1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/mnt_namespace.h> 21 #include <linux/personality.h> 22 #include <linux/mempolicy.h> 23 #include <linux/sem.h> 24 #include <linux/file.h> 25 #include <linux/fdtable.h> 26 #include <linux/iocontext.h> 27 #include <linux/key.h> 28 #include <linux/binfmts.h> 29 #include <linux/mman.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/fs.h> 32 #include <linux/nsproxy.h> 33 #include <linux/capability.h> 34 #include <linux/cpu.h> 35 #include <linux/cgroup.h> 36 #include <linux/security.h> 37 #include <linux/hugetlb.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/tracehook.h> 42 #include <linux/futex.h> 43 #include <linux/compat.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/profile.h> 52 #include <linux/rmap.h> 53 #include <linux/acct.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/freezer.h> 57 #include <linux/delayacct.h> 58 #include <linux/taskstats_kern.h> 59 #include <linux/random.h> 60 #include <linux/tty.h> 61 #include <linux/proc_fs.h> 62 #include <linux/blkdev.h> 63 #include <trace/sched.h> 64 65 #include <asm/pgtable.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/mmu_context.h> 69 #include <asm/cacheflush.h> 70 #include <asm/tlbflush.h> 71 72 /* 73 * Protected counters by write_lock_irq(&tasklist_lock) 74 */ 75 unsigned long total_forks; /* Handle normal Linux uptimes. */ 76 int nr_threads; /* The idle threads do not count.. */ 77 78 int max_threads; /* tunable limit on nr_threads */ 79 80 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 81 82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 83 84 DEFINE_TRACE(sched_process_fork); 85 86 int nr_processes(void) 87 { 88 int cpu; 89 int total = 0; 90 91 for_each_online_cpu(cpu) 92 total += per_cpu(process_counts, cpu); 93 94 return total; 95 } 96 97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 98 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 99 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 100 static struct kmem_cache *task_struct_cachep; 101 #endif 102 103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk) 105 { 106 #ifdef CONFIG_DEBUG_STACK_USAGE 107 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 108 #else 109 gfp_t mask = GFP_KERNEL; 110 #endif 111 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER); 112 } 113 114 static inline void free_thread_info(struct thread_info *ti) 115 { 116 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 117 } 118 #endif 119 120 /* SLAB cache for signal_struct structures (tsk->signal) */ 121 static struct kmem_cache *signal_cachep; 122 123 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 124 struct kmem_cache *sighand_cachep; 125 126 /* SLAB cache for files_struct structures (tsk->files) */ 127 struct kmem_cache *files_cachep; 128 129 /* SLAB cache for fs_struct structures (tsk->fs) */ 130 struct kmem_cache *fs_cachep; 131 132 /* SLAB cache for vm_area_struct structures */ 133 struct kmem_cache *vm_area_cachep; 134 135 /* SLAB cache for mm_struct structures (tsk->mm) */ 136 static struct kmem_cache *mm_cachep; 137 138 void free_task(struct task_struct *tsk) 139 { 140 prop_local_destroy_single(&tsk->dirties); 141 free_thread_info(tsk->stack); 142 rt_mutex_debug_task_free(tsk); 143 ftrace_graph_exit_task(tsk); 144 free_task_struct(tsk); 145 } 146 EXPORT_SYMBOL(free_task); 147 148 void __put_task_struct(struct task_struct *tsk) 149 { 150 WARN_ON(!tsk->exit_state); 151 WARN_ON(atomic_read(&tsk->usage)); 152 WARN_ON(tsk == current); 153 154 put_cred(tsk->real_cred); 155 put_cred(tsk->cred); 156 delayacct_tsk_free(tsk); 157 158 if (!profile_handoff_task(tsk)) 159 free_task(tsk); 160 } 161 162 /* 163 * macro override instead of weak attribute alias, to workaround 164 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 165 */ 166 #ifndef arch_task_cache_init 167 #define arch_task_cache_init() 168 #endif 169 170 void __init fork_init(unsigned long mempages) 171 { 172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 173 #ifndef ARCH_MIN_TASKALIGN 174 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 175 #endif 176 /* create a slab on which task_structs can be allocated */ 177 task_struct_cachep = 178 kmem_cache_create("task_struct", sizeof(struct task_struct), 179 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); 180 #endif 181 182 /* do the arch specific task caches init */ 183 arch_task_cache_init(); 184 185 /* 186 * The default maximum number of threads is set to a safe 187 * value: the thread structures can take up at most half 188 * of memory. 189 */ 190 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 191 192 /* 193 * we need to allow at least 20 threads to boot a system 194 */ 195 if(max_threads < 20) 196 max_threads = 20; 197 198 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 199 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 200 init_task.signal->rlim[RLIMIT_SIGPENDING] = 201 init_task.signal->rlim[RLIMIT_NPROC]; 202 } 203 204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 205 struct task_struct *src) 206 { 207 *dst = *src; 208 return 0; 209 } 210 211 static struct task_struct *dup_task_struct(struct task_struct *orig) 212 { 213 struct task_struct *tsk; 214 struct thread_info *ti; 215 int err; 216 217 prepare_to_copy(orig); 218 219 tsk = alloc_task_struct(); 220 if (!tsk) 221 return NULL; 222 223 ti = alloc_thread_info(tsk); 224 if (!ti) { 225 free_task_struct(tsk); 226 return NULL; 227 } 228 229 err = arch_dup_task_struct(tsk, orig); 230 if (err) 231 goto out; 232 233 tsk->stack = ti; 234 235 err = prop_local_init_single(&tsk->dirties); 236 if (err) 237 goto out; 238 239 setup_thread_stack(tsk, orig); 240 241 #ifdef CONFIG_CC_STACKPROTECTOR 242 tsk->stack_canary = get_random_int(); 243 #endif 244 245 /* One for us, one for whoever does the "release_task()" (usually parent) */ 246 atomic_set(&tsk->usage,2); 247 atomic_set(&tsk->fs_excl, 0); 248 #ifdef CONFIG_BLK_DEV_IO_TRACE 249 tsk->btrace_seq = 0; 250 #endif 251 tsk->splice_pipe = NULL; 252 return tsk; 253 254 out: 255 free_thread_info(ti); 256 free_task_struct(tsk); 257 return NULL; 258 } 259 260 #ifdef CONFIG_MMU 261 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 262 { 263 struct vm_area_struct *mpnt, *tmp, **pprev; 264 struct rb_node **rb_link, *rb_parent; 265 int retval; 266 unsigned long charge; 267 struct mempolicy *pol; 268 269 down_write(&oldmm->mmap_sem); 270 flush_cache_dup_mm(oldmm); 271 /* 272 * Not linked in yet - no deadlock potential: 273 */ 274 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 275 276 mm->locked_vm = 0; 277 mm->mmap = NULL; 278 mm->mmap_cache = NULL; 279 mm->free_area_cache = oldmm->mmap_base; 280 mm->cached_hole_size = ~0UL; 281 mm->map_count = 0; 282 cpus_clear(mm->cpu_vm_mask); 283 mm->mm_rb = RB_ROOT; 284 rb_link = &mm->mm_rb.rb_node; 285 rb_parent = NULL; 286 pprev = &mm->mmap; 287 288 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 289 struct file *file; 290 291 if (mpnt->vm_flags & VM_DONTCOPY) { 292 long pages = vma_pages(mpnt); 293 mm->total_vm -= pages; 294 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 295 -pages); 296 continue; 297 } 298 charge = 0; 299 if (mpnt->vm_flags & VM_ACCOUNT) { 300 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 301 if (security_vm_enough_memory(len)) 302 goto fail_nomem; 303 charge = len; 304 } 305 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 306 if (!tmp) 307 goto fail_nomem; 308 *tmp = *mpnt; 309 pol = mpol_dup(vma_policy(mpnt)); 310 retval = PTR_ERR(pol); 311 if (IS_ERR(pol)) 312 goto fail_nomem_policy; 313 vma_set_policy(tmp, pol); 314 tmp->vm_flags &= ~VM_LOCKED; 315 tmp->vm_mm = mm; 316 tmp->vm_next = NULL; 317 anon_vma_link(tmp); 318 file = tmp->vm_file; 319 if (file) { 320 struct inode *inode = file->f_path.dentry->d_inode; 321 struct address_space *mapping = file->f_mapping; 322 323 get_file(file); 324 if (tmp->vm_flags & VM_DENYWRITE) 325 atomic_dec(&inode->i_writecount); 326 spin_lock(&mapping->i_mmap_lock); 327 if (tmp->vm_flags & VM_SHARED) 328 mapping->i_mmap_writable++; 329 tmp->vm_truncate_count = mpnt->vm_truncate_count; 330 flush_dcache_mmap_lock(mapping); 331 /* insert tmp into the share list, just after mpnt */ 332 vma_prio_tree_add(tmp, mpnt); 333 flush_dcache_mmap_unlock(mapping); 334 spin_unlock(&mapping->i_mmap_lock); 335 } 336 337 /* 338 * Clear hugetlb-related page reserves for children. This only 339 * affects MAP_PRIVATE mappings. Faults generated by the child 340 * are not guaranteed to succeed, even if read-only 341 */ 342 if (is_vm_hugetlb_page(tmp)) 343 reset_vma_resv_huge_pages(tmp); 344 345 /* 346 * Link in the new vma and copy the page table entries. 347 */ 348 *pprev = tmp; 349 pprev = &tmp->vm_next; 350 351 __vma_link_rb(mm, tmp, rb_link, rb_parent); 352 rb_link = &tmp->vm_rb.rb_right; 353 rb_parent = &tmp->vm_rb; 354 355 mm->map_count++; 356 retval = copy_page_range(mm, oldmm, mpnt); 357 358 if (tmp->vm_ops && tmp->vm_ops->open) 359 tmp->vm_ops->open(tmp); 360 361 if (retval) 362 goto out; 363 } 364 /* a new mm has just been created */ 365 arch_dup_mmap(oldmm, mm); 366 retval = 0; 367 out: 368 up_write(&mm->mmap_sem); 369 flush_tlb_mm(oldmm); 370 up_write(&oldmm->mmap_sem); 371 return retval; 372 fail_nomem_policy: 373 kmem_cache_free(vm_area_cachep, tmp); 374 fail_nomem: 375 retval = -ENOMEM; 376 vm_unacct_memory(charge); 377 goto out; 378 } 379 380 static inline int mm_alloc_pgd(struct mm_struct * mm) 381 { 382 mm->pgd = pgd_alloc(mm); 383 if (unlikely(!mm->pgd)) 384 return -ENOMEM; 385 return 0; 386 } 387 388 static inline void mm_free_pgd(struct mm_struct * mm) 389 { 390 pgd_free(mm, mm->pgd); 391 } 392 #else 393 #define dup_mmap(mm, oldmm) (0) 394 #define mm_alloc_pgd(mm) (0) 395 #define mm_free_pgd(mm) 396 #endif /* CONFIG_MMU */ 397 398 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 399 400 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 401 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 402 403 #include <linux/init_task.h> 404 405 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 406 { 407 atomic_set(&mm->mm_users, 1); 408 atomic_set(&mm->mm_count, 1); 409 init_rwsem(&mm->mmap_sem); 410 INIT_LIST_HEAD(&mm->mmlist); 411 mm->flags = (current->mm) ? current->mm->flags 412 : MMF_DUMP_FILTER_DEFAULT; 413 mm->core_state = NULL; 414 mm->nr_ptes = 0; 415 set_mm_counter(mm, file_rss, 0); 416 set_mm_counter(mm, anon_rss, 0); 417 spin_lock_init(&mm->page_table_lock); 418 spin_lock_init(&mm->ioctx_lock); 419 INIT_HLIST_HEAD(&mm->ioctx_list); 420 mm->free_area_cache = TASK_UNMAPPED_BASE; 421 mm->cached_hole_size = ~0UL; 422 mm_init_owner(mm, p); 423 424 if (likely(!mm_alloc_pgd(mm))) { 425 mm->def_flags = 0; 426 mmu_notifier_mm_init(mm); 427 return mm; 428 } 429 430 free_mm(mm); 431 return NULL; 432 } 433 434 /* 435 * Allocate and initialize an mm_struct. 436 */ 437 struct mm_struct * mm_alloc(void) 438 { 439 struct mm_struct * mm; 440 441 mm = allocate_mm(); 442 if (mm) { 443 memset(mm, 0, sizeof(*mm)); 444 mm = mm_init(mm, current); 445 } 446 return mm; 447 } 448 449 /* 450 * Called when the last reference to the mm 451 * is dropped: either by a lazy thread or by 452 * mmput. Free the page directory and the mm. 453 */ 454 void __mmdrop(struct mm_struct *mm) 455 { 456 BUG_ON(mm == &init_mm); 457 mm_free_pgd(mm); 458 destroy_context(mm); 459 mmu_notifier_mm_destroy(mm); 460 free_mm(mm); 461 } 462 EXPORT_SYMBOL_GPL(__mmdrop); 463 464 /* 465 * Decrement the use count and release all resources for an mm. 466 */ 467 void mmput(struct mm_struct *mm) 468 { 469 might_sleep(); 470 471 if (atomic_dec_and_test(&mm->mm_users)) { 472 exit_aio(mm); 473 exit_mmap(mm); 474 set_mm_exe_file(mm, NULL); 475 if (!list_empty(&mm->mmlist)) { 476 spin_lock(&mmlist_lock); 477 list_del(&mm->mmlist); 478 spin_unlock(&mmlist_lock); 479 } 480 put_swap_token(mm); 481 mmdrop(mm); 482 } 483 } 484 EXPORT_SYMBOL_GPL(mmput); 485 486 /** 487 * get_task_mm - acquire a reference to the task's mm 488 * 489 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 490 * this kernel workthread has transiently adopted a user mm with use_mm, 491 * to do its AIO) is not set and if so returns a reference to it, after 492 * bumping up the use count. User must release the mm via mmput() 493 * after use. Typically used by /proc and ptrace. 494 */ 495 struct mm_struct *get_task_mm(struct task_struct *task) 496 { 497 struct mm_struct *mm; 498 499 task_lock(task); 500 mm = task->mm; 501 if (mm) { 502 if (task->flags & PF_KTHREAD) 503 mm = NULL; 504 else 505 atomic_inc(&mm->mm_users); 506 } 507 task_unlock(task); 508 return mm; 509 } 510 EXPORT_SYMBOL_GPL(get_task_mm); 511 512 /* Please note the differences between mmput and mm_release. 513 * mmput is called whenever we stop holding onto a mm_struct, 514 * error success whatever. 515 * 516 * mm_release is called after a mm_struct has been removed 517 * from the current process. 518 * 519 * This difference is important for error handling, when we 520 * only half set up a mm_struct for a new process and need to restore 521 * the old one. Because we mmput the new mm_struct before 522 * restoring the old one. . . 523 * Eric Biederman 10 January 1998 524 */ 525 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 526 { 527 struct completion *vfork_done = tsk->vfork_done; 528 529 /* Get rid of any futexes when releasing the mm */ 530 #ifdef CONFIG_FUTEX 531 if (unlikely(tsk->robust_list)) 532 exit_robust_list(tsk); 533 #ifdef CONFIG_COMPAT 534 if (unlikely(tsk->compat_robust_list)) 535 compat_exit_robust_list(tsk); 536 #endif 537 #endif 538 539 /* Get rid of any cached register state */ 540 deactivate_mm(tsk, mm); 541 542 /* notify parent sleeping on vfork() */ 543 if (vfork_done) { 544 tsk->vfork_done = NULL; 545 complete(vfork_done); 546 } 547 548 /* 549 * If we're exiting normally, clear a user-space tid field if 550 * requested. We leave this alone when dying by signal, to leave 551 * the value intact in a core dump, and to save the unnecessary 552 * trouble otherwise. Userland only wants this done for a sys_exit. 553 */ 554 if (tsk->clear_child_tid 555 && !(tsk->flags & PF_SIGNALED) 556 && atomic_read(&mm->mm_users) > 1) { 557 u32 __user * tidptr = tsk->clear_child_tid; 558 tsk->clear_child_tid = NULL; 559 560 /* 561 * We don't check the error code - if userspace has 562 * not set up a proper pointer then tough luck. 563 */ 564 put_user(0, tidptr); 565 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 566 } 567 } 568 569 /* 570 * Allocate a new mm structure and copy contents from the 571 * mm structure of the passed in task structure. 572 */ 573 struct mm_struct *dup_mm(struct task_struct *tsk) 574 { 575 struct mm_struct *mm, *oldmm = current->mm; 576 int err; 577 578 if (!oldmm) 579 return NULL; 580 581 mm = allocate_mm(); 582 if (!mm) 583 goto fail_nomem; 584 585 memcpy(mm, oldmm, sizeof(*mm)); 586 587 /* Initializing for Swap token stuff */ 588 mm->token_priority = 0; 589 mm->last_interval = 0; 590 591 if (!mm_init(mm, tsk)) 592 goto fail_nomem; 593 594 if (init_new_context(tsk, mm)) 595 goto fail_nocontext; 596 597 dup_mm_exe_file(oldmm, mm); 598 599 err = dup_mmap(mm, oldmm); 600 if (err) 601 goto free_pt; 602 603 mm->hiwater_rss = get_mm_rss(mm); 604 mm->hiwater_vm = mm->total_vm; 605 606 return mm; 607 608 free_pt: 609 mmput(mm); 610 611 fail_nomem: 612 return NULL; 613 614 fail_nocontext: 615 /* 616 * If init_new_context() failed, we cannot use mmput() to free the mm 617 * because it calls destroy_context() 618 */ 619 mm_free_pgd(mm); 620 free_mm(mm); 621 return NULL; 622 } 623 624 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 625 { 626 struct mm_struct * mm, *oldmm; 627 int retval; 628 629 tsk->min_flt = tsk->maj_flt = 0; 630 tsk->nvcsw = tsk->nivcsw = 0; 631 632 tsk->mm = NULL; 633 tsk->active_mm = NULL; 634 635 /* 636 * Are we cloning a kernel thread? 637 * 638 * We need to steal a active VM for that.. 639 */ 640 oldmm = current->mm; 641 if (!oldmm) 642 return 0; 643 644 if (clone_flags & CLONE_VM) { 645 atomic_inc(&oldmm->mm_users); 646 mm = oldmm; 647 goto good_mm; 648 } 649 650 retval = -ENOMEM; 651 mm = dup_mm(tsk); 652 if (!mm) 653 goto fail_nomem; 654 655 good_mm: 656 /* Initializing for Swap token stuff */ 657 mm->token_priority = 0; 658 mm->last_interval = 0; 659 660 tsk->mm = mm; 661 tsk->active_mm = mm; 662 return 0; 663 664 fail_nomem: 665 return retval; 666 } 667 668 static struct fs_struct *__copy_fs_struct(struct fs_struct *old) 669 { 670 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 671 /* We don't need to lock fs - think why ;-) */ 672 if (fs) { 673 atomic_set(&fs->count, 1); 674 rwlock_init(&fs->lock); 675 fs->umask = old->umask; 676 read_lock(&old->lock); 677 fs->root = old->root; 678 path_get(&old->root); 679 fs->pwd = old->pwd; 680 path_get(&old->pwd); 681 read_unlock(&old->lock); 682 } 683 return fs; 684 } 685 686 struct fs_struct *copy_fs_struct(struct fs_struct *old) 687 { 688 return __copy_fs_struct(old); 689 } 690 691 EXPORT_SYMBOL_GPL(copy_fs_struct); 692 693 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 694 { 695 if (clone_flags & CLONE_FS) { 696 atomic_inc(¤t->fs->count); 697 return 0; 698 } 699 tsk->fs = __copy_fs_struct(current->fs); 700 if (!tsk->fs) 701 return -ENOMEM; 702 return 0; 703 } 704 705 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 706 { 707 struct files_struct *oldf, *newf; 708 int error = 0; 709 710 /* 711 * A background process may not have any files ... 712 */ 713 oldf = current->files; 714 if (!oldf) 715 goto out; 716 717 if (clone_flags & CLONE_FILES) { 718 atomic_inc(&oldf->count); 719 goto out; 720 } 721 722 newf = dup_fd(oldf, &error); 723 if (!newf) 724 goto out; 725 726 tsk->files = newf; 727 error = 0; 728 out: 729 return error; 730 } 731 732 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 733 { 734 #ifdef CONFIG_BLOCK 735 struct io_context *ioc = current->io_context; 736 737 if (!ioc) 738 return 0; 739 /* 740 * Share io context with parent, if CLONE_IO is set 741 */ 742 if (clone_flags & CLONE_IO) { 743 tsk->io_context = ioc_task_link(ioc); 744 if (unlikely(!tsk->io_context)) 745 return -ENOMEM; 746 } else if (ioprio_valid(ioc->ioprio)) { 747 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 748 if (unlikely(!tsk->io_context)) 749 return -ENOMEM; 750 751 tsk->io_context->ioprio = ioc->ioprio; 752 } 753 #endif 754 return 0; 755 } 756 757 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 758 { 759 struct sighand_struct *sig; 760 761 if (clone_flags & CLONE_SIGHAND) { 762 atomic_inc(¤t->sighand->count); 763 return 0; 764 } 765 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 766 rcu_assign_pointer(tsk->sighand, sig); 767 if (!sig) 768 return -ENOMEM; 769 atomic_set(&sig->count, 1); 770 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 771 return 0; 772 } 773 774 void __cleanup_sighand(struct sighand_struct *sighand) 775 { 776 if (atomic_dec_and_test(&sighand->count)) 777 kmem_cache_free(sighand_cachep, sighand); 778 } 779 780 781 /* 782 * Initialize POSIX timer handling for a thread group. 783 */ 784 static void posix_cpu_timers_init_group(struct signal_struct *sig) 785 { 786 /* Thread group counters. */ 787 thread_group_cputime_init(sig); 788 789 /* Expiration times and increments. */ 790 sig->it_virt_expires = cputime_zero; 791 sig->it_virt_incr = cputime_zero; 792 sig->it_prof_expires = cputime_zero; 793 sig->it_prof_incr = cputime_zero; 794 795 /* Cached expiration times. */ 796 sig->cputime_expires.prof_exp = cputime_zero; 797 sig->cputime_expires.virt_exp = cputime_zero; 798 sig->cputime_expires.sched_exp = 0; 799 800 /* The timer lists. */ 801 INIT_LIST_HEAD(&sig->cpu_timers[0]); 802 INIT_LIST_HEAD(&sig->cpu_timers[1]); 803 INIT_LIST_HEAD(&sig->cpu_timers[2]); 804 } 805 806 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 807 { 808 struct signal_struct *sig; 809 int ret; 810 811 if (clone_flags & CLONE_THREAD) { 812 ret = thread_group_cputime_clone_thread(current); 813 if (likely(!ret)) { 814 atomic_inc(¤t->signal->count); 815 atomic_inc(¤t->signal->live); 816 } 817 return ret; 818 } 819 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 820 tsk->signal = sig; 821 if (!sig) 822 return -ENOMEM; 823 824 atomic_set(&sig->count, 1); 825 atomic_set(&sig->live, 1); 826 init_waitqueue_head(&sig->wait_chldexit); 827 sig->flags = 0; 828 sig->group_exit_code = 0; 829 sig->group_exit_task = NULL; 830 sig->group_stop_count = 0; 831 sig->curr_target = tsk; 832 init_sigpending(&sig->shared_pending); 833 INIT_LIST_HEAD(&sig->posix_timers); 834 835 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 836 sig->it_real_incr.tv64 = 0; 837 sig->real_timer.function = it_real_fn; 838 839 sig->leader = 0; /* session leadership doesn't inherit */ 840 sig->tty_old_pgrp = NULL; 841 sig->tty = NULL; 842 843 sig->cutime = sig->cstime = cputime_zero; 844 sig->gtime = cputime_zero; 845 sig->cgtime = cputime_zero; 846 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 847 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 848 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 849 task_io_accounting_init(&sig->ioac); 850 taskstats_tgid_init(sig); 851 852 task_lock(current->group_leader); 853 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 854 task_unlock(current->group_leader); 855 856 posix_cpu_timers_init_group(sig); 857 858 acct_init_pacct(&sig->pacct); 859 860 tty_audit_fork(sig); 861 862 return 0; 863 } 864 865 void __cleanup_signal(struct signal_struct *sig) 866 { 867 thread_group_cputime_free(sig); 868 tty_kref_put(sig->tty); 869 kmem_cache_free(signal_cachep, sig); 870 } 871 872 static void cleanup_signal(struct task_struct *tsk) 873 { 874 struct signal_struct *sig = tsk->signal; 875 876 atomic_dec(&sig->live); 877 878 if (atomic_dec_and_test(&sig->count)) 879 __cleanup_signal(sig); 880 } 881 882 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 883 { 884 unsigned long new_flags = p->flags; 885 886 new_flags &= ~PF_SUPERPRIV; 887 new_flags |= PF_FORKNOEXEC; 888 new_flags |= PF_STARTING; 889 p->flags = new_flags; 890 clear_freeze_flag(p); 891 } 892 893 asmlinkage long sys_set_tid_address(int __user *tidptr) 894 { 895 current->clear_child_tid = tidptr; 896 897 return task_pid_vnr(current); 898 } 899 900 static void rt_mutex_init_task(struct task_struct *p) 901 { 902 spin_lock_init(&p->pi_lock); 903 #ifdef CONFIG_RT_MUTEXES 904 plist_head_init(&p->pi_waiters, &p->pi_lock); 905 p->pi_blocked_on = NULL; 906 #endif 907 } 908 909 #ifdef CONFIG_MM_OWNER 910 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 911 { 912 mm->owner = p; 913 } 914 #endif /* CONFIG_MM_OWNER */ 915 916 /* 917 * Initialize POSIX timer handling for a single task. 918 */ 919 static void posix_cpu_timers_init(struct task_struct *tsk) 920 { 921 tsk->cputime_expires.prof_exp = cputime_zero; 922 tsk->cputime_expires.virt_exp = cputime_zero; 923 tsk->cputime_expires.sched_exp = 0; 924 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 925 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 926 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 927 } 928 929 /* 930 * This creates a new process as a copy of the old one, 931 * but does not actually start it yet. 932 * 933 * It copies the registers, and all the appropriate 934 * parts of the process environment (as per the clone 935 * flags). The actual kick-off is left to the caller. 936 */ 937 static struct task_struct *copy_process(unsigned long clone_flags, 938 unsigned long stack_start, 939 struct pt_regs *regs, 940 unsigned long stack_size, 941 int __user *child_tidptr, 942 struct pid *pid, 943 int trace) 944 { 945 int retval; 946 struct task_struct *p; 947 int cgroup_callbacks_done = 0; 948 949 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 950 return ERR_PTR(-EINVAL); 951 952 /* 953 * Thread groups must share signals as well, and detached threads 954 * can only be started up within the thread group. 955 */ 956 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 957 return ERR_PTR(-EINVAL); 958 959 /* 960 * Shared signal handlers imply shared VM. By way of the above, 961 * thread groups also imply shared VM. Blocking this case allows 962 * for various simplifications in other code. 963 */ 964 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 965 return ERR_PTR(-EINVAL); 966 967 retval = security_task_create(clone_flags); 968 if (retval) 969 goto fork_out; 970 971 retval = -ENOMEM; 972 p = dup_task_struct(current); 973 if (!p) 974 goto fork_out; 975 976 rt_mutex_init_task(p); 977 978 #ifdef CONFIG_PROVE_LOCKING 979 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 980 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 981 #endif 982 retval = -EAGAIN; 983 if (atomic_read(&p->real_cred->user->processes) >= 984 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 985 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 986 p->real_cred->user != INIT_USER) 987 goto bad_fork_free; 988 } 989 990 retval = copy_creds(p, clone_flags); 991 if (retval < 0) 992 goto bad_fork_free; 993 994 /* 995 * If multiple threads are within copy_process(), then this check 996 * triggers too late. This doesn't hurt, the check is only there 997 * to stop root fork bombs. 998 */ 999 if (nr_threads >= max_threads) 1000 goto bad_fork_cleanup_count; 1001 1002 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1003 goto bad_fork_cleanup_count; 1004 1005 if (p->binfmt && !try_module_get(p->binfmt->module)) 1006 goto bad_fork_cleanup_put_domain; 1007 1008 p->did_exec = 0; 1009 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1010 copy_flags(clone_flags, p); 1011 INIT_LIST_HEAD(&p->children); 1012 INIT_LIST_HEAD(&p->sibling); 1013 #ifdef CONFIG_PREEMPT_RCU 1014 p->rcu_read_lock_nesting = 0; 1015 p->rcu_flipctr_idx = 0; 1016 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1017 p->vfork_done = NULL; 1018 spin_lock_init(&p->alloc_lock); 1019 1020 clear_tsk_thread_flag(p, TIF_SIGPENDING); 1021 init_sigpending(&p->pending); 1022 1023 p->utime = cputime_zero; 1024 p->stime = cputime_zero; 1025 p->gtime = cputime_zero; 1026 p->utimescaled = cputime_zero; 1027 p->stimescaled = cputime_zero; 1028 p->prev_utime = cputime_zero; 1029 p->prev_stime = cputime_zero; 1030 1031 p->default_timer_slack_ns = current->timer_slack_ns; 1032 1033 #ifdef CONFIG_DETECT_SOFTLOCKUP 1034 p->last_switch_count = 0; 1035 p->last_switch_timestamp = 0; 1036 #endif 1037 1038 task_io_accounting_init(&p->ioac); 1039 acct_clear_integrals(p); 1040 1041 posix_cpu_timers_init(p); 1042 1043 p->lock_depth = -1; /* -1 = no lock */ 1044 do_posix_clock_monotonic_gettime(&p->start_time); 1045 p->real_start_time = p->start_time; 1046 monotonic_to_bootbased(&p->real_start_time); 1047 p->io_context = NULL; 1048 p->audit_context = NULL; 1049 cgroup_fork(p); 1050 #ifdef CONFIG_NUMA 1051 p->mempolicy = mpol_dup(p->mempolicy); 1052 if (IS_ERR(p->mempolicy)) { 1053 retval = PTR_ERR(p->mempolicy); 1054 p->mempolicy = NULL; 1055 goto bad_fork_cleanup_cgroup; 1056 } 1057 mpol_fix_fork_child_flag(p); 1058 #endif 1059 #ifdef CONFIG_TRACE_IRQFLAGS 1060 p->irq_events = 0; 1061 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1062 p->hardirqs_enabled = 1; 1063 #else 1064 p->hardirqs_enabled = 0; 1065 #endif 1066 p->hardirq_enable_ip = 0; 1067 p->hardirq_enable_event = 0; 1068 p->hardirq_disable_ip = _THIS_IP_; 1069 p->hardirq_disable_event = 0; 1070 p->softirqs_enabled = 1; 1071 p->softirq_enable_ip = _THIS_IP_; 1072 p->softirq_enable_event = 0; 1073 p->softirq_disable_ip = 0; 1074 p->softirq_disable_event = 0; 1075 p->hardirq_context = 0; 1076 p->softirq_context = 0; 1077 #endif 1078 #ifdef CONFIG_LOCKDEP 1079 p->lockdep_depth = 0; /* no locks held yet */ 1080 p->curr_chain_key = 0; 1081 p->lockdep_recursion = 0; 1082 #endif 1083 1084 #ifdef CONFIG_DEBUG_MUTEXES 1085 p->blocked_on = NULL; /* not blocked yet */ 1086 #endif 1087 if (unlikely(ptrace_reparented(current))) 1088 ptrace_fork(p, clone_flags); 1089 1090 /* Perform scheduler related setup. Assign this task to a CPU. */ 1091 sched_fork(p, clone_flags); 1092 1093 if ((retval = audit_alloc(p))) 1094 goto bad_fork_cleanup_policy; 1095 /* copy all the process information */ 1096 if ((retval = copy_semundo(clone_flags, p))) 1097 goto bad_fork_cleanup_audit; 1098 if ((retval = copy_files(clone_flags, p))) 1099 goto bad_fork_cleanup_semundo; 1100 if ((retval = copy_fs(clone_flags, p))) 1101 goto bad_fork_cleanup_files; 1102 if ((retval = copy_sighand(clone_flags, p))) 1103 goto bad_fork_cleanup_fs; 1104 if ((retval = copy_signal(clone_flags, p))) 1105 goto bad_fork_cleanup_sighand; 1106 if ((retval = copy_mm(clone_flags, p))) 1107 goto bad_fork_cleanup_signal; 1108 if ((retval = copy_namespaces(clone_flags, p))) 1109 goto bad_fork_cleanup_mm; 1110 if ((retval = copy_io(clone_flags, p))) 1111 goto bad_fork_cleanup_namespaces; 1112 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 1113 if (retval) 1114 goto bad_fork_cleanup_io; 1115 1116 if (pid != &init_struct_pid) { 1117 retval = -ENOMEM; 1118 pid = alloc_pid(task_active_pid_ns(p)); 1119 if (!pid) 1120 goto bad_fork_cleanup_io; 1121 1122 if (clone_flags & CLONE_NEWPID) { 1123 retval = pid_ns_prepare_proc(task_active_pid_ns(p)); 1124 if (retval < 0) 1125 goto bad_fork_free_pid; 1126 } 1127 } 1128 1129 ftrace_graph_init_task(p); 1130 1131 p->pid = pid_nr(pid); 1132 p->tgid = p->pid; 1133 if (clone_flags & CLONE_THREAD) 1134 p->tgid = current->tgid; 1135 1136 if (current->nsproxy != p->nsproxy) { 1137 retval = ns_cgroup_clone(p, pid); 1138 if (retval) 1139 goto bad_fork_free_graph; 1140 } 1141 1142 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1143 /* 1144 * Clear TID on mm_release()? 1145 */ 1146 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1147 #ifdef CONFIG_FUTEX 1148 p->robust_list = NULL; 1149 #ifdef CONFIG_COMPAT 1150 p->compat_robust_list = NULL; 1151 #endif 1152 INIT_LIST_HEAD(&p->pi_state_list); 1153 p->pi_state_cache = NULL; 1154 #endif 1155 /* 1156 * sigaltstack should be cleared when sharing the same VM 1157 */ 1158 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1159 p->sas_ss_sp = p->sas_ss_size = 0; 1160 1161 /* 1162 * Syscall tracing should be turned off in the child regardless 1163 * of CLONE_PTRACE. 1164 */ 1165 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1166 #ifdef TIF_SYSCALL_EMU 1167 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1168 #endif 1169 clear_all_latency_tracing(p); 1170 1171 /* Our parent execution domain becomes current domain 1172 These must match for thread signalling to apply */ 1173 p->parent_exec_id = p->self_exec_id; 1174 1175 /* ok, now we should be set up.. */ 1176 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1177 p->pdeath_signal = 0; 1178 p->exit_state = 0; 1179 1180 /* 1181 * Ok, make it visible to the rest of the system. 1182 * We dont wake it up yet. 1183 */ 1184 p->group_leader = p; 1185 INIT_LIST_HEAD(&p->thread_group); 1186 1187 /* Now that the task is set up, run cgroup callbacks if 1188 * necessary. We need to run them before the task is visible 1189 * on the tasklist. */ 1190 cgroup_fork_callbacks(p); 1191 cgroup_callbacks_done = 1; 1192 1193 /* Need tasklist lock for parent etc handling! */ 1194 write_lock_irq(&tasklist_lock); 1195 1196 /* 1197 * The task hasn't been attached yet, so its cpus_allowed mask will 1198 * not be changed, nor will its assigned CPU. 1199 * 1200 * The cpus_allowed mask of the parent may have changed after it was 1201 * copied first time - so re-copy it here, then check the child's CPU 1202 * to ensure it is on a valid CPU (and if not, just force it back to 1203 * parent's CPU). This avoids alot of nasty races. 1204 */ 1205 p->cpus_allowed = current->cpus_allowed; 1206 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; 1207 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || 1208 !cpu_online(task_cpu(p)))) 1209 set_task_cpu(p, smp_processor_id()); 1210 1211 /* CLONE_PARENT re-uses the old parent */ 1212 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1213 p->real_parent = current->real_parent; 1214 else 1215 p->real_parent = current; 1216 1217 spin_lock(¤t->sighand->siglock); 1218 1219 /* 1220 * Process group and session signals need to be delivered to just the 1221 * parent before the fork or both the parent and the child after the 1222 * fork. Restart if a signal comes in before we add the new process to 1223 * it's process group. 1224 * A fatal signal pending means that current will exit, so the new 1225 * thread can't slip out of an OOM kill (or normal SIGKILL). 1226 */ 1227 recalc_sigpending(); 1228 if (signal_pending(current)) { 1229 spin_unlock(¤t->sighand->siglock); 1230 write_unlock_irq(&tasklist_lock); 1231 retval = -ERESTARTNOINTR; 1232 goto bad_fork_free_graph; 1233 } 1234 1235 if (clone_flags & CLONE_THREAD) { 1236 p->group_leader = current->group_leader; 1237 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1238 } 1239 1240 if (likely(p->pid)) { 1241 list_add_tail(&p->sibling, &p->real_parent->children); 1242 tracehook_finish_clone(p, clone_flags, trace); 1243 1244 if (thread_group_leader(p)) { 1245 if (clone_flags & CLONE_NEWPID) 1246 p->nsproxy->pid_ns->child_reaper = p; 1247 1248 p->signal->leader_pid = pid; 1249 tty_kref_put(p->signal->tty); 1250 p->signal->tty = tty_kref_get(current->signal->tty); 1251 set_task_pgrp(p, task_pgrp_nr(current)); 1252 set_task_session(p, task_session_nr(current)); 1253 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1254 attach_pid(p, PIDTYPE_SID, task_session(current)); 1255 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1256 __get_cpu_var(process_counts)++; 1257 } 1258 attach_pid(p, PIDTYPE_PID, pid); 1259 nr_threads++; 1260 } 1261 1262 total_forks++; 1263 spin_unlock(¤t->sighand->siglock); 1264 write_unlock_irq(&tasklist_lock); 1265 proc_fork_connector(p); 1266 cgroup_post_fork(p); 1267 return p; 1268 1269 bad_fork_free_graph: 1270 ftrace_graph_exit_task(p); 1271 bad_fork_free_pid: 1272 if (pid != &init_struct_pid) 1273 free_pid(pid); 1274 bad_fork_cleanup_io: 1275 put_io_context(p->io_context); 1276 bad_fork_cleanup_namespaces: 1277 exit_task_namespaces(p); 1278 bad_fork_cleanup_mm: 1279 if (p->mm) 1280 mmput(p->mm); 1281 bad_fork_cleanup_signal: 1282 cleanup_signal(p); 1283 bad_fork_cleanup_sighand: 1284 __cleanup_sighand(p->sighand); 1285 bad_fork_cleanup_fs: 1286 exit_fs(p); /* blocking */ 1287 bad_fork_cleanup_files: 1288 exit_files(p); /* blocking */ 1289 bad_fork_cleanup_semundo: 1290 exit_sem(p); 1291 bad_fork_cleanup_audit: 1292 audit_free(p); 1293 bad_fork_cleanup_policy: 1294 #ifdef CONFIG_NUMA 1295 mpol_put(p->mempolicy); 1296 bad_fork_cleanup_cgroup: 1297 #endif 1298 cgroup_exit(p, cgroup_callbacks_done); 1299 delayacct_tsk_free(p); 1300 if (p->binfmt) 1301 module_put(p->binfmt->module); 1302 bad_fork_cleanup_put_domain: 1303 module_put(task_thread_info(p)->exec_domain->module); 1304 bad_fork_cleanup_count: 1305 atomic_dec(&p->cred->user->processes); 1306 put_cred(p->real_cred); 1307 put_cred(p->cred); 1308 bad_fork_free: 1309 free_task(p); 1310 fork_out: 1311 return ERR_PTR(retval); 1312 } 1313 1314 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1315 { 1316 memset(regs, 0, sizeof(struct pt_regs)); 1317 return regs; 1318 } 1319 1320 struct task_struct * __cpuinit fork_idle(int cpu) 1321 { 1322 struct task_struct *task; 1323 struct pt_regs regs; 1324 1325 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1326 &init_struct_pid, 0); 1327 if (!IS_ERR(task)) 1328 init_idle(task, cpu); 1329 1330 return task; 1331 } 1332 1333 /* 1334 * Ok, this is the main fork-routine. 1335 * 1336 * It copies the process, and if successful kick-starts 1337 * it and waits for it to finish using the VM if required. 1338 */ 1339 long do_fork(unsigned long clone_flags, 1340 unsigned long stack_start, 1341 struct pt_regs *regs, 1342 unsigned long stack_size, 1343 int __user *parent_tidptr, 1344 int __user *child_tidptr) 1345 { 1346 struct task_struct *p; 1347 int trace = 0; 1348 long nr; 1349 1350 /* 1351 * Do some preliminary argument and permissions checking before we 1352 * actually start allocating stuff 1353 */ 1354 if (clone_flags & CLONE_NEWUSER) { 1355 if (clone_flags & CLONE_THREAD) 1356 return -EINVAL; 1357 /* hopefully this check will go away when userns support is 1358 * complete 1359 */ 1360 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1361 !capable(CAP_SETGID)) 1362 return -EPERM; 1363 } 1364 1365 /* 1366 * We hope to recycle these flags after 2.6.26 1367 */ 1368 if (unlikely(clone_flags & CLONE_STOPPED)) { 1369 static int __read_mostly count = 100; 1370 1371 if (count > 0 && printk_ratelimit()) { 1372 char comm[TASK_COMM_LEN]; 1373 1374 count--; 1375 printk(KERN_INFO "fork(): process `%s' used deprecated " 1376 "clone flags 0x%lx\n", 1377 get_task_comm(comm, current), 1378 clone_flags & CLONE_STOPPED); 1379 } 1380 } 1381 1382 /* 1383 * When called from kernel_thread, don't do user tracing stuff. 1384 */ 1385 if (likely(user_mode(regs))) 1386 trace = tracehook_prepare_clone(clone_flags); 1387 1388 p = copy_process(clone_flags, stack_start, regs, stack_size, 1389 child_tidptr, NULL, trace); 1390 /* 1391 * Do this prior waking up the new thread - the thread pointer 1392 * might get invalid after that point, if the thread exits quickly. 1393 */ 1394 if (!IS_ERR(p)) { 1395 struct completion vfork; 1396 1397 trace_sched_process_fork(current, p); 1398 1399 nr = task_pid_vnr(p); 1400 1401 if (clone_flags & CLONE_PARENT_SETTID) 1402 put_user(nr, parent_tidptr); 1403 1404 if (clone_flags & CLONE_VFORK) { 1405 p->vfork_done = &vfork; 1406 init_completion(&vfork); 1407 } 1408 1409 audit_finish_fork(p); 1410 tracehook_report_clone(trace, regs, clone_flags, nr, p); 1411 1412 /* 1413 * We set PF_STARTING at creation in case tracing wants to 1414 * use this to distinguish a fully live task from one that 1415 * hasn't gotten to tracehook_report_clone() yet. Now we 1416 * clear it and set the child going. 1417 */ 1418 p->flags &= ~PF_STARTING; 1419 1420 if (unlikely(clone_flags & CLONE_STOPPED)) { 1421 /* 1422 * We'll start up with an immediate SIGSTOP. 1423 */ 1424 sigaddset(&p->pending.signal, SIGSTOP); 1425 set_tsk_thread_flag(p, TIF_SIGPENDING); 1426 __set_task_state(p, TASK_STOPPED); 1427 } else { 1428 wake_up_new_task(p, clone_flags); 1429 } 1430 1431 tracehook_report_clone_complete(trace, regs, 1432 clone_flags, nr, p); 1433 1434 if (clone_flags & CLONE_VFORK) { 1435 freezer_do_not_count(); 1436 wait_for_completion(&vfork); 1437 freezer_count(); 1438 tracehook_report_vfork_done(p, nr); 1439 } 1440 } else { 1441 nr = PTR_ERR(p); 1442 } 1443 return nr; 1444 } 1445 1446 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1447 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1448 #endif 1449 1450 static void sighand_ctor(void *data) 1451 { 1452 struct sighand_struct *sighand = data; 1453 1454 spin_lock_init(&sighand->siglock); 1455 init_waitqueue_head(&sighand->signalfd_wqh); 1456 } 1457 1458 void __init proc_caches_init(void) 1459 { 1460 sighand_cachep = kmem_cache_create("sighand_cache", 1461 sizeof(struct sighand_struct), 0, 1462 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, 1463 sighand_ctor); 1464 signal_cachep = kmem_cache_create("signal_cache", 1465 sizeof(struct signal_struct), 0, 1466 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1467 files_cachep = kmem_cache_create("files_cache", 1468 sizeof(struct files_struct), 0, 1469 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1470 fs_cachep = kmem_cache_create("fs_cache", 1471 sizeof(struct fs_struct), 0, 1472 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1473 vm_area_cachep = kmem_cache_create("vm_area_struct", 1474 sizeof(struct vm_area_struct), 0, 1475 SLAB_PANIC, NULL); 1476 mm_cachep = kmem_cache_create("mm_struct", 1477 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1478 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1479 } 1480 1481 /* 1482 * Check constraints on flags passed to the unshare system call and 1483 * force unsharing of additional process context as appropriate. 1484 */ 1485 static void check_unshare_flags(unsigned long *flags_ptr) 1486 { 1487 /* 1488 * If unsharing a thread from a thread group, must also 1489 * unshare vm. 1490 */ 1491 if (*flags_ptr & CLONE_THREAD) 1492 *flags_ptr |= CLONE_VM; 1493 1494 /* 1495 * If unsharing vm, must also unshare signal handlers. 1496 */ 1497 if (*flags_ptr & CLONE_VM) 1498 *flags_ptr |= CLONE_SIGHAND; 1499 1500 /* 1501 * If unsharing signal handlers and the task was created 1502 * using CLONE_THREAD, then must unshare the thread 1503 */ 1504 if ((*flags_ptr & CLONE_SIGHAND) && 1505 (atomic_read(¤t->signal->count) > 1)) 1506 *flags_ptr |= CLONE_THREAD; 1507 1508 /* 1509 * If unsharing namespace, must also unshare filesystem information. 1510 */ 1511 if (*flags_ptr & CLONE_NEWNS) 1512 *flags_ptr |= CLONE_FS; 1513 } 1514 1515 /* 1516 * Unsharing of tasks created with CLONE_THREAD is not supported yet 1517 */ 1518 static int unshare_thread(unsigned long unshare_flags) 1519 { 1520 if (unshare_flags & CLONE_THREAD) 1521 return -EINVAL; 1522 1523 return 0; 1524 } 1525 1526 /* 1527 * Unshare the filesystem structure if it is being shared 1528 */ 1529 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1530 { 1531 struct fs_struct *fs = current->fs; 1532 1533 if ((unshare_flags & CLONE_FS) && 1534 (fs && atomic_read(&fs->count) > 1)) { 1535 *new_fsp = __copy_fs_struct(current->fs); 1536 if (!*new_fsp) 1537 return -ENOMEM; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * Unsharing of sighand is not supported yet 1545 */ 1546 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) 1547 { 1548 struct sighand_struct *sigh = current->sighand; 1549 1550 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) 1551 return -EINVAL; 1552 else 1553 return 0; 1554 } 1555 1556 /* 1557 * Unshare vm if it is being shared 1558 */ 1559 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) 1560 { 1561 struct mm_struct *mm = current->mm; 1562 1563 if ((unshare_flags & CLONE_VM) && 1564 (mm && atomic_read(&mm->mm_users) > 1)) { 1565 return -EINVAL; 1566 } 1567 1568 return 0; 1569 } 1570 1571 /* 1572 * Unshare file descriptor table if it is being shared 1573 */ 1574 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1575 { 1576 struct files_struct *fd = current->files; 1577 int error = 0; 1578 1579 if ((unshare_flags & CLONE_FILES) && 1580 (fd && atomic_read(&fd->count) > 1)) { 1581 *new_fdp = dup_fd(fd, &error); 1582 if (!*new_fdp) 1583 return error; 1584 } 1585 1586 return 0; 1587 } 1588 1589 /* 1590 * unshare allows a process to 'unshare' part of the process 1591 * context which was originally shared using clone. copy_* 1592 * functions used by do_fork() cannot be used here directly 1593 * because they modify an inactive task_struct that is being 1594 * constructed. Here we are modifying the current, active, 1595 * task_struct. 1596 */ 1597 asmlinkage long sys_unshare(unsigned long unshare_flags) 1598 { 1599 int err = 0; 1600 struct fs_struct *fs, *new_fs = NULL; 1601 struct sighand_struct *new_sigh = NULL; 1602 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; 1603 struct files_struct *fd, *new_fd = NULL; 1604 struct nsproxy *new_nsproxy = NULL; 1605 int do_sysvsem = 0; 1606 1607 check_unshare_flags(&unshare_flags); 1608 1609 /* Return -EINVAL for all unsupported flags */ 1610 err = -EINVAL; 1611 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1612 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1613 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1614 goto bad_unshare_out; 1615 1616 /* 1617 * CLONE_NEWIPC must also detach from the undolist: after switching 1618 * to a new ipc namespace, the semaphore arrays from the old 1619 * namespace are unreachable. 1620 */ 1621 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1622 do_sysvsem = 1; 1623 if ((err = unshare_thread(unshare_flags))) 1624 goto bad_unshare_out; 1625 if ((err = unshare_fs(unshare_flags, &new_fs))) 1626 goto bad_unshare_cleanup_thread; 1627 if ((err = unshare_sighand(unshare_flags, &new_sigh))) 1628 goto bad_unshare_cleanup_fs; 1629 if ((err = unshare_vm(unshare_flags, &new_mm))) 1630 goto bad_unshare_cleanup_sigh; 1631 if ((err = unshare_fd(unshare_flags, &new_fd))) 1632 goto bad_unshare_cleanup_vm; 1633 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1634 new_fs))) 1635 goto bad_unshare_cleanup_fd; 1636 1637 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) { 1638 if (do_sysvsem) { 1639 /* 1640 * CLONE_SYSVSEM is equivalent to sys_exit(). 1641 */ 1642 exit_sem(current); 1643 } 1644 1645 if (new_nsproxy) { 1646 switch_task_namespaces(current, new_nsproxy); 1647 new_nsproxy = NULL; 1648 } 1649 1650 task_lock(current); 1651 1652 if (new_fs) { 1653 fs = current->fs; 1654 current->fs = new_fs; 1655 new_fs = fs; 1656 } 1657 1658 if (new_mm) { 1659 mm = current->mm; 1660 active_mm = current->active_mm; 1661 current->mm = new_mm; 1662 current->active_mm = new_mm; 1663 activate_mm(active_mm, new_mm); 1664 new_mm = mm; 1665 } 1666 1667 if (new_fd) { 1668 fd = current->files; 1669 current->files = new_fd; 1670 new_fd = fd; 1671 } 1672 1673 task_unlock(current); 1674 } 1675 1676 if (new_nsproxy) 1677 put_nsproxy(new_nsproxy); 1678 1679 bad_unshare_cleanup_fd: 1680 if (new_fd) 1681 put_files_struct(new_fd); 1682 1683 bad_unshare_cleanup_vm: 1684 if (new_mm) 1685 mmput(new_mm); 1686 1687 bad_unshare_cleanup_sigh: 1688 if (new_sigh) 1689 if (atomic_dec_and_test(&new_sigh->count)) 1690 kmem_cache_free(sighand_cachep, new_sigh); 1691 1692 bad_unshare_cleanup_fs: 1693 if (new_fs) 1694 put_fs_struct(new_fs); 1695 1696 bad_unshare_cleanup_thread: 1697 bad_unshare_out: 1698 return err; 1699 } 1700 1701 /* 1702 * Helper to unshare the files of the current task. 1703 * We don't want to expose copy_files internals to 1704 * the exec layer of the kernel. 1705 */ 1706 1707 int unshare_files(struct files_struct **displaced) 1708 { 1709 struct task_struct *task = current; 1710 struct files_struct *copy = NULL; 1711 int error; 1712 1713 error = unshare_fd(CLONE_FILES, ©); 1714 if (error || !copy) { 1715 *displaced = NULL; 1716 return error; 1717 } 1718 *displaced = task->files; 1719 task_lock(task); 1720 task->files = copy; 1721 task_unlock(task); 1722 return 0; 1723 } 1724