xref: /linux-6.15/kernel/fork.c (revision 7ec7fb39)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64 
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
71 
72 /*
73  * Protected counters by write_lock_irq(&tasklist_lock)
74  */
75 unsigned long total_forks;	/* Handle normal Linux uptimes. */
76 int nr_threads; 		/* The idle threads do not count.. */
77 
78 int max_threads;		/* tunable limit on nr_threads */
79 
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81 
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
83 
84 DEFINE_TRACE(sched_process_fork);
85 
86 int nr_processes(void)
87 {
88 	int cpu;
89 	int total = 0;
90 
91 	for_each_online_cpu(cpu)
92 		total += per_cpu(process_counts, cpu);
93 
94 	return total;
95 }
96 
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
102 
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
105 {
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 	gfp_t mask = GFP_KERNEL;
110 #endif
111 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 }
113 
114 static inline void free_thread_info(struct thread_info *ti)
115 {
116 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
117 }
118 #endif
119 
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
122 
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
125 
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
128 
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
131 
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
134 
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
137 
138 void free_task(struct task_struct *tsk)
139 {
140 	prop_local_destroy_single(&tsk->dirties);
141 	free_thread_info(tsk->stack);
142 	rt_mutex_debug_task_free(tsk);
143 	ftrace_graph_exit_task(tsk);
144 	free_task_struct(tsk);
145 }
146 EXPORT_SYMBOL(free_task);
147 
148 void __put_task_struct(struct task_struct *tsk)
149 {
150 	WARN_ON(!tsk->exit_state);
151 	WARN_ON(atomic_read(&tsk->usage));
152 	WARN_ON(tsk == current);
153 
154 	put_cred(tsk->real_cred);
155 	put_cred(tsk->cred);
156 	delayacct_tsk_free(tsk);
157 
158 	if (!profile_handoff_task(tsk))
159 		free_task(tsk);
160 }
161 
162 /*
163  * macro override instead of weak attribute alias, to workaround
164  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
165  */
166 #ifndef arch_task_cache_init
167 #define arch_task_cache_init()
168 #endif
169 
170 void __init fork_init(unsigned long mempages)
171 {
172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
173 #ifndef ARCH_MIN_TASKALIGN
174 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
175 #endif
176 	/* create a slab on which task_structs can be allocated */
177 	task_struct_cachep =
178 		kmem_cache_create("task_struct", sizeof(struct task_struct),
179 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
180 #endif
181 
182 	/* do the arch specific task caches init */
183 	arch_task_cache_init();
184 
185 	/*
186 	 * The default maximum number of threads is set to a safe
187 	 * value: the thread structures can take up at most half
188 	 * of memory.
189 	 */
190 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
191 
192 	/*
193 	 * we need to allow at least 20 threads to boot a system
194 	 */
195 	if(max_threads < 20)
196 		max_threads = 20;
197 
198 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
199 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
200 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
201 		init_task.signal->rlim[RLIMIT_NPROC];
202 }
203 
204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
205 					       struct task_struct *src)
206 {
207 	*dst = *src;
208 	return 0;
209 }
210 
211 static struct task_struct *dup_task_struct(struct task_struct *orig)
212 {
213 	struct task_struct *tsk;
214 	struct thread_info *ti;
215 	int err;
216 
217 	prepare_to_copy(orig);
218 
219 	tsk = alloc_task_struct();
220 	if (!tsk)
221 		return NULL;
222 
223 	ti = alloc_thread_info(tsk);
224 	if (!ti) {
225 		free_task_struct(tsk);
226 		return NULL;
227 	}
228 
229  	err = arch_dup_task_struct(tsk, orig);
230 	if (err)
231 		goto out;
232 
233 	tsk->stack = ti;
234 
235 	err = prop_local_init_single(&tsk->dirties);
236 	if (err)
237 		goto out;
238 
239 	setup_thread_stack(tsk, orig);
240 
241 #ifdef CONFIG_CC_STACKPROTECTOR
242 	tsk->stack_canary = get_random_int();
243 #endif
244 
245 	/* One for us, one for whoever does the "release_task()" (usually parent) */
246 	atomic_set(&tsk->usage,2);
247 	atomic_set(&tsk->fs_excl, 0);
248 #ifdef CONFIG_BLK_DEV_IO_TRACE
249 	tsk->btrace_seq = 0;
250 #endif
251 	tsk->splice_pipe = NULL;
252 	return tsk;
253 
254 out:
255 	free_thread_info(ti);
256 	free_task_struct(tsk);
257 	return NULL;
258 }
259 
260 #ifdef CONFIG_MMU
261 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
262 {
263 	struct vm_area_struct *mpnt, *tmp, **pprev;
264 	struct rb_node **rb_link, *rb_parent;
265 	int retval;
266 	unsigned long charge;
267 	struct mempolicy *pol;
268 
269 	down_write(&oldmm->mmap_sem);
270 	flush_cache_dup_mm(oldmm);
271 	/*
272 	 * Not linked in yet - no deadlock potential:
273 	 */
274 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
275 
276 	mm->locked_vm = 0;
277 	mm->mmap = NULL;
278 	mm->mmap_cache = NULL;
279 	mm->free_area_cache = oldmm->mmap_base;
280 	mm->cached_hole_size = ~0UL;
281 	mm->map_count = 0;
282 	cpus_clear(mm->cpu_vm_mask);
283 	mm->mm_rb = RB_ROOT;
284 	rb_link = &mm->mm_rb.rb_node;
285 	rb_parent = NULL;
286 	pprev = &mm->mmap;
287 
288 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
289 		struct file *file;
290 
291 		if (mpnt->vm_flags & VM_DONTCOPY) {
292 			long pages = vma_pages(mpnt);
293 			mm->total_vm -= pages;
294 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
295 								-pages);
296 			continue;
297 		}
298 		charge = 0;
299 		if (mpnt->vm_flags & VM_ACCOUNT) {
300 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
301 			if (security_vm_enough_memory(len))
302 				goto fail_nomem;
303 			charge = len;
304 		}
305 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
306 		if (!tmp)
307 			goto fail_nomem;
308 		*tmp = *mpnt;
309 		pol = mpol_dup(vma_policy(mpnt));
310 		retval = PTR_ERR(pol);
311 		if (IS_ERR(pol))
312 			goto fail_nomem_policy;
313 		vma_set_policy(tmp, pol);
314 		tmp->vm_flags &= ~VM_LOCKED;
315 		tmp->vm_mm = mm;
316 		tmp->vm_next = NULL;
317 		anon_vma_link(tmp);
318 		file = tmp->vm_file;
319 		if (file) {
320 			struct inode *inode = file->f_path.dentry->d_inode;
321 			struct address_space *mapping = file->f_mapping;
322 
323 			get_file(file);
324 			if (tmp->vm_flags & VM_DENYWRITE)
325 				atomic_dec(&inode->i_writecount);
326 			spin_lock(&mapping->i_mmap_lock);
327 			if (tmp->vm_flags & VM_SHARED)
328 				mapping->i_mmap_writable++;
329 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
330 			flush_dcache_mmap_lock(mapping);
331 			/* insert tmp into the share list, just after mpnt */
332 			vma_prio_tree_add(tmp, mpnt);
333 			flush_dcache_mmap_unlock(mapping);
334 			spin_unlock(&mapping->i_mmap_lock);
335 		}
336 
337 		/*
338 		 * Clear hugetlb-related page reserves for children. This only
339 		 * affects MAP_PRIVATE mappings. Faults generated by the child
340 		 * are not guaranteed to succeed, even if read-only
341 		 */
342 		if (is_vm_hugetlb_page(tmp))
343 			reset_vma_resv_huge_pages(tmp);
344 
345 		/*
346 		 * Link in the new vma and copy the page table entries.
347 		 */
348 		*pprev = tmp;
349 		pprev = &tmp->vm_next;
350 
351 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
352 		rb_link = &tmp->vm_rb.rb_right;
353 		rb_parent = &tmp->vm_rb;
354 
355 		mm->map_count++;
356 		retval = copy_page_range(mm, oldmm, mpnt);
357 
358 		if (tmp->vm_ops && tmp->vm_ops->open)
359 			tmp->vm_ops->open(tmp);
360 
361 		if (retval)
362 			goto out;
363 	}
364 	/* a new mm has just been created */
365 	arch_dup_mmap(oldmm, mm);
366 	retval = 0;
367 out:
368 	up_write(&mm->mmap_sem);
369 	flush_tlb_mm(oldmm);
370 	up_write(&oldmm->mmap_sem);
371 	return retval;
372 fail_nomem_policy:
373 	kmem_cache_free(vm_area_cachep, tmp);
374 fail_nomem:
375 	retval = -ENOMEM;
376 	vm_unacct_memory(charge);
377 	goto out;
378 }
379 
380 static inline int mm_alloc_pgd(struct mm_struct * mm)
381 {
382 	mm->pgd = pgd_alloc(mm);
383 	if (unlikely(!mm->pgd))
384 		return -ENOMEM;
385 	return 0;
386 }
387 
388 static inline void mm_free_pgd(struct mm_struct * mm)
389 {
390 	pgd_free(mm, mm->pgd);
391 }
392 #else
393 #define dup_mmap(mm, oldmm)	(0)
394 #define mm_alloc_pgd(mm)	(0)
395 #define mm_free_pgd(mm)
396 #endif /* CONFIG_MMU */
397 
398 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
399 
400 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
401 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
402 
403 #include <linux/init_task.h>
404 
405 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
406 {
407 	atomic_set(&mm->mm_users, 1);
408 	atomic_set(&mm->mm_count, 1);
409 	init_rwsem(&mm->mmap_sem);
410 	INIT_LIST_HEAD(&mm->mmlist);
411 	mm->flags = (current->mm) ? current->mm->flags
412 				  : MMF_DUMP_FILTER_DEFAULT;
413 	mm->core_state = NULL;
414 	mm->nr_ptes = 0;
415 	set_mm_counter(mm, file_rss, 0);
416 	set_mm_counter(mm, anon_rss, 0);
417 	spin_lock_init(&mm->page_table_lock);
418 	spin_lock_init(&mm->ioctx_lock);
419 	INIT_HLIST_HEAD(&mm->ioctx_list);
420 	mm->free_area_cache = TASK_UNMAPPED_BASE;
421 	mm->cached_hole_size = ~0UL;
422 	mm_init_owner(mm, p);
423 
424 	if (likely(!mm_alloc_pgd(mm))) {
425 		mm->def_flags = 0;
426 		mmu_notifier_mm_init(mm);
427 		return mm;
428 	}
429 
430 	free_mm(mm);
431 	return NULL;
432 }
433 
434 /*
435  * Allocate and initialize an mm_struct.
436  */
437 struct mm_struct * mm_alloc(void)
438 {
439 	struct mm_struct * mm;
440 
441 	mm = allocate_mm();
442 	if (mm) {
443 		memset(mm, 0, sizeof(*mm));
444 		mm = mm_init(mm, current);
445 	}
446 	return mm;
447 }
448 
449 /*
450  * Called when the last reference to the mm
451  * is dropped: either by a lazy thread or by
452  * mmput. Free the page directory and the mm.
453  */
454 void __mmdrop(struct mm_struct *mm)
455 {
456 	BUG_ON(mm == &init_mm);
457 	mm_free_pgd(mm);
458 	destroy_context(mm);
459 	mmu_notifier_mm_destroy(mm);
460 	free_mm(mm);
461 }
462 EXPORT_SYMBOL_GPL(__mmdrop);
463 
464 /*
465  * Decrement the use count and release all resources for an mm.
466  */
467 void mmput(struct mm_struct *mm)
468 {
469 	might_sleep();
470 
471 	if (atomic_dec_and_test(&mm->mm_users)) {
472 		exit_aio(mm);
473 		exit_mmap(mm);
474 		set_mm_exe_file(mm, NULL);
475 		if (!list_empty(&mm->mmlist)) {
476 			spin_lock(&mmlist_lock);
477 			list_del(&mm->mmlist);
478 			spin_unlock(&mmlist_lock);
479 		}
480 		put_swap_token(mm);
481 		mmdrop(mm);
482 	}
483 }
484 EXPORT_SYMBOL_GPL(mmput);
485 
486 /**
487  * get_task_mm - acquire a reference to the task's mm
488  *
489  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
490  * this kernel workthread has transiently adopted a user mm with use_mm,
491  * to do its AIO) is not set and if so returns a reference to it, after
492  * bumping up the use count.  User must release the mm via mmput()
493  * after use.  Typically used by /proc and ptrace.
494  */
495 struct mm_struct *get_task_mm(struct task_struct *task)
496 {
497 	struct mm_struct *mm;
498 
499 	task_lock(task);
500 	mm = task->mm;
501 	if (mm) {
502 		if (task->flags & PF_KTHREAD)
503 			mm = NULL;
504 		else
505 			atomic_inc(&mm->mm_users);
506 	}
507 	task_unlock(task);
508 	return mm;
509 }
510 EXPORT_SYMBOL_GPL(get_task_mm);
511 
512 /* Please note the differences between mmput and mm_release.
513  * mmput is called whenever we stop holding onto a mm_struct,
514  * error success whatever.
515  *
516  * mm_release is called after a mm_struct has been removed
517  * from the current process.
518  *
519  * This difference is important for error handling, when we
520  * only half set up a mm_struct for a new process and need to restore
521  * the old one.  Because we mmput the new mm_struct before
522  * restoring the old one. . .
523  * Eric Biederman 10 January 1998
524  */
525 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
526 {
527 	struct completion *vfork_done = tsk->vfork_done;
528 
529 	/* Get rid of any futexes when releasing the mm */
530 #ifdef CONFIG_FUTEX
531 	if (unlikely(tsk->robust_list))
532 		exit_robust_list(tsk);
533 #ifdef CONFIG_COMPAT
534 	if (unlikely(tsk->compat_robust_list))
535 		compat_exit_robust_list(tsk);
536 #endif
537 #endif
538 
539 	/* Get rid of any cached register state */
540 	deactivate_mm(tsk, mm);
541 
542 	/* notify parent sleeping on vfork() */
543 	if (vfork_done) {
544 		tsk->vfork_done = NULL;
545 		complete(vfork_done);
546 	}
547 
548 	/*
549 	 * If we're exiting normally, clear a user-space tid field if
550 	 * requested.  We leave this alone when dying by signal, to leave
551 	 * the value intact in a core dump, and to save the unnecessary
552 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
553 	 */
554 	if (tsk->clear_child_tid
555 	    && !(tsk->flags & PF_SIGNALED)
556 	    && atomic_read(&mm->mm_users) > 1) {
557 		u32 __user * tidptr = tsk->clear_child_tid;
558 		tsk->clear_child_tid = NULL;
559 
560 		/*
561 		 * We don't check the error code - if userspace has
562 		 * not set up a proper pointer then tough luck.
563 		 */
564 		put_user(0, tidptr);
565 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
566 	}
567 }
568 
569 /*
570  * Allocate a new mm structure and copy contents from the
571  * mm structure of the passed in task structure.
572  */
573 struct mm_struct *dup_mm(struct task_struct *tsk)
574 {
575 	struct mm_struct *mm, *oldmm = current->mm;
576 	int err;
577 
578 	if (!oldmm)
579 		return NULL;
580 
581 	mm = allocate_mm();
582 	if (!mm)
583 		goto fail_nomem;
584 
585 	memcpy(mm, oldmm, sizeof(*mm));
586 
587 	/* Initializing for Swap token stuff */
588 	mm->token_priority = 0;
589 	mm->last_interval = 0;
590 
591 	if (!mm_init(mm, tsk))
592 		goto fail_nomem;
593 
594 	if (init_new_context(tsk, mm))
595 		goto fail_nocontext;
596 
597 	dup_mm_exe_file(oldmm, mm);
598 
599 	err = dup_mmap(mm, oldmm);
600 	if (err)
601 		goto free_pt;
602 
603 	mm->hiwater_rss = get_mm_rss(mm);
604 	mm->hiwater_vm = mm->total_vm;
605 
606 	return mm;
607 
608 free_pt:
609 	mmput(mm);
610 
611 fail_nomem:
612 	return NULL;
613 
614 fail_nocontext:
615 	/*
616 	 * If init_new_context() failed, we cannot use mmput() to free the mm
617 	 * because it calls destroy_context()
618 	 */
619 	mm_free_pgd(mm);
620 	free_mm(mm);
621 	return NULL;
622 }
623 
624 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
625 {
626 	struct mm_struct * mm, *oldmm;
627 	int retval;
628 
629 	tsk->min_flt = tsk->maj_flt = 0;
630 	tsk->nvcsw = tsk->nivcsw = 0;
631 
632 	tsk->mm = NULL;
633 	tsk->active_mm = NULL;
634 
635 	/*
636 	 * Are we cloning a kernel thread?
637 	 *
638 	 * We need to steal a active VM for that..
639 	 */
640 	oldmm = current->mm;
641 	if (!oldmm)
642 		return 0;
643 
644 	if (clone_flags & CLONE_VM) {
645 		atomic_inc(&oldmm->mm_users);
646 		mm = oldmm;
647 		goto good_mm;
648 	}
649 
650 	retval = -ENOMEM;
651 	mm = dup_mm(tsk);
652 	if (!mm)
653 		goto fail_nomem;
654 
655 good_mm:
656 	/* Initializing for Swap token stuff */
657 	mm->token_priority = 0;
658 	mm->last_interval = 0;
659 
660 	tsk->mm = mm;
661 	tsk->active_mm = mm;
662 	return 0;
663 
664 fail_nomem:
665 	return retval;
666 }
667 
668 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
669 {
670 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
671 	/* We don't need to lock fs - think why ;-) */
672 	if (fs) {
673 		atomic_set(&fs->count, 1);
674 		rwlock_init(&fs->lock);
675 		fs->umask = old->umask;
676 		read_lock(&old->lock);
677 		fs->root = old->root;
678 		path_get(&old->root);
679 		fs->pwd = old->pwd;
680 		path_get(&old->pwd);
681 		read_unlock(&old->lock);
682 	}
683 	return fs;
684 }
685 
686 struct fs_struct *copy_fs_struct(struct fs_struct *old)
687 {
688 	return __copy_fs_struct(old);
689 }
690 
691 EXPORT_SYMBOL_GPL(copy_fs_struct);
692 
693 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
694 {
695 	if (clone_flags & CLONE_FS) {
696 		atomic_inc(&current->fs->count);
697 		return 0;
698 	}
699 	tsk->fs = __copy_fs_struct(current->fs);
700 	if (!tsk->fs)
701 		return -ENOMEM;
702 	return 0;
703 }
704 
705 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
706 {
707 	struct files_struct *oldf, *newf;
708 	int error = 0;
709 
710 	/*
711 	 * A background process may not have any files ...
712 	 */
713 	oldf = current->files;
714 	if (!oldf)
715 		goto out;
716 
717 	if (clone_flags & CLONE_FILES) {
718 		atomic_inc(&oldf->count);
719 		goto out;
720 	}
721 
722 	newf = dup_fd(oldf, &error);
723 	if (!newf)
724 		goto out;
725 
726 	tsk->files = newf;
727 	error = 0;
728 out:
729 	return error;
730 }
731 
732 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
733 {
734 #ifdef CONFIG_BLOCK
735 	struct io_context *ioc = current->io_context;
736 
737 	if (!ioc)
738 		return 0;
739 	/*
740 	 * Share io context with parent, if CLONE_IO is set
741 	 */
742 	if (clone_flags & CLONE_IO) {
743 		tsk->io_context = ioc_task_link(ioc);
744 		if (unlikely(!tsk->io_context))
745 			return -ENOMEM;
746 	} else if (ioprio_valid(ioc->ioprio)) {
747 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
748 		if (unlikely(!tsk->io_context))
749 			return -ENOMEM;
750 
751 		tsk->io_context->ioprio = ioc->ioprio;
752 	}
753 #endif
754 	return 0;
755 }
756 
757 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
758 {
759 	struct sighand_struct *sig;
760 
761 	if (clone_flags & CLONE_SIGHAND) {
762 		atomic_inc(&current->sighand->count);
763 		return 0;
764 	}
765 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
766 	rcu_assign_pointer(tsk->sighand, sig);
767 	if (!sig)
768 		return -ENOMEM;
769 	atomic_set(&sig->count, 1);
770 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
771 	return 0;
772 }
773 
774 void __cleanup_sighand(struct sighand_struct *sighand)
775 {
776 	if (atomic_dec_and_test(&sighand->count))
777 		kmem_cache_free(sighand_cachep, sighand);
778 }
779 
780 
781 /*
782  * Initialize POSIX timer handling for a thread group.
783  */
784 static void posix_cpu_timers_init_group(struct signal_struct *sig)
785 {
786 	/* Thread group counters. */
787 	thread_group_cputime_init(sig);
788 
789 	/* Expiration times and increments. */
790 	sig->it_virt_expires = cputime_zero;
791 	sig->it_virt_incr = cputime_zero;
792 	sig->it_prof_expires = cputime_zero;
793 	sig->it_prof_incr = cputime_zero;
794 
795 	/* Cached expiration times. */
796 	sig->cputime_expires.prof_exp = cputime_zero;
797 	sig->cputime_expires.virt_exp = cputime_zero;
798 	sig->cputime_expires.sched_exp = 0;
799 
800 	/* The timer lists. */
801 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
802 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
803 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
804 }
805 
806 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
807 {
808 	struct signal_struct *sig;
809 	int ret;
810 
811 	if (clone_flags & CLONE_THREAD) {
812 		ret = thread_group_cputime_clone_thread(current);
813 		if (likely(!ret)) {
814 			atomic_inc(&current->signal->count);
815 			atomic_inc(&current->signal->live);
816 		}
817 		return ret;
818 	}
819 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
820 	tsk->signal = sig;
821 	if (!sig)
822 		return -ENOMEM;
823 
824 	atomic_set(&sig->count, 1);
825 	atomic_set(&sig->live, 1);
826 	init_waitqueue_head(&sig->wait_chldexit);
827 	sig->flags = 0;
828 	sig->group_exit_code = 0;
829 	sig->group_exit_task = NULL;
830 	sig->group_stop_count = 0;
831 	sig->curr_target = tsk;
832 	init_sigpending(&sig->shared_pending);
833 	INIT_LIST_HEAD(&sig->posix_timers);
834 
835 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
836 	sig->it_real_incr.tv64 = 0;
837 	sig->real_timer.function = it_real_fn;
838 
839 	sig->leader = 0;	/* session leadership doesn't inherit */
840 	sig->tty_old_pgrp = NULL;
841 	sig->tty = NULL;
842 
843 	sig->cutime = sig->cstime = cputime_zero;
844 	sig->gtime = cputime_zero;
845 	sig->cgtime = cputime_zero;
846 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
847 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
848 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
849 	task_io_accounting_init(&sig->ioac);
850 	taskstats_tgid_init(sig);
851 
852 	task_lock(current->group_leader);
853 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
854 	task_unlock(current->group_leader);
855 
856 	posix_cpu_timers_init_group(sig);
857 
858 	acct_init_pacct(&sig->pacct);
859 
860 	tty_audit_fork(sig);
861 
862 	return 0;
863 }
864 
865 void __cleanup_signal(struct signal_struct *sig)
866 {
867 	thread_group_cputime_free(sig);
868 	tty_kref_put(sig->tty);
869 	kmem_cache_free(signal_cachep, sig);
870 }
871 
872 static void cleanup_signal(struct task_struct *tsk)
873 {
874 	struct signal_struct *sig = tsk->signal;
875 
876 	atomic_dec(&sig->live);
877 
878 	if (atomic_dec_and_test(&sig->count))
879 		__cleanup_signal(sig);
880 }
881 
882 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
883 {
884 	unsigned long new_flags = p->flags;
885 
886 	new_flags &= ~PF_SUPERPRIV;
887 	new_flags |= PF_FORKNOEXEC;
888 	new_flags |= PF_STARTING;
889 	p->flags = new_flags;
890 	clear_freeze_flag(p);
891 }
892 
893 asmlinkage long sys_set_tid_address(int __user *tidptr)
894 {
895 	current->clear_child_tid = tidptr;
896 
897 	return task_pid_vnr(current);
898 }
899 
900 static void rt_mutex_init_task(struct task_struct *p)
901 {
902 	spin_lock_init(&p->pi_lock);
903 #ifdef CONFIG_RT_MUTEXES
904 	plist_head_init(&p->pi_waiters, &p->pi_lock);
905 	p->pi_blocked_on = NULL;
906 #endif
907 }
908 
909 #ifdef CONFIG_MM_OWNER
910 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
911 {
912 	mm->owner = p;
913 }
914 #endif /* CONFIG_MM_OWNER */
915 
916 /*
917  * Initialize POSIX timer handling for a single task.
918  */
919 static void posix_cpu_timers_init(struct task_struct *tsk)
920 {
921 	tsk->cputime_expires.prof_exp = cputime_zero;
922 	tsk->cputime_expires.virt_exp = cputime_zero;
923 	tsk->cputime_expires.sched_exp = 0;
924 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
925 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
926 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
927 }
928 
929 /*
930  * This creates a new process as a copy of the old one,
931  * but does not actually start it yet.
932  *
933  * It copies the registers, and all the appropriate
934  * parts of the process environment (as per the clone
935  * flags). The actual kick-off is left to the caller.
936  */
937 static struct task_struct *copy_process(unsigned long clone_flags,
938 					unsigned long stack_start,
939 					struct pt_regs *regs,
940 					unsigned long stack_size,
941 					int __user *child_tidptr,
942 					struct pid *pid,
943 					int trace)
944 {
945 	int retval;
946 	struct task_struct *p;
947 	int cgroup_callbacks_done = 0;
948 
949 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
950 		return ERR_PTR(-EINVAL);
951 
952 	/*
953 	 * Thread groups must share signals as well, and detached threads
954 	 * can only be started up within the thread group.
955 	 */
956 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
957 		return ERR_PTR(-EINVAL);
958 
959 	/*
960 	 * Shared signal handlers imply shared VM. By way of the above,
961 	 * thread groups also imply shared VM. Blocking this case allows
962 	 * for various simplifications in other code.
963 	 */
964 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
965 		return ERR_PTR(-EINVAL);
966 
967 	retval = security_task_create(clone_flags);
968 	if (retval)
969 		goto fork_out;
970 
971 	retval = -ENOMEM;
972 	p = dup_task_struct(current);
973 	if (!p)
974 		goto fork_out;
975 
976 	rt_mutex_init_task(p);
977 
978 #ifdef CONFIG_PROVE_LOCKING
979 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
980 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
981 #endif
982 	retval = -EAGAIN;
983 	if (atomic_read(&p->real_cred->user->processes) >=
984 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
985 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
986 		    p->real_cred->user != INIT_USER)
987 			goto bad_fork_free;
988 	}
989 
990 	retval = copy_creds(p, clone_flags);
991 	if (retval < 0)
992 		goto bad_fork_free;
993 
994 	/*
995 	 * If multiple threads are within copy_process(), then this check
996 	 * triggers too late. This doesn't hurt, the check is only there
997 	 * to stop root fork bombs.
998 	 */
999 	if (nr_threads >= max_threads)
1000 		goto bad_fork_cleanup_count;
1001 
1002 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1003 		goto bad_fork_cleanup_count;
1004 
1005 	if (p->binfmt && !try_module_get(p->binfmt->module))
1006 		goto bad_fork_cleanup_put_domain;
1007 
1008 	p->did_exec = 0;
1009 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1010 	copy_flags(clone_flags, p);
1011 	INIT_LIST_HEAD(&p->children);
1012 	INIT_LIST_HEAD(&p->sibling);
1013 #ifdef CONFIG_PREEMPT_RCU
1014 	p->rcu_read_lock_nesting = 0;
1015 	p->rcu_flipctr_idx = 0;
1016 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1017 	p->vfork_done = NULL;
1018 	spin_lock_init(&p->alloc_lock);
1019 
1020 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1021 	init_sigpending(&p->pending);
1022 
1023 	p->utime = cputime_zero;
1024 	p->stime = cputime_zero;
1025 	p->gtime = cputime_zero;
1026 	p->utimescaled = cputime_zero;
1027 	p->stimescaled = cputime_zero;
1028 	p->prev_utime = cputime_zero;
1029 	p->prev_stime = cputime_zero;
1030 
1031 	p->default_timer_slack_ns = current->timer_slack_ns;
1032 
1033 #ifdef CONFIG_DETECT_SOFTLOCKUP
1034 	p->last_switch_count = 0;
1035 	p->last_switch_timestamp = 0;
1036 #endif
1037 
1038 	task_io_accounting_init(&p->ioac);
1039 	acct_clear_integrals(p);
1040 
1041 	posix_cpu_timers_init(p);
1042 
1043 	p->lock_depth = -1;		/* -1 = no lock */
1044 	do_posix_clock_monotonic_gettime(&p->start_time);
1045 	p->real_start_time = p->start_time;
1046 	monotonic_to_bootbased(&p->real_start_time);
1047 	p->io_context = NULL;
1048 	p->audit_context = NULL;
1049 	cgroup_fork(p);
1050 #ifdef CONFIG_NUMA
1051 	p->mempolicy = mpol_dup(p->mempolicy);
1052  	if (IS_ERR(p->mempolicy)) {
1053  		retval = PTR_ERR(p->mempolicy);
1054  		p->mempolicy = NULL;
1055  		goto bad_fork_cleanup_cgroup;
1056  	}
1057 	mpol_fix_fork_child_flag(p);
1058 #endif
1059 #ifdef CONFIG_TRACE_IRQFLAGS
1060 	p->irq_events = 0;
1061 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1062 	p->hardirqs_enabled = 1;
1063 #else
1064 	p->hardirqs_enabled = 0;
1065 #endif
1066 	p->hardirq_enable_ip = 0;
1067 	p->hardirq_enable_event = 0;
1068 	p->hardirq_disable_ip = _THIS_IP_;
1069 	p->hardirq_disable_event = 0;
1070 	p->softirqs_enabled = 1;
1071 	p->softirq_enable_ip = _THIS_IP_;
1072 	p->softirq_enable_event = 0;
1073 	p->softirq_disable_ip = 0;
1074 	p->softirq_disable_event = 0;
1075 	p->hardirq_context = 0;
1076 	p->softirq_context = 0;
1077 #endif
1078 #ifdef CONFIG_LOCKDEP
1079 	p->lockdep_depth = 0; /* no locks held yet */
1080 	p->curr_chain_key = 0;
1081 	p->lockdep_recursion = 0;
1082 #endif
1083 
1084 #ifdef CONFIG_DEBUG_MUTEXES
1085 	p->blocked_on = NULL; /* not blocked yet */
1086 #endif
1087 	if (unlikely(ptrace_reparented(current)))
1088 		ptrace_fork(p, clone_flags);
1089 
1090 	/* Perform scheduler related setup. Assign this task to a CPU. */
1091 	sched_fork(p, clone_flags);
1092 
1093 	if ((retval = audit_alloc(p)))
1094 		goto bad_fork_cleanup_policy;
1095 	/* copy all the process information */
1096 	if ((retval = copy_semundo(clone_flags, p)))
1097 		goto bad_fork_cleanup_audit;
1098 	if ((retval = copy_files(clone_flags, p)))
1099 		goto bad_fork_cleanup_semundo;
1100 	if ((retval = copy_fs(clone_flags, p)))
1101 		goto bad_fork_cleanup_files;
1102 	if ((retval = copy_sighand(clone_flags, p)))
1103 		goto bad_fork_cleanup_fs;
1104 	if ((retval = copy_signal(clone_flags, p)))
1105 		goto bad_fork_cleanup_sighand;
1106 	if ((retval = copy_mm(clone_flags, p)))
1107 		goto bad_fork_cleanup_signal;
1108 	if ((retval = copy_namespaces(clone_flags, p)))
1109 		goto bad_fork_cleanup_mm;
1110 	if ((retval = copy_io(clone_flags, p)))
1111 		goto bad_fork_cleanup_namespaces;
1112 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1113 	if (retval)
1114 		goto bad_fork_cleanup_io;
1115 
1116 	if (pid != &init_struct_pid) {
1117 		retval = -ENOMEM;
1118 		pid = alloc_pid(task_active_pid_ns(p));
1119 		if (!pid)
1120 			goto bad_fork_cleanup_io;
1121 
1122 		if (clone_flags & CLONE_NEWPID) {
1123 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1124 			if (retval < 0)
1125 				goto bad_fork_free_pid;
1126 		}
1127 	}
1128 
1129 	ftrace_graph_init_task(p);
1130 
1131 	p->pid = pid_nr(pid);
1132 	p->tgid = p->pid;
1133 	if (clone_flags & CLONE_THREAD)
1134 		p->tgid = current->tgid;
1135 
1136 	if (current->nsproxy != p->nsproxy) {
1137 		retval = ns_cgroup_clone(p, pid);
1138 		if (retval)
1139 			goto bad_fork_free_graph;
1140 	}
1141 
1142 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1143 	/*
1144 	 * Clear TID on mm_release()?
1145 	 */
1146 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1147 #ifdef CONFIG_FUTEX
1148 	p->robust_list = NULL;
1149 #ifdef CONFIG_COMPAT
1150 	p->compat_robust_list = NULL;
1151 #endif
1152 	INIT_LIST_HEAD(&p->pi_state_list);
1153 	p->pi_state_cache = NULL;
1154 #endif
1155 	/*
1156 	 * sigaltstack should be cleared when sharing the same VM
1157 	 */
1158 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1159 		p->sas_ss_sp = p->sas_ss_size = 0;
1160 
1161 	/*
1162 	 * Syscall tracing should be turned off in the child regardless
1163 	 * of CLONE_PTRACE.
1164 	 */
1165 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1166 #ifdef TIF_SYSCALL_EMU
1167 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1168 #endif
1169 	clear_all_latency_tracing(p);
1170 
1171 	/* Our parent execution domain becomes current domain
1172 	   These must match for thread signalling to apply */
1173 	p->parent_exec_id = p->self_exec_id;
1174 
1175 	/* ok, now we should be set up.. */
1176 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1177 	p->pdeath_signal = 0;
1178 	p->exit_state = 0;
1179 
1180 	/*
1181 	 * Ok, make it visible to the rest of the system.
1182 	 * We dont wake it up yet.
1183 	 */
1184 	p->group_leader = p;
1185 	INIT_LIST_HEAD(&p->thread_group);
1186 
1187 	/* Now that the task is set up, run cgroup callbacks if
1188 	 * necessary. We need to run them before the task is visible
1189 	 * on the tasklist. */
1190 	cgroup_fork_callbacks(p);
1191 	cgroup_callbacks_done = 1;
1192 
1193 	/* Need tasklist lock for parent etc handling! */
1194 	write_lock_irq(&tasklist_lock);
1195 
1196 	/*
1197 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1198 	 * not be changed, nor will its assigned CPU.
1199 	 *
1200 	 * The cpus_allowed mask of the parent may have changed after it was
1201 	 * copied first time - so re-copy it here, then check the child's CPU
1202 	 * to ensure it is on a valid CPU (and if not, just force it back to
1203 	 * parent's CPU). This avoids alot of nasty races.
1204 	 */
1205 	p->cpus_allowed = current->cpus_allowed;
1206 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1207 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1208 			!cpu_online(task_cpu(p))))
1209 		set_task_cpu(p, smp_processor_id());
1210 
1211 	/* CLONE_PARENT re-uses the old parent */
1212 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1213 		p->real_parent = current->real_parent;
1214 	else
1215 		p->real_parent = current;
1216 
1217 	spin_lock(&current->sighand->siglock);
1218 
1219 	/*
1220 	 * Process group and session signals need to be delivered to just the
1221 	 * parent before the fork or both the parent and the child after the
1222 	 * fork. Restart if a signal comes in before we add the new process to
1223 	 * it's process group.
1224 	 * A fatal signal pending means that current will exit, so the new
1225 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1226  	 */
1227 	recalc_sigpending();
1228 	if (signal_pending(current)) {
1229 		spin_unlock(&current->sighand->siglock);
1230 		write_unlock_irq(&tasklist_lock);
1231 		retval = -ERESTARTNOINTR;
1232 		goto bad_fork_free_graph;
1233 	}
1234 
1235 	if (clone_flags & CLONE_THREAD) {
1236 		p->group_leader = current->group_leader;
1237 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1238 	}
1239 
1240 	if (likely(p->pid)) {
1241 		list_add_tail(&p->sibling, &p->real_parent->children);
1242 		tracehook_finish_clone(p, clone_flags, trace);
1243 
1244 		if (thread_group_leader(p)) {
1245 			if (clone_flags & CLONE_NEWPID)
1246 				p->nsproxy->pid_ns->child_reaper = p;
1247 
1248 			p->signal->leader_pid = pid;
1249 			tty_kref_put(p->signal->tty);
1250 			p->signal->tty = tty_kref_get(current->signal->tty);
1251 			set_task_pgrp(p, task_pgrp_nr(current));
1252 			set_task_session(p, task_session_nr(current));
1253 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1254 			attach_pid(p, PIDTYPE_SID, task_session(current));
1255 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1256 			__get_cpu_var(process_counts)++;
1257 		}
1258 		attach_pid(p, PIDTYPE_PID, pid);
1259 		nr_threads++;
1260 	}
1261 
1262 	total_forks++;
1263 	spin_unlock(&current->sighand->siglock);
1264 	write_unlock_irq(&tasklist_lock);
1265 	proc_fork_connector(p);
1266 	cgroup_post_fork(p);
1267 	return p;
1268 
1269 bad_fork_free_graph:
1270 	ftrace_graph_exit_task(p);
1271 bad_fork_free_pid:
1272 	if (pid != &init_struct_pid)
1273 		free_pid(pid);
1274 bad_fork_cleanup_io:
1275 	put_io_context(p->io_context);
1276 bad_fork_cleanup_namespaces:
1277 	exit_task_namespaces(p);
1278 bad_fork_cleanup_mm:
1279 	if (p->mm)
1280 		mmput(p->mm);
1281 bad_fork_cleanup_signal:
1282 	cleanup_signal(p);
1283 bad_fork_cleanup_sighand:
1284 	__cleanup_sighand(p->sighand);
1285 bad_fork_cleanup_fs:
1286 	exit_fs(p); /* blocking */
1287 bad_fork_cleanup_files:
1288 	exit_files(p); /* blocking */
1289 bad_fork_cleanup_semundo:
1290 	exit_sem(p);
1291 bad_fork_cleanup_audit:
1292 	audit_free(p);
1293 bad_fork_cleanup_policy:
1294 #ifdef CONFIG_NUMA
1295 	mpol_put(p->mempolicy);
1296 bad_fork_cleanup_cgroup:
1297 #endif
1298 	cgroup_exit(p, cgroup_callbacks_done);
1299 	delayacct_tsk_free(p);
1300 	if (p->binfmt)
1301 		module_put(p->binfmt->module);
1302 bad_fork_cleanup_put_domain:
1303 	module_put(task_thread_info(p)->exec_domain->module);
1304 bad_fork_cleanup_count:
1305 	atomic_dec(&p->cred->user->processes);
1306 	put_cred(p->real_cred);
1307 	put_cred(p->cred);
1308 bad_fork_free:
1309 	free_task(p);
1310 fork_out:
1311 	return ERR_PTR(retval);
1312 }
1313 
1314 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1315 {
1316 	memset(regs, 0, sizeof(struct pt_regs));
1317 	return regs;
1318 }
1319 
1320 struct task_struct * __cpuinit fork_idle(int cpu)
1321 {
1322 	struct task_struct *task;
1323 	struct pt_regs regs;
1324 
1325 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1326 			    &init_struct_pid, 0);
1327 	if (!IS_ERR(task))
1328 		init_idle(task, cpu);
1329 
1330 	return task;
1331 }
1332 
1333 /*
1334  *  Ok, this is the main fork-routine.
1335  *
1336  * It copies the process, and if successful kick-starts
1337  * it and waits for it to finish using the VM if required.
1338  */
1339 long do_fork(unsigned long clone_flags,
1340 	      unsigned long stack_start,
1341 	      struct pt_regs *regs,
1342 	      unsigned long stack_size,
1343 	      int __user *parent_tidptr,
1344 	      int __user *child_tidptr)
1345 {
1346 	struct task_struct *p;
1347 	int trace = 0;
1348 	long nr;
1349 
1350 	/*
1351 	 * Do some preliminary argument and permissions checking before we
1352 	 * actually start allocating stuff
1353 	 */
1354 	if (clone_flags & CLONE_NEWUSER) {
1355 		if (clone_flags & CLONE_THREAD)
1356 			return -EINVAL;
1357 		/* hopefully this check will go away when userns support is
1358 		 * complete
1359 		 */
1360 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1361 				!capable(CAP_SETGID))
1362 			return -EPERM;
1363 	}
1364 
1365 	/*
1366 	 * We hope to recycle these flags after 2.6.26
1367 	 */
1368 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1369 		static int __read_mostly count = 100;
1370 
1371 		if (count > 0 && printk_ratelimit()) {
1372 			char comm[TASK_COMM_LEN];
1373 
1374 			count--;
1375 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1376 					"clone flags 0x%lx\n",
1377 				get_task_comm(comm, current),
1378 				clone_flags & CLONE_STOPPED);
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * When called from kernel_thread, don't do user tracing stuff.
1384 	 */
1385 	if (likely(user_mode(regs)))
1386 		trace = tracehook_prepare_clone(clone_flags);
1387 
1388 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1389 			 child_tidptr, NULL, trace);
1390 	/*
1391 	 * Do this prior waking up the new thread - the thread pointer
1392 	 * might get invalid after that point, if the thread exits quickly.
1393 	 */
1394 	if (!IS_ERR(p)) {
1395 		struct completion vfork;
1396 
1397 		trace_sched_process_fork(current, p);
1398 
1399 		nr = task_pid_vnr(p);
1400 
1401 		if (clone_flags & CLONE_PARENT_SETTID)
1402 			put_user(nr, parent_tidptr);
1403 
1404 		if (clone_flags & CLONE_VFORK) {
1405 			p->vfork_done = &vfork;
1406 			init_completion(&vfork);
1407 		}
1408 
1409 		audit_finish_fork(p);
1410 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1411 
1412 		/*
1413 		 * We set PF_STARTING at creation in case tracing wants to
1414 		 * use this to distinguish a fully live task from one that
1415 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1416 		 * clear it and set the child going.
1417 		 */
1418 		p->flags &= ~PF_STARTING;
1419 
1420 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1421 			/*
1422 			 * We'll start up with an immediate SIGSTOP.
1423 			 */
1424 			sigaddset(&p->pending.signal, SIGSTOP);
1425 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1426 			__set_task_state(p, TASK_STOPPED);
1427 		} else {
1428 			wake_up_new_task(p, clone_flags);
1429 		}
1430 
1431 		tracehook_report_clone_complete(trace, regs,
1432 						clone_flags, nr, p);
1433 
1434 		if (clone_flags & CLONE_VFORK) {
1435 			freezer_do_not_count();
1436 			wait_for_completion(&vfork);
1437 			freezer_count();
1438 			tracehook_report_vfork_done(p, nr);
1439 		}
1440 	} else {
1441 		nr = PTR_ERR(p);
1442 	}
1443 	return nr;
1444 }
1445 
1446 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1447 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1448 #endif
1449 
1450 static void sighand_ctor(void *data)
1451 {
1452 	struct sighand_struct *sighand = data;
1453 
1454 	spin_lock_init(&sighand->siglock);
1455 	init_waitqueue_head(&sighand->signalfd_wqh);
1456 }
1457 
1458 void __init proc_caches_init(void)
1459 {
1460 	sighand_cachep = kmem_cache_create("sighand_cache",
1461 			sizeof(struct sighand_struct), 0,
1462 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1463 			sighand_ctor);
1464 	signal_cachep = kmem_cache_create("signal_cache",
1465 			sizeof(struct signal_struct), 0,
1466 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1467 	files_cachep = kmem_cache_create("files_cache",
1468 			sizeof(struct files_struct), 0,
1469 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1470 	fs_cachep = kmem_cache_create("fs_cache",
1471 			sizeof(struct fs_struct), 0,
1472 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1473 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1474 			sizeof(struct vm_area_struct), 0,
1475 			SLAB_PANIC, NULL);
1476 	mm_cachep = kmem_cache_create("mm_struct",
1477 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1478 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1479 }
1480 
1481 /*
1482  * Check constraints on flags passed to the unshare system call and
1483  * force unsharing of additional process context as appropriate.
1484  */
1485 static void check_unshare_flags(unsigned long *flags_ptr)
1486 {
1487 	/*
1488 	 * If unsharing a thread from a thread group, must also
1489 	 * unshare vm.
1490 	 */
1491 	if (*flags_ptr & CLONE_THREAD)
1492 		*flags_ptr |= CLONE_VM;
1493 
1494 	/*
1495 	 * If unsharing vm, must also unshare signal handlers.
1496 	 */
1497 	if (*flags_ptr & CLONE_VM)
1498 		*flags_ptr |= CLONE_SIGHAND;
1499 
1500 	/*
1501 	 * If unsharing signal handlers and the task was created
1502 	 * using CLONE_THREAD, then must unshare the thread
1503 	 */
1504 	if ((*flags_ptr & CLONE_SIGHAND) &&
1505 	    (atomic_read(&current->signal->count) > 1))
1506 		*flags_ptr |= CLONE_THREAD;
1507 
1508 	/*
1509 	 * If unsharing namespace, must also unshare filesystem information.
1510 	 */
1511 	if (*flags_ptr & CLONE_NEWNS)
1512 		*flags_ptr |= CLONE_FS;
1513 }
1514 
1515 /*
1516  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1517  */
1518 static int unshare_thread(unsigned long unshare_flags)
1519 {
1520 	if (unshare_flags & CLONE_THREAD)
1521 		return -EINVAL;
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Unshare the filesystem structure if it is being shared
1528  */
1529 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1530 {
1531 	struct fs_struct *fs = current->fs;
1532 
1533 	if ((unshare_flags & CLONE_FS) &&
1534 	    (fs && atomic_read(&fs->count) > 1)) {
1535 		*new_fsp = __copy_fs_struct(current->fs);
1536 		if (!*new_fsp)
1537 			return -ENOMEM;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Unsharing of sighand is not supported yet
1545  */
1546 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1547 {
1548 	struct sighand_struct *sigh = current->sighand;
1549 
1550 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1551 		return -EINVAL;
1552 	else
1553 		return 0;
1554 }
1555 
1556 /*
1557  * Unshare vm if it is being shared
1558  */
1559 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1560 {
1561 	struct mm_struct *mm = current->mm;
1562 
1563 	if ((unshare_flags & CLONE_VM) &&
1564 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1565 		return -EINVAL;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Unshare file descriptor table if it is being shared
1573  */
1574 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1575 {
1576 	struct files_struct *fd = current->files;
1577 	int error = 0;
1578 
1579 	if ((unshare_flags & CLONE_FILES) &&
1580 	    (fd && atomic_read(&fd->count) > 1)) {
1581 		*new_fdp = dup_fd(fd, &error);
1582 		if (!*new_fdp)
1583 			return error;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 /*
1590  * unshare allows a process to 'unshare' part of the process
1591  * context which was originally shared using clone.  copy_*
1592  * functions used by do_fork() cannot be used here directly
1593  * because they modify an inactive task_struct that is being
1594  * constructed. Here we are modifying the current, active,
1595  * task_struct.
1596  */
1597 asmlinkage long sys_unshare(unsigned long unshare_flags)
1598 {
1599 	int err = 0;
1600 	struct fs_struct *fs, *new_fs = NULL;
1601 	struct sighand_struct *new_sigh = NULL;
1602 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1603 	struct files_struct *fd, *new_fd = NULL;
1604 	struct nsproxy *new_nsproxy = NULL;
1605 	int do_sysvsem = 0;
1606 
1607 	check_unshare_flags(&unshare_flags);
1608 
1609 	/* Return -EINVAL for all unsupported flags */
1610 	err = -EINVAL;
1611 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1614 		goto bad_unshare_out;
1615 
1616 	/*
1617 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1618 	 * to a new ipc namespace, the semaphore arrays from the old
1619 	 * namespace are unreachable.
1620 	 */
1621 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1622 		do_sysvsem = 1;
1623 	if ((err = unshare_thread(unshare_flags)))
1624 		goto bad_unshare_out;
1625 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1626 		goto bad_unshare_cleanup_thread;
1627 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1628 		goto bad_unshare_cleanup_fs;
1629 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1630 		goto bad_unshare_cleanup_sigh;
1631 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1632 		goto bad_unshare_cleanup_vm;
1633 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1634 			new_fs)))
1635 		goto bad_unshare_cleanup_fd;
1636 
1637 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1638 		if (do_sysvsem) {
1639 			/*
1640 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1641 			 */
1642 			exit_sem(current);
1643 		}
1644 
1645 		if (new_nsproxy) {
1646 			switch_task_namespaces(current, new_nsproxy);
1647 			new_nsproxy = NULL;
1648 		}
1649 
1650 		task_lock(current);
1651 
1652 		if (new_fs) {
1653 			fs = current->fs;
1654 			current->fs = new_fs;
1655 			new_fs = fs;
1656 		}
1657 
1658 		if (new_mm) {
1659 			mm = current->mm;
1660 			active_mm = current->active_mm;
1661 			current->mm = new_mm;
1662 			current->active_mm = new_mm;
1663 			activate_mm(active_mm, new_mm);
1664 			new_mm = mm;
1665 		}
1666 
1667 		if (new_fd) {
1668 			fd = current->files;
1669 			current->files = new_fd;
1670 			new_fd = fd;
1671 		}
1672 
1673 		task_unlock(current);
1674 	}
1675 
1676 	if (new_nsproxy)
1677 		put_nsproxy(new_nsproxy);
1678 
1679 bad_unshare_cleanup_fd:
1680 	if (new_fd)
1681 		put_files_struct(new_fd);
1682 
1683 bad_unshare_cleanup_vm:
1684 	if (new_mm)
1685 		mmput(new_mm);
1686 
1687 bad_unshare_cleanup_sigh:
1688 	if (new_sigh)
1689 		if (atomic_dec_and_test(&new_sigh->count))
1690 			kmem_cache_free(sighand_cachep, new_sigh);
1691 
1692 bad_unshare_cleanup_fs:
1693 	if (new_fs)
1694 		put_fs_struct(new_fs);
1695 
1696 bad_unshare_cleanup_thread:
1697 bad_unshare_out:
1698 	return err;
1699 }
1700 
1701 /*
1702  *	Helper to unshare the files of the current task.
1703  *	We don't want to expose copy_files internals to
1704  *	the exec layer of the kernel.
1705  */
1706 
1707 int unshare_files(struct files_struct **displaced)
1708 {
1709 	struct task_struct *task = current;
1710 	struct files_struct *copy = NULL;
1711 	int error;
1712 
1713 	error = unshare_fd(CLONE_FILES, &copy);
1714 	if (error || !copy) {
1715 		*displaced = NULL;
1716 		return error;
1717 	}
1718 	*displaced = task->files;
1719 	task_lock(task);
1720 	task->files = copy;
1721 	task_unlock(task);
1722 	return 0;
1723 }
1724