1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 440 { 441 struct vm_area_struct *vma; 442 443 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 444 if (!vma) 445 return NULL; 446 447 vma_init(vma, mm); 448 449 return vma; 450 } 451 452 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 453 { 454 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 455 456 if (!new) 457 return NULL; 458 459 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 460 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 461 /* 462 * orig->shared.rb may be modified concurrently, but the clone 463 * will be reinitialized. 464 */ 465 data_race(memcpy(new, orig, sizeof(*new))); 466 vma_lock_init(new); 467 INIT_LIST_HEAD(&new->anon_vma_chain); 468 vma_numab_state_init(new); 469 dup_anon_vma_name(orig, new); 470 471 return new; 472 } 473 474 void __vm_area_free(struct vm_area_struct *vma) 475 { 476 vma_numab_state_free(vma); 477 free_anon_vma_name(vma); 478 kmem_cache_free(vm_area_cachep, vma); 479 } 480 481 #ifdef CONFIG_PER_VMA_LOCK 482 static void vm_area_free_rcu_cb(struct rcu_head *head) 483 { 484 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 485 vm_rcu); 486 487 /* The vma should not be locked while being destroyed. */ 488 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock.lock), vma); 489 __vm_area_free(vma); 490 } 491 #endif 492 493 void vm_area_free(struct vm_area_struct *vma) 494 { 495 #ifdef CONFIG_PER_VMA_LOCK 496 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 497 #else 498 __vm_area_free(vma); 499 #endif 500 } 501 502 static void account_kernel_stack(struct task_struct *tsk, int account) 503 { 504 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 505 struct vm_struct *vm = task_stack_vm_area(tsk); 506 int i; 507 508 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 509 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 510 account * (PAGE_SIZE / 1024)); 511 } else { 512 void *stack = task_stack_page(tsk); 513 514 /* All stack pages are in the same node. */ 515 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 516 account * (THREAD_SIZE / 1024)); 517 } 518 } 519 520 void exit_task_stack_account(struct task_struct *tsk) 521 { 522 account_kernel_stack(tsk, -1); 523 524 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 525 struct vm_struct *vm; 526 int i; 527 528 vm = task_stack_vm_area(tsk); 529 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 530 memcg_kmem_uncharge_page(vm->pages[i], 0); 531 } 532 } 533 534 static void release_task_stack(struct task_struct *tsk) 535 { 536 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 537 return; /* Better to leak the stack than to free prematurely */ 538 539 free_thread_stack(tsk); 540 } 541 542 #ifdef CONFIG_THREAD_INFO_IN_TASK 543 void put_task_stack(struct task_struct *tsk) 544 { 545 if (refcount_dec_and_test(&tsk->stack_refcount)) 546 release_task_stack(tsk); 547 } 548 #endif 549 550 void free_task(struct task_struct *tsk) 551 { 552 #ifdef CONFIG_SECCOMP 553 WARN_ON_ONCE(tsk->seccomp.filter); 554 #endif 555 release_user_cpus_ptr(tsk); 556 scs_release(tsk); 557 558 #ifndef CONFIG_THREAD_INFO_IN_TASK 559 /* 560 * The task is finally done with both the stack and thread_info, 561 * so free both. 562 */ 563 release_task_stack(tsk); 564 #else 565 /* 566 * If the task had a separate stack allocation, it should be gone 567 * by now. 568 */ 569 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 570 #endif 571 rt_mutex_debug_task_free(tsk); 572 ftrace_graph_exit_task(tsk); 573 arch_release_task_struct(tsk); 574 if (tsk->flags & PF_KTHREAD) 575 free_kthread_struct(tsk); 576 bpf_task_storage_free(tsk); 577 free_task_struct(tsk); 578 } 579 EXPORT_SYMBOL(free_task); 580 581 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 582 { 583 struct file *exe_file; 584 585 exe_file = get_mm_exe_file(oldmm); 586 RCU_INIT_POINTER(mm->exe_file, exe_file); 587 /* 588 * We depend on the oldmm having properly denied write access to the 589 * exe_file already. 590 */ 591 if (exe_file && exe_file_deny_write_access(exe_file)) 592 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 593 } 594 595 #ifdef CONFIG_MMU 596 static __latent_entropy int dup_mmap(struct mm_struct *mm, 597 struct mm_struct *oldmm) 598 { 599 struct vm_area_struct *mpnt, *tmp; 600 int retval; 601 unsigned long charge = 0; 602 LIST_HEAD(uf); 603 VMA_ITERATOR(vmi, mm, 0); 604 605 if (mmap_write_lock_killable(oldmm)) 606 return -EINTR; 607 flush_cache_dup_mm(oldmm); 608 uprobe_dup_mmap(oldmm, mm); 609 /* 610 * Not linked in yet - no deadlock potential: 611 */ 612 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 613 614 /* No ordering required: file already has been exposed. */ 615 dup_mm_exe_file(mm, oldmm); 616 617 mm->total_vm = oldmm->total_vm; 618 mm->data_vm = oldmm->data_vm; 619 mm->exec_vm = oldmm->exec_vm; 620 mm->stack_vm = oldmm->stack_vm; 621 622 /* Use __mt_dup() to efficiently build an identical maple tree. */ 623 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 624 if (unlikely(retval)) 625 goto out; 626 627 mt_clear_in_rcu(vmi.mas.tree); 628 for_each_vma(vmi, mpnt) { 629 struct file *file; 630 631 vma_start_write(mpnt); 632 if (mpnt->vm_flags & VM_DONTCOPY) { 633 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 634 mpnt->vm_end, GFP_KERNEL); 635 if (retval) 636 goto loop_out; 637 638 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 639 continue; 640 } 641 charge = 0; 642 /* 643 * Don't duplicate many vmas if we've been oom-killed (for 644 * example) 645 */ 646 if (fatal_signal_pending(current)) { 647 retval = -EINTR; 648 goto loop_out; 649 } 650 if (mpnt->vm_flags & VM_ACCOUNT) { 651 unsigned long len = vma_pages(mpnt); 652 653 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 654 goto fail_nomem; 655 charge = len; 656 } 657 tmp = vm_area_dup(mpnt); 658 if (!tmp) 659 goto fail_nomem; 660 retval = vma_dup_policy(mpnt, tmp); 661 if (retval) 662 goto fail_nomem_policy; 663 tmp->vm_mm = mm; 664 retval = dup_userfaultfd(tmp, &uf); 665 if (retval) 666 goto fail_nomem_anon_vma_fork; 667 if (tmp->vm_flags & VM_WIPEONFORK) { 668 /* 669 * VM_WIPEONFORK gets a clean slate in the child. 670 * Don't prepare anon_vma until fault since we don't 671 * copy page for current vma. 672 */ 673 tmp->anon_vma = NULL; 674 } else if (anon_vma_fork(tmp, mpnt)) 675 goto fail_nomem_anon_vma_fork; 676 vm_flags_clear(tmp, VM_LOCKED_MASK); 677 /* 678 * Copy/update hugetlb private vma information. 679 */ 680 if (is_vm_hugetlb_page(tmp)) 681 hugetlb_dup_vma_private(tmp); 682 683 /* 684 * Link the vma into the MT. After using __mt_dup(), memory 685 * allocation is not necessary here, so it cannot fail. 686 */ 687 vma_iter_bulk_store(&vmi, tmp); 688 689 mm->map_count++; 690 691 if (tmp->vm_ops && tmp->vm_ops->open) 692 tmp->vm_ops->open(tmp); 693 694 file = tmp->vm_file; 695 if (file) { 696 struct address_space *mapping = file->f_mapping; 697 698 get_file(file); 699 i_mmap_lock_write(mapping); 700 if (vma_is_shared_maywrite(tmp)) 701 mapping_allow_writable(mapping); 702 flush_dcache_mmap_lock(mapping); 703 /* insert tmp into the share list, just after mpnt */ 704 vma_interval_tree_insert_after(tmp, mpnt, 705 &mapping->i_mmap); 706 flush_dcache_mmap_unlock(mapping); 707 i_mmap_unlock_write(mapping); 708 } 709 710 if (!(tmp->vm_flags & VM_WIPEONFORK)) 711 retval = copy_page_range(tmp, mpnt); 712 713 if (retval) { 714 mpnt = vma_next(&vmi); 715 goto loop_out; 716 } 717 } 718 /* a new mm has just been created */ 719 retval = arch_dup_mmap(oldmm, mm); 720 loop_out: 721 vma_iter_free(&vmi); 722 if (!retval) { 723 mt_set_in_rcu(vmi.mas.tree); 724 ksm_fork(mm, oldmm); 725 khugepaged_fork(mm, oldmm); 726 } else { 727 728 /* 729 * The entire maple tree has already been duplicated. If the 730 * mmap duplication fails, mark the failure point with 731 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 732 * stop releasing VMAs that have not been duplicated after this 733 * point. 734 */ 735 if (mpnt) { 736 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 737 mas_store(&vmi.mas, XA_ZERO_ENTRY); 738 /* Avoid OOM iterating a broken tree */ 739 set_bit(MMF_OOM_SKIP, &mm->flags); 740 } 741 /* 742 * The mm_struct is going to exit, but the locks will be dropped 743 * first. Set the mm_struct as unstable is advisable as it is 744 * not fully initialised. 745 */ 746 set_bit(MMF_UNSTABLE, &mm->flags); 747 } 748 out: 749 mmap_write_unlock(mm); 750 flush_tlb_mm(oldmm); 751 mmap_write_unlock(oldmm); 752 if (!retval) 753 dup_userfaultfd_complete(&uf); 754 else 755 dup_userfaultfd_fail(&uf); 756 return retval; 757 758 fail_nomem_anon_vma_fork: 759 mpol_put(vma_policy(tmp)); 760 fail_nomem_policy: 761 vm_area_free(tmp); 762 fail_nomem: 763 retval = -ENOMEM; 764 vm_unacct_memory(charge); 765 goto loop_out; 766 } 767 768 static inline int mm_alloc_pgd(struct mm_struct *mm) 769 { 770 mm->pgd = pgd_alloc(mm); 771 if (unlikely(!mm->pgd)) 772 return -ENOMEM; 773 return 0; 774 } 775 776 static inline void mm_free_pgd(struct mm_struct *mm) 777 { 778 pgd_free(mm, mm->pgd); 779 } 780 #else 781 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 782 { 783 mmap_write_lock(oldmm); 784 dup_mm_exe_file(mm, oldmm); 785 mmap_write_unlock(oldmm); 786 return 0; 787 } 788 #define mm_alloc_pgd(mm) (0) 789 #define mm_free_pgd(mm) 790 #endif /* CONFIG_MMU */ 791 792 static void check_mm(struct mm_struct *mm) 793 { 794 int i; 795 796 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 797 "Please make sure 'struct resident_page_types[]' is updated as well"); 798 799 for (i = 0; i < NR_MM_COUNTERS; i++) { 800 long x = percpu_counter_sum(&mm->rss_stat[i]); 801 802 if (unlikely(x)) 803 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 804 mm, resident_page_types[i], x); 805 } 806 807 if (mm_pgtables_bytes(mm)) 808 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 809 mm_pgtables_bytes(mm)); 810 811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 812 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 813 #endif 814 } 815 816 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 817 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 818 819 static void do_check_lazy_tlb(void *arg) 820 { 821 struct mm_struct *mm = arg; 822 823 WARN_ON_ONCE(current->active_mm == mm); 824 } 825 826 static void do_shoot_lazy_tlb(void *arg) 827 { 828 struct mm_struct *mm = arg; 829 830 if (current->active_mm == mm) { 831 WARN_ON_ONCE(current->mm); 832 current->active_mm = &init_mm; 833 switch_mm(mm, &init_mm, current); 834 } 835 } 836 837 static void cleanup_lazy_tlbs(struct mm_struct *mm) 838 { 839 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 840 /* 841 * In this case, lazy tlb mms are refounted and would not reach 842 * __mmdrop until all CPUs have switched away and mmdrop()ed. 843 */ 844 return; 845 } 846 847 /* 848 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 849 * requires lazy mm users to switch to another mm when the refcount 850 * drops to zero, before the mm is freed. This requires IPIs here to 851 * switch kernel threads to init_mm. 852 * 853 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 854 * switch with the final userspace teardown TLB flush which leaves the 855 * mm lazy on this CPU but no others, reducing the need for additional 856 * IPIs here. There are cases where a final IPI is still required here, 857 * such as the final mmdrop being performed on a different CPU than the 858 * one exiting, or kernel threads using the mm when userspace exits. 859 * 860 * IPI overheads have not found to be expensive, but they could be 861 * reduced in a number of possible ways, for example (roughly 862 * increasing order of complexity): 863 * - The last lazy reference created by exit_mm() could instead switch 864 * to init_mm, however it's probable this will run on the same CPU 865 * immediately afterwards, so this may not reduce IPIs much. 866 * - A batch of mms requiring IPIs could be gathered and freed at once. 867 * - CPUs store active_mm where it can be remotely checked without a 868 * lock, to filter out false-positives in the cpumask. 869 * - After mm_users or mm_count reaches zero, switching away from the 870 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 871 * with some batching or delaying of the final IPIs. 872 * - A delayed freeing and RCU-like quiescing sequence based on mm 873 * switching to avoid IPIs completely. 874 */ 875 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 876 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 877 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 878 } 879 880 /* 881 * Called when the last reference to the mm 882 * is dropped: either by a lazy thread or by 883 * mmput. Free the page directory and the mm. 884 */ 885 void __mmdrop(struct mm_struct *mm) 886 { 887 BUG_ON(mm == &init_mm); 888 WARN_ON_ONCE(mm == current->mm); 889 890 /* Ensure no CPUs are using this as their lazy tlb mm */ 891 cleanup_lazy_tlbs(mm); 892 893 WARN_ON_ONCE(mm == current->active_mm); 894 mm_free_pgd(mm); 895 destroy_context(mm); 896 mmu_notifier_subscriptions_destroy(mm); 897 check_mm(mm); 898 put_user_ns(mm->user_ns); 899 mm_pasid_drop(mm); 900 mm_destroy_cid(mm); 901 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 902 903 free_mm(mm); 904 } 905 EXPORT_SYMBOL_GPL(__mmdrop); 906 907 static void mmdrop_async_fn(struct work_struct *work) 908 { 909 struct mm_struct *mm; 910 911 mm = container_of(work, struct mm_struct, async_put_work); 912 __mmdrop(mm); 913 } 914 915 static void mmdrop_async(struct mm_struct *mm) 916 { 917 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 918 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 919 schedule_work(&mm->async_put_work); 920 } 921 } 922 923 static inline void free_signal_struct(struct signal_struct *sig) 924 { 925 taskstats_tgid_free(sig); 926 sched_autogroup_exit(sig); 927 /* 928 * __mmdrop is not safe to call from softirq context on x86 due to 929 * pgd_dtor so postpone it to the async context 930 */ 931 if (sig->oom_mm) 932 mmdrop_async(sig->oom_mm); 933 kmem_cache_free(signal_cachep, sig); 934 } 935 936 static inline void put_signal_struct(struct signal_struct *sig) 937 { 938 if (refcount_dec_and_test(&sig->sigcnt)) 939 free_signal_struct(sig); 940 } 941 942 void __put_task_struct(struct task_struct *tsk) 943 { 944 WARN_ON(!tsk->exit_state); 945 WARN_ON(refcount_read(&tsk->usage)); 946 WARN_ON(tsk == current); 947 948 sched_ext_free(tsk); 949 io_uring_free(tsk); 950 cgroup_free(tsk); 951 task_numa_free(tsk, true); 952 security_task_free(tsk); 953 exit_creds(tsk); 954 delayacct_tsk_free(tsk); 955 put_signal_struct(tsk->signal); 956 sched_core_free(tsk); 957 free_task(tsk); 958 } 959 EXPORT_SYMBOL_GPL(__put_task_struct); 960 961 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 962 { 963 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 964 965 __put_task_struct(task); 966 } 967 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 968 969 void __init __weak arch_task_cache_init(void) { } 970 971 /* 972 * set_max_threads 973 */ 974 static void __init set_max_threads(unsigned int max_threads_suggested) 975 { 976 u64 threads; 977 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 978 979 /* 980 * The number of threads shall be limited such that the thread 981 * structures may only consume a small part of the available memory. 982 */ 983 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 984 threads = MAX_THREADS; 985 else 986 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 987 (u64) THREAD_SIZE * 8UL); 988 989 if (threads > max_threads_suggested) 990 threads = max_threads_suggested; 991 992 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 993 } 994 995 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 996 /* Initialized by the architecture: */ 997 int arch_task_struct_size __read_mostly; 998 #endif 999 1000 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1001 { 1002 /* Fetch thread_struct whitelist for the architecture. */ 1003 arch_thread_struct_whitelist(offset, size); 1004 1005 /* 1006 * Handle zero-sized whitelist or empty thread_struct, otherwise 1007 * adjust offset to position of thread_struct in task_struct. 1008 */ 1009 if (unlikely(*size == 0)) 1010 *offset = 0; 1011 else 1012 *offset += offsetof(struct task_struct, thread); 1013 } 1014 1015 void __init fork_init(void) 1016 { 1017 int i; 1018 #ifndef ARCH_MIN_TASKALIGN 1019 #define ARCH_MIN_TASKALIGN 0 1020 #endif 1021 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1022 unsigned long useroffset, usersize; 1023 1024 /* create a slab on which task_structs can be allocated */ 1025 task_struct_whitelist(&useroffset, &usersize); 1026 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1027 arch_task_struct_size, align, 1028 SLAB_PANIC|SLAB_ACCOUNT, 1029 useroffset, usersize, NULL); 1030 1031 /* do the arch specific task caches init */ 1032 arch_task_cache_init(); 1033 1034 set_max_threads(MAX_THREADS); 1035 1036 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1037 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1038 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1039 init_task.signal->rlim[RLIMIT_NPROC]; 1040 1041 for (i = 0; i < UCOUNT_COUNTS; i++) 1042 init_user_ns.ucount_max[i] = max_threads/2; 1043 1044 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1045 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1046 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1047 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1048 1049 #ifdef CONFIG_VMAP_STACK 1050 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1051 NULL, free_vm_stack_cache); 1052 #endif 1053 1054 scs_init(); 1055 1056 lockdep_init_task(&init_task); 1057 uprobes_init(); 1058 } 1059 1060 int __weak arch_dup_task_struct(struct task_struct *dst, 1061 struct task_struct *src) 1062 { 1063 *dst = *src; 1064 return 0; 1065 } 1066 1067 void set_task_stack_end_magic(struct task_struct *tsk) 1068 { 1069 unsigned long *stackend; 1070 1071 stackend = end_of_stack(tsk); 1072 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1073 } 1074 1075 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1076 { 1077 struct task_struct *tsk; 1078 int err; 1079 1080 if (node == NUMA_NO_NODE) 1081 node = tsk_fork_get_node(orig); 1082 tsk = alloc_task_struct_node(node); 1083 if (!tsk) 1084 return NULL; 1085 1086 err = arch_dup_task_struct(tsk, orig); 1087 if (err) 1088 goto free_tsk; 1089 1090 err = alloc_thread_stack_node(tsk, node); 1091 if (err) 1092 goto free_tsk; 1093 1094 #ifdef CONFIG_THREAD_INFO_IN_TASK 1095 refcount_set(&tsk->stack_refcount, 1); 1096 #endif 1097 account_kernel_stack(tsk, 1); 1098 1099 err = scs_prepare(tsk, node); 1100 if (err) 1101 goto free_stack; 1102 1103 #ifdef CONFIG_SECCOMP 1104 /* 1105 * We must handle setting up seccomp filters once we're under 1106 * the sighand lock in case orig has changed between now and 1107 * then. Until then, filter must be NULL to avoid messing up 1108 * the usage counts on the error path calling free_task. 1109 */ 1110 tsk->seccomp.filter = NULL; 1111 #endif 1112 1113 setup_thread_stack(tsk, orig); 1114 clear_user_return_notifier(tsk); 1115 clear_tsk_need_resched(tsk); 1116 set_task_stack_end_magic(tsk); 1117 clear_syscall_work_syscall_user_dispatch(tsk); 1118 1119 #ifdef CONFIG_STACKPROTECTOR 1120 tsk->stack_canary = get_random_canary(); 1121 #endif 1122 if (orig->cpus_ptr == &orig->cpus_mask) 1123 tsk->cpus_ptr = &tsk->cpus_mask; 1124 dup_user_cpus_ptr(tsk, orig, node); 1125 1126 /* 1127 * One for the user space visible state that goes away when reaped. 1128 * One for the scheduler. 1129 */ 1130 refcount_set(&tsk->rcu_users, 2); 1131 /* One for the rcu users */ 1132 refcount_set(&tsk->usage, 1); 1133 #ifdef CONFIG_BLK_DEV_IO_TRACE 1134 tsk->btrace_seq = 0; 1135 #endif 1136 tsk->splice_pipe = NULL; 1137 tsk->task_frag.page = NULL; 1138 tsk->wake_q.next = NULL; 1139 tsk->worker_private = NULL; 1140 1141 kcov_task_init(tsk); 1142 kmsan_task_create(tsk); 1143 kmap_local_fork(tsk); 1144 1145 #ifdef CONFIG_FAULT_INJECTION 1146 tsk->fail_nth = 0; 1147 #endif 1148 1149 #ifdef CONFIG_BLK_CGROUP 1150 tsk->throttle_disk = NULL; 1151 tsk->use_memdelay = 0; 1152 #endif 1153 1154 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1155 tsk->pasid_activated = 0; 1156 #endif 1157 1158 #ifdef CONFIG_MEMCG 1159 tsk->active_memcg = NULL; 1160 #endif 1161 1162 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1163 tsk->reported_split_lock = 0; 1164 #endif 1165 1166 #ifdef CONFIG_SCHED_MM_CID 1167 tsk->mm_cid = -1; 1168 tsk->last_mm_cid = -1; 1169 tsk->mm_cid_active = 0; 1170 tsk->migrate_from_cpu = -1; 1171 #endif 1172 return tsk; 1173 1174 free_stack: 1175 exit_task_stack_account(tsk); 1176 free_thread_stack(tsk); 1177 free_tsk: 1178 free_task_struct(tsk); 1179 return NULL; 1180 } 1181 1182 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1183 1184 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1185 1186 static int __init coredump_filter_setup(char *s) 1187 { 1188 default_dump_filter = 1189 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1190 MMF_DUMP_FILTER_MASK; 1191 return 1; 1192 } 1193 1194 __setup("coredump_filter=", coredump_filter_setup); 1195 1196 #include <linux/init_task.h> 1197 1198 static void mm_init_aio(struct mm_struct *mm) 1199 { 1200 #ifdef CONFIG_AIO 1201 spin_lock_init(&mm->ioctx_lock); 1202 mm->ioctx_table = NULL; 1203 #endif 1204 } 1205 1206 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1207 struct task_struct *p) 1208 { 1209 #ifdef CONFIG_MEMCG 1210 if (mm->owner == p) 1211 WRITE_ONCE(mm->owner, NULL); 1212 #endif 1213 } 1214 1215 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1216 { 1217 #ifdef CONFIG_MEMCG 1218 mm->owner = p; 1219 #endif 1220 } 1221 1222 static void mm_init_uprobes_state(struct mm_struct *mm) 1223 { 1224 #ifdef CONFIG_UPROBES 1225 mm->uprobes_state.xol_area = NULL; 1226 #endif 1227 } 1228 1229 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1230 struct user_namespace *user_ns) 1231 { 1232 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1233 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1234 atomic_set(&mm->mm_users, 1); 1235 atomic_set(&mm->mm_count, 1); 1236 seqcount_init(&mm->write_protect_seq); 1237 mmap_init_lock(mm); 1238 INIT_LIST_HEAD(&mm->mmlist); 1239 mm_pgtables_bytes_init(mm); 1240 mm->map_count = 0; 1241 mm->locked_vm = 0; 1242 atomic64_set(&mm->pinned_vm, 0); 1243 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1244 spin_lock_init(&mm->page_table_lock); 1245 spin_lock_init(&mm->arg_lock); 1246 mm_init_cpumask(mm); 1247 mm_init_aio(mm); 1248 mm_init_owner(mm, p); 1249 mm_pasid_init(mm); 1250 RCU_INIT_POINTER(mm->exe_file, NULL); 1251 mmu_notifier_subscriptions_init(mm); 1252 init_tlb_flush_pending(mm); 1253 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1254 mm->pmd_huge_pte = NULL; 1255 #endif 1256 mm_init_uprobes_state(mm); 1257 hugetlb_count_init(mm); 1258 1259 if (current->mm) { 1260 mm->flags = mmf_init_flags(current->mm->flags); 1261 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1262 } else { 1263 mm->flags = default_dump_filter; 1264 mm->def_flags = 0; 1265 } 1266 1267 if (mm_alloc_pgd(mm)) 1268 goto fail_nopgd; 1269 1270 if (init_new_context(p, mm)) 1271 goto fail_nocontext; 1272 1273 if (mm_alloc_cid(mm, p)) 1274 goto fail_cid; 1275 1276 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1277 NR_MM_COUNTERS)) 1278 goto fail_pcpu; 1279 1280 mm->user_ns = get_user_ns(user_ns); 1281 lru_gen_init_mm(mm); 1282 return mm; 1283 1284 fail_pcpu: 1285 mm_destroy_cid(mm); 1286 fail_cid: 1287 destroy_context(mm); 1288 fail_nocontext: 1289 mm_free_pgd(mm); 1290 fail_nopgd: 1291 free_mm(mm); 1292 return NULL; 1293 } 1294 1295 /* 1296 * Allocate and initialize an mm_struct. 1297 */ 1298 struct mm_struct *mm_alloc(void) 1299 { 1300 struct mm_struct *mm; 1301 1302 mm = allocate_mm(); 1303 if (!mm) 1304 return NULL; 1305 1306 memset(mm, 0, sizeof(*mm)); 1307 return mm_init(mm, current, current_user_ns()); 1308 } 1309 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1310 1311 static inline void __mmput(struct mm_struct *mm) 1312 { 1313 VM_BUG_ON(atomic_read(&mm->mm_users)); 1314 1315 uprobe_clear_state(mm); 1316 exit_aio(mm); 1317 ksm_exit(mm); 1318 khugepaged_exit(mm); /* must run before exit_mmap */ 1319 exit_mmap(mm); 1320 mm_put_huge_zero_folio(mm); 1321 set_mm_exe_file(mm, NULL); 1322 if (!list_empty(&mm->mmlist)) { 1323 spin_lock(&mmlist_lock); 1324 list_del(&mm->mmlist); 1325 spin_unlock(&mmlist_lock); 1326 } 1327 if (mm->binfmt) 1328 module_put(mm->binfmt->module); 1329 lru_gen_del_mm(mm); 1330 mmdrop(mm); 1331 } 1332 1333 /* 1334 * Decrement the use count and release all resources for an mm. 1335 */ 1336 void mmput(struct mm_struct *mm) 1337 { 1338 might_sleep(); 1339 1340 if (atomic_dec_and_test(&mm->mm_users)) 1341 __mmput(mm); 1342 } 1343 EXPORT_SYMBOL_GPL(mmput); 1344 1345 #ifdef CONFIG_MMU 1346 static void mmput_async_fn(struct work_struct *work) 1347 { 1348 struct mm_struct *mm = container_of(work, struct mm_struct, 1349 async_put_work); 1350 1351 __mmput(mm); 1352 } 1353 1354 void mmput_async(struct mm_struct *mm) 1355 { 1356 if (atomic_dec_and_test(&mm->mm_users)) { 1357 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1358 schedule_work(&mm->async_put_work); 1359 } 1360 } 1361 EXPORT_SYMBOL_GPL(mmput_async); 1362 #endif 1363 1364 /** 1365 * set_mm_exe_file - change a reference to the mm's executable file 1366 * @mm: The mm to change. 1367 * @new_exe_file: The new file to use. 1368 * 1369 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1370 * 1371 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1372 * invocations: in mmput() nobody alive left, in execve it happens before 1373 * the new mm is made visible to anyone. 1374 * 1375 * Can only fail if new_exe_file != NULL. 1376 */ 1377 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1378 { 1379 struct file *old_exe_file; 1380 1381 /* 1382 * It is safe to dereference the exe_file without RCU as 1383 * this function is only called if nobody else can access 1384 * this mm -- see comment above for justification. 1385 */ 1386 old_exe_file = rcu_dereference_raw(mm->exe_file); 1387 1388 if (new_exe_file) { 1389 /* 1390 * We expect the caller (i.e., sys_execve) to already denied 1391 * write access, so this is unlikely to fail. 1392 */ 1393 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1394 return -EACCES; 1395 get_file(new_exe_file); 1396 } 1397 rcu_assign_pointer(mm->exe_file, new_exe_file); 1398 if (old_exe_file) { 1399 exe_file_allow_write_access(old_exe_file); 1400 fput(old_exe_file); 1401 } 1402 return 0; 1403 } 1404 1405 /** 1406 * replace_mm_exe_file - replace a reference to the mm's executable file 1407 * @mm: The mm to change. 1408 * @new_exe_file: The new file to use. 1409 * 1410 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1411 * 1412 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1413 */ 1414 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1415 { 1416 struct vm_area_struct *vma; 1417 struct file *old_exe_file; 1418 int ret = 0; 1419 1420 /* Forbid mm->exe_file change if old file still mapped. */ 1421 old_exe_file = get_mm_exe_file(mm); 1422 if (old_exe_file) { 1423 VMA_ITERATOR(vmi, mm, 0); 1424 mmap_read_lock(mm); 1425 for_each_vma(vmi, vma) { 1426 if (!vma->vm_file) 1427 continue; 1428 if (path_equal(&vma->vm_file->f_path, 1429 &old_exe_file->f_path)) { 1430 ret = -EBUSY; 1431 break; 1432 } 1433 } 1434 mmap_read_unlock(mm); 1435 fput(old_exe_file); 1436 if (ret) 1437 return ret; 1438 } 1439 1440 ret = exe_file_deny_write_access(new_exe_file); 1441 if (ret) 1442 return -EACCES; 1443 get_file(new_exe_file); 1444 1445 /* set the new file */ 1446 mmap_write_lock(mm); 1447 old_exe_file = rcu_dereference_raw(mm->exe_file); 1448 rcu_assign_pointer(mm->exe_file, new_exe_file); 1449 mmap_write_unlock(mm); 1450 1451 if (old_exe_file) { 1452 exe_file_allow_write_access(old_exe_file); 1453 fput(old_exe_file); 1454 } 1455 return 0; 1456 } 1457 1458 /** 1459 * get_mm_exe_file - acquire a reference to the mm's executable file 1460 * @mm: The mm of interest. 1461 * 1462 * Returns %NULL if mm has no associated executable file. 1463 * User must release file via fput(). 1464 */ 1465 struct file *get_mm_exe_file(struct mm_struct *mm) 1466 { 1467 struct file *exe_file; 1468 1469 rcu_read_lock(); 1470 exe_file = get_file_rcu(&mm->exe_file); 1471 rcu_read_unlock(); 1472 return exe_file; 1473 } 1474 1475 /** 1476 * get_task_exe_file - acquire a reference to the task's executable file 1477 * @task: The task. 1478 * 1479 * Returns %NULL if task's mm (if any) has no associated executable file or 1480 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1481 * User must release file via fput(). 1482 */ 1483 struct file *get_task_exe_file(struct task_struct *task) 1484 { 1485 struct file *exe_file = NULL; 1486 struct mm_struct *mm; 1487 1488 if (task->flags & PF_KTHREAD) 1489 return NULL; 1490 1491 task_lock(task); 1492 mm = task->mm; 1493 if (mm) 1494 exe_file = get_mm_exe_file(mm); 1495 task_unlock(task); 1496 return exe_file; 1497 } 1498 1499 /** 1500 * get_task_mm - acquire a reference to the task's mm 1501 * @task: The task. 1502 * 1503 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1504 * this kernel workthread has transiently adopted a user mm with use_mm, 1505 * to do its AIO) is not set and if so returns a reference to it, after 1506 * bumping up the use count. User must release the mm via mmput() 1507 * after use. Typically used by /proc and ptrace. 1508 */ 1509 struct mm_struct *get_task_mm(struct task_struct *task) 1510 { 1511 struct mm_struct *mm; 1512 1513 if (task->flags & PF_KTHREAD) 1514 return NULL; 1515 1516 task_lock(task); 1517 mm = task->mm; 1518 if (mm) 1519 mmget(mm); 1520 task_unlock(task); 1521 return mm; 1522 } 1523 EXPORT_SYMBOL_GPL(get_task_mm); 1524 1525 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1526 { 1527 struct mm_struct *mm; 1528 int err; 1529 1530 err = down_read_killable(&task->signal->exec_update_lock); 1531 if (err) 1532 return ERR_PTR(err); 1533 1534 mm = get_task_mm(task); 1535 if (!mm) { 1536 mm = ERR_PTR(-ESRCH); 1537 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1538 mmput(mm); 1539 mm = ERR_PTR(-EACCES); 1540 } 1541 up_read(&task->signal->exec_update_lock); 1542 1543 return mm; 1544 } 1545 1546 static void complete_vfork_done(struct task_struct *tsk) 1547 { 1548 struct completion *vfork; 1549 1550 task_lock(tsk); 1551 vfork = tsk->vfork_done; 1552 if (likely(vfork)) { 1553 tsk->vfork_done = NULL; 1554 complete(vfork); 1555 } 1556 task_unlock(tsk); 1557 } 1558 1559 static int wait_for_vfork_done(struct task_struct *child, 1560 struct completion *vfork) 1561 { 1562 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1563 int killed; 1564 1565 cgroup_enter_frozen(); 1566 killed = wait_for_completion_state(vfork, state); 1567 cgroup_leave_frozen(false); 1568 1569 if (killed) { 1570 task_lock(child); 1571 child->vfork_done = NULL; 1572 task_unlock(child); 1573 } 1574 1575 put_task_struct(child); 1576 return killed; 1577 } 1578 1579 /* Please note the differences between mmput and mm_release. 1580 * mmput is called whenever we stop holding onto a mm_struct, 1581 * error success whatever. 1582 * 1583 * mm_release is called after a mm_struct has been removed 1584 * from the current process. 1585 * 1586 * This difference is important for error handling, when we 1587 * only half set up a mm_struct for a new process and need to restore 1588 * the old one. Because we mmput the new mm_struct before 1589 * restoring the old one. . . 1590 * Eric Biederman 10 January 1998 1591 */ 1592 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1593 { 1594 uprobe_free_utask(tsk); 1595 1596 /* Get rid of any cached register state */ 1597 deactivate_mm(tsk, mm); 1598 1599 /* 1600 * Signal userspace if we're not exiting with a core dump 1601 * because we want to leave the value intact for debugging 1602 * purposes. 1603 */ 1604 if (tsk->clear_child_tid) { 1605 if (atomic_read(&mm->mm_users) > 1) { 1606 /* 1607 * We don't check the error code - if userspace has 1608 * not set up a proper pointer then tough luck. 1609 */ 1610 put_user(0, tsk->clear_child_tid); 1611 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1612 1, NULL, NULL, 0, 0); 1613 } 1614 tsk->clear_child_tid = NULL; 1615 } 1616 1617 /* 1618 * All done, finally we can wake up parent and return this mm to him. 1619 * Also kthread_stop() uses this completion for synchronization. 1620 */ 1621 if (tsk->vfork_done) 1622 complete_vfork_done(tsk); 1623 } 1624 1625 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1626 { 1627 futex_exit_release(tsk); 1628 mm_release(tsk, mm); 1629 } 1630 1631 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1632 { 1633 futex_exec_release(tsk); 1634 mm_release(tsk, mm); 1635 } 1636 1637 /** 1638 * dup_mm() - duplicates an existing mm structure 1639 * @tsk: the task_struct with which the new mm will be associated. 1640 * @oldmm: the mm to duplicate. 1641 * 1642 * Allocates a new mm structure and duplicates the provided @oldmm structure 1643 * content into it. 1644 * 1645 * Return: the duplicated mm or NULL on failure. 1646 */ 1647 static struct mm_struct *dup_mm(struct task_struct *tsk, 1648 struct mm_struct *oldmm) 1649 { 1650 struct mm_struct *mm; 1651 int err; 1652 1653 mm = allocate_mm(); 1654 if (!mm) 1655 goto fail_nomem; 1656 1657 memcpy(mm, oldmm, sizeof(*mm)); 1658 1659 if (!mm_init(mm, tsk, mm->user_ns)) 1660 goto fail_nomem; 1661 1662 uprobe_start_dup_mmap(); 1663 err = dup_mmap(mm, oldmm); 1664 if (err) 1665 goto free_pt; 1666 uprobe_end_dup_mmap(); 1667 1668 mm->hiwater_rss = get_mm_rss(mm); 1669 mm->hiwater_vm = mm->total_vm; 1670 1671 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1672 goto free_pt; 1673 1674 return mm; 1675 1676 free_pt: 1677 /* don't put binfmt in mmput, we haven't got module yet */ 1678 mm->binfmt = NULL; 1679 mm_init_owner(mm, NULL); 1680 mmput(mm); 1681 if (err) 1682 uprobe_end_dup_mmap(); 1683 1684 fail_nomem: 1685 return NULL; 1686 } 1687 1688 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1689 { 1690 struct mm_struct *mm, *oldmm; 1691 1692 tsk->min_flt = tsk->maj_flt = 0; 1693 tsk->nvcsw = tsk->nivcsw = 0; 1694 #ifdef CONFIG_DETECT_HUNG_TASK 1695 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1696 tsk->last_switch_time = 0; 1697 #endif 1698 1699 tsk->mm = NULL; 1700 tsk->active_mm = NULL; 1701 1702 /* 1703 * Are we cloning a kernel thread? 1704 * 1705 * We need to steal a active VM for that.. 1706 */ 1707 oldmm = current->mm; 1708 if (!oldmm) 1709 return 0; 1710 1711 if (clone_flags & CLONE_VM) { 1712 mmget(oldmm); 1713 mm = oldmm; 1714 } else { 1715 mm = dup_mm(tsk, current->mm); 1716 if (!mm) 1717 return -ENOMEM; 1718 } 1719 1720 tsk->mm = mm; 1721 tsk->active_mm = mm; 1722 sched_mm_cid_fork(tsk); 1723 return 0; 1724 } 1725 1726 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1727 { 1728 struct fs_struct *fs = current->fs; 1729 if (clone_flags & CLONE_FS) { 1730 /* tsk->fs is already what we want */ 1731 spin_lock(&fs->lock); 1732 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1733 if (fs->in_exec) { 1734 spin_unlock(&fs->lock); 1735 return -EAGAIN; 1736 } 1737 fs->users++; 1738 spin_unlock(&fs->lock); 1739 return 0; 1740 } 1741 tsk->fs = copy_fs_struct(fs); 1742 if (!tsk->fs) 1743 return -ENOMEM; 1744 return 0; 1745 } 1746 1747 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1748 int no_files) 1749 { 1750 struct files_struct *oldf, *newf; 1751 1752 /* 1753 * A background process may not have any files ... 1754 */ 1755 oldf = current->files; 1756 if (!oldf) 1757 return 0; 1758 1759 if (no_files) { 1760 tsk->files = NULL; 1761 return 0; 1762 } 1763 1764 if (clone_flags & CLONE_FILES) { 1765 atomic_inc(&oldf->count); 1766 return 0; 1767 } 1768 1769 newf = dup_fd(oldf, NULL); 1770 if (IS_ERR(newf)) 1771 return PTR_ERR(newf); 1772 1773 tsk->files = newf; 1774 return 0; 1775 } 1776 1777 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1778 { 1779 struct sighand_struct *sig; 1780 1781 if (clone_flags & CLONE_SIGHAND) { 1782 refcount_inc(¤t->sighand->count); 1783 return 0; 1784 } 1785 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1786 RCU_INIT_POINTER(tsk->sighand, sig); 1787 if (!sig) 1788 return -ENOMEM; 1789 1790 refcount_set(&sig->count, 1); 1791 spin_lock_irq(¤t->sighand->siglock); 1792 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1793 spin_unlock_irq(¤t->sighand->siglock); 1794 1795 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1796 if (clone_flags & CLONE_CLEAR_SIGHAND) 1797 flush_signal_handlers(tsk, 0); 1798 1799 return 0; 1800 } 1801 1802 void __cleanup_sighand(struct sighand_struct *sighand) 1803 { 1804 if (refcount_dec_and_test(&sighand->count)) { 1805 signalfd_cleanup(sighand); 1806 /* 1807 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1808 * without an RCU grace period, see __lock_task_sighand(). 1809 */ 1810 kmem_cache_free(sighand_cachep, sighand); 1811 } 1812 } 1813 1814 /* 1815 * Initialize POSIX timer handling for a thread group. 1816 */ 1817 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1818 { 1819 struct posix_cputimers *pct = &sig->posix_cputimers; 1820 unsigned long cpu_limit; 1821 1822 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1823 posix_cputimers_group_init(pct, cpu_limit); 1824 } 1825 1826 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1827 { 1828 struct signal_struct *sig; 1829 1830 if (clone_flags & CLONE_THREAD) 1831 return 0; 1832 1833 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1834 tsk->signal = sig; 1835 if (!sig) 1836 return -ENOMEM; 1837 1838 sig->nr_threads = 1; 1839 sig->quick_threads = 1; 1840 atomic_set(&sig->live, 1); 1841 refcount_set(&sig->sigcnt, 1); 1842 1843 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1844 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1845 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1846 1847 init_waitqueue_head(&sig->wait_chldexit); 1848 sig->curr_target = tsk; 1849 init_sigpending(&sig->shared_pending); 1850 INIT_HLIST_HEAD(&sig->multiprocess); 1851 seqlock_init(&sig->stats_lock); 1852 prev_cputime_init(&sig->prev_cputime); 1853 1854 #ifdef CONFIG_POSIX_TIMERS 1855 INIT_HLIST_HEAD(&sig->posix_timers); 1856 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1857 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1858 sig->real_timer.function = it_real_fn; 1859 #endif 1860 1861 task_lock(current->group_leader); 1862 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1863 task_unlock(current->group_leader); 1864 1865 posix_cpu_timers_init_group(sig); 1866 1867 tty_audit_fork(sig); 1868 sched_autogroup_fork(sig); 1869 1870 sig->oom_score_adj = current->signal->oom_score_adj; 1871 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1872 1873 mutex_init(&sig->cred_guard_mutex); 1874 init_rwsem(&sig->exec_update_lock); 1875 1876 return 0; 1877 } 1878 1879 static void copy_seccomp(struct task_struct *p) 1880 { 1881 #ifdef CONFIG_SECCOMP 1882 /* 1883 * Must be called with sighand->lock held, which is common to 1884 * all threads in the group. Holding cred_guard_mutex is not 1885 * needed because this new task is not yet running and cannot 1886 * be racing exec. 1887 */ 1888 assert_spin_locked(¤t->sighand->siglock); 1889 1890 /* Ref-count the new filter user, and assign it. */ 1891 get_seccomp_filter(current); 1892 p->seccomp = current->seccomp; 1893 1894 /* 1895 * Explicitly enable no_new_privs here in case it got set 1896 * between the task_struct being duplicated and holding the 1897 * sighand lock. The seccomp state and nnp must be in sync. 1898 */ 1899 if (task_no_new_privs(current)) 1900 task_set_no_new_privs(p); 1901 1902 /* 1903 * If the parent gained a seccomp mode after copying thread 1904 * flags and between before we held the sighand lock, we have 1905 * to manually enable the seccomp thread flag here. 1906 */ 1907 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1908 set_task_syscall_work(p, SECCOMP); 1909 #endif 1910 } 1911 1912 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1913 { 1914 current->clear_child_tid = tidptr; 1915 1916 return task_pid_vnr(current); 1917 } 1918 1919 static void rt_mutex_init_task(struct task_struct *p) 1920 { 1921 raw_spin_lock_init(&p->pi_lock); 1922 #ifdef CONFIG_RT_MUTEXES 1923 p->pi_waiters = RB_ROOT_CACHED; 1924 p->pi_top_task = NULL; 1925 p->pi_blocked_on = NULL; 1926 #endif 1927 } 1928 1929 static inline void init_task_pid_links(struct task_struct *task) 1930 { 1931 enum pid_type type; 1932 1933 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1934 INIT_HLIST_NODE(&task->pid_links[type]); 1935 } 1936 1937 static inline void 1938 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1939 { 1940 if (type == PIDTYPE_PID) 1941 task->thread_pid = pid; 1942 else 1943 task->signal->pids[type] = pid; 1944 } 1945 1946 static inline void rcu_copy_process(struct task_struct *p) 1947 { 1948 #ifdef CONFIG_PREEMPT_RCU 1949 p->rcu_read_lock_nesting = 0; 1950 p->rcu_read_unlock_special.s = 0; 1951 p->rcu_blocked_node = NULL; 1952 INIT_LIST_HEAD(&p->rcu_node_entry); 1953 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1954 #ifdef CONFIG_TASKS_RCU 1955 p->rcu_tasks_holdout = false; 1956 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1957 p->rcu_tasks_idle_cpu = -1; 1958 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1959 #endif /* #ifdef CONFIG_TASKS_RCU */ 1960 #ifdef CONFIG_TASKS_TRACE_RCU 1961 p->trc_reader_nesting = 0; 1962 p->trc_reader_special.s = 0; 1963 INIT_LIST_HEAD(&p->trc_holdout_list); 1964 INIT_LIST_HEAD(&p->trc_blkd_node); 1965 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1966 } 1967 1968 /** 1969 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1970 * @pid: the struct pid for which to create a pidfd 1971 * @flags: flags of the new @pidfd 1972 * @ret: Where to return the file for the pidfd. 1973 * 1974 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1975 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1976 * 1977 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1978 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1979 * pidfd file are prepared. 1980 * 1981 * If this function returns successfully the caller is responsible to either 1982 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1983 * order to install the pidfd into its file descriptor table or they must use 1984 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1985 * respectively. 1986 * 1987 * This function is useful when a pidfd must already be reserved but there 1988 * might still be points of failure afterwards and the caller wants to ensure 1989 * that no pidfd is leaked into its file descriptor table. 1990 * 1991 * Return: On success, a reserved pidfd is returned from the function and a new 1992 * pidfd file is returned in the last argument to the function. On 1993 * error, a negative error code is returned from the function and the 1994 * last argument remains unchanged. 1995 */ 1996 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 1997 { 1998 int pidfd; 1999 struct file *pidfd_file; 2000 2001 pidfd = get_unused_fd_flags(O_CLOEXEC); 2002 if (pidfd < 0) 2003 return pidfd; 2004 2005 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2006 if (IS_ERR(pidfd_file)) { 2007 put_unused_fd(pidfd); 2008 return PTR_ERR(pidfd_file); 2009 } 2010 /* 2011 * anon_inode_getfile() ignores everything outside of the 2012 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2013 */ 2014 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2015 *ret = pidfd_file; 2016 return pidfd; 2017 } 2018 2019 /** 2020 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2021 * @pid: the struct pid for which to create a pidfd 2022 * @flags: flags of the new @pidfd 2023 * @ret: Where to return the pidfd. 2024 * 2025 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2026 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2027 * 2028 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2029 * task identified by @pid must be a thread-group leader. 2030 * 2031 * If this function returns successfully the caller is responsible to either 2032 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2033 * order to install the pidfd into its file descriptor table or they must use 2034 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2035 * respectively. 2036 * 2037 * This function is useful when a pidfd must already be reserved but there 2038 * might still be points of failure afterwards and the caller wants to ensure 2039 * that no pidfd is leaked into its file descriptor table. 2040 * 2041 * Return: On success, a reserved pidfd is returned from the function and a new 2042 * pidfd file is returned in the last argument to the function. On 2043 * error, a negative error code is returned from the function and the 2044 * last argument remains unchanged. 2045 */ 2046 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2047 { 2048 bool thread = flags & PIDFD_THREAD; 2049 2050 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2051 return -EINVAL; 2052 2053 return __pidfd_prepare(pid, flags, ret); 2054 } 2055 2056 static void __delayed_free_task(struct rcu_head *rhp) 2057 { 2058 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2059 2060 free_task(tsk); 2061 } 2062 2063 static __always_inline void delayed_free_task(struct task_struct *tsk) 2064 { 2065 if (IS_ENABLED(CONFIG_MEMCG)) 2066 call_rcu(&tsk->rcu, __delayed_free_task); 2067 else 2068 free_task(tsk); 2069 } 2070 2071 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2072 { 2073 /* Skip if kernel thread */ 2074 if (!tsk->mm) 2075 return; 2076 2077 /* Skip if spawning a thread or using vfork */ 2078 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2079 return; 2080 2081 /* We need to synchronize with __set_oom_adj */ 2082 mutex_lock(&oom_adj_mutex); 2083 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2084 /* Update the values in case they were changed after copy_signal */ 2085 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2086 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2087 mutex_unlock(&oom_adj_mutex); 2088 } 2089 2090 #ifdef CONFIG_RV 2091 static void rv_task_fork(struct task_struct *p) 2092 { 2093 int i; 2094 2095 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2096 p->rv[i].da_mon.monitoring = false; 2097 } 2098 #else 2099 #define rv_task_fork(p) do {} while (0) 2100 #endif 2101 2102 /* 2103 * This creates a new process as a copy of the old one, 2104 * but does not actually start it yet. 2105 * 2106 * It copies the registers, and all the appropriate 2107 * parts of the process environment (as per the clone 2108 * flags). The actual kick-off is left to the caller. 2109 */ 2110 __latent_entropy struct task_struct *copy_process( 2111 struct pid *pid, 2112 int trace, 2113 int node, 2114 struct kernel_clone_args *args) 2115 { 2116 int pidfd = -1, retval; 2117 struct task_struct *p; 2118 struct multiprocess_signals delayed; 2119 struct file *pidfile = NULL; 2120 const u64 clone_flags = args->flags; 2121 struct nsproxy *nsp = current->nsproxy; 2122 2123 /* 2124 * Don't allow sharing the root directory with processes in a different 2125 * namespace 2126 */ 2127 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2128 return ERR_PTR(-EINVAL); 2129 2130 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2131 return ERR_PTR(-EINVAL); 2132 2133 /* 2134 * Thread groups must share signals as well, and detached threads 2135 * can only be started up within the thread group. 2136 */ 2137 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2138 return ERR_PTR(-EINVAL); 2139 2140 /* 2141 * Shared signal handlers imply shared VM. By way of the above, 2142 * thread groups also imply shared VM. Blocking this case allows 2143 * for various simplifications in other code. 2144 */ 2145 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2146 return ERR_PTR(-EINVAL); 2147 2148 /* 2149 * Siblings of global init remain as zombies on exit since they are 2150 * not reaped by their parent (swapper). To solve this and to avoid 2151 * multi-rooted process trees, prevent global and container-inits 2152 * from creating siblings. 2153 */ 2154 if ((clone_flags & CLONE_PARENT) && 2155 current->signal->flags & SIGNAL_UNKILLABLE) 2156 return ERR_PTR(-EINVAL); 2157 2158 /* 2159 * If the new process will be in a different pid or user namespace 2160 * do not allow it to share a thread group with the forking task. 2161 */ 2162 if (clone_flags & CLONE_THREAD) { 2163 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2164 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2165 return ERR_PTR(-EINVAL); 2166 } 2167 2168 if (clone_flags & CLONE_PIDFD) { 2169 /* 2170 * - CLONE_DETACHED is blocked so that we can potentially 2171 * reuse it later for CLONE_PIDFD. 2172 */ 2173 if (clone_flags & CLONE_DETACHED) 2174 return ERR_PTR(-EINVAL); 2175 } 2176 2177 /* 2178 * Force any signals received before this point to be delivered 2179 * before the fork happens. Collect up signals sent to multiple 2180 * processes that happen during the fork and delay them so that 2181 * they appear to happen after the fork. 2182 */ 2183 sigemptyset(&delayed.signal); 2184 INIT_HLIST_NODE(&delayed.node); 2185 2186 spin_lock_irq(¤t->sighand->siglock); 2187 if (!(clone_flags & CLONE_THREAD)) 2188 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2189 recalc_sigpending(); 2190 spin_unlock_irq(¤t->sighand->siglock); 2191 retval = -ERESTARTNOINTR; 2192 if (task_sigpending(current)) 2193 goto fork_out; 2194 2195 retval = -ENOMEM; 2196 p = dup_task_struct(current, node); 2197 if (!p) 2198 goto fork_out; 2199 p->flags &= ~PF_KTHREAD; 2200 if (args->kthread) 2201 p->flags |= PF_KTHREAD; 2202 if (args->user_worker) { 2203 /* 2204 * Mark us a user worker, and block any signal that isn't 2205 * fatal or STOP 2206 */ 2207 p->flags |= PF_USER_WORKER; 2208 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2209 } 2210 if (args->io_thread) 2211 p->flags |= PF_IO_WORKER; 2212 2213 if (args->name) 2214 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2215 2216 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2217 /* 2218 * Clear TID on mm_release()? 2219 */ 2220 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2221 2222 ftrace_graph_init_task(p); 2223 2224 rt_mutex_init_task(p); 2225 2226 lockdep_assert_irqs_enabled(); 2227 #ifdef CONFIG_PROVE_LOCKING 2228 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2229 #endif 2230 retval = copy_creds(p, clone_flags); 2231 if (retval < 0) 2232 goto bad_fork_free; 2233 2234 retval = -EAGAIN; 2235 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2236 if (p->real_cred->user != INIT_USER && 2237 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2238 goto bad_fork_cleanup_count; 2239 } 2240 current->flags &= ~PF_NPROC_EXCEEDED; 2241 2242 /* 2243 * If multiple threads are within copy_process(), then this check 2244 * triggers too late. This doesn't hurt, the check is only there 2245 * to stop root fork bombs. 2246 */ 2247 retval = -EAGAIN; 2248 if (data_race(nr_threads >= max_threads)) 2249 goto bad_fork_cleanup_count; 2250 2251 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2252 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2253 p->flags |= PF_FORKNOEXEC; 2254 INIT_LIST_HEAD(&p->children); 2255 INIT_LIST_HEAD(&p->sibling); 2256 rcu_copy_process(p); 2257 p->vfork_done = NULL; 2258 spin_lock_init(&p->alloc_lock); 2259 2260 init_sigpending(&p->pending); 2261 2262 p->utime = p->stime = p->gtime = 0; 2263 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2264 p->utimescaled = p->stimescaled = 0; 2265 #endif 2266 prev_cputime_init(&p->prev_cputime); 2267 2268 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2269 seqcount_init(&p->vtime.seqcount); 2270 p->vtime.starttime = 0; 2271 p->vtime.state = VTIME_INACTIVE; 2272 #endif 2273 2274 #ifdef CONFIG_IO_URING 2275 p->io_uring = NULL; 2276 #endif 2277 2278 p->default_timer_slack_ns = current->timer_slack_ns; 2279 2280 #ifdef CONFIG_PSI 2281 p->psi_flags = 0; 2282 #endif 2283 2284 task_io_accounting_init(&p->ioac); 2285 acct_clear_integrals(p); 2286 2287 posix_cputimers_init(&p->posix_cputimers); 2288 tick_dep_init_task(p); 2289 2290 p->io_context = NULL; 2291 audit_set_context(p, NULL); 2292 cgroup_fork(p); 2293 if (args->kthread) { 2294 if (!set_kthread_struct(p)) 2295 goto bad_fork_cleanup_delayacct; 2296 } 2297 #ifdef CONFIG_NUMA 2298 p->mempolicy = mpol_dup(p->mempolicy); 2299 if (IS_ERR(p->mempolicy)) { 2300 retval = PTR_ERR(p->mempolicy); 2301 p->mempolicy = NULL; 2302 goto bad_fork_cleanup_delayacct; 2303 } 2304 #endif 2305 #ifdef CONFIG_CPUSETS 2306 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2307 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2308 #endif 2309 #ifdef CONFIG_TRACE_IRQFLAGS 2310 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2311 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2312 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2313 p->softirqs_enabled = 1; 2314 p->softirq_context = 0; 2315 #endif 2316 2317 p->pagefault_disabled = 0; 2318 2319 #ifdef CONFIG_LOCKDEP 2320 lockdep_init_task(p); 2321 #endif 2322 2323 #ifdef CONFIG_DEBUG_MUTEXES 2324 p->blocked_on = NULL; /* not blocked yet */ 2325 #endif 2326 #ifdef CONFIG_BCACHE 2327 p->sequential_io = 0; 2328 p->sequential_io_avg = 0; 2329 #endif 2330 #ifdef CONFIG_BPF_SYSCALL 2331 RCU_INIT_POINTER(p->bpf_storage, NULL); 2332 p->bpf_ctx = NULL; 2333 #endif 2334 2335 /* Perform scheduler related setup. Assign this task to a CPU. */ 2336 retval = sched_fork(clone_flags, p); 2337 if (retval) 2338 goto bad_fork_cleanup_policy; 2339 2340 retval = perf_event_init_task(p, clone_flags); 2341 if (retval) 2342 goto bad_fork_sched_cancel_fork; 2343 retval = audit_alloc(p); 2344 if (retval) 2345 goto bad_fork_cleanup_perf; 2346 /* copy all the process information */ 2347 shm_init_task(p); 2348 retval = security_task_alloc(p, clone_flags); 2349 if (retval) 2350 goto bad_fork_cleanup_audit; 2351 retval = copy_semundo(clone_flags, p); 2352 if (retval) 2353 goto bad_fork_cleanup_security; 2354 retval = copy_files(clone_flags, p, args->no_files); 2355 if (retval) 2356 goto bad_fork_cleanup_semundo; 2357 retval = copy_fs(clone_flags, p); 2358 if (retval) 2359 goto bad_fork_cleanup_files; 2360 retval = copy_sighand(clone_flags, p); 2361 if (retval) 2362 goto bad_fork_cleanup_fs; 2363 retval = copy_signal(clone_flags, p); 2364 if (retval) 2365 goto bad_fork_cleanup_sighand; 2366 retval = copy_mm(clone_flags, p); 2367 if (retval) 2368 goto bad_fork_cleanup_signal; 2369 retval = copy_namespaces(clone_flags, p); 2370 if (retval) 2371 goto bad_fork_cleanup_mm; 2372 retval = copy_io(clone_flags, p); 2373 if (retval) 2374 goto bad_fork_cleanup_namespaces; 2375 retval = copy_thread(p, args); 2376 if (retval) 2377 goto bad_fork_cleanup_io; 2378 2379 stackleak_task_init(p); 2380 2381 if (pid != &init_struct_pid) { 2382 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2383 args->set_tid_size); 2384 if (IS_ERR(pid)) { 2385 retval = PTR_ERR(pid); 2386 goto bad_fork_cleanup_thread; 2387 } 2388 } 2389 2390 /* 2391 * This has to happen after we've potentially unshared the file 2392 * descriptor table (so that the pidfd doesn't leak into the child 2393 * if the fd table isn't shared). 2394 */ 2395 if (clone_flags & CLONE_PIDFD) { 2396 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2397 2398 /* Note that no task has been attached to @pid yet. */ 2399 retval = __pidfd_prepare(pid, flags, &pidfile); 2400 if (retval < 0) 2401 goto bad_fork_free_pid; 2402 pidfd = retval; 2403 2404 retval = put_user(pidfd, args->pidfd); 2405 if (retval) 2406 goto bad_fork_put_pidfd; 2407 } 2408 2409 #ifdef CONFIG_BLOCK 2410 p->plug = NULL; 2411 #endif 2412 futex_init_task(p); 2413 2414 /* 2415 * sigaltstack should be cleared when sharing the same VM 2416 */ 2417 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2418 sas_ss_reset(p); 2419 2420 /* 2421 * Syscall tracing and stepping should be turned off in the 2422 * child regardless of CLONE_PTRACE. 2423 */ 2424 user_disable_single_step(p); 2425 clear_task_syscall_work(p, SYSCALL_TRACE); 2426 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2427 clear_task_syscall_work(p, SYSCALL_EMU); 2428 #endif 2429 clear_tsk_latency_tracing(p); 2430 2431 /* ok, now we should be set up.. */ 2432 p->pid = pid_nr(pid); 2433 if (clone_flags & CLONE_THREAD) { 2434 p->group_leader = current->group_leader; 2435 p->tgid = current->tgid; 2436 } else { 2437 p->group_leader = p; 2438 p->tgid = p->pid; 2439 } 2440 2441 p->nr_dirtied = 0; 2442 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2443 p->dirty_paused_when = 0; 2444 2445 p->pdeath_signal = 0; 2446 p->task_works = NULL; 2447 clear_posix_cputimers_work(p); 2448 2449 #ifdef CONFIG_KRETPROBES 2450 p->kretprobe_instances.first = NULL; 2451 #endif 2452 #ifdef CONFIG_RETHOOK 2453 p->rethooks.first = NULL; 2454 #endif 2455 2456 /* 2457 * Ensure that the cgroup subsystem policies allow the new process to be 2458 * forked. It should be noted that the new process's css_set can be changed 2459 * between here and cgroup_post_fork() if an organisation operation is in 2460 * progress. 2461 */ 2462 retval = cgroup_can_fork(p, args); 2463 if (retval) 2464 goto bad_fork_put_pidfd; 2465 2466 /* 2467 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2468 * the new task on the correct runqueue. All this *before* the task 2469 * becomes visible. 2470 * 2471 * This isn't part of ->can_fork() because while the re-cloning is 2472 * cgroup specific, it unconditionally needs to place the task on a 2473 * runqueue. 2474 */ 2475 retval = sched_cgroup_fork(p, args); 2476 if (retval) 2477 goto bad_fork_cancel_cgroup; 2478 2479 /* 2480 * From this point on we must avoid any synchronous user-space 2481 * communication until we take the tasklist-lock. In particular, we do 2482 * not want user-space to be able to predict the process start-time by 2483 * stalling fork(2) after we recorded the start_time but before it is 2484 * visible to the system. 2485 */ 2486 2487 p->start_time = ktime_get_ns(); 2488 p->start_boottime = ktime_get_boottime_ns(); 2489 2490 /* 2491 * Make it visible to the rest of the system, but dont wake it up yet. 2492 * Need tasklist lock for parent etc handling! 2493 */ 2494 write_lock_irq(&tasklist_lock); 2495 2496 /* CLONE_PARENT re-uses the old parent */ 2497 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2498 p->real_parent = current->real_parent; 2499 p->parent_exec_id = current->parent_exec_id; 2500 if (clone_flags & CLONE_THREAD) 2501 p->exit_signal = -1; 2502 else 2503 p->exit_signal = current->group_leader->exit_signal; 2504 } else { 2505 p->real_parent = current; 2506 p->parent_exec_id = current->self_exec_id; 2507 p->exit_signal = args->exit_signal; 2508 } 2509 2510 klp_copy_process(p); 2511 2512 sched_core_fork(p); 2513 2514 spin_lock(¤t->sighand->siglock); 2515 2516 rv_task_fork(p); 2517 2518 rseq_fork(p, clone_flags); 2519 2520 /* Don't start children in a dying pid namespace */ 2521 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2522 retval = -ENOMEM; 2523 goto bad_fork_core_free; 2524 } 2525 2526 /* Let kill terminate clone/fork in the middle */ 2527 if (fatal_signal_pending(current)) { 2528 retval = -EINTR; 2529 goto bad_fork_core_free; 2530 } 2531 2532 /* No more failure paths after this point. */ 2533 2534 /* 2535 * Copy seccomp details explicitly here, in case they were changed 2536 * before holding sighand lock. 2537 */ 2538 copy_seccomp(p); 2539 2540 init_task_pid_links(p); 2541 if (likely(p->pid)) { 2542 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2543 2544 init_task_pid(p, PIDTYPE_PID, pid); 2545 if (thread_group_leader(p)) { 2546 init_task_pid(p, PIDTYPE_TGID, pid); 2547 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2548 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2549 2550 if (is_child_reaper(pid)) { 2551 ns_of_pid(pid)->child_reaper = p; 2552 p->signal->flags |= SIGNAL_UNKILLABLE; 2553 } 2554 p->signal->shared_pending.signal = delayed.signal; 2555 p->signal->tty = tty_kref_get(current->signal->tty); 2556 /* 2557 * Inherit has_child_subreaper flag under the same 2558 * tasklist_lock with adding child to the process tree 2559 * for propagate_has_child_subreaper optimization. 2560 */ 2561 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2562 p->real_parent->signal->is_child_subreaper; 2563 list_add_tail(&p->sibling, &p->real_parent->children); 2564 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2565 attach_pid(p, PIDTYPE_TGID); 2566 attach_pid(p, PIDTYPE_PGID); 2567 attach_pid(p, PIDTYPE_SID); 2568 __this_cpu_inc(process_counts); 2569 } else { 2570 current->signal->nr_threads++; 2571 current->signal->quick_threads++; 2572 atomic_inc(¤t->signal->live); 2573 refcount_inc(¤t->signal->sigcnt); 2574 task_join_group_stop(p); 2575 list_add_tail_rcu(&p->thread_node, 2576 &p->signal->thread_head); 2577 } 2578 attach_pid(p, PIDTYPE_PID); 2579 nr_threads++; 2580 } 2581 total_forks++; 2582 hlist_del_init(&delayed.node); 2583 spin_unlock(¤t->sighand->siglock); 2584 syscall_tracepoint_update(p); 2585 write_unlock_irq(&tasklist_lock); 2586 2587 if (pidfile) 2588 fd_install(pidfd, pidfile); 2589 2590 proc_fork_connector(p); 2591 sched_post_fork(p); 2592 cgroup_post_fork(p, args); 2593 perf_event_fork(p); 2594 2595 trace_task_newtask(p, clone_flags); 2596 uprobe_copy_process(p, clone_flags); 2597 user_events_fork(p, clone_flags); 2598 2599 copy_oom_score_adj(clone_flags, p); 2600 2601 return p; 2602 2603 bad_fork_core_free: 2604 sched_core_free(p); 2605 spin_unlock(¤t->sighand->siglock); 2606 write_unlock_irq(&tasklist_lock); 2607 bad_fork_cancel_cgroup: 2608 cgroup_cancel_fork(p, args); 2609 bad_fork_put_pidfd: 2610 if (clone_flags & CLONE_PIDFD) { 2611 fput(pidfile); 2612 put_unused_fd(pidfd); 2613 } 2614 bad_fork_free_pid: 2615 if (pid != &init_struct_pid) 2616 free_pid(pid); 2617 bad_fork_cleanup_thread: 2618 exit_thread(p); 2619 bad_fork_cleanup_io: 2620 if (p->io_context) 2621 exit_io_context(p); 2622 bad_fork_cleanup_namespaces: 2623 exit_task_namespaces(p); 2624 bad_fork_cleanup_mm: 2625 if (p->mm) { 2626 mm_clear_owner(p->mm, p); 2627 mmput(p->mm); 2628 } 2629 bad_fork_cleanup_signal: 2630 if (!(clone_flags & CLONE_THREAD)) 2631 free_signal_struct(p->signal); 2632 bad_fork_cleanup_sighand: 2633 __cleanup_sighand(p->sighand); 2634 bad_fork_cleanup_fs: 2635 exit_fs(p); /* blocking */ 2636 bad_fork_cleanup_files: 2637 exit_files(p); /* blocking */ 2638 bad_fork_cleanup_semundo: 2639 exit_sem(p); 2640 bad_fork_cleanup_security: 2641 security_task_free(p); 2642 bad_fork_cleanup_audit: 2643 audit_free(p); 2644 bad_fork_cleanup_perf: 2645 perf_event_free_task(p); 2646 bad_fork_sched_cancel_fork: 2647 sched_cancel_fork(p); 2648 bad_fork_cleanup_policy: 2649 lockdep_free_task(p); 2650 #ifdef CONFIG_NUMA 2651 mpol_put(p->mempolicy); 2652 #endif 2653 bad_fork_cleanup_delayacct: 2654 delayacct_tsk_free(p); 2655 bad_fork_cleanup_count: 2656 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2657 exit_creds(p); 2658 bad_fork_free: 2659 WRITE_ONCE(p->__state, TASK_DEAD); 2660 exit_task_stack_account(p); 2661 put_task_stack(p); 2662 delayed_free_task(p); 2663 fork_out: 2664 spin_lock_irq(¤t->sighand->siglock); 2665 hlist_del_init(&delayed.node); 2666 spin_unlock_irq(¤t->sighand->siglock); 2667 return ERR_PTR(retval); 2668 } 2669 2670 static inline void init_idle_pids(struct task_struct *idle) 2671 { 2672 enum pid_type type; 2673 2674 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2675 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2676 init_task_pid(idle, type, &init_struct_pid); 2677 } 2678 } 2679 2680 static int idle_dummy(void *dummy) 2681 { 2682 /* This function is never called */ 2683 return 0; 2684 } 2685 2686 struct task_struct * __init fork_idle(int cpu) 2687 { 2688 struct task_struct *task; 2689 struct kernel_clone_args args = { 2690 .flags = CLONE_VM, 2691 .fn = &idle_dummy, 2692 .fn_arg = NULL, 2693 .kthread = 1, 2694 .idle = 1, 2695 }; 2696 2697 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2698 if (!IS_ERR(task)) { 2699 init_idle_pids(task); 2700 init_idle(task, cpu); 2701 } 2702 2703 return task; 2704 } 2705 2706 /* 2707 * This is like kernel_clone(), but shaved down and tailored to just 2708 * creating io_uring workers. It returns a created task, or an error pointer. 2709 * The returned task is inactive, and the caller must fire it up through 2710 * wake_up_new_task(p). All signals are blocked in the created task. 2711 */ 2712 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2713 { 2714 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2715 CLONE_IO; 2716 struct kernel_clone_args args = { 2717 .flags = ((lower_32_bits(flags) | CLONE_VM | 2718 CLONE_UNTRACED) & ~CSIGNAL), 2719 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2720 .fn = fn, 2721 .fn_arg = arg, 2722 .io_thread = 1, 2723 .user_worker = 1, 2724 }; 2725 2726 return copy_process(NULL, 0, node, &args); 2727 } 2728 2729 /* 2730 * Ok, this is the main fork-routine. 2731 * 2732 * It copies the process, and if successful kick-starts 2733 * it and waits for it to finish using the VM if required. 2734 * 2735 * args->exit_signal is expected to be checked for sanity by the caller. 2736 */ 2737 pid_t kernel_clone(struct kernel_clone_args *args) 2738 { 2739 u64 clone_flags = args->flags; 2740 struct completion vfork; 2741 struct pid *pid; 2742 struct task_struct *p; 2743 int trace = 0; 2744 pid_t nr; 2745 2746 /* 2747 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2748 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2749 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2750 * field in struct clone_args and it still doesn't make sense to have 2751 * them both point at the same memory location. Performing this check 2752 * here has the advantage that we don't need to have a separate helper 2753 * to check for legacy clone(). 2754 */ 2755 if ((clone_flags & CLONE_PIDFD) && 2756 (clone_flags & CLONE_PARENT_SETTID) && 2757 (args->pidfd == args->parent_tid)) 2758 return -EINVAL; 2759 2760 /* 2761 * Determine whether and which event to report to ptracer. When 2762 * called from kernel_thread or CLONE_UNTRACED is explicitly 2763 * requested, no event is reported; otherwise, report if the event 2764 * for the type of forking is enabled. 2765 */ 2766 if (!(clone_flags & CLONE_UNTRACED)) { 2767 if (clone_flags & CLONE_VFORK) 2768 trace = PTRACE_EVENT_VFORK; 2769 else if (args->exit_signal != SIGCHLD) 2770 trace = PTRACE_EVENT_CLONE; 2771 else 2772 trace = PTRACE_EVENT_FORK; 2773 2774 if (likely(!ptrace_event_enabled(current, trace))) 2775 trace = 0; 2776 } 2777 2778 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2779 add_latent_entropy(); 2780 2781 if (IS_ERR(p)) 2782 return PTR_ERR(p); 2783 2784 /* 2785 * Do this prior waking up the new thread - the thread pointer 2786 * might get invalid after that point, if the thread exits quickly. 2787 */ 2788 trace_sched_process_fork(current, p); 2789 2790 pid = get_task_pid(p, PIDTYPE_PID); 2791 nr = pid_vnr(pid); 2792 2793 if (clone_flags & CLONE_PARENT_SETTID) 2794 put_user(nr, args->parent_tid); 2795 2796 if (clone_flags & CLONE_VFORK) { 2797 p->vfork_done = &vfork; 2798 init_completion(&vfork); 2799 get_task_struct(p); 2800 } 2801 2802 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2803 /* lock the task to synchronize with memcg migration */ 2804 task_lock(p); 2805 lru_gen_add_mm(p->mm); 2806 task_unlock(p); 2807 } 2808 2809 wake_up_new_task(p); 2810 2811 /* forking complete and child started to run, tell ptracer */ 2812 if (unlikely(trace)) 2813 ptrace_event_pid(trace, pid); 2814 2815 if (clone_flags & CLONE_VFORK) { 2816 if (!wait_for_vfork_done(p, &vfork)) 2817 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2818 } 2819 2820 put_pid(pid); 2821 return nr; 2822 } 2823 2824 /* 2825 * Create a kernel thread. 2826 */ 2827 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2828 unsigned long flags) 2829 { 2830 struct kernel_clone_args args = { 2831 .flags = ((lower_32_bits(flags) | CLONE_VM | 2832 CLONE_UNTRACED) & ~CSIGNAL), 2833 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2834 .fn = fn, 2835 .fn_arg = arg, 2836 .name = name, 2837 .kthread = 1, 2838 }; 2839 2840 return kernel_clone(&args); 2841 } 2842 2843 /* 2844 * Create a user mode thread. 2845 */ 2846 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2847 { 2848 struct kernel_clone_args args = { 2849 .flags = ((lower_32_bits(flags) | CLONE_VM | 2850 CLONE_UNTRACED) & ~CSIGNAL), 2851 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2852 .fn = fn, 2853 .fn_arg = arg, 2854 }; 2855 2856 return kernel_clone(&args); 2857 } 2858 2859 #ifdef __ARCH_WANT_SYS_FORK 2860 SYSCALL_DEFINE0(fork) 2861 { 2862 #ifdef CONFIG_MMU 2863 struct kernel_clone_args args = { 2864 .exit_signal = SIGCHLD, 2865 }; 2866 2867 return kernel_clone(&args); 2868 #else 2869 /* can not support in nommu mode */ 2870 return -EINVAL; 2871 #endif 2872 } 2873 #endif 2874 2875 #ifdef __ARCH_WANT_SYS_VFORK 2876 SYSCALL_DEFINE0(vfork) 2877 { 2878 struct kernel_clone_args args = { 2879 .flags = CLONE_VFORK | CLONE_VM, 2880 .exit_signal = SIGCHLD, 2881 }; 2882 2883 return kernel_clone(&args); 2884 } 2885 #endif 2886 2887 #ifdef __ARCH_WANT_SYS_CLONE 2888 #ifdef CONFIG_CLONE_BACKWARDS 2889 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2890 int __user *, parent_tidptr, 2891 unsigned long, tls, 2892 int __user *, child_tidptr) 2893 #elif defined(CONFIG_CLONE_BACKWARDS2) 2894 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2895 int __user *, parent_tidptr, 2896 int __user *, child_tidptr, 2897 unsigned long, tls) 2898 #elif defined(CONFIG_CLONE_BACKWARDS3) 2899 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2900 int, stack_size, 2901 int __user *, parent_tidptr, 2902 int __user *, child_tidptr, 2903 unsigned long, tls) 2904 #else 2905 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2906 int __user *, parent_tidptr, 2907 int __user *, child_tidptr, 2908 unsigned long, tls) 2909 #endif 2910 { 2911 struct kernel_clone_args args = { 2912 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2913 .pidfd = parent_tidptr, 2914 .child_tid = child_tidptr, 2915 .parent_tid = parent_tidptr, 2916 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2917 .stack = newsp, 2918 .tls = tls, 2919 }; 2920 2921 return kernel_clone(&args); 2922 } 2923 #endif 2924 2925 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2926 struct clone_args __user *uargs, 2927 size_t usize) 2928 { 2929 int err; 2930 struct clone_args args; 2931 pid_t *kset_tid = kargs->set_tid; 2932 2933 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2934 CLONE_ARGS_SIZE_VER0); 2935 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2936 CLONE_ARGS_SIZE_VER1); 2937 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2938 CLONE_ARGS_SIZE_VER2); 2939 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2940 2941 if (unlikely(usize > PAGE_SIZE)) 2942 return -E2BIG; 2943 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2944 return -EINVAL; 2945 2946 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2947 if (err) 2948 return err; 2949 2950 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2951 return -EINVAL; 2952 2953 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2954 return -EINVAL; 2955 2956 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2957 return -EINVAL; 2958 2959 /* 2960 * Verify that higher 32bits of exit_signal are unset and that 2961 * it is a valid signal 2962 */ 2963 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2964 !valid_signal(args.exit_signal))) 2965 return -EINVAL; 2966 2967 if ((args.flags & CLONE_INTO_CGROUP) && 2968 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2969 return -EINVAL; 2970 2971 *kargs = (struct kernel_clone_args){ 2972 .flags = args.flags, 2973 .pidfd = u64_to_user_ptr(args.pidfd), 2974 .child_tid = u64_to_user_ptr(args.child_tid), 2975 .parent_tid = u64_to_user_ptr(args.parent_tid), 2976 .exit_signal = args.exit_signal, 2977 .stack = args.stack, 2978 .stack_size = args.stack_size, 2979 .tls = args.tls, 2980 .set_tid_size = args.set_tid_size, 2981 .cgroup = args.cgroup, 2982 }; 2983 2984 if (args.set_tid && 2985 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2986 (kargs->set_tid_size * sizeof(pid_t)))) 2987 return -EFAULT; 2988 2989 kargs->set_tid = kset_tid; 2990 2991 return 0; 2992 } 2993 2994 /** 2995 * clone3_stack_valid - check and prepare stack 2996 * @kargs: kernel clone args 2997 * 2998 * Verify that the stack arguments userspace gave us are sane. 2999 * In addition, set the stack direction for userspace since it's easy for us to 3000 * determine. 3001 */ 3002 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3003 { 3004 if (kargs->stack == 0) { 3005 if (kargs->stack_size > 0) 3006 return false; 3007 } else { 3008 if (kargs->stack_size == 0) 3009 return false; 3010 3011 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3012 return false; 3013 3014 #if !defined(CONFIG_STACK_GROWSUP) 3015 kargs->stack += kargs->stack_size; 3016 #endif 3017 } 3018 3019 return true; 3020 } 3021 3022 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3023 { 3024 /* Verify that no unknown flags are passed along. */ 3025 if (kargs->flags & 3026 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3027 return false; 3028 3029 /* 3030 * - make the CLONE_DETACHED bit reusable for clone3 3031 * - make the CSIGNAL bits reusable for clone3 3032 */ 3033 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3034 return false; 3035 3036 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3037 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3038 return false; 3039 3040 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3041 kargs->exit_signal) 3042 return false; 3043 3044 if (!clone3_stack_valid(kargs)) 3045 return false; 3046 3047 return true; 3048 } 3049 3050 /** 3051 * sys_clone3 - create a new process with specific properties 3052 * @uargs: argument structure 3053 * @size: size of @uargs 3054 * 3055 * clone3() is the extensible successor to clone()/clone2(). 3056 * It takes a struct as argument that is versioned by its size. 3057 * 3058 * Return: On success, a positive PID for the child process. 3059 * On error, a negative errno number. 3060 */ 3061 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3062 { 3063 int err; 3064 3065 struct kernel_clone_args kargs; 3066 pid_t set_tid[MAX_PID_NS_LEVEL]; 3067 3068 #ifdef __ARCH_BROKEN_SYS_CLONE3 3069 #warning clone3() entry point is missing, please fix 3070 return -ENOSYS; 3071 #endif 3072 3073 kargs.set_tid = set_tid; 3074 3075 err = copy_clone_args_from_user(&kargs, uargs, size); 3076 if (err) 3077 return err; 3078 3079 if (!clone3_args_valid(&kargs)) 3080 return -EINVAL; 3081 3082 return kernel_clone(&kargs); 3083 } 3084 3085 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3086 { 3087 struct task_struct *leader, *parent, *child; 3088 int res; 3089 3090 read_lock(&tasklist_lock); 3091 leader = top = top->group_leader; 3092 down: 3093 for_each_thread(leader, parent) { 3094 list_for_each_entry(child, &parent->children, sibling) { 3095 res = visitor(child, data); 3096 if (res) { 3097 if (res < 0) 3098 goto out; 3099 leader = child; 3100 goto down; 3101 } 3102 up: 3103 ; 3104 } 3105 } 3106 3107 if (leader != top) { 3108 child = leader; 3109 parent = child->real_parent; 3110 leader = parent->group_leader; 3111 goto up; 3112 } 3113 out: 3114 read_unlock(&tasklist_lock); 3115 } 3116 3117 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3118 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3119 #endif 3120 3121 static void sighand_ctor(void *data) 3122 { 3123 struct sighand_struct *sighand = data; 3124 3125 spin_lock_init(&sighand->siglock); 3126 init_waitqueue_head(&sighand->signalfd_wqh); 3127 } 3128 3129 void __init mm_cache_init(void) 3130 { 3131 unsigned int mm_size; 3132 3133 /* 3134 * The mm_cpumask is located at the end of mm_struct, and is 3135 * dynamically sized based on the maximum CPU number this system 3136 * can have, taking hotplug into account (nr_cpu_ids). 3137 */ 3138 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3139 3140 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3141 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3142 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3143 offsetof(struct mm_struct, saved_auxv), 3144 sizeof_field(struct mm_struct, saved_auxv), 3145 NULL); 3146 } 3147 3148 void __init proc_caches_init(void) 3149 { 3150 sighand_cachep = kmem_cache_create("sighand_cache", 3151 sizeof(struct sighand_struct), 0, 3152 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3153 SLAB_ACCOUNT, sighand_ctor); 3154 signal_cachep = kmem_cache_create("signal_cache", 3155 sizeof(struct signal_struct), 0, 3156 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3157 NULL); 3158 files_cachep = kmem_cache_create("files_cache", 3159 sizeof(struct files_struct), 0, 3160 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3161 NULL); 3162 fs_cachep = kmem_cache_create("fs_cache", 3163 sizeof(struct fs_struct), 0, 3164 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3165 NULL); 3166 vm_area_cachep = KMEM_CACHE(vm_area_struct, 3167 SLAB_HWCACHE_ALIGN|SLAB_NO_MERGE|SLAB_PANIC| 3168 SLAB_ACCOUNT); 3169 mmap_init(); 3170 nsproxy_cache_init(); 3171 } 3172 3173 /* 3174 * Check constraints on flags passed to the unshare system call. 3175 */ 3176 static int check_unshare_flags(unsigned long unshare_flags) 3177 { 3178 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3179 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3180 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3181 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3182 CLONE_NEWTIME)) 3183 return -EINVAL; 3184 /* 3185 * Not implemented, but pretend it works if there is nothing 3186 * to unshare. Note that unsharing the address space or the 3187 * signal handlers also need to unshare the signal queues (aka 3188 * CLONE_THREAD). 3189 */ 3190 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3191 if (!thread_group_empty(current)) 3192 return -EINVAL; 3193 } 3194 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3195 if (refcount_read(¤t->sighand->count) > 1) 3196 return -EINVAL; 3197 } 3198 if (unshare_flags & CLONE_VM) { 3199 if (!current_is_single_threaded()) 3200 return -EINVAL; 3201 } 3202 3203 return 0; 3204 } 3205 3206 /* 3207 * Unshare the filesystem structure if it is being shared 3208 */ 3209 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3210 { 3211 struct fs_struct *fs = current->fs; 3212 3213 if (!(unshare_flags & CLONE_FS) || !fs) 3214 return 0; 3215 3216 /* don't need lock here; in the worst case we'll do useless copy */ 3217 if (fs->users == 1) 3218 return 0; 3219 3220 *new_fsp = copy_fs_struct(fs); 3221 if (!*new_fsp) 3222 return -ENOMEM; 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * Unshare file descriptor table if it is being shared 3229 */ 3230 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3231 { 3232 struct files_struct *fd = current->files; 3233 3234 if ((unshare_flags & CLONE_FILES) && 3235 (fd && atomic_read(&fd->count) > 1)) { 3236 fd = dup_fd(fd, NULL); 3237 if (IS_ERR(fd)) 3238 return PTR_ERR(fd); 3239 *new_fdp = fd; 3240 } 3241 3242 return 0; 3243 } 3244 3245 /* 3246 * unshare allows a process to 'unshare' part of the process 3247 * context which was originally shared using clone. copy_* 3248 * functions used by kernel_clone() cannot be used here directly 3249 * because they modify an inactive task_struct that is being 3250 * constructed. Here we are modifying the current, active, 3251 * task_struct. 3252 */ 3253 int ksys_unshare(unsigned long unshare_flags) 3254 { 3255 struct fs_struct *fs, *new_fs = NULL; 3256 struct files_struct *new_fd = NULL; 3257 struct cred *new_cred = NULL; 3258 struct nsproxy *new_nsproxy = NULL; 3259 int do_sysvsem = 0; 3260 int err; 3261 3262 /* 3263 * If unsharing a user namespace must also unshare the thread group 3264 * and unshare the filesystem root and working directories. 3265 */ 3266 if (unshare_flags & CLONE_NEWUSER) 3267 unshare_flags |= CLONE_THREAD | CLONE_FS; 3268 /* 3269 * If unsharing vm, must also unshare signal handlers. 3270 */ 3271 if (unshare_flags & CLONE_VM) 3272 unshare_flags |= CLONE_SIGHAND; 3273 /* 3274 * If unsharing a signal handlers, must also unshare the signal queues. 3275 */ 3276 if (unshare_flags & CLONE_SIGHAND) 3277 unshare_flags |= CLONE_THREAD; 3278 /* 3279 * If unsharing namespace, must also unshare filesystem information. 3280 */ 3281 if (unshare_flags & CLONE_NEWNS) 3282 unshare_flags |= CLONE_FS; 3283 3284 err = check_unshare_flags(unshare_flags); 3285 if (err) 3286 goto bad_unshare_out; 3287 /* 3288 * CLONE_NEWIPC must also detach from the undolist: after switching 3289 * to a new ipc namespace, the semaphore arrays from the old 3290 * namespace are unreachable. 3291 */ 3292 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3293 do_sysvsem = 1; 3294 err = unshare_fs(unshare_flags, &new_fs); 3295 if (err) 3296 goto bad_unshare_out; 3297 err = unshare_fd(unshare_flags, &new_fd); 3298 if (err) 3299 goto bad_unshare_cleanup_fs; 3300 err = unshare_userns(unshare_flags, &new_cred); 3301 if (err) 3302 goto bad_unshare_cleanup_fd; 3303 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3304 new_cred, new_fs); 3305 if (err) 3306 goto bad_unshare_cleanup_cred; 3307 3308 if (new_cred) { 3309 err = set_cred_ucounts(new_cred); 3310 if (err) 3311 goto bad_unshare_cleanup_cred; 3312 } 3313 3314 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3315 if (do_sysvsem) { 3316 /* 3317 * CLONE_SYSVSEM is equivalent to sys_exit(). 3318 */ 3319 exit_sem(current); 3320 } 3321 if (unshare_flags & CLONE_NEWIPC) { 3322 /* Orphan segments in old ns (see sem above). */ 3323 exit_shm(current); 3324 shm_init_task(current); 3325 } 3326 3327 if (new_nsproxy) 3328 switch_task_namespaces(current, new_nsproxy); 3329 3330 task_lock(current); 3331 3332 if (new_fs) { 3333 fs = current->fs; 3334 spin_lock(&fs->lock); 3335 current->fs = new_fs; 3336 if (--fs->users) 3337 new_fs = NULL; 3338 else 3339 new_fs = fs; 3340 spin_unlock(&fs->lock); 3341 } 3342 3343 if (new_fd) 3344 swap(current->files, new_fd); 3345 3346 task_unlock(current); 3347 3348 if (new_cred) { 3349 /* Install the new user namespace */ 3350 commit_creds(new_cred); 3351 new_cred = NULL; 3352 } 3353 } 3354 3355 perf_event_namespaces(current); 3356 3357 bad_unshare_cleanup_cred: 3358 if (new_cred) 3359 put_cred(new_cred); 3360 bad_unshare_cleanup_fd: 3361 if (new_fd) 3362 put_files_struct(new_fd); 3363 3364 bad_unshare_cleanup_fs: 3365 if (new_fs) 3366 free_fs_struct(new_fs); 3367 3368 bad_unshare_out: 3369 return err; 3370 } 3371 3372 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3373 { 3374 return ksys_unshare(unshare_flags); 3375 } 3376 3377 /* 3378 * Helper to unshare the files of the current task. 3379 * We don't want to expose copy_files internals to 3380 * the exec layer of the kernel. 3381 */ 3382 3383 int unshare_files(void) 3384 { 3385 struct task_struct *task = current; 3386 struct files_struct *old, *copy = NULL; 3387 int error; 3388 3389 error = unshare_fd(CLONE_FILES, ©); 3390 if (error || !copy) 3391 return error; 3392 3393 old = task->files; 3394 task_lock(task); 3395 task->files = copy; 3396 task_unlock(task); 3397 put_files_struct(old); 3398 return 0; 3399 } 3400 3401 int sysctl_max_threads(const struct ctl_table *table, int write, 3402 void *buffer, size_t *lenp, loff_t *ppos) 3403 { 3404 struct ctl_table t; 3405 int ret; 3406 int threads = max_threads; 3407 int min = 1; 3408 int max = MAX_THREADS; 3409 3410 t = *table; 3411 t.data = &threads; 3412 t.extra1 = &min; 3413 t.extra2 = &max; 3414 3415 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3416 if (ret || !write) 3417 return ret; 3418 3419 max_threads = threads; 3420 3421 return 0; 3422 } 3423