags & VM_WIPEONFORK)) 759 retval = copy_page_range(tmp, mpnt); 760 761 if (tmp->vm_ops && tmp->vm_ops->open) 762 tmp->vm_ops->open(tmp); 763 764 if (retval) 765 goto loop_out; 766 } 767 /* a new mm has just been created */ 768 retval = arch_dup_mmap(oldmm, mm); 769 loop_out: 770 vma_iter_free(&vmi); 771 if (!retval) 772 mt_set_in_rcu(vmi.mas.tree); 773 out: 774 mmap_write_unlock(mm); 775 flush_tlb_mm(oldmm); 776 mmap_write_unlock(oldmm); 777 dup_userfaultfd_complete(&uf); 778 fail_uprobe_end: 779 uprobe_end_dup_mmap(); 780 return retval; 781 782 fail_nomem_vmi_store: 783 unlink_anon_vmas(tmp); 784 fail_nomem_anon_vma_fork: 785 mpol_put(vma_policy(tmp)); 786 fail_nomem_policy: 787 vm_area_free(tmp); 788 fail_nomem: 789 retval = -ENOMEM; 790 vm_unacct_memory(charge); 791 goto loop_out; 792 } 793 794 static inline int mm_alloc_pgd(struct mm_struct *mm) 795 { 796 mm->pgd = pgd_alloc(mm); 797 if (unlikely(!mm->pgd)) 798 return -ENOMEM; 799 return 0; 800 } 801 802 static inline void mm_free_pgd(struct mm_struct *mm) 803 { 804 pgd_free(mm, mm->pgd); 805 } 806 #else 807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 808 { 809 mmap_write_lock(oldmm); 810 dup_mm_exe_file(mm, oldmm); 811 mmap_write_unlock(oldmm); 812 return 0; 813 } 814 #define mm_alloc_pgd(mm) (0) 815 #define mm_free_pgd(mm) 816 #endif /* CONFIG_MMU */ 817 818 static void check_mm(struct mm_struct *mm) 819 { 820 int i; 821 822 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 823 "Please make sure 'struct resident_page_types[]' is updated as well"); 824 825 for (i = 0; i < NR_MM_COUNTERS; i++) { 826 long x = percpu_counter_sum(&mm->rss_stat[i]); 827 828 if (unlikely(x)) 829 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 830 mm, resident_page_types[i], x); 831 } 832 833 if (mm_pgtables_bytes(mm)) 834 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 835 mm_pgtables_bytes(mm)); 836 837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 839 #endif 840 } 841 842 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 843 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 844 845 static void do_check_lazy_tlb(void *arg) 846 { 847 struct mm_struct *mm = arg; 848 849 WARN_ON_ONCE(current->active_mm == mm); 850 } 851 852 static void do_shoot_lazy_tlb(void *arg) 853 { 854 struct mm_struct *mm = arg; 855 856 if (current->active_mm == mm) { 857 WARN_ON_ONCE(current->mm); 858 current->active_mm = &init_mm; 859 switch_mm(mm, &init_mm, current); 860 } 861 } 862 863 static void cleanup_lazy_tlbs(struct mm_struct *mm) 864 { 865 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 866 /* 867 * In this case, lazy tlb mms are refounted and would not reach 868 * __mmdrop until all CPUs have switched away and mmdrop()ed. 869 */ 870 return; 871 } 872 873 /* 874 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 875 * requires lazy mm users to switch to another mm when the refcount 876 * drops to zero, before the mm is freed. This requires IPIs here to 877 * switch kernel threads to init_mm. 878 * 879 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 880 * switch with the final userspace teardown TLB flush which leaves the 881 * mm lazy on this CPU but no others, reducing the need for additional 882 * IPIs here. There are cases where a final IPI is still required here, 883 * such as the final mmdrop being performed on a different CPU than the 884 * one exiting, or kernel threads using the mm when userspace exits. 885 * 886 * IPI overheads have not found to be expensive, but they could be 887 * reduced in a number of possible ways, for example (roughly 888 * increasing order of complexity): 889 * - The last lazy reference created by exit_mm() could instead switch 890 * to init_mm, however it's probable this will run on the same CPU 891 * immediately afterwards, so this may not reduce IPIs much. 892 * - A batch of mms requiring IPIs could be gathered and freed at once. 893 * - CPUs store active_mm where it can be remotely checked without a 894 * lock, to filter out false-positives in the cpumask. 895 * - After mm_users or mm_count reaches zero, switching away from the 896 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 897 * with some batching or delaying of the final IPIs. 898 * - A delayed freeing and RCU-like quiescing sequence based on mm 899 * switching to avoid IPIs completely. 900 */ 901 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 902 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 903 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 904 } 905 906 /* 907 * Called when the last reference to the mm 908 * is dropped: either by a lazy thread or by 909 * mmput. Free the page directory and the mm. 910 */ 911 void __mmdrop(struct mm_struct *mm) 912 { 913 BUG_ON(mm == &init_mm); 914 WARN_ON_ONCE(mm == current->mm); 915 916 /* Ensure no CPUs are using this as their lazy tlb mm */ 917 cleanup_lazy_tlbs(mm); 918 919 WARN_ON_ONCE(mm == current->active_mm); 920 mm_free_pgd(mm); 921 destroy_context(mm); 922 mmu_notifier_subscriptions_destroy(mm); 923 check_mm(mm); 924 put_user_ns(mm->user_ns); 925 mm_pasid_drop(mm); 926 mm_destroy_cid(mm); 927 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 928 929 free_mm(mm); 930 } 931 EXPORT_SYMBOL_GPL(__mmdrop); 932 933 static void mmdrop_async_fn(struct work_struct *work) 934 { 935 struct mm_struct *mm; 936 937 mm = container_of(work, struct mm_struct, async_put_work); 938 __mmdrop(mm); 939 } 940 941 static void mmdrop_async(struct mm_struct *mm) 942 { 943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 945 schedule_work(&mm->async_put_work); 946 } 947 } 948 949 static inline void free_signal_struct(struct signal_struct *sig) 950 { 951 taskstats_tgid_free(sig); 952 sched_autogroup_exit(sig); 953 /* 954 * __mmdrop is not safe to call from softirq context on x86 due to 955 * pgd_dtor so postpone it to the async context 956 */ 957 if (sig->oom_mm) 958 mmdrop_async(sig->oom_mm); 959 kmem_cache_free(signal_cachep, sig); 960 } 961 962 static inline void put_signal_struct(struct signal_struct *sig) 963 { 964 if (refcount_dec_and_test(&sig->sigcnt)) 965 free_signal_struct(sig); 966 } 967 968 void __put_task_struct(struct task_struct *tsk) 969 { 970 WARN_ON(!tsk->exit_state); 971 WARN_ON(refcount_read(&tsk->usage)); 972 WARN_ON(tsk == current); 973 974 io_uring_free(tsk); 975 cgroup_free(tsk); 976 task_numa_free(tsk, true); 977 security_task_free(tsk); 978 exit_creds(tsk); 979 delayacct_tsk_free(tsk); 980 put_signal_struct(tsk->signal); 981 sched_core_free(tsk); 982 free_task(tsk); 983 } 984 EXPORT_SYMBOL_GPL(__put_task_struct); 985 986 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 987 { 988 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 989 990 __put_task_struct(task); 991 } 992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 993 994 void __init __weak arch_task_cache_init(void) { } 995 996 /* 997 * set_max_threads 998 */ 999 static void set_max_threads(unsigned int max_threads_suggested) 1000 { 1001 u64 threads; 1002 unsigned long nr_pages = totalram_pages(); 1003 1004 /* 1005 * The number of threads shall be limited such that the thread 1006 * structures may only consume a small part of the available memory. 1007 */ 1008 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1009 threads = MAX_THREADS; 1010 else 1011 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1012 (u64) THREAD_SIZE * 8UL); 1013 1014 if (threads > max_threads_suggested) 1015 threads = max_threads_suggested; 1016 1017 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1018 } 1019 1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1021 /* Initialized by the architecture: */ 1022 int arch_task_struct_size __read_mostly; 1023 #endif 1024 1025 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1026 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1027 { 1028 /* Fetch thread_struct whitelist for the architecture. */ 1029 arch_thread_struct_whitelist(offset, size); 1030 1031 /* 1032 * Handle zero-sized whitelist or empty thread_struct, otherwise 1033 * adjust offset to position of thread_struct in task_struct. 1034 */ 1035 if (unlikely(*size == 0)) 1036 *offset = 0; 1037 else 1038 *offset += offsetof(struct task_struct, thread); 1039 } 1040 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1041 1042 void __init fork_init(void) 1043 { 1044 int i; 1045 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1046 #ifndef ARCH_MIN_TASKALIGN 1047 #define ARCH_MIN_TASKALIGN 0 1048 #endif 1049 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1050 unsigned long useroffset, usersize; 1051 1052 /* create a slab on which task_structs can be allocated */ 1053 task_struct_whitelist(&useroffset, &usersize); 1054 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1055 arch_task_struct_size, align, 1056 SLAB_PANIC|SLAB_ACCOUNT, 1057 useroffset, usersize, NULL); 1058 #endif 1059 1060 /* do the arch specific task caches init */ 1061 arch_task_cache_init(); 1062 1063 set_max_threads(MAX_THREADS); 1064 1065 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1066 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1067 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1068 init_task.signal->rlim[RLIMIT_NPROC]; 1069 1070 for (i = 0; i < UCOUNT_COUNTS; i++) 1071 init_user_ns.ucount_max[i] = max_threads/2; 1072 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1077 1078 #ifdef CONFIG_VMAP_STACK 1079 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1080 NULL, free_vm_stack_cache); 1081 #endif 1082 1083 scs_init(); 1084 1085 lockdep_init_task(&init_task); 1086 uprobes_init(); 1087 } 1088 1089 int __weak arch_dup_task_struct(struct task_struct *dst, 1090 struct task_struct *src) 1091 { 1092 *dst = *src; 1093 return 0; 1094 } 1095 1096 void set_task_stack_end_magic(struct task_struct *tsk) 1097 { 1098 unsigned long *stackend; 1099 1100 stackend = end_of_stack(tsk); 1101 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1102 } 1103 1104 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1105 { 1106 struct task_struct *tsk; 1107 int err; 1108 1109 if (node == NUMA_NO_NODE) 1110 node = tsk_fork_get_node(orig); 1111 tsk = alloc_task_struct_node(node); 1112 if (!tsk) 1113 return NULL; 1114 1115 err = arch_dup_task_struct(tsk, orig); 1116 if (err) 1117 goto free_tsk; 1118 1119 err = alloc_thread_stack_node(tsk, node); 1120 if (err) 1121 goto free_tsk; 1122 1123 #ifdef CONFIG_THREAD_INFO_IN_TASK 1124 refcount_set(&tsk->stack_refcount, 1); 1125 #endif 1126 account_kernel_stack(tsk, 1); 1127 1128 err = scs_prepare(tsk, node); 1129 if (err) 1130 goto free_stack; 1131 1132 #ifdef CONFIG_SECCOMP 1133 /* 1134 * We must handle setting up seccomp filters once we're under 1135 * the sighand lock in case orig has changed between now and 1136 * then. Until then, filter must be NULL to avoid messing up 1137 * the usage counts on the error path calling free_task. 1138 */ 1139 tsk->seccomp.filter = NULL; 1140 #endif 1141 1142 setup_thread_stack(tsk, orig); 1143 clear_user_return_notifier(tsk); 1144 clear_tsk_need_resched(tsk); 1145 set_task_stack_end_magic(tsk); 1146 clear_syscall_work_syscall_user_dispatch(tsk); 1147 1148 #ifdef CONFIG_STACKPROTECTOR 1149 tsk->stack_canary = get_random_canary(); 1150 #endif 1151 if (orig->cpus_ptr == &orig->cpus_mask) 1152 tsk->cpus_ptr = &tsk->cpus_mask; 1153 dup_user_cpus_ptr(tsk, orig, node); 1154 1155 /* 1156 * One for the user space visible state that goes away when reaped. 1157 * One for the scheduler. 1158 */ 1159 refcount_set(&tsk->rcu_users, 2); 1160 /* One for the rcu users */ 1161 refcount_set(&tsk->usage, 1); 1162 #ifdef CONFIG_BLK_DEV_IO_TRACE 1163 tsk->btrace_seq = 0; 1164 #endif 1165 tsk->splice_pipe = NULL; 1166 tsk->task_frag.page = NULL; 1167 tsk->wake_q.next = NULL; 1168 tsk->worker_private = NULL; 1169 1170 kcov_task_init(tsk); 1171 kmsan_task_create(tsk); 1172 kmap_local_fork(tsk); 1173 1174 #ifdef CONFIG_FAULT_INJECTION 1175 tsk->fail_nth = 0; 1176 #endif 1177 1178 #ifdef CONFIG_BLK_CGROUP 1179 tsk->throttle_disk = NULL; 1180 tsk->use_memdelay = 0; 1181 #endif 1182 1183 #ifdef CONFIG_IOMMU_SVA 1184 tsk->pasid_activated = 0; 1185 #endif 1186 1187 #ifdef CONFIG_MEMCG 1188 tsk->active_memcg = NULL; 1189 #endif 1190 1191 #ifdef CONFIG_CPU_SUP_INTEL 1192 tsk->reported_split_lock = 0; 1193 #endif 1194 1195 #ifdef CONFIG_SCHED_MM_CID 1196 tsk->mm_cid = -1; 1197 tsk->last_mm_cid = -1; 1198 tsk->mm_cid_active = 0; 1199 tsk->migrate_from_cpu = -1; 1200 #endif 1201 return tsk; 1202 1203 free_stack: 1204 exit_task_stack_account(tsk); 1205 free_thread_stack(tsk); 1206 free_tsk: 1207 free_task_struct(tsk); 1208 return NULL; 1209 } 1210 1211 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1212 1213 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1214 1215 static int __init coredump_filter_setup(char *s) 1216 { 1217 default_dump_filter = 1218 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1219 MMF_DUMP_FILTER_MASK; 1220 return 1; 1221 } 1222 1223 __setup("coredump_filter=", coredump_filter_setup); 1224 1225 #include <linux/init_task.h> 1226 1227 static void mm_init_aio(struct mm_struct *mm) 1228 { 1229 #ifdef CONFIG_AIO 1230 spin_lock_init(&mm->ioctx_lock); 1231 mm->ioctx_table = NULL; 1232 #endif 1233 } 1234 1235 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1236 struct task_struct *p) 1237 { 1238 #ifdef CONFIG_MEMCG 1239 if (mm->owner == p) 1240 WRITE_ONCE(mm->owner, NULL); 1241 #endif 1242 } 1243 1244 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1245 { 1246 #ifdef CONFIG_MEMCG 1247 mm->owner = p; 1248 #endif 1249 } 1250 1251 static void mm_init_uprobes_state(struct mm_struct *mm) 1252 { 1253 #ifdef CONFIG_UPROBES 1254 mm->uprobes_state.xol_area = NULL; 1255 #endif 1256 } 1257 1258 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1259 struct user_namespace *user_ns) 1260 { 1261 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1262 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1263 atomic_set(&mm->mm_users, 1); 1264 atomic_set(&mm->mm_count, 1); 1265 seqcount_init(&mm->write_protect_seq); 1266 mmap_init_lock(mm); 1267 INIT_LIST_HEAD(&mm->mmlist); 1268 #ifdef CONFIG_PER_VMA_LOCK 1269 mm->mm_lock_seq = 0; 1270 #endif 1271 mm_pgtables_bytes_init(mm); 1272 mm->map_count = 0; 1273 mm->locked_vm = 0; 1274 atomic64_set(&mm->pinned_vm, 0); 1275 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1276 spin_lock_init(&mm->page_table_lock); 1277 spin_lock_init(&mm->arg_lock); 1278 mm_init_cpumask(mm); 1279 mm_init_aio(mm); 1280 mm_init_owner(mm, p); 1281 mm_pasid_init(mm); 1282 RCU_INIT_POINTER(mm->exe_file, NULL); 1283 mmu_notifier_subscriptions_init(mm); 1284 init_tlb_flush_pending(mm); 1285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1286 mm->pmd_huge_pte = NULL; 1287 #endif 1288 mm_init_uprobes_state(mm); 1289 hugetlb_count_init(mm); 1290 1291 if (current->mm) { 1292 mm->flags = mmf_init_flags(current->mm->flags); 1293 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1294 } else { 1295 mm->flags = default_dump_filter; 1296 mm->def_flags = 0; 1297 } 1298 1299 if (mm_alloc_pgd(mm)) 1300 goto fail_nopgd; 1301 1302 if (init_new_context(p, mm)) 1303 goto fail_nocontext; 1304 1305 if (mm_alloc_cid(mm)) 1306 goto fail_cid; 1307 1308 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1309 NR_MM_COUNTERS)) 1310 goto fail_pcpu; 1311 1312 mm->user_ns = get_user_ns(user_ns); 1313 lru_gen_init_mm(mm); 1314 return mm; 1315 1316 fail_pcpu: 1317 mm_destroy_cid(mm); 1318 fail_cid: 1319 destroy_context(mm); 1320 fail_nocontext: 1321 mm_free_pgd(mm); 1322 fail_nopgd: 1323 free_mm(mm); 1324 return NULL; 1325 } 1326 1327 /* 1328 * Allocate and initialize an mm_struct. 1329 */ 1330 struct mm_struct *mm_alloc(void) 1331 { 1332 struct mm_struct *mm; 1333 1334 mm = allocate_mm(); 1335 if (!mm) 1336 return NULL; 1337 1338 memset(mm, 0, sizeof(*mm)); 1339 return mm_init(mm, current, current_user_ns()); 1340 } 1341 1342 static inline void __mmput(struct mm_struct *mm) 1343 { 1344 VM_BUG_ON(atomic_read(&mm->mm_users)); 1345 1346 uprobe_clear_state(mm); 1347 exit_aio(mm); 1348 ksm_exit(mm); 1349 khugepaged_exit(mm); /* must run before exit_mmap */ 1350 exit_mmap(mm); 1351 mm_put_huge_zero_page(mm); 1352 set_mm_exe_file(mm, NULL); 1353 if (!list_empty(&mm->mmlist)) { 1354 spin_lock(&mmlist_lock); 1355 list_del(&mm->mmlist); 1356 spin_unlock(&mmlist_lock); 1357 } 1358 if (mm->binfmt) 1359 module_put(mm->binfmt->module); 1360 lru_gen_del_mm(mm); 1361 mmdrop(mm); 1362 } 1363 1364 /* 1365 * Decrement the use count and release all resources for an mm. 1366 */ 1367 void mmput(struct mm_struct *mm) 1368 { 1369 might_sleep(); 1370 1371 if (atomic_dec_and_test(&mm->mm_users)) 1372 __mmput(mm); 1373 } 1374 EXPORT_SYMBOL_GPL(mmput); 1375 1376 #ifdef CONFIG_MMU 1377 static void mmput_async_fn(struct work_struct *work) 1378 { 1379 struct mm_struct *mm = container_of(work, struct mm_struct, 1380 async_put_work); 1381 1382 __mmput(mm); 1383 } 1384 1385 void mmput_async(struct mm_struct *mm) 1386 { 1387 if (atomic_dec_and_test(&mm->mm_users)) { 1388 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1389 schedule_work(&mm->async_put_work); 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(mmput_async); 1393 #endif 1394 1395 /** 1396 * set_mm_exe_file - change a reference to the mm's executable file 1397 * @mm: The mm to change. 1398 * @new_exe_file: The new file to use. 1399 * 1400 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1401 * 1402 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1403 * invocations: in mmput() nobody alive left, in execve it happens before 1404 * the new mm is made visible to anyone. 1405 * 1406 * Can only fail if new_exe_file != NULL. 1407 */ 1408 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1409 { 1410 struct file *old_exe_file; 1411 1412 /* 1413 * It is safe to dereference the exe_file without RCU as 1414 * this function is only called if nobody else can access 1415 * this mm -- see comment above for justification. 1416 */ 1417 old_exe_file = rcu_dereference_raw(mm->exe_file); 1418 1419 if (new_exe_file) { 1420 /* 1421 * We expect the caller (i.e., sys_execve) to already denied 1422 * write access, so this is unlikely to fail. 1423 */ 1424 if (unlikely(deny_write_access(new_exe_file))) 1425 return -EACCES; 1426 get_file(new_exe_file); 1427 } 1428 rcu_assign_pointer(mm->exe_file, new_exe_file); 1429 if (old_exe_file) { 1430 allow_write_access(old_exe_file); 1431 fput(old_exe_file); 1432 } 1433 return 0; 1434 } 1435 1436 /** 1437 * replace_mm_exe_file - replace a reference to the mm's executable file 1438 * @mm: The mm to change. 1439 * @new_exe_file: The new file to use. 1440 * 1441 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1442 * 1443 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1444 */ 1445 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1446 { 1447 struct vm_area_struct *vma; 1448 struct file *old_exe_file; 1449 int ret = 0; 1450 1451 /* Forbid mm->exe_file change if old file still mapped. */ 1452 old_exe_file = get_mm_exe_file(mm); 1453 if (old_exe_file) { 1454 VMA_ITERATOR(vmi, mm, 0); 1455 mmap_read_lock(mm); 1456 for_each_vma(vmi, vma) { 1457 if (!vma->vm_file) 1458 continue; 1459 if (path_equal(&vma->vm_file->f_path, 1460 &old_exe_file->f_path)) { 1461 ret = -EBUSY; 1462 break; 1463 } 1464 } 1465 mmap_read_unlock(mm); 1466 fput(old_exe_file); 1467 if (ret) 1468 return ret; 1469 } 1470 1471 ret = deny_write_access(new_exe_file); 1472 if (ret) 1473 return -EACCES; 1474 get_file(new_exe_file); 1475 1476 /* set the new file */ 1477 mmap_write_lock(mm); 1478 old_exe_file = rcu_dereference_raw(mm->exe_file); 1479 rcu_assign_pointer(mm->exe_file, new_exe_file); 1480 mmap_write_unlock(mm); 1481 1482 if (old_exe_file) { 1483 allow_write_access(old_exe_file); 1484 fput(old_exe_file); 1485 } 1486 return 0; 1487 } 1488 1489 /** 1490 * get_mm_exe_file - acquire a reference to the mm's executable file 1491 * @mm: The mm of interest. 1492 * 1493 * Returns %NULL if mm has no associated executable file. 1494 * User must release file via fput(). 1495 */ 1496 struct file *get_mm_exe_file(struct mm_struct *mm) 1497 { 1498 struct file *exe_file; 1499 1500 rcu_read_lock(); 1501 exe_file = get_file_rcu(&mm->exe_file); 1502 rcu_read_unlock(); 1503 return exe_file; 1504 } 1505 1506 /** 1507 * get_task_exe_file - acquire a reference to the task's executable file 1508 * @task: The task. 1509 * 1510 * Returns %NULL if task's mm (if any) has no associated executable file or 1511 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1512 * User must release file via fput(). 1513 */ 1514 struct file *get_task_exe_file(struct task_struct *task) 1515 { 1516 struct file *exe_file = NULL; 1517 struct mm_struct *mm; 1518 1519 task_lock(task); 1520 mm = task->mm; 1521 if (mm) { 1522 if (!(task->flags & PF_KTHREAD)) 1523 exe_file = get_mm_exe_file(mm); 1524 } 1525 task_unlock(task); 1526 return exe_file; 1527 } 1528 1529 /** 1530 * get_task_mm - acquire a reference to the task's mm 1531 * @task: The task. 1532 * 1533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1534 * this kernel workthread has transiently adopted a user mm with use_mm, 1535 * to do its AIO) is not set and if so returns a reference to it, after 1536 * bumping up the use count. User must release the mm via mmput() 1537 * after use. Typically used by /proc and ptrace. 1538 */ 1539 struct mm_struct *get_task_mm(struct task_struct *task) 1540 { 1541 struct mm_struct *mm; 1542 1543 task_lock(task); 1544 mm = task->mm; 1545 if (mm) { 1546 if (task->flags & PF_KTHREAD) 1547 mm = NULL; 1548 else 1549 mmget(mm); 1550 } 1551 task_unlock(task); 1552 return mm; 1553 } 1554 EXPORT_SYMBOL_GPL(get_task_mm); 1555 1556 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1557 { 1558 struct mm_struct *mm; 1559 int err; 1560 1561 err = down_read_killable(&task->signal->exec_update_lock); 1562 if (err) 1563 return ERR_PTR(err); 1564 1565 mm = get_task_mm(task); 1566 if (mm && mm != current->mm && 1567 !ptrace_may_access(task, mode)) { 1568 mmput(mm); 1569 mm = ERR_PTR(-EACCES); 1570 } 1571 up_read(&task->signal->exec_update_lock); 1572 1573 return mm; 1574 } 1575 1576 static void complete_vfork_done(struct task_struct *tsk) 1577 { 1578 struct completion *vfork; 1579 1580 task_lock(tsk); 1581 vfork = tsk->vfork_done; 1582 if (likely(vfork)) { 1583 tsk->vfork_done = NULL; 1584 complete(vfork); 1585 } 1586 task_unlock(tsk); 1587 } 1588 1589 static int wait_for_vfork_done(struct task_struct *child, 1590 struct completion *vfork) 1591 { 1592 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1593 int killed; 1594 1595 cgroup_enter_frozen(); 1596 killed = wait_for_completion_state(vfork, state); 1597 cgroup_leave_frozen(false); 1598 1599 if (killed) { 1600 task_lock(child); 1601 child->vfork_done = NULL; 1602 task_unlock(child); 1603 } 1604 1605 put_task_struct(child); 1606 return killed; 1607 } 1608 1609 /* Please note the differences between mmput and mm_release. 1610 * mmput is called whenever we stop holding onto a mm_struct, 1611 * error success whatever. 1612 * 1613 * mm_release is called after a mm_struct has been removed 1614 * from the current process. 1615 * 1616 * This difference is important for error handling, when we 1617 * only half set up a mm_struct for a new process and need to restore 1618 * the old one. Because we mmput the new mm_struct before 1619 * restoring the old one. . . 1620 * Eric Biederman 10 January 1998 1621 */ 1622 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1623 { 1624 uprobe_free_utask(tsk); 1625 1626 /* Get rid of any cached register state */ 1627 deactivate_mm(tsk, mm); 1628 1629 /* 1630 * Signal userspace if we're not exiting with a core dump 1631 * because we want to leave the value intact for debugging 1632 * purposes. 1633 */ 1634 if (tsk->clear_child_tid) { 1635 if (atomic_read(&mm->mm_users) > 1) { 1636 /* 1637 * We don't check the error code - if userspace has 1638 * not set up a proper pointer then tough luck. 1639 */ 1640 put_user(0, tsk->clear_child_tid); 1641 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1642 1, NULL, NULL, 0, 0); 1643 } 1644 tsk->clear_child_tid = NULL; 1645 } 1646 1647 /* 1648 * All done, finally we can wake up parent and return this mm to him. 1649 * Also kthread_stop() uses this completion for synchronization. 1650 */ 1651 if (tsk->vfork_done) 1652 complete_vfork_done(tsk); 1653 } 1654 1655 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1656 { 1657 futex_exit_release(tsk); 1658 mm_release(tsk, mm); 1659 } 1660 1661 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1662 { 1663 futex_exec_release(tsk); 1664 mm_release(tsk, mm); 1665 } 1666 1667 /** 1668 * dup_mm() - duplicates an existing mm structure 1669 * @tsk: the task_struct with which the new mm will be associated. 1670 * @oldmm: the mm to duplicate. 1671 * 1672 * Allocates a new mm structure and duplicates the provided @oldmm structure 1673 * content into it. 1674 * 1675 * Return: the duplicated mm or NULL on failure. 1676 */ 1677 static struct mm_struct *dup_mm(struct task_struct *tsk, 1678 struct mm_struct *oldmm) 1679 { 1680 struct mm_struct *mm; 1681 int err; 1682 1683 mm = allocate_mm(); 1684 if (!mm) 1685 goto fail_nomem; 1686 1687 memcpy(mm, oldmm, sizeof(*mm)); 1688 1689 if (!mm_init(mm, tsk, mm->user_ns)) 1690 goto fail_nomem; 1691 1692 err = dup_mmap(mm, oldmm); 1693 if (err) 1694 goto free_pt; 1695 1696 mm->hiwater_rss = get_mm_rss(mm); 1697 mm->hiwater_vm = mm->total_vm; 1698 1699 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1700 goto free_pt; 1701 1702 return mm; 1703 1704 free_pt: 1705 /* don't put binfmt in mmput, we haven't got module yet */ 1706 mm->binfmt = NULL; 1707 mm_init_owner(mm, NULL); 1708 mmput(mm); 1709 1710 fail_nomem: 1711 return NULL; 1712 } 1713 1714 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1715 { 1716 struct mm_struct *mm, *oldmm; 1717 1718 tsk->min_flt = tsk->maj_flt = 0; 1719 tsk->nvcsw = tsk->nivcsw = 0; 1720 #ifdef CONFIG_DETECT_HUNG_TASK 1721 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1722 tsk->last_switch_time = 0; 1723 #endif 1724 1725 tsk->mm = NULL; 1726 tsk->active_mm = NULL; 1727 1728 /* 1729 * Are we cloning a kernel thread? 1730 * 1731 * We need to steal a active VM for that.. 1732 */ 1733 oldmm = current->mm; 1734 if (!oldmm) 1735 return 0; 1736 1737 if (clone_flags & CLONE_VM) { 1738 mmget(oldmm); 1739 mm = oldmm; 1740 } else { 1741 mm = dup_mm(tsk, current->mm); 1742 if (!mm) 1743 return -ENOMEM; 1744 } 1745 1746 tsk->mm = mm; 1747 tsk->active_mm = mm; 1748 sched_mm_cid_fork(tsk); 1749 return 0; 1750 } 1751 1752 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1753 { 1754 struct fs_struct *fs = current->fs; 1755 if (clone_flags & CLONE_FS) { 1756 /* tsk->fs is already what we want */ 1757 spin_lock(&fs->lock); 1758 if (fs->in_exec) { 1759 spin_unlock(&fs->lock); 1760 return -EAGAIN; 1761 } 1762 fs->users++; 1763 spin_unlock(&fs->lock); 1764 return 0; 1765 } 1766 tsk->fs = copy_fs_struct(fs); 1767 if (!tsk->fs) 1768 return -ENOMEM; 1769 return 0; 1770 } 1771 1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1773 int no_files) 1774 { 1775 struct files_struct *oldf, *newf; 1776 int error = 0; 1777 1778 /* 1779 * A background process may not have any files ... 1780 */ 1781 oldf = current->files; 1782 if (!oldf) 1783 goto out; 1784 1785 if (no_files) { 1786 tsk->files = NULL; 1787 goto out; 1788 } 1789 1790 if (clone_flags & CLONE_FILES) { 1791 atomic_inc(&oldf->count); 1792 goto out; 1793 } 1794 1795 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1796 if (!newf) 1797 goto out; 1798 1799 tsk->files = newf; 1800 error = 0; 1801 out: 1802 return error; 1803 } 1804 1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1806 { 1807 struct sighand_struct *sig; 1808 1809 if (clone_flags & CLONE_SIGHAND) { 1810 refcount_inc(¤t->sighand->count); 1811 return 0; 1812 } 1813 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1814 RCU_INIT_POINTER(tsk->sighand, sig); 1815 if (!sig) 1816 return -ENOMEM; 1817 1818 refcount_set(&sig->count, 1); 1819 spin_lock_irq(¤t->sighand->siglock); 1820 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1821 spin_unlock_irq(¤t->sighand->siglock); 1822 1823 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1824 if (clone_flags & CLONE_CLEAR_SIGHAND) 1825 flush_signal_handlers(tsk, 0); 1826 1827 return 0; 1828 } 1829 1830 void __cleanup_sighand(struct sighand_struct *sighand) 1831 { 1832 if (refcount_dec_and_test(&sighand->count)) { 1833 signalfd_cleanup(sighand); 1834 /* 1835 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1836 * without an RCU grace period, see __lock_task_sighand(). 1837 */ 1838 kmem_cache_free(sighand_cachep, sighand); 1839 } 1840 } 1841 1842 /* 1843 * Initialize POSIX timer handling for a thread group. 1844 */ 1845 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1846 { 1847 struct posix_cputimers *pct = &sig->posix_cputimers; 1848 unsigned long cpu_limit; 1849 1850 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1851 posix_cputimers_group_init(pct, cpu_limit); 1852 } 1853 1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1855 { 1856 struct signal_struct *sig; 1857 1858 if (clone_flags & CLONE_THREAD) 1859 return 0; 1860 1861 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1862 tsk->signal = sig; 1863 if (!sig) 1864 return -ENOMEM; 1865 1866 sig->nr_threads = 1; 1867 sig->quick_threads = 1; 1868 atomic_set(&sig->live, 1); 1869 refcount_set(&sig->sigcnt, 1); 1870 1871 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1872 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1873 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1874 1875 init_waitqueue_head(&sig->wait_chldexit); 1876 sig->curr_target = tsk; 1877 init_sigpending(&sig->shared_pending); 1878 INIT_HLIST_HEAD(&sig->multiprocess); 1879 seqlock_init(&sig->stats_lock); 1880 prev_cputime_init(&sig->prev_cputime); 1881 1882 #ifdef CONFIG_POSIX_TIMERS 1883 INIT_LIST_HEAD(&sig->posix_timers); 1884 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1885 sig->real_timer.function = it_real_fn; 1886 #endif 1887 1888 task_lock(current->group_leader); 1889 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1890 task_unlock(current->group_leader); 1891 1892 posix_cpu_timers_init_group(sig); 1893 1894 tty_audit_fork(sig); 1895 sched_autogroup_fork(sig); 1896 1897 sig->oom_score_adj = current->signal->oom_score_adj; 1898 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1899 1900 mutex_init(&sig->cred_guard_mutex); 1901 init_rwsem(&sig->exec_update_lock); 1902 1903 return 0; 1904 } 1905 1906 static void copy_seccomp(struct task_struct *p) 1907 { 1908 #ifdef CONFIG_SECCOMP 1909 /* 1910 * Must be called with sighand->lock held, which is common to 1911 * all threads in the group. Holding cred_guard_mutex is not 1912 * needed because this new task is not yet running and cannot 1913 * be racing exec. 1914 */ 1915 assert_spin_locked(¤t->sighand->siglock); 1916 1917 /* Ref-count the new filter user, and assign it. */ 1918 get_seccomp_filter(current); 1919 p->seccomp = current->seccomp; 1920 1921 /* 1922 * Explicitly enable no_new_privs here in case it got set 1923 * between the task_struct being duplicated and holding the 1924 * sighand lock. The seccomp state and nnp must be in sync. 1925 */ 1926 if (task_no_new_privs(current)) 1927 task_set_no_new_privs(p); 1928 1929 /* 1930 * If the parent gained a seccomp mode after copying thread 1931 * flags and between before we held the sighand lock, we have 1932 * to manually enable the seccomp thread flag here. 1933 */ 1934 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1935 set_task_syscall_work(p, SECCOMP); 1936 #endif 1937 } 1938 1939 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1940 { 1941 current->clear_child_tid = tidptr; 1942 1943 return task_pid_vnr(current); 1944 } 1945 1946 static void rt_mutex_init_task(struct task_struct *p) 1947 { 1948 raw_spin_lock_init(&p->pi_lock); 1949 #ifdef CONFIG_RT_MUTEXES 1950 p->pi_waiters = RB_ROOT_CACHED; 1951 p->pi_top_task = NULL; 1952 p->pi_blocked_on = NULL; 1953 #endif 1954 } 1955 1956 static inline void init_task_pid_links(struct task_struct *task) 1957 { 1958 enum pid_type type; 1959 1960 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1961 INIT_HLIST_NODE(&task->pid_links[type]); 1962 } 1963 1964 static inline void 1965 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1966 { 1967 if (type == PIDTYPE_PID) 1968 task->thread_pid = pid; 1969 else 1970 task->signal->pids[type] = pid; 1971 } 1972 1973 static inline void rcu_copy_process(struct task_struct *p) 1974 { 1975 #ifdef CONFIG_PREEMPT_RCU 1976 p->rcu_read_lock_nesting = 0; 1977 p->rcu_read_unlock_special.s = 0; 1978 p->rcu_blocked_node = NULL; 1979 INIT_LIST_HEAD(&p->rcu_node_entry); 1980 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1981 #ifdef CONFIG_TASKS_RCU 1982 p->rcu_tasks_holdout = false; 1983 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1984 p->rcu_tasks_idle_cpu = -1; 1985 #endif /* #ifdef CONFIG_TASKS_RCU */ 1986 #ifdef CONFIG_TASKS_TRACE_RCU 1987 p->trc_reader_nesting = 0; 1988 p->trc_reader_special.s = 0; 1989 INIT_LIST_HEAD(&p->trc_holdout_list); 1990 INIT_LIST_HEAD(&p->trc_blkd_node); 1991 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1992 } 1993 1994 struct pid *pidfd_pid(const struct file *file) 1995 { 1996 if (file->f_op == &pidfd_fops) 1997 return file->private_data; 1998 1999 return ERR_PTR(-EBADF); 2000 } 2001 2002 static int pidfd_release(struct inode *inode, struct file *file) 2003 { 2004 struct pid *pid = file->private_data; 2005 2006 file->private_data = NULL; 2007 put_pid(pid); 2008 return 0; 2009 } 2010 2011 #ifdef CONFIG_PROC_FS 2012 /** 2013 * pidfd_show_fdinfo - print information about a pidfd 2014 * @m: proc fdinfo file 2015 * @f: file referencing a pidfd 2016 * 2017 * Pid: 2018 * This function will print the pid that a given pidfd refers to in the 2019 * pid namespace of the procfs instance. 2020 * If the pid namespace of the process is not a descendant of the pid 2021 * namespace of the procfs instance 0 will be shown as its pid. This is 2022 * similar to calling getppid() on a process whose parent is outside of 2023 * its pid namespace. 2024 * 2025 * NSpid: 2026 * If pid namespaces are supported then this function will also print 2027 * the pid of a given pidfd refers to for all descendant pid namespaces 2028 * starting from the current pid namespace of the instance, i.e. the 2029 * Pid field and the first entry in the NSpid field will be identical. 2030 * If the pid namespace of the process is not a descendant of the pid 2031 * namespace of the procfs instance 0 will be shown as its first NSpid 2032 * entry and no others will be shown. 2033 * Note that this differs from the Pid and NSpid fields in 2034 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2035 * the pid namespace of the procfs instance. The difference becomes 2036 * obvious when sending around a pidfd between pid namespaces from a 2037 * different branch of the tree, i.e. where no ancestral relation is 2038 * present between the pid namespaces: 2039 * - create two new pid namespaces ns1 and ns2 in the initial pid 2040 * namespace (also take care to create new mount namespaces in the 2041 * new pid namespace and mount procfs) 2042 * - create a process with a pidfd in ns1 2043 * - send pidfd from ns1 to ns2 2044 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2045 * have exactly one entry, which is 0 2046 */ 2047 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2048 { 2049 struct pid *pid = f->private_data; 2050 struct pid_namespace *ns; 2051 pid_t nr = -1; 2052 2053 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2054 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2055 nr = pid_nr_ns(pid, ns); 2056 } 2057 2058 seq_put_decimal_ll(m, "Pid:\t", nr); 2059 2060 #ifdef CONFIG_PID_NS 2061 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2062 if (nr > 0) { 2063 int i; 2064 2065 /* If nr is non-zero it means that 'pid' is valid and that 2066 * ns, i.e. the pid namespace associated with the procfs 2067 * instance, is in the pid namespace hierarchy of pid. 2068 * Start at one below the already printed level. 2069 */ 2070 for (i = ns->level + 1; i <= pid->level; i++) 2071 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2072 } 2073 #endif 2074 seq_putc(m, '\n'); 2075 } 2076 #endif 2077 2078 /* 2079 * Poll support for process exit notification. 2080 */ 2081 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2082 { 2083 struct pid *pid = file->private_data; 2084 __poll_t poll_flags = 0; 2085 2086 poll_wait(file, &pid->wait_pidfd, pts); 2087 2088 /* 2089 * Inform pollers only when the whole thread group exits. 2090 * If the thread group leader exits before all other threads in the 2091 * group, then poll(2) should block, similar to the wait(2) family. 2092 */ 2093 if (thread_group_exited(pid)) 2094 poll_flags = EPOLLIN | EPOLLRDNORM; 2095 2096 return poll_flags; 2097 } 2098 2099 const struct file_operations pidfd_fops = { 2100 .release = pidfd_release, 2101 .poll = pidfd_poll, 2102 #ifdef CONFIG_PROC_FS 2103 .show_fdinfo = pidfd_show_fdinfo, 2104 #endif 2105 }; 2106 2107 /** 2108 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2109 * @pid: the struct pid for which to create a pidfd 2110 * @flags: flags of the new @pidfd 2111 * @ret: Where to return the file for the pidfd. 2112 * 2113 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2114 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2115 * 2116 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2117 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2118 * pidfd file are prepared. 2119 * 2120 * If this function returns successfully the caller is responsible to either 2121 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2122 * order to install the pidfd into its file descriptor table or they must use 2123 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2124 * respectively. 2125 * 2126 * This function is useful when a pidfd must already be reserved but there 2127 * might still be points of failure afterwards and the caller wants to ensure 2128 * that no pidfd is leaked into its file descriptor table. 2129 * 2130 * Return: On success, a reserved pidfd is returned from the function and a new 2131 * pidfd file is returned in the last argument to the function. On 2132 * error, a negative error code is returned from the function and the 2133 * last argument remains unchanged. 2134 */ 2135 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2136 { 2137 int pidfd; 2138 struct file *pidfd_file; 2139 2140 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2141 return -EINVAL; 2142 2143 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2144 if (pidfd < 0) 2145 return pidfd; 2146 2147 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2148 flags | O_RDWR | O_CLOEXEC); 2149 if (IS_ERR(pidfd_file)) { 2150 put_unused_fd(pidfd); 2151 return PTR_ERR(pidfd_file); 2152 } 2153 get_pid(pid); /* held by pidfd_file now */ 2154 *ret = pidfd_file; 2155 return pidfd; 2156 } 2157 2158 /** 2159 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2160 * @pid: the struct pid for which to create a pidfd 2161 * @flags: flags of the new @pidfd 2162 * @ret: Where to return the pidfd. 2163 * 2164 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2165 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2166 * 2167 * The helper verifies that @pid is used as a thread group leader. 2168 * 2169 * If this function returns successfully the caller is responsible to either 2170 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2171 * order to install the pidfd into its file descriptor table or they must use 2172 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2173 * respectively. 2174 * 2175 * This function is useful when a pidfd must already be reserved but there 2176 * might still be points of failure afterwards and the caller wants to ensure 2177 * that no pidfd is leaked into its file descriptor table. 2178 * 2179 * Return: On success, a reserved pidfd is returned from the function and a new 2180 * pidfd file is returned in the last argument to the function. On 2181 * error, a negative error code is returned from the function and the 2182 * last argument remains unchanged. 2183 */ 2184 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2185 { 2186 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2187 return -EINVAL; 2188 2189 return __pidfd_prepare(pid, flags, ret); 2190 } 2191 2192 static void __delayed_free_task(struct rcu_head *rhp) 2193 { 2194 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2195 2196 free_task(tsk); 2197 } 2198 2199 static __always_inline void delayed_free_task(struct task_struct *tsk) 2200 { 2201 if (IS_ENABLED(CONFIG_MEMCG)) 2202 call_rcu(&tsk->rcu, __delayed_free_task); 2203 else 2204 free_task(tsk); 2205 } 2206 2207 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2208 { 2209 /* Skip if kernel thread */ 2210 if (!tsk->mm) 2211 return; 2212 2213 /* Skip if spawning a thread or using vfork */ 2214 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2215 return; 2216 2217 /* We need to synchronize with __set_oom_adj */ 2218 mutex_lock(&oom_adj_mutex); 2219 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2220 /* Update the values in case they were changed after copy_signal */ 2221 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2222 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2223 mutex_unlock(&oom_adj_mutex); 2224 } 2225 2226 #ifdef CONFIG_RV 2227 static void rv_task_fork(struct task_struct *p) 2228 { 2229 int i; 2230 2231 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2232 p->rv[i].da_mon.monitoring = false; 2233 } 2234 #else 2235 #define rv_task_fork(p) do {} while (0) 2236 #endif 2237 2238 /* 2239 * This creates a new process as a copy of the old one, 2240 * but does not actually start it yet. 2241 * 2242 * It copies the registers, and all the appropriate 2243 * parts of the process environment (as per the clone 2244 * flags). The actual kick-off is left to the caller. 2245 */ 2246 __latent_entropy struct task_struct *copy_process( 2247 struct pid *pid, 2248 int trace, 2249 int node, 2250 struct kernel_clone_args *args) 2251 { 2252 int pidfd = -1, retval; 2253 struct task_struct *p; 2254 struct multiprocess_signals delayed; 2255 struct file *pidfile = NULL; 2256 const u64 clone_flags = args->flags; 2257 struct nsproxy *nsp = current->nsproxy; 2258 2259 /* 2260 * Don't allow sharing the root directory with processes in a different 2261 * namespace 2262 */ 2263 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2264 return ERR_PTR(-EINVAL); 2265 2266 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2267 return ERR_PTR(-EINVAL); 2268 2269 /* 2270 * Thread groups must share signals as well, and detached threads 2271 * can only be started up within the thread group. 2272 */ 2273 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2274 return ERR_PTR(-EINVAL); 2275 2276 /* 2277 * Shared signal handlers imply shared VM. By way of the above, 2278 * thread groups also imply shared VM. Blocking this case allows 2279 * for various simplifications in other code. 2280 */ 2281 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2282 return ERR_PTR(-EINVAL); 2283 2284 /* 2285 * Siblings of global init remain as zombies on exit since they are 2286 * not reaped by their parent (swapper). To solve this and to avoid 2287 * multi-rooted process trees, prevent global and container-inits 2288 * from creating siblings. 2289 */ 2290 if ((clone_flags & CLONE_PARENT) && 2291 current->signal->flags & SIGNAL_UNKILLABLE) 2292 return ERR_PTR(-EINVAL); 2293 2294 /* 2295 * If the new process will be in a different pid or user namespace 2296 * do not allow it to share a thread group with the forking task. 2297 */ 2298 if (clone_flags & CLONE_THREAD) { 2299 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2300 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2301 return ERR_PTR(-EINVAL); 2302 } 2303 2304 if (clone_flags & CLONE_PIDFD) { 2305 /* 2306 * - CLONE_DETACHED is blocked so that we can potentially 2307 * reuse it later for CLONE_PIDFD. 2308 * - CLONE_THREAD is blocked until someone really needs it. 2309 */ 2310 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2311 return ERR_PTR(-EINVAL); 2312 } 2313 2314 /* 2315 * Force any signals received before this point to be delivered 2316 * before the fork happens. Collect up signals sent to multiple 2317 * processes that happen during the fork and delay them so that 2318 * they appear to happen after the fork. 2319 */ 2320 sigemptyset(&delayed.signal); 2321 INIT_HLIST_NODE(&delayed.node); 2322 2323 spin_lock_irq(¤t->sighand->siglock); 2324 if (!(clone_flags & CLONE_THREAD)) 2325 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2326 recalc_sigpending(); 2327 spin_unlock_irq(¤t->sighand->siglock); 2328 retval = -ERESTARTNOINTR; 2329 if (task_sigpending(current)) 2330 goto fork_out; 2331 2332 retval = -ENOMEM; 2333 p = dup_task_struct(current, node); 2334 if (!p) 2335 goto fork_out; 2336 p->flags &= ~PF_KTHREAD; 2337 if (args->kthread) 2338 p->flags |= PF_KTHREAD; 2339 if (args->user_worker) { 2340 /* 2341 * Mark us a user worker, and block any signal that isn't 2342 * fatal or STOP 2343 */ 2344 p->flags |= PF_USER_WORKER; 2345 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2346 } 2347 if (args->io_thread) 2348 p->flags |= PF_IO_WORKER; 2349 2350 if (args->name) 2351 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2352 2353 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2354 /* 2355 * Clear TID on mm_release()? 2356 */ 2357 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2358 2359 ftrace_graph_init_task(p); 2360 2361 rt_mutex_init_task(p); 2362 2363 lockdep_assert_irqs_enabled(); 2364 #ifdef CONFIG_PROVE_LOCKING 2365 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2366 #endif 2367 retval = copy_creds(p, clone_flags); 2368 if (retval < 0) 2369 goto bad_fork_free; 2370 2371 retval = -EAGAIN; 2372 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2373 if (p->real_cred->user != INIT_USER && 2374 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2375 goto bad_fork_cleanup_count; 2376 } 2377 current->flags &= ~PF_NPROC_EXCEEDED; 2378 2379 /* 2380 * If multiple threads are within copy_process(), then this check 2381 * triggers too late. This doesn't hurt, the check is only there 2382 * to stop root fork bombs. 2383 */ 2384 retval = -EAGAIN; 2385 if (data_race(nr_threads >= max_threads)) 2386 goto bad_fork_cleanup_count; 2387 2388 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2389 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2390 p->flags |= PF_FORKNOEXEC; 2391 INIT_LIST_HEAD(&p->children); 2392 INIT_LIST_HEAD(&p->sibling); 2393 rcu_copy_process(p); 2394 p->vfork_done = NULL; 2395 spin_lock_init(&p->alloc_lock); 2396 2397 init_sigpending(&p->pending); 2398 2399 p->utime = p->stime = p->gtime = 0; 2400 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2401 p->utimescaled = p->stimescaled = 0; 2402 #endif 2403 prev_cputime_init(&p->prev_cputime); 2404 2405 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2406 seqcount_init(&p->vtime.seqcount); 2407 p->vtime.starttime = 0; 2408 p->vtime.state = VTIME_INACTIVE; 2409 #endif 2410 2411 #ifdef CONFIG_IO_URING 2412 p->io_uring = NULL; 2413 #endif 2414 2415 p->default_timer_slack_ns = current->timer_slack_ns; 2416 2417 #ifdef CONFIG_PSI 2418 p->psi_flags = 0; 2419 #endif 2420 2421 task_io_accounting_init(&p->ioac); 2422 acct_clear_integrals(p); 2423 2424 posix_cputimers_init(&p->posix_cputimers); 2425 2426 p->io_context = NULL; 2427 audit_set_context(p, NULL); 2428 cgroup_fork(p); 2429 if (args->kthread) { 2430 if (!set_kthread_struct(p)) 2431 goto bad_fork_cleanup_delayacct; 2432 } 2433 #ifdef CONFIG_NUMA 2434 p->mempolicy = mpol_dup(p->mempolicy); 2435 if (IS_ERR(p->mempolicy)) { 2436 retval = PTR_ERR(p->mempolicy); 2437 p->mempolicy = NULL; 2438 goto bad_fork_cleanup_delayacct; 2439 } 2440 #endif 2441 #ifdef CONFIG_CPUSETS 2442 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2443 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2444 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2445 #endif 2446 #ifdef CONFIG_TRACE_IRQFLAGS 2447 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2448 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2449 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2450 p->softirqs_enabled = 1; 2451 p->softirq_context = 0; 2452 #endif 2453 2454 p->pagefault_disabled = 0; 2455 2456 #ifdef CONFIG_LOCKDEP 2457 lockdep_init_task(p); 2458 #endif 2459 2460 #ifdef CONFIG_DEBUG_MUTEXES 2461 p->blocked_on = NULL; /* not blocked yet */ 2462 #endif 2463 #ifdef CONFIG_BCACHE 2464 p->sequential_io = 0; 2465 p->sequential_io_avg = 0; 2466 #endif 2467 #ifdef CONFIG_BPF_SYSCALL 2468 RCU_INIT_POINTER(p->bpf_storage, NULL); 2469 p->bpf_ctx = NULL; 2470 #endif 2471 2472 /* Perform scheduler related setup. Assign this task to a CPU. */ 2473 retval = sched_fork(clone_flags, p); 2474 if (retval) 2475 goto bad_fork_cleanup_policy; 2476 2477 retval = perf_event_init_task(p, clone_flags); 2478 if (retval) 2479 goto bad_fork_cleanup_policy; 2480 retval = audit_alloc(p); 2481 if (retval) 2482 goto bad_fork_cleanup_perf; 2483 /* copy all the process information */ 2484 shm_init_task(p); 2485 retval = security_task_alloc(p, clone_flags); 2486 if (retval) 2487 goto bad_fork_cleanup_audit; 2488 retval = copy_semundo(clone_flags, p); 2489 if (retval) 2490 goto bad_fork_cleanup_security; 2491 retval = copy_files(clone_flags, p, args->no_files); 2492 if (retval) 2493 goto bad_fork_cleanup_semundo; 2494 retval = copy_fs(clone_flags, p); 2495 if (retval) 2496 goto bad_fork_cleanup_files; 2497 retval = copy_sighand(clone_flags, p); 2498 if (retval) 2499 goto bad_fork_cleanup_fs; 2500 retval = copy_signal(clone_flags, p); 2501 if (retval) 2502 goto bad_fork_cleanup_sighand; 2503 retval = copy_mm(clone_flags, p); 2504 if (retval) 2505 goto bad_fork_cleanup_signal; 2506 retval = copy_namespaces(clone_flags, p); 2507 if (retval) 2508 goto bad_fork_cleanup_mm; 2509 retval = copy_io(clone_flags, p); 2510 if (retval) 2511 goto bad_fork_cleanup_namespaces; 2512 retval = copy_thread(p, args); 2513 if (retval) 2514 goto bad_fork_cleanup_io; 2515 2516 stackleak_task_init(p); 2517 2518 if (pid != &init_struct_pid) { 2519 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2520 args->set_tid_size); 2521 if (IS_ERR(pid)) { 2522 retval = PTR_ERR(pid); 2523 goto bad_fork_cleanup_thread; 2524 } 2525 } 2526 2527 /* 2528 * This has to happen after we've potentially unshared the file 2529 * descriptor table (so that the pidfd doesn't leak into the child 2530 * if the fd table isn't shared). 2531 */ 2532 if (clone_flags & CLONE_PIDFD) { 2533 /* Note that no task has been attached to @pid yet. */ 2534 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2535 if (retval < 0) 2536 goto bad_fork_free_pid; 2537 pidfd = retval; 2538 2539 retval = put_user(pidfd, args->pidfd); 2540 if (retval) 2541 goto bad_fork_put_pidfd; 2542 } 2543 2544 #ifdef CONFIG_BLOCK 2545 p->plug = NULL; 2546 #endif 2547 futex_init_task(p); 2548 2549 /* 2550 * sigaltstack should be cleared when sharing the same VM 2551 */ 2552 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2553 sas_ss_reset(p); 2554 2555 /* 2556 * Syscall tracing and stepping should be turned off in the 2557 * child regardless of CLONE_PTRACE. 2558 */ 2559 user_disable_single_step(p); 2560 clear_task_syscall_work(p, SYSCALL_TRACE); 2561 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2562 clear_task_syscall_work(p, SYSCALL_EMU); 2563 #endif 2564 clear_tsk_latency_tracing(p); 2565 2566 /* ok, now we should be set up.. */ 2567 p->pid = pid_nr(pid); 2568 if (clone_flags & CLONE_THREAD) { 2569 p->group_leader = current->group_leader; 2570 p->tgid = current->tgid; 2571 } else { 2572 p->group_leader = p; 2573 p->tgid = p->pid; 2574 } 2575 2576 p->nr_dirtied = 0; 2577 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2578 p->dirty_paused_when = 0; 2579 2580 p->pdeath_signal = 0; 2581 p->task_works = NULL; 2582 clear_posix_cputimers_work(p); 2583 2584 #ifdef CONFIG_KRETPROBES 2585 p->kretprobe_instances.first = NULL; 2586 #endif 2587 #ifdef CONFIG_RETHOOK 2588 p->rethooks.first = NULL; 2589 #endif 2590 2591 /* 2592 * Ensure that the cgroup subsystem policies allow the new process to be 2593 * forked. It should be noted that the new process's css_set can be changed 2594 * between here and cgroup_post_fork() if an organisation operation is in 2595 * progress. 2596 */ 2597 retval = cgroup_can_fork(p, args); 2598 if (retval) 2599 goto bad_fork_put_pidfd; 2600 2601 /* 2602 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2603 * the new task on the correct runqueue. All this *before* the task 2604 * becomes visible. 2605 * 2606 * This isn't part of ->can_fork() because while the re-cloning is 2607 * cgroup specific, it unconditionally needs to place the task on a 2608 * runqueue. 2609 */ 2610 sched_cgroup_fork(p, args); 2611 2612 /* 2613 * From this point on we must avoid any synchronous user-space 2614 * communication until we take the tasklist-lock. In particular, we do 2615 * not want user-space to be able to predict the process start-time by 2616 * stalling fork(2) after we recorded the start_time but before it is 2617 * visible to the system. 2618 */ 2619 2620 p->start_time = ktime_get_ns(); 2621 p->start_boottime = ktime_get_boottime_ns(); 2622 2623 /* 2624 * Make it visible to the rest of the system, but dont wake it up yet. 2625 * Need tasklist lock for parent etc handling! 2626 */ 2627 write_lock_irq(&tasklist_lock); 2628 2629 /* CLONE_PARENT re-uses the old parent */ 2630 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2631 p->real_parent = current->real_parent; 2632 p->parent_exec_id = current->parent_exec_id; 2633 if (clone_flags & CLONE_THREAD) 2634 p->exit_signal = -1; 2635 else 2636 p->exit_signal = current->group_leader->exit_signal; 2637 } else { 2638 p->real_parent = current; 2639 p->parent_exec_id = current->self_exec_id; 2640 p->exit_signal = args->exit_signal; 2641 } 2642 2643 klp_copy_process(p); 2644 2645 sched_core_fork(p); 2646 2647 spin_lock(¤t->sighand->siglock); 2648 2649 rv_task_fork(p); 2650 2651 rseq_fork(p, clone_flags); 2652 2653 /* Don't start children in a dying pid namespace */ 2654 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2655 retval = -ENOMEM; 2656 goto bad_fork_cancel_cgroup; 2657 } 2658 2659 /* Let kill terminate clone/fork in the middle */ 2660 if (fatal_signal_pending(current)) { 2661 retval = -EINTR; 2662 goto bad_fork_cancel_cgroup; 2663 } 2664 2665 /* No more failure paths after this point. */ 2666 2667 /* 2668 * Copy seccomp details explicitly here, in case they were changed 2669 * before holding sighand lock. 2670 */ 2671 copy_seccomp(p); 2672 2673 init_task_pid_links(p); 2674 if (likely(p->pid)) { 2675 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2676 2677 init_task_pid(p, PIDTYPE_PID, pid); 2678 if (thread_group_leader(p)) { 2679 init_task_pid(p, PIDTYPE_TGID, pid); 2680 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2681 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2682 2683 if (is_child_reaper(pid)) { 2684 ns_of_pid(pid)->child_reaper = p; 2685 p->signal->flags |= SIGNAL_UNKILLABLE; 2686 } 2687 p->signal->shared_pending.signal = delayed.signal; 2688 p->signal->tty = tty_kref_get(current->signal->tty); 2689 /* 2690 * Inherit has_child_subreaper flag under the same 2691 * tasklist_lock with adding child to the process tree 2692 * for propagate_has_child_subreaper optimization. 2693 */ 2694 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2695 p->real_parent->signal->is_child_subreaper; 2696 list_add_tail(&p->sibling, &p->real_parent->children); 2697 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2698 attach_pid(p, PIDTYPE_TGID); 2699 attach_pid(p, PIDTYPE_PGID); 2700 attach_pid(p, PIDTYPE_SID); 2701 __this_cpu_inc(process_counts); 2702 } else { 2703 current->signal->nr_threads++; 2704 current->signal->quick_threads++; 2705 atomic_inc(¤t->signal->live); 2706 refcount_inc(¤t->signal->sigcnt); 2707 task_join_group_stop(p); 2708 list_add_tail_rcu(&p->thread_node, 2709 &p->signal->thread_head); 2710 } 2711 attach_pid(p, PIDTYPE_PID); 2712 nr_threads++; 2713 } 2714 total_forks++; 2715 hlist_del_init(&delayed.node); 2716 spin_unlock(¤t->sighand->siglock); 2717 syscall_tracepoint_update(p); 2718 write_unlock_irq(&tasklist_lock); 2719 2720 if (pidfile) 2721 fd_install(pidfd, pidfile); 2722 2723 proc_fork_connector(p); 2724 sched_post_fork(p); 2725 cgroup_post_fork(p, args); 2726 perf_event_fork(p); 2727 2728 trace_task_newtask(p, clone_flags); 2729 uprobe_copy_process(p, clone_flags); 2730 user_events_fork(p, clone_flags); 2731 2732 copy_oom_score_adj(clone_flags, p); 2733 2734 return p; 2735 2736 bad_fork_cancel_cgroup: 2737 sched_core_free(p); 2738 spin_unlock(¤t->sighand->siglock); 2739 write_unlock_irq(&tasklist_lock); 2740 cgroup_cancel_fork(p, args); 2741 bad_fork_put_pidfd: 2742 if (clone_flags & CLONE_PIDFD) { 2743 fput(pidfile); 2744 put_unused_fd(pidfd); 2745 } 2746 bad_fork_free_pid: 2747 if (pid != &init_struct_pid) 2748 free_pid(pid); 2749 bad_fork_cleanup_thread: 2750 exit_thread(p); 2751 bad_fork_cleanup_io: 2752 if (p->io_context) 2753 exit_io_context(p); 2754 bad_fork_cleanup_namespaces: 2755 exit_task_namespaces(p); 2756 bad_fork_cleanup_mm: 2757 if (p->mm) { 2758 mm_clear_owner(p->mm, p); 2759 mmput(p->mm); 2760 } 2761 bad_fork_cleanup_signal: 2762 if (!(clone_flags & CLONE_THREAD)) 2763 free_signal_struct(p->signal); 2764 bad_fork_cleanup_sighand: 2765 __cleanup_sighand(p->sighand); 2766 bad_fork_cleanup_fs: 2767 exit_fs(p); /* blocking */ 2768 bad_fork_cleanup_files: 2769 exit_files(p); /* blocking */ 2770 bad_fork_cleanup_semundo: 2771 exit_sem(p); 2772 bad_fork_cleanup_security: 2773 security_task_free(p); 2774 bad_fork_cleanup_audit: 2775 audit_free(p); 2776 bad_fork_cleanup_perf: 2777 perf_event_free_task(p); 2778 bad_fork_cleanup_policy: 2779 lockdep_free_task(p); 2780 #ifdef CONFIG_NUMA 2781 mpol_put(p->mempolicy); 2782 #endif 2783 bad_fork_cleanup_delayacct: 2784 delayacct_tsk_free(p); 2785 bad_fork_cleanup_count: 2786 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2787 exit_creds(p); 2788 bad_fork_free: 2789 WRITE_ONCE(p->__state, TASK_DEAD); 2790 exit_task_stack_account(p); 2791 put_task_stack(p); 2792 delayed_free_task(p); 2793 fork_out: 2794 spin_lock_irq(¤t->sighand->siglock); 2795 hlist_del_init(&delayed.node); 2796 spin_unlock_irq(¤t->sighand->siglock); 2797 return ERR_PTR(retval); 2798 } 2799 2800 static inline void init_idle_pids(struct task_struct *idle) 2801 { 2802 enum pid_type type; 2803 2804 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2805 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2806 init_task_pid(idle, type, &init_struct_pid); 2807 } 2808 } 2809 2810 static int idle_dummy(void *dummy) 2811 { 2812 /* This function is never called */ 2813 return 0; 2814 } 2815 2816 struct task_struct * __init fork_idle(int cpu) 2817 { 2818 struct task_struct *task; 2819 struct kernel_clone_args args = { 2820 .flags = CLONE_VM, 2821 .fn = &idle_dummy, 2822 .fn_arg = NULL, 2823 .kthread = 1, 2824 .idle = 1, 2825 }; 2826 2827 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2828 if (!IS_ERR(task)) { 2829 init_idle_pids(task); 2830 init_idle(task, cpu); 2831 } 2832 2833 return task; 2834 } 2835 2836 /* 2837 * This is like kernel_clone(), but shaved down and tailored to just 2838 * creating io_uring workers. It returns a created task, or an error pointer. 2839 * The returned task is inactive, and the caller must fire it up through 2840 * wake_up_new_task(p). All signals are blocked in the created task. 2841 */ 2842 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2843 { 2844 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2845 CLONE_IO; 2846 struct kernel_clone_args args = { 2847 .flags = ((lower_32_bits(flags) | CLONE_VM | 2848 CLONE_UNTRACED) & ~CSIGNAL), 2849 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2850 .fn = fn, 2851 .fn_arg = arg, 2852 .io_thread = 1, 2853 .user_worker = 1, 2854 }; 2855 2856 return copy_process(NULL, 0, node, &args); 2857 } 2858 2859 /* 2860 * Ok, this is the main fork-routine. 2861 * 2862 * It copies the process, and if successful kick-starts 2863 * it and waits for it to finish using the VM if required. 2864 * 2865 * args->exit_signal is expected to be checked for sanity by the caller. 2866 */ 2867 pid_t kernel_clone(struct kernel_clone_args *args) 2868 { 2869 u64 clone_flags = args->flags; 2870 struct completion vfork; 2871 struct pid *pid; 2872 struct task_struct *p; 2873 int trace = 0; 2874 pid_t nr; 2875 2876 /* 2877 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2878 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2879 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2880 * field in struct clone_args and it still doesn't make sense to have 2881 * them both point at the same memory location. Performing this check 2882 * here has the advantage that we don't need to have a separate helper 2883 * to check for legacy clone(). 2884 */ 2885 if ((args->flags & CLONE_PIDFD) && 2886 (args->flags & CLONE_PARENT_SETTID) && 2887 (args->pidfd == args->parent_tid)) 2888 return -EINVAL; 2889 2890 /* 2891 * Determine whether and which event to report to ptracer. When 2892 * called from kernel_thread or CLONE_UNTRACED is explicitly 2893 * requested, no event is reported; otherwise, report if the event 2894 * for the type of forking is enabled. 2895 */ 2896 if (!(clone_flags & CLONE_UNTRACED)) { 2897 if (clone_flags & CLONE_VFORK) 2898 trace = PTRACE_EVENT_VFORK; 2899 else if (args->exit_signal != SIGCHLD) 2900 trace = PTRACE_EVENT_CLONE; 2901 else 2902 trace = PTRACE_EVENT_FORK; 2903 2904 if (likely(!ptrace_event_enabled(current, trace))) 2905 trace = 0; 2906 } 2907 2908 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2909 add_latent_entropy(); 2910 2911 if (IS_ERR(p)) 2912 return PTR_ERR(p); 2913 2914 /* 2915 * Do this prior waking up the new thread - the thread pointer 2916 * might get invalid after that point, if the thread exits quickly. 2917 */ 2918 trace_sched_process_fork(current, p); 2919 2920 pid = get_task_pid(p, PIDTYPE_PID); 2921 nr = pid_vnr(pid); 2922 2923 if (clone_flags & CLONE_PARENT_SETTID) 2924 put_user(nr, args->parent_tid); 2925 2926 if (clone_flags & CLONE_VFORK) { 2927 p->vfork_done = &vfork; 2928 init_completion(&vfork); 2929 get_task_struct(p); 2930 } 2931 2932 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2933 /* lock the task to synchronize with memcg migration */ 2934 task_lock(p); 2935 lru_gen_add_mm(p->mm); 2936 task_unlock(p); 2937 } 2938 2939 wake_up_new_task(p); 2940 2941 /* forking complete and child started to run, tell ptracer */ 2942 if (unlikely(trace)) 2943 ptrace_event_pid(trace, pid); 2944 2945 if (clone_flags & CLONE_VFORK) { 2946 if (!wait_for_vfork_done(p, &vfork)) 2947 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2948 } 2949 2950 put_pid(pid); 2951 return nr; 2952 } 2953 2954 /* 2955 * Create a kernel thread. 2956 */ 2957 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2958 unsigned long flags) 2959 { 2960 struct kernel_clone_args args = { 2961 .flags = ((lower_32_bits(flags) | CLONE_VM | 2962 CLONE_UNTRACED) & ~CSIGNAL), 2963 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2964 .fn = fn, 2965 .fn_arg = arg, 2966 .name = name, 2967 .kthread = 1, 2968 }; 2969 2970 return kernel_clone(&args); 2971 } 2972 2973 /* 2974 * Create a user mode thread. 2975 */ 2976 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2977 { 2978 struct kernel_clone_args args = { 2979 .flags = ((lower_32_bits(flags) | CLONE_VM | 2980 CLONE_UNTRACED) & ~CSIGNAL), 2981 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2982 .fn = fn, 2983 .fn_arg = arg, 2984 }; 2985 2986 return kernel_clone(&args); 2987 } 2988 2989 #ifdef __ARCH_WANT_SYS_FORK 2990 SYSCALL_DEFINE0(fork) 2991 { 2992 #ifdef CONFIG_MMU 2993 struct kernel_clone_args args = { 2994 .exit_signal = SIGCHLD, 2995 }; 2996 2997 return kernel_clone(&args); 2998 #else 2999 /* can not support in nommu mode */ 3000 return -EINVAL; 3001 #endif 3002 } 3003 #endif 3004 3005 #ifdef __ARCH_WANT_SYS_VFORK 3006 SYSCALL_DEFINE0(vfork) 3007 { 3008 struct kernel_clone_args args = { 3009 .flags = CLONE_VFORK | CLONE_VM, 3010 .exit_signal = SIGCHLD, 3011 }; 3012 3013 return kernel_clone(&args); 3014 } 3015 #endif 3016 3017 #ifdef __ARCH_WANT_SYS_CLONE 3018 #ifdef CONFIG_CLONE_BACKWARDS 3019 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3020 int __user *, parent_tidptr, 3021 unsigned long, tls, 3022 int __user *, child_tidptr) 3023 #elif defined(CONFIG_CLONE_BACKWARDS2) 3024 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3025 int __user *, parent_tidptr, 3026 int __user *, child_tidptr, 3027 unsigned long, tls) 3028 #elif defined(CONFIG_CLONE_BACKWARDS3) 3029 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3030 int, stack_size, 3031 int __user *, parent_tidptr, 3032 int __user *, child_tidptr, 3033 unsigned long, tls) 3034 #else 3035 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3036 int __user *, parent_tidptr, 3037 int __user *, child_tidptr, 3038 unsigned long, tls) 3039 #endif 3040 { 3041 struct kernel_clone_args args = { 3042 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3043 .pidfd = parent_tidptr, 3044 .child_tid = child_tidptr, 3045 .parent_tid = parent_tidptr, 3046 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3047 .stack = newsp, 3048 .tls = tls, 3049 }; 3050 3051 return kernel_clone(&args); 3052 } 3053 #endif 3054 3055 #ifdef __ARCH_WANT_SYS_CLONE3 3056 3057 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3058 struct clone_args __user *uargs, 3059 size_t usize) 3060 { 3061 int err; 3062 struct clone_args args; 3063 pid_t *kset_tid = kargs->set_tid; 3064 3065 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3066 CLONE_ARGS_SIZE_VER0); 3067 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3068 CLONE_ARGS_SIZE_VER1); 3069 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3070 CLONE_ARGS_SIZE_VER2); 3071 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3072 3073 if (unlikely(usize > PAGE_SIZE)) 3074 return -E2BIG; 3075 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3076 return -EINVAL; 3077 3078 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3079 if (err) 3080 return err; 3081 3082 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3083 return -EINVAL; 3084 3085 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3086 return -EINVAL; 3087 3088 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3089 return -EINVAL; 3090 3091 /* 3092 * Verify that higher 32bits of exit_signal are unset and that 3093 * it is a valid signal 3094 */ 3095 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3096 !valid_signal(args.exit_signal))) 3097 return -EINVAL; 3098 3099 if ((args.flags & CLONE_INTO_CGROUP) && 3100 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3101 return -EINVAL; 3102 3103 *kargs = (struct kernel_clone_args){ 3104 .flags = args.flags, 3105 .pidfd = u64_to_user_ptr(args.pidfd), 3106 .child_tid = u64_to_user_ptr(args.child_tid), 3107 .parent_tid = u64_to_user_ptr(args.parent_tid), 3108 .exit_signal = args.exit_signal, 3109 .stack = args.stack, 3110 .stack_size = args.stack_size, 3111 .tls = args.tls, 3112 .set_tid_size = args.set_tid_size, 3113 .cgroup = args.cgroup, 3114 }; 3115 3116 if (args.set_tid && 3117 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3118 (kargs->set_tid_size * sizeof(pid_t)))) 3119 return -EFAULT; 3120 3121 kargs->set_tid = kset_tid; 3122 3123 return 0; 3124 } 3125 3126 /** 3127 * clone3_stack_valid - check and prepare stack 3128 * @kargs: kernel clone args 3129 * 3130 * Verify that the stack arguments userspace gave us are sane. 3131 * In addition, set the stack direction for userspace since it's easy for us to 3132 * determine. 3133 */ 3134 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3135 { 3136 if (kargs->stack == 0) { 3137 if (kargs->stack_size > 0) 3138 return false; 3139 } else { 3140 if (kargs->stack_size == 0) 3141 return false; 3142 3143 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3144 return false; 3145 3146 #if !defined(CONFIG_STACK_GROWSUP) 3147 kargs->stack += kargs->stack_size; 3148 #endif 3149 } 3150 3151 return true; 3152 } 3153 3154 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3155 { 3156 /* Verify that no unknown flags are passed along. */ 3157 if (kargs->flags & 3158 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3159 return false; 3160 3161 /* 3162 * - make the CLONE_DETACHED bit reusable for clone3 3163 * - make the CSIGNAL bits reusable for clone3 3164 */ 3165 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3166 return false; 3167 3168 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3169 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3170 return false; 3171 3172 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3173 kargs->exit_signal) 3174 return false; 3175 3176 if (!clone3_stack_valid(kargs)) 3177 return false; 3178 3179 return true; 3180 } 3181 3182 /** 3183 * sys_clone3 - create a new process with specific properties 3184 * @uargs: argument structure 3185 * @size: size of @uargs 3186 * 3187 * clone3() is the extensible successor to clone()/clone2(). 3188 * It takes a struct as argument that is versioned by its size. 3189 * 3190 * Return: On success, a positive PID for the child process. 3191 * On error, a negative errno number. 3192 */ 3193 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3194 { 3195 int err; 3196 3197 struct kernel_clone_args kargs; 3198 pid_t set_tid[MAX_PID_NS_LEVEL]; 3199 3200 kargs.set_tid = set_tid; 3201 3202 err = copy_clone_args_from_user(&kargs, uargs, size); 3203 if (err) 3204 return err; 3205 3206 if (!clone3_args_valid(&kargs)) 3207 return -EINVAL; 3208 3209 return kernel_clone(&kargs); 3210 } 3211 #endif 3212 3213 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3214 { 3215 struct task_struct *leader, *parent, *child; 3216 int res; 3217 3218 read_lock(&tasklist_lock); 3219 leader = top = top->group_leader; 3220 down: 3221 for_each_thread(leader, parent) { 3222 list_for_each_entry(child, &parent->children, sibling) { 3223 res = visitor(child, data); 3224 if (res) { 3225 if (res < 0) 3226 goto out; 3227 leader = child; 3228 goto down; 3229 } 3230 up: 3231 ; 3232 } 3233 } 3234 3235 if (leader != top) { 3236 child = leader; 3237 parent = child->real_parent; 3238 leader = parent->group_leader; 3239 goto up; 3240 } 3241 out: 3242 read_unlock(&tasklist_lock); 3243 } 3244 3245 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3246 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3247 #endif 3248 3249 static void sighand_ctor(void *data) 3250 { 3251 struct sighand_struct *sighand = data; 3252 3253 spin_lock_init(&sighand->siglock); 3254 init_waitqueue_head(&sighand->signalfd_wqh); 3255 } 3256 3257 void __init mm_cache_init(void) 3258 { 3259 unsigned int mm_size; 3260 3261 /* 3262 * The mm_cpumask is located at the end of mm_struct, and is 3263 * dynamically sized based on the maximum CPU number this system 3264 * can have, taking hotplug into account (nr_cpu_ids). 3265 */ 3266 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3267 3268 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3269 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3270 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3271 offsetof(struct mm_struct, saved_auxv), 3272 sizeof_field(struct mm_struct, saved_auxv), 3273 NULL); 3274 } 3275 3276 void __init proc_caches_init(void) 3277 { 3278 sighand_cachep = kmem_cache_create("sighand_cache", 3279 sizeof(struct sighand_struct), 0, 3280 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3281 SLAB_ACCOUNT, sighand_ctor); 3282 signal_cachep = kmem_cache_create("signal_cache", 3283 sizeof(struct signal_struct), 0, 3284 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3285 NULL); 3286 files_cachep = kmem_cache_create("files_cache", 3287 sizeof(struct files_struct), 0, 3288 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3289 NULL); 3290 fs_cachep = kmem_cache_create("fs_cache", 3291 sizeof(struct fs_struct), 0, 3292 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3293 NULL); 3294 3295 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3296 #ifdef CONFIG_PER_VMA_LOCK 3297 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3298 #endif 3299 mmap_init(); 3300 nsproxy_cache_init(); 3301 } 3302 3303 /* 3304 * Check constraints on flags passed to the unshare system call. 3305 */ 3306 static int check_unshare_flags(unsigned long unshare_flags) 3307 { 3308 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3309 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3310 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3311 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3312 CLONE_NEWTIME)) 3313 return -EINVAL; 3314 /* 3315 * Not implemented, but pretend it works if there is nothing 3316 * to unshare. Note that unsharing the address space or the 3317 * signal handlers also need to unshare the signal queues (aka 3318 * CLONE_THREAD). 3319 */ 3320 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3321 if (!thread_group_empty(current)) 3322 return -EINVAL; 3323 } 3324 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3325 if (refcount_read(¤t->sighand->count) > 1) 3326 return -EINVAL; 3327 } 3328 if (unshare_flags & CLONE_VM) { 3329 if (!current_is_single_threaded()) 3330 return -EINVAL; 3331 } 3332 3333 return 0; 3334 } 3335 3336 /* 3337 * Unshare the filesystem structure if it is being shared 3338 */ 3339 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3340 { 3341 struct fs_struct *fs = current->fs; 3342 3343 if (!(unshare_flags & CLONE_FS) || !fs) 3344 return 0; 3345 3346 /* don't need lock here; in the worst case we'll do useless copy */ 3347 if (fs->users == 1) 3348 return 0; 3349 3350 *new_fsp = copy_fs_struct(fs); 3351 if (!*new_fsp) 3352 return -ENOMEM; 3353 3354 return 0; 3355 } 3356 3357 /* 3358 * Unshare file descriptor table if it is being shared 3359 */ 3360 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3361 struct files_struct **new_fdp) 3362 { 3363 struct files_struct *fd = current->files; 3364 int error = 0; 3365 3366 if ((unshare_flags & CLONE_FILES) && 3367 (fd && atomic_read(&fd->count) > 1)) { 3368 *new_fdp = dup_fd(fd, max_fds, &error); 3369 if (!*new_fdp) 3370 return error; 3371 } 3372 3373 return 0; 3374 } 3375 3376 /* 3377 * unshare allows a process to 'unshare' part of the process 3378 * context which was originally shared using clone. copy_* 3379 * functions used by kernel_clone() cannot be used here directly 3380 * because they modify an inactive task_struct that is being 3381 * constructed. Here we are modifying the current, active, 3382 * task_struct. 3383 */ 3384 int ksys_unshare(unsigned long unshare_flags) 3385 { 3386 struct fs_struct *fs, *new_fs = NULL; 3387 struct files_struct *new_fd = NULL; 3388 struct cred *new_cred = NULL; 3389 struct nsproxy *new_nsproxy = NULL; 3390 int do_sysvsem = 0; 3391 int err; 3392 3393 /* 3394 * If unsharing a user namespace must also unshare the thread group 3395 * and unshare the filesystem root and working directories. 3396 */ 3397 if (unshare_flags & CLONE_NEWUSER) 3398 unshare_flags |= CLONE_THREAD | CLONE_FS; 3399 /* 3400 * If unsharing vm, must also unshare signal handlers. 3401 */ 3402 if (unshare_flags & CLONE_VM) 3403 unshare_flags |= CLONE_SIGHAND; 3404 /* 3405 * If unsharing a signal handlers, must also unshare the signal queues. 3406 */ 3407 if (unshare_flags & CLONE_SIGHAND) 3408 unshare_flags |= CLONE_THREAD; 3409 /* 3410 * If unsharing namespace, must also unshare filesystem information. 3411 */ 3412 if (unshare_flags & CLONE_NEWNS) 3413 unshare_flags |= CLONE_FS; 3414 3415 err = check_unshare_flags(unshare_flags); 3416 if (err) 3417 goto bad_unshare_out; 3418 /* 3419 * CLONE_NEWIPC must also detach from the undolist: after switching 3420 * to a new ipc namespace, the semaphore arrays from the old 3421 * namespace are unreachable. 3422 */ 3423 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3424 do_sysvsem = 1; 3425 err = unshare_fs(unshare_flags, &new_fs); 3426 if (err) 3427 goto bad_unshare_out; 3428 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3429 if (err) 3430 goto bad_unshare_cleanup_fs; 3431 err = unshare_userns(unshare_flags, &new_cred); 3432 if (err) 3433 goto bad_unshare_cleanup_fd; 3434 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3435 new_cred, new_fs); 3436 if (err) 3437 goto bad_unshare_cleanup_cred; 3438 3439 if (new_cred) { 3440 err = set_cred_ucounts(new_cred); 3441 if (err) 3442 goto bad_unshare_cleanup_cred; 3443 } 3444 3445 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3446 if (do_sysvsem) { 3447 /* 3448 * CLONE_SYSVSEM is equivalent to sys_exit(). 3449 */ 3450 exit_sem(current); 3451 } 3452 if (unshare_flags & CLONE_NEWIPC) { 3453 /* Orphan segments in old ns (see sem above). */ 3454 exit_shm(current); 3455 shm_init_task(current); 3456 } 3457 3458 if (new_nsproxy) 3459 switch_task_namespaces(current, new_nsproxy); 3460 3461 task_lock(current); 3462 3463 if (new_fs) { 3464 fs = current->fs; 3465 spin_lock(&fs->lock); 3466 current->fs = new_fs; 3467 if (--fs->users) 3468 new_fs = NULL; 3469 else 3470 new_fs = fs; 3471 spin_unlock(&fs->lock); 3472 } 3473 3474 if (new_fd) 3475 swap(current->files, new_fd); 3476 3477 task_unlock(current); 3478 3479 if (new_cred) { 3480 /* Install the new user namespace */ 3481 commit_creds(new_cred); 3482 new_cred = NULL; 3483 } 3484 } 3485 3486 perf_event_namespaces(current); 3487 3488 bad_unshare_cleanup_cred: 3489 if (new_cred) 3490 put_cred(new_cred); 3491 bad_unshare_cleanup_fd: 3492 if (new_fd) 3493 put_files_struct(new_fd); 3494 3495 bad_unshare_cleanup_fs: 3496 if (new_fs) 3497 free_fs_struct(new_fs); 3498 3499 bad_unshare_out: 3500 return err; 3501 } 3502 3503 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3504 { 3505 return ksys_unshare(unshare_flags); 3506 } 3507 3508 /* 3509 * Helper to unshare the files of the current task. 3510 * We don't want to expose copy_files internals to 3511 * the exec layer of the kernel. 3512 */ 3513 3514 int unshare_files(void) 3515 { 3516 struct task_struct *task = current; 3517 struct files_struct *old, *copy = NULL; 3518 int error; 3519 3520 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3521 if (error || !copy) 3522 return error; 3523 3524 old = task->files; 3525 task_lock(task); 3526 task->files = copy; 3527 task_unlock(task); 3528 put_files_struct(old); 3529 return 0; 3530 } 3531 3532 int sysctl_max_threads(struct ctl_table *table, int write, 3533 void *buffer, size_t *lenp, loff_t *ppos) 3534 { 3535 struct ctl_table t; 3536 int ret; 3537 int threads = max_threads; 3538 int min = 1; 3539 int max = MAX_THREADS; 3540 3541 t = *table; 3542 t.data = &threads; 3543 t.extra1 = &min; 3544 t.extra2 = &max; 3545 3546 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3547 if (ret || !write) 3548 return ret; 3549 3550 max_threads = threads; 3551 3552 return 0; 3553 } 3554