xref: /linux-6.15/kernel/fork.c (revision 7b6218ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 				     VMALLOC_START, VMALLOC_END,
316 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317 				     PAGE_KERNEL,
318 				     0, node, __builtin_return_address(0));
319 	if (!stack)
320 		return -ENOMEM;
321 
322 	vm = find_vm_area(stack);
323 	if (memcg_charge_kernel_stack(vm)) {
324 		vfree(stack);
325 		return -ENOMEM;
326 	}
327 	/*
328 	 * We can't call find_vm_area() in interrupt context, and
329 	 * free_thread_stack() can be called in interrupt context,
330 	 * so cache the vm_struct.
331 	 */
332 	tsk->stack_vm_area = vm;
333 	stack = kasan_reset_tag(stack);
334 	tsk->stack = stack;
335 	return 0;
336 }
337 
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 		thread_stack_delayed_free(tsk);
342 
343 	tsk->stack = NULL;
344 	tsk->stack_vm_area = NULL;
345 }
346 
347 #  else /* !CONFIG_VMAP_STACK */
348 
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353 
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 	struct rcu_head *rh = tsk->stack;
357 
358 	call_rcu(rh, thread_stack_free_rcu);
359 }
360 
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 					     THREAD_SIZE_ORDER);
365 
366 	if (likely(page)) {
367 		tsk->stack = kasan_reset_tag(page_address(page));
368 		return 0;
369 	}
370 	return -ENOMEM;
371 }
372 
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 	thread_stack_delayed_free(tsk);
376 	tsk->stack = NULL;
377 }
378 
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423 
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426 
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429 
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432 
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435 
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438 
439 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
440 {
441 	struct vm_area_struct *vma;
442 
443 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
444 	if (!vma)
445 		return NULL;
446 
447 	vma_init(vma, mm);
448 
449 	return vma;
450 }
451 
452 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
453 {
454 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
455 
456 	if (!new)
457 		return NULL;
458 
459 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
460 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
461 	/*
462 	 * orig->shared.rb may be modified concurrently, but the clone
463 	 * will be reinitialized.
464 	 */
465 	data_race(memcpy(new, orig, sizeof(*new)));
466 	vma_lock_init(new);
467 	INIT_LIST_HEAD(&new->anon_vma_chain);
468 	vma_numab_state_init(new);
469 	dup_anon_vma_name(orig, new);
470 
471 	return new;
472 }
473 
474 void __vm_area_free(struct vm_area_struct *vma)
475 {
476 	vma_numab_state_free(vma);
477 	free_anon_vma_name(vma);
478 	kmem_cache_free(vm_area_cachep, vma);
479 }
480 
481 #ifdef CONFIG_PER_VMA_LOCK
482 static void vm_area_free_rcu_cb(struct rcu_head *head)
483 {
484 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
485 						  vm_rcu);
486 
487 	/* The vma should not be locked while being destroyed. */
488 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock.lock), vma);
489 	__vm_area_free(vma);
490 }
491 #endif
492 
493 void vm_area_free(struct vm_area_struct *vma)
494 {
495 #ifdef CONFIG_PER_VMA_LOCK
496 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
497 #else
498 	__vm_area_free(vma);
499 #endif
500 }
501 
502 static void account_kernel_stack(struct task_struct *tsk, int account)
503 {
504 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
505 		struct vm_struct *vm = task_stack_vm_area(tsk);
506 		int i;
507 
508 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
509 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
510 					      account * (PAGE_SIZE / 1024));
511 	} else {
512 		void *stack = task_stack_page(tsk);
513 
514 		/* All stack pages are in the same node. */
515 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
516 				      account * (THREAD_SIZE / 1024));
517 	}
518 }
519 
520 void exit_task_stack_account(struct task_struct *tsk)
521 {
522 	account_kernel_stack(tsk, -1);
523 
524 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
525 		struct vm_struct *vm;
526 		int i;
527 
528 		vm = task_stack_vm_area(tsk);
529 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
530 			memcg_kmem_uncharge_page(vm->pages[i], 0);
531 	}
532 }
533 
534 static void release_task_stack(struct task_struct *tsk)
535 {
536 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
537 		return;  /* Better to leak the stack than to free prematurely */
538 
539 	free_thread_stack(tsk);
540 }
541 
542 #ifdef CONFIG_THREAD_INFO_IN_TASK
543 void put_task_stack(struct task_struct *tsk)
544 {
545 	if (refcount_dec_and_test(&tsk->stack_refcount))
546 		release_task_stack(tsk);
547 }
548 #endif
549 
550 void free_task(struct task_struct *tsk)
551 {
552 #ifdef CONFIG_SECCOMP
553 	WARN_ON_ONCE(tsk->seccomp.filter);
554 #endif
555 	release_user_cpus_ptr(tsk);
556 	scs_release(tsk);
557 
558 #ifndef CONFIG_THREAD_INFO_IN_TASK
559 	/*
560 	 * The task is finally done with both the stack and thread_info,
561 	 * so free both.
562 	 */
563 	release_task_stack(tsk);
564 #else
565 	/*
566 	 * If the task had a separate stack allocation, it should be gone
567 	 * by now.
568 	 */
569 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
570 #endif
571 	rt_mutex_debug_task_free(tsk);
572 	ftrace_graph_exit_task(tsk);
573 	arch_release_task_struct(tsk);
574 	if (tsk->flags & PF_KTHREAD)
575 		free_kthread_struct(tsk);
576 	bpf_task_storage_free(tsk);
577 	free_task_struct(tsk);
578 }
579 EXPORT_SYMBOL(free_task);
580 
581 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
582 {
583 	struct file *exe_file;
584 
585 	exe_file = get_mm_exe_file(oldmm);
586 	RCU_INIT_POINTER(mm->exe_file, exe_file);
587 	/*
588 	 * We depend on the oldmm having properly denied write access to the
589 	 * exe_file already.
590 	 */
591 	if (exe_file && exe_file_deny_write_access(exe_file))
592 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
593 }
594 
595 #ifdef CONFIG_MMU
596 static __latent_entropy int dup_mmap(struct mm_struct *mm,
597 					struct mm_struct *oldmm)
598 {
599 	struct vm_area_struct *mpnt, *tmp;
600 	int retval;
601 	unsigned long charge = 0;
602 	LIST_HEAD(uf);
603 	VMA_ITERATOR(vmi, mm, 0);
604 
605 	if (mmap_write_lock_killable(oldmm))
606 		return -EINTR;
607 	flush_cache_dup_mm(oldmm);
608 	uprobe_dup_mmap(oldmm, mm);
609 	/*
610 	 * Not linked in yet - no deadlock potential:
611 	 */
612 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
613 
614 	/* No ordering required: file already has been exposed. */
615 	dup_mm_exe_file(mm, oldmm);
616 
617 	mm->total_vm = oldmm->total_vm;
618 	mm->data_vm = oldmm->data_vm;
619 	mm->exec_vm = oldmm->exec_vm;
620 	mm->stack_vm = oldmm->stack_vm;
621 
622 	/* Use __mt_dup() to efficiently build an identical maple tree. */
623 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
624 	if (unlikely(retval))
625 		goto out;
626 
627 	mt_clear_in_rcu(vmi.mas.tree);
628 	for_each_vma(vmi, mpnt) {
629 		struct file *file;
630 
631 		vma_start_write(mpnt);
632 		if (mpnt->vm_flags & VM_DONTCOPY) {
633 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
634 						    mpnt->vm_end, GFP_KERNEL);
635 			if (retval)
636 				goto loop_out;
637 
638 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
639 			continue;
640 		}
641 		charge = 0;
642 		/*
643 		 * Don't duplicate many vmas if we've been oom-killed (for
644 		 * example)
645 		 */
646 		if (fatal_signal_pending(current)) {
647 			retval = -EINTR;
648 			goto loop_out;
649 		}
650 		if (mpnt->vm_flags & VM_ACCOUNT) {
651 			unsigned long len = vma_pages(mpnt);
652 
653 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
654 				goto fail_nomem;
655 			charge = len;
656 		}
657 		tmp = vm_area_dup(mpnt);
658 		if (!tmp)
659 			goto fail_nomem;
660 		retval = vma_dup_policy(mpnt, tmp);
661 		if (retval)
662 			goto fail_nomem_policy;
663 		tmp->vm_mm = mm;
664 		retval = dup_userfaultfd(tmp, &uf);
665 		if (retval)
666 			goto fail_nomem_anon_vma_fork;
667 		if (tmp->vm_flags & VM_WIPEONFORK) {
668 			/*
669 			 * VM_WIPEONFORK gets a clean slate in the child.
670 			 * Don't prepare anon_vma until fault since we don't
671 			 * copy page for current vma.
672 			 */
673 			tmp->anon_vma = NULL;
674 		} else if (anon_vma_fork(tmp, mpnt))
675 			goto fail_nomem_anon_vma_fork;
676 		vm_flags_clear(tmp, VM_LOCKED_MASK);
677 		/*
678 		 * Copy/update hugetlb private vma information.
679 		 */
680 		if (is_vm_hugetlb_page(tmp))
681 			hugetlb_dup_vma_private(tmp);
682 
683 		/*
684 		 * Link the vma into the MT. After using __mt_dup(), memory
685 		 * allocation is not necessary here, so it cannot fail.
686 		 */
687 		vma_iter_bulk_store(&vmi, tmp);
688 
689 		mm->map_count++;
690 
691 		if (tmp->vm_ops && tmp->vm_ops->open)
692 			tmp->vm_ops->open(tmp);
693 
694 		file = tmp->vm_file;
695 		if (file) {
696 			struct address_space *mapping = file->f_mapping;
697 
698 			get_file(file);
699 			i_mmap_lock_write(mapping);
700 			if (vma_is_shared_maywrite(tmp))
701 				mapping_allow_writable(mapping);
702 			flush_dcache_mmap_lock(mapping);
703 			/* insert tmp into the share list, just after mpnt */
704 			vma_interval_tree_insert_after(tmp, mpnt,
705 					&mapping->i_mmap);
706 			flush_dcache_mmap_unlock(mapping);
707 			i_mmap_unlock_write(mapping);
708 		}
709 
710 		if (!(tmp->vm_flags & VM_WIPEONFORK))
711 			retval = copy_page_range(tmp, mpnt);
712 
713 		if (retval) {
714 			mpnt = vma_next(&vmi);
715 			goto loop_out;
716 		}
717 	}
718 	/* a new mm has just been created */
719 	retval = arch_dup_mmap(oldmm, mm);
720 loop_out:
721 	vma_iter_free(&vmi);
722 	if (!retval) {
723 		mt_set_in_rcu(vmi.mas.tree);
724 		ksm_fork(mm, oldmm);
725 		khugepaged_fork(mm, oldmm);
726 	} else {
727 
728 		/*
729 		 * The entire maple tree has already been duplicated. If the
730 		 * mmap duplication fails, mark the failure point with
731 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
732 		 * stop releasing VMAs that have not been duplicated after this
733 		 * point.
734 		 */
735 		if (mpnt) {
736 			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
737 			mas_store(&vmi.mas, XA_ZERO_ENTRY);
738 			/* Avoid OOM iterating a broken tree */
739 			set_bit(MMF_OOM_SKIP, &mm->flags);
740 		}
741 		/*
742 		 * The mm_struct is going to exit, but the locks will be dropped
743 		 * first.  Set the mm_struct as unstable is advisable as it is
744 		 * not fully initialised.
745 		 */
746 		set_bit(MMF_UNSTABLE, &mm->flags);
747 	}
748 out:
749 	mmap_write_unlock(mm);
750 	flush_tlb_mm(oldmm);
751 	mmap_write_unlock(oldmm);
752 	if (!retval)
753 		dup_userfaultfd_complete(&uf);
754 	else
755 		dup_userfaultfd_fail(&uf);
756 	return retval;
757 
758 fail_nomem_anon_vma_fork:
759 	mpol_put(vma_policy(tmp));
760 fail_nomem_policy:
761 	vm_area_free(tmp);
762 fail_nomem:
763 	retval = -ENOMEM;
764 	vm_unacct_memory(charge);
765 	goto loop_out;
766 }
767 
768 static inline int mm_alloc_pgd(struct mm_struct *mm)
769 {
770 	mm->pgd = pgd_alloc(mm);
771 	if (unlikely(!mm->pgd))
772 		return -ENOMEM;
773 	return 0;
774 }
775 
776 static inline void mm_free_pgd(struct mm_struct *mm)
777 {
778 	pgd_free(mm, mm->pgd);
779 }
780 #else
781 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
782 {
783 	mmap_write_lock(oldmm);
784 	dup_mm_exe_file(mm, oldmm);
785 	mmap_write_unlock(oldmm);
786 	return 0;
787 }
788 #define mm_alloc_pgd(mm)	(0)
789 #define mm_free_pgd(mm)
790 #endif /* CONFIG_MMU */
791 
792 static void check_mm(struct mm_struct *mm)
793 {
794 	int i;
795 
796 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
797 			 "Please make sure 'struct resident_page_types[]' is updated as well");
798 
799 	for (i = 0; i < NR_MM_COUNTERS; i++) {
800 		long x = percpu_counter_sum(&mm->rss_stat[i]);
801 
802 		if (unlikely(x))
803 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
804 				 mm, resident_page_types[i], x);
805 	}
806 
807 	if (mm_pgtables_bytes(mm))
808 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
809 				mm_pgtables_bytes(mm));
810 
811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
812 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
813 #endif
814 }
815 
816 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
817 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
818 
819 static void do_check_lazy_tlb(void *arg)
820 {
821 	struct mm_struct *mm = arg;
822 
823 	WARN_ON_ONCE(current->active_mm == mm);
824 }
825 
826 static void do_shoot_lazy_tlb(void *arg)
827 {
828 	struct mm_struct *mm = arg;
829 
830 	if (current->active_mm == mm) {
831 		WARN_ON_ONCE(current->mm);
832 		current->active_mm = &init_mm;
833 		switch_mm(mm, &init_mm, current);
834 	}
835 }
836 
837 static void cleanup_lazy_tlbs(struct mm_struct *mm)
838 {
839 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
840 		/*
841 		 * In this case, lazy tlb mms are refounted and would not reach
842 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
843 		 */
844 		return;
845 	}
846 
847 	/*
848 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
849 	 * requires lazy mm users to switch to another mm when the refcount
850 	 * drops to zero, before the mm is freed. This requires IPIs here to
851 	 * switch kernel threads to init_mm.
852 	 *
853 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
854 	 * switch with the final userspace teardown TLB flush which leaves the
855 	 * mm lazy on this CPU but no others, reducing the need for additional
856 	 * IPIs here. There are cases where a final IPI is still required here,
857 	 * such as the final mmdrop being performed on a different CPU than the
858 	 * one exiting, or kernel threads using the mm when userspace exits.
859 	 *
860 	 * IPI overheads have not found to be expensive, but they could be
861 	 * reduced in a number of possible ways, for example (roughly
862 	 * increasing order of complexity):
863 	 * - The last lazy reference created by exit_mm() could instead switch
864 	 *   to init_mm, however it's probable this will run on the same CPU
865 	 *   immediately afterwards, so this may not reduce IPIs much.
866 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
867 	 * - CPUs store active_mm where it can be remotely checked without a
868 	 *   lock, to filter out false-positives in the cpumask.
869 	 * - After mm_users or mm_count reaches zero, switching away from the
870 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
871 	 *   with some batching or delaying of the final IPIs.
872 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
873 	 *   switching to avoid IPIs completely.
874 	 */
875 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
876 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
877 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
878 }
879 
880 /*
881  * Called when the last reference to the mm
882  * is dropped: either by a lazy thread or by
883  * mmput. Free the page directory and the mm.
884  */
885 void __mmdrop(struct mm_struct *mm)
886 {
887 	BUG_ON(mm == &init_mm);
888 	WARN_ON_ONCE(mm == current->mm);
889 
890 	/* Ensure no CPUs are using this as their lazy tlb mm */
891 	cleanup_lazy_tlbs(mm);
892 
893 	WARN_ON_ONCE(mm == current->active_mm);
894 	mm_free_pgd(mm);
895 	destroy_context(mm);
896 	mmu_notifier_subscriptions_destroy(mm);
897 	check_mm(mm);
898 	put_user_ns(mm->user_ns);
899 	mm_pasid_drop(mm);
900 	mm_destroy_cid(mm);
901 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
902 
903 	free_mm(mm);
904 }
905 EXPORT_SYMBOL_GPL(__mmdrop);
906 
907 static void mmdrop_async_fn(struct work_struct *work)
908 {
909 	struct mm_struct *mm;
910 
911 	mm = container_of(work, struct mm_struct, async_put_work);
912 	__mmdrop(mm);
913 }
914 
915 static void mmdrop_async(struct mm_struct *mm)
916 {
917 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
918 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
919 		schedule_work(&mm->async_put_work);
920 	}
921 }
922 
923 static inline void free_signal_struct(struct signal_struct *sig)
924 {
925 	taskstats_tgid_free(sig);
926 	sched_autogroup_exit(sig);
927 	/*
928 	 * __mmdrop is not safe to call from softirq context on x86 due to
929 	 * pgd_dtor so postpone it to the async context
930 	 */
931 	if (sig->oom_mm)
932 		mmdrop_async(sig->oom_mm);
933 	kmem_cache_free(signal_cachep, sig);
934 }
935 
936 static inline void put_signal_struct(struct signal_struct *sig)
937 {
938 	if (refcount_dec_and_test(&sig->sigcnt))
939 		free_signal_struct(sig);
940 }
941 
942 void __put_task_struct(struct task_struct *tsk)
943 {
944 	WARN_ON(!tsk->exit_state);
945 	WARN_ON(refcount_read(&tsk->usage));
946 	WARN_ON(tsk == current);
947 
948 	sched_ext_free(tsk);
949 	io_uring_free(tsk);
950 	cgroup_free(tsk);
951 	task_numa_free(tsk, true);
952 	security_task_free(tsk);
953 	exit_creds(tsk);
954 	delayacct_tsk_free(tsk);
955 	put_signal_struct(tsk->signal);
956 	sched_core_free(tsk);
957 	free_task(tsk);
958 }
959 EXPORT_SYMBOL_GPL(__put_task_struct);
960 
961 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
962 {
963 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
964 
965 	__put_task_struct(task);
966 }
967 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
968 
969 void __init __weak arch_task_cache_init(void) { }
970 
971 /*
972  * set_max_threads
973  */
974 static void __init set_max_threads(unsigned int max_threads_suggested)
975 {
976 	u64 threads;
977 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
978 
979 	/*
980 	 * The number of threads shall be limited such that the thread
981 	 * structures may only consume a small part of the available memory.
982 	 */
983 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
984 		threads = MAX_THREADS;
985 	else
986 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
987 				    (u64) THREAD_SIZE * 8UL);
988 
989 	if (threads > max_threads_suggested)
990 		threads = max_threads_suggested;
991 
992 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
993 }
994 
995 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
996 /* Initialized by the architecture: */
997 int arch_task_struct_size __read_mostly;
998 #endif
999 
1000 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1001 {
1002 	/* Fetch thread_struct whitelist for the architecture. */
1003 	arch_thread_struct_whitelist(offset, size);
1004 
1005 	/*
1006 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1007 	 * adjust offset to position of thread_struct in task_struct.
1008 	 */
1009 	if (unlikely(*size == 0))
1010 		*offset = 0;
1011 	else
1012 		*offset += offsetof(struct task_struct, thread);
1013 }
1014 
1015 void __init fork_init(void)
1016 {
1017 	int i;
1018 #ifndef ARCH_MIN_TASKALIGN
1019 #define ARCH_MIN_TASKALIGN	0
1020 #endif
1021 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1022 	unsigned long useroffset, usersize;
1023 
1024 	/* create a slab on which task_structs can be allocated */
1025 	task_struct_whitelist(&useroffset, &usersize);
1026 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1027 			arch_task_struct_size, align,
1028 			SLAB_PANIC|SLAB_ACCOUNT,
1029 			useroffset, usersize, NULL);
1030 
1031 	/* do the arch specific task caches init */
1032 	arch_task_cache_init();
1033 
1034 	set_max_threads(MAX_THREADS);
1035 
1036 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1037 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1038 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1039 		init_task.signal->rlim[RLIMIT_NPROC];
1040 
1041 	for (i = 0; i < UCOUNT_COUNTS; i++)
1042 		init_user_ns.ucount_max[i] = max_threads/2;
1043 
1044 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1045 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1046 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1047 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1048 
1049 #ifdef CONFIG_VMAP_STACK
1050 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1051 			  NULL, free_vm_stack_cache);
1052 #endif
1053 
1054 	scs_init();
1055 
1056 	lockdep_init_task(&init_task);
1057 	uprobes_init();
1058 }
1059 
1060 int __weak arch_dup_task_struct(struct task_struct *dst,
1061 					       struct task_struct *src)
1062 {
1063 	*dst = *src;
1064 	return 0;
1065 }
1066 
1067 void set_task_stack_end_magic(struct task_struct *tsk)
1068 {
1069 	unsigned long *stackend;
1070 
1071 	stackend = end_of_stack(tsk);
1072 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1073 }
1074 
1075 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1076 {
1077 	struct task_struct *tsk;
1078 	int err;
1079 
1080 	if (node == NUMA_NO_NODE)
1081 		node = tsk_fork_get_node(orig);
1082 	tsk = alloc_task_struct_node(node);
1083 	if (!tsk)
1084 		return NULL;
1085 
1086 	err = arch_dup_task_struct(tsk, orig);
1087 	if (err)
1088 		goto free_tsk;
1089 
1090 	err = alloc_thread_stack_node(tsk, node);
1091 	if (err)
1092 		goto free_tsk;
1093 
1094 #ifdef CONFIG_THREAD_INFO_IN_TASK
1095 	refcount_set(&tsk->stack_refcount, 1);
1096 #endif
1097 	account_kernel_stack(tsk, 1);
1098 
1099 	err = scs_prepare(tsk, node);
1100 	if (err)
1101 		goto free_stack;
1102 
1103 #ifdef CONFIG_SECCOMP
1104 	/*
1105 	 * We must handle setting up seccomp filters once we're under
1106 	 * the sighand lock in case orig has changed between now and
1107 	 * then. Until then, filter must be NULL to avoid messing up
1108 	 * the usage counts on the error path calling free_task.
1109 	 */
1110 	tsk->seccomp.filter = NULL;
1111 #endif
1112 
1113 	setup_thread_stack(tsk, orig);
1114 	clear_user_return_notifier(tsk);
1115 	clear_tsk_need_resched(tsk);
1116 	set_task_stack_end_magic(tsk);
1117 	clear_syscall_work_syscall_user_dispatch(tsk);
1118 
1119 #ifdef CONFIG_STACKPROTECTOR
1120 	tsk->stack_canary = get_random_canary();
1121 #endif
1122 	if (orig->cpus_ptr == &orig->cpus_mask)
1123 		tsk->cpus_ptr = &tsk->cpus_mask;
1124 	dup_user_cpus_ptr(tsk, orig, node);
1125 
1126 	/*
1127 	 * One for the user space visible state that goes away when reaped.
1128 	 * One for the scheduler.
1129 	 */
1130 	refcount_set(&tsk->rcu_users, 2);
1131 	/* One for the rcu users */
1132 	refcount_set(&tsk->usage, 1);
1133 #ifdef CONFIG_BLK_DEV_IO_TRACE
1134 	tsk->btrace_seq = 0;
1135 #endif
1136 	tsk->splice_pipe = NULL;
1137 	tsk->task_frag.page = NULL;
1138 	tsk->wake_q.next = NULL;
1139 	tsk->worker_private = NULL;
1140 
1141 	kcov_task_init(tsk);
1142 	kmsan_task_create(tsk);
1143 	kmap_local_fork(tsk);
1144 
1145 #ifdef CONFIG_FAULT_INJECTION
1146 	tsk->fail_nth = 0;
1147 #endif
1148 
1149 #ifdef CONFIG_BLK_CGROUP
1150 	tsk->throttle_disk = NULL;
1151 	tsk->use_memdelay = 0;
1152 #endif
1153 
1154 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1155 	tsk->pasid_activated = 0;
1156 #endif
1157 
1158 #ifdef CONFIG_MEMCG
1159 	tsk->active_memcg = NULL;
1160 #endif
1161 
1162 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1163 	tsk->reported_split_lock = 0;
1164 #endif
1165 
1166 #ifdef CONFIG_SCHED_MM_CID
1167 	tsk->mm_cid = -1;
1168 	tsk->last_mm_cid = -1;
1169 	tsk->mm_cid_active = 0;
1170 	tsk->migrate_from_cpu = -1;
1171 #endif
1172 	return tsk;
1173 
1174 free_stack:
1175 	exit_task_stack_account(tsk);
1176 	free_thread_stack(tsk);
1177 free_tsk:
1178 	free_task_struct(tsk);
1179 	return NULL;
1180 }
1181 
1182 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1183 
1184 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1185 
1186 static int __init coredump_filter_setup(char *s)
1187 {
1188 	default_dump_filter =
1189 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1190 		MMF_DUMP_FILTER_MASK;
1191 	return 1;
1192 }
1193 
1194 __setup("coredump_filter=", coredump_filter_setup);
1195 
1196 #include <linux/init_task.h>
1197 
1198 static void mm_init_aio(struct mm_struct *mm)
1199 {
1200 #ifdef CONFIG_AIO
1201 	spin_lock_init(&mm->ioctx_lock);
1202 	mm->ioctx_table = NULL;
1203 #endif
1204 }
1205 
1206 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1207 					   struct task_struct *p)
1208 {
1209 #ifdef CONFIG_MEMCG
1210 	if (mm->owner == p)
1211 		WRITE_ONCE(mm->owner, NULL);
1212 #endif
1213 }
1214 
1215 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1216 {
1217 #ifdef CONFIG_MEMCG
1218 	mm->owner = p;
1219 #endif
1220 }
1221 
1222 static void mm_init_uprobes_state(struct mm_struct *mm)
1223 {
1224 #ifdef CONFIG_UPROBES
1225 	mm->uprobes_state.xol_area = NULL;
1226 #endif
1227 }
1228 
1229 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1230 	struct user_namespace *user_ns)
1231 {
1232 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1233 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1234 	atomic_set(&mm->mm_users, 1);
1235 	atomic_set(&mm->mm_count, 1);
1236 	seqcount_init(&mm->write_protect_seq);
1237 	mmap_init_lock(mm);
1238 	INIT_LIST_HEAD(&mm->mmlist);
1239 	mm_pgtables_bytes_init(mm);
1240 	mm->map_count = 0;
1241 	mm->locked_vm = 0;
1242 	atomic64_set(&mm->pinned_vm, 0);
1243 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1244 	spin_lock_init(&mm->page_table_lock);
1245 	spin_lock_init(&mm->arg_lock);
1246 	mm_init_cpumask(mm);
1247 	mm_init_aio(mm);
1248 	mm_init_owner(mm, p);
1249 	mm_pasid_init(mm);
1250 	RCU_INIT_POINTER(mm->exe_file, NULL);
1251 	mmu_notifier_subscriptions_init(mm);
1252 	init_tlb_flush_pending(mm);
1253 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1254 	mm->pmd_huge_pte = NULL;
1255 #endif
1256 	mm_init_uprobes_state(mm);
1257 	hugetlb_count_init(mm);
1258 
1259 	if (current->mm) {
1260 		mm->flags = mmf_init_flags(current->mm->flags);
1261 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1262 	} else {
1263 		mm->flags = default_dump_filter;
1264 		mm->def_flags = 0;
1265 	}
1266 
1267 	if (mm_alloc_pgd(mm))
1268 		goto fail_nopgd;
1269 
1270 	if (init_new_context(p, mm))
1271 		goto fail_nocontext;
1272 
1273 	if (mm_alloc_cid(mm, p))
1274 		goto fail_cid;
1275 
1276 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1277 				     NR_MM_COUNTERS))
1278 		goto fail_pcpu;
1279 
1280 	mm->user_ns = get_user_ns(user_ns);
1281 	lru_gen_init_mm(mm);
1282 	return mm;
1283 
1284 fail_pcpu:
1285 	mm_destroy_cid(mm);
1286 fail_cid:
1287 	destroy_context(mm);
1288 fail_nocontext:
1289 	mm_free_pgd(mm);
1290 fail_nopgd:
1291 	free_mm(mm);
1292 	return NULL;
1293 }
1294 
1295 /*
1296  * Allocate and initialize an mm_struct.
1297  */
1298 struct mm_struct *mm_alloc(void)
1299 {
1300 	struct mm_struct *mm;
1301 
1302 	mm = allocate_mm();
1303 	if (!mm)
1304 		return NULL;
1305 
1306 	memset(mm, 0, sizeof(*mm));
1307 	return mm_init(mm, current, current_user_ns());
1308 }
1309 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1310 
1311 static inline void __mmput(struct mm_struct *mm)
1312 {
1313 	VM_BUG_ON(atomic_read(&mm->mm_users));
1314 
1315 	uprobe_clear_state(mm);
1316 	exit_aio(mm);
1317 	ksm_exit(mm);
1318 	khugepaged_exit(mm); /* must run before exit_mmap */
1319 	exit_mmap(mm);
1320 	mm_put_huge_zero_folio(mm);
1321 	set_mm_exe_file(mm, NULL);
1322 	if (!list_empty(&mm->mmlist)) {
1323 		spin_lock(&mmlist_lock);
1324 		list_del(&mm->mmlist);
1325 		spin_unlock(&mmlist_lock);
1326 	}
1327 	if (mm->binfmt)
1328 		module_put(mm->binfmt->module);
1329 	lru_gen_del_mm(mm);
1330 	mmdrop(mm);
1331 }
1332 
1333 /*
1334  * Decrement the use count and release all resources for an mm.
1335  */
1336 void mmput(struct mm_struct *mm)
1337 {
1338 	might_sleep();
1339 
1340 	if (atomic_dec_and_test(&mm->mm_users))
1341 		__mmput(mm);
1342 }
1343 EXPORT_SYMBOL_GPL(mmput);
1344 
1345 #ifdef CONFIG_MMU
1346 static void mmput_async_fn(struct work_struct *work)
1347 {
1348 	struct mm_struct *mm = container_of(work, struct mm_struct,
1349 					    async_put_work);
1350 
1351 	__mmput(mm);
1352 }
1353 
1354 void mmput_async(struct mm_struct *mm)
1355 {
1356 	if (atomic_dec_and_test(&mm->mm_users)) {
1357 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1358 		schedule_work(&mm->async_put_work);
1359 	}
1360 }
1361 EXPORT_SYMBOL_GPL(mmput_async);
1362 #endif
1363 
1364 /**
1365  * set_mm_exe_file - change a reference to the mm's executable file
1366  * @mm: The mm to change.
1367  * @new_exe_file: The new file to use.
1368  *
1369  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1370  *
1371  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1372  * invocations: in mmput() nobody alive left, in execve it happens before
1373  * the new mm is made visible to anyone.
1374  *
1375  * Can only fail if new_exe_file != NULL.
1376  */
1377 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1378 {
1379 	struct file *old_exe_file;
1380 
1381 	/*
1382 	 * It is safe to dereference the exe_file without RCU as
1383 	 * this function is only called if nobody else can access
1384 	 * this mm -- see comment above for justification.
1385 	 */
1386 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1387 
1388 	if (new_exe_file) {
1389 		/*
1390 		 * We expect the caller (i.e., sys_execve) to already denied
1391 		 * write access, so this is unlikely to fail.
1392 		 */
1393 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1394 			return -EACCES;
1395 		get_file(new_exe_file);
1396 	}
1397 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1398 	if (old_exe_file) {
1399 		exe_file_allow_write_access(old_exe_file);
1400 		fput(old_exe_file);
1401 	}
1402 	return 0;
1403 }
1404 
1405 /**
1406  * replace_mm_exe_file - replace a reference to the mm's executable file
1407  * @mm: The mm to change.
1408  * @new_exe_file: The new file to use.
1409  *
1410  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1411  *
1412  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1413  */
1414 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1415 {
1416 	struct vm_area_struct *vma;
1417 	struct file *old_exe_file;
1418 	int ret = 0;
1419 
1420 	/* Forbid mm->exe_file change if old file still mapped. */
1421 	old_exe_file = get_mm_exe_file(mm);
1422 	if (old_exe_file) {
1423 		VMA_ITERATOR(vmi, mm, 0);
1424 		mmap_read_lock(mm);
1425 		for_each_vma(vmi, vma) {
1426 			if (!vma->vm_file)
1427 				continue;
1428 			if (path_equal(&vma->vm_file->f_path,
1429 				       &old_exe_file->f_path)) {
1430 				ret = -EBUSY;
1431 				break;
1432 			}
1433 		}
1434 		mmap_read_unlock(mm);
1435 		fput(old_exe_file);
1436 		if (ret)
1437 			return ret;
1438 	}
1439 
1440 	ret = exe_file_deny_write_access(new_exe_file);
1441 	if (ret)
1442 		return -EACCES;
1443 	get_file(new_exe_file);
1444 
1445 	/* set the new file */
1446 	mmap_write_lock(mm);
1447 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1448 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1449 	mmap_write_unlock(mm);
1450 
1451 	if (old_exe_file) {
1452 		exe_file_allow_write_access(old_exe_file);
1453 		fput(old_exe_file);
1454 	}
1455 	return 0;
1456 }
1457 
1458 /**
1459  * get_mm_exe_file - acquire a reference to the mm's executable file
1460  * @mm: The mm of interest.
1461  *
1462  * Returns %NULL if mm has no associated executable file.
1463  * User must release file via fput().
1464  */
1465 struct file *get_mm_exe_file(struct mm_struct *mm)
1466 {
1467 	struct file *exe_file;
1468 
1469 	rcu_read_lock();
1470 	exe_file = get_file_rcu(&mm->exe_file);
1471 	rcu_read_unlock();
1472 	return exe_file;
1473 }
1474 
1475 /**
1476  * get_task_exe_file - acquire a reference to the task's executable file
1477  * @task: The task.
1478  *
1479  * Returns %NULL if task's mm (if any) has no associated executable file or
1480  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1481  * User must release file via fput().
1482  */
1483 struct file *get_task_exe_file(struct task_struct *task)
1484 {
1485 	struct file *exe_file = NULL;
1486 	struct mm_struct *mm;
1487 
1488 	if (task->flags & PF_KTHREAD)
1489 		return NULL;
1490 
1491 	task_lock(task);
1492 	mm = task->mm;
1493 	if (mm)
1494 		exe_file = get_mm_exe_file(mm);
1495 	task_unlock(task);
1496 	return exe_file;
1497 }
1498 
1499 /**
1500  * get_task_mm - acquire a reference to the task's mm
1501  * @task: The task.
1502  *
1503  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1504  * this kernel workthread has transiently adopted a user mm with use_mm,
1505  * to do its AIO) is not set and if so returns a reference to it, after
1506  * bumping up the use count.  User must release the mm via mmput()
1507  * after use.  Typically used by /proc and ptrace.
1508  */
1509 struct mm_struct *get_task_mm(struct task_struct *task)
1510 {
1511 	struct mm_struct *mm;
1512 
1513 	if (task->flags & PF_KTHREAD)
1514 		return NULL;
1515 
1516 	task_lock(task);
1517 	mm = task->mm;
1518 	if (mm)
1519 		mmget(mm);
1520 	task_unlock(task);
1521 	return mm;
1522 }
1523 EXPORT_SYMBOL_GPL(get_task_mm);
1524 
1525 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1526 {
1527 	struct mm_struct *mm;
1528 	int err;
1529 
1530 	err =  down_read_killable(&task->signal->exec_update_lock);
1531 	if (err)
1532 		return ERR_PTR(err);
1533 
1534 	mm = get_task_mm(task);
1535 	if (!mm) {
1536 		mm = ERR_PTR(-ESRCH);
1537 	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1538 		mmput(mm);
1539 		mm = ERR_PTR(-EACCES);
1540 	}
1541 	up_read(&task->signal->exec_update_lock);
1542 
1543 	return mm;
1544 }
1545 
1546 static void complete_vfork_done(struct task_struct *tsk)
1547 {
1548 	struct completion *vfork;
1549 
1550 	task_lock(tsk);
1551 	vfork = tsk->vfork_done;
1552 	if (likely(vfork)) {
1553 		tsk->vfork_done = NULL;
1554 		complete(vfork);
1555 	}
1556 	task_unlock(tsk);
1557 }
1558 
1559 static int wait_for_vfork_done(struct task_struct *child,
1560 				struct completion *vfork)
1561 {
1562 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1563 	int killed;
1564 
1565 	cgroup_enter_frozen();
1566 	killed = wait_for_completion_state(vfork, state);
1567 	cgroup_leave_frozen(false);
1568 
1569 	if (killed) {
1570 		task_lock(child);
1571 		child->vfork_done = NULL;
1572 		task_unlock(child);
1573 	}
1574 
1575 	put_task_struct(child);
1576 	return killed;
1577 }
1578 
1579 /* Please note the differences between mmput and mm_release.
1580  * mmput is called whenever we stop holding onto a mm_struct,
1581  * error success whatever.
1582  *
1583  * mm_release is called after a mm_struct has been removed
1584  * from the current process.
1585  *
1586  * This difference is important for error handling, when we
1587  * only half set up a mm_struct for a new process and need to restore
1588  * the old one.  Because we mmput the new mm_struct before
1589  * restoring the old one. . .
1590  * Eric Biederman 10 January 1998
1591  */
1592 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1593 {
1594 	uprobe_free_utask(tsk);
1595 
1596 	/* Get rid of any cached register state */
1597 	deactivate_mm(tsk, mm);
1598 
1599 	/*
1600 	 * Signal userspace if we're not exiting with a core dump
1601 	 * because we want to leave the value intact for debugging
1602 	 * purposes.
1603 	 */
1604 	if (tsk->clear_child_tid) {
1605 		if (atomic_read(&mm->mm_users) > 1) {
1606 			/*
1607 			 * We don't check the error code - if userspace has
1608 			 * not set up a proper pointer then tough luck.
1609 			 */
1610 			put_user(0, tsk->clear_child_tid);
1611 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1612 					1, NULL, NULL, 0, 0);
1613 		}
1614 		tsk->clear_child_tid = NULL;
1615 	}
1616 
1617 	/*
1618 	 * All done, finally we can wake up parent and return this mm to him.
1619 	 * Also kthread_stop() uses this completion for synchronization.
1620 	 */
1621 	if (tsk->vfork_done)
1622 		complete_vfork_done(tsk);
1623 }
1624 
1625 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1626 {
1627 	futex_exit_release(tsk);
1628 	mm_release(tsk, mm);
1629 }
1630 
1631 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1632 {
1633 	futex_exec_release(tsk);
1634 	mm_release(tsk, mm);
1635 }
1636 
1637 /**
1638  * dup_mm() - duplicates an existing mm structure
1639  * @tsk: the task_struct with which the new mm will be associated.
1640  * @oldmm: the mm to duplicate.
1641  *
1642  * Allocates a new mm structure and duplicates the provided @oldmm structure
1643  * content into it.
1644  *
1645  * Return: the duplicated mm or NULL on failure.
1646  */
1647 static struct mm_struct *dup_mm(struct task_struct *tsk,
1648 				struct mm_struct *oldmm)
1649 {
1650 	struct mm_struct *mm;
1651 	int err;
1652 
1653 	mm = allocate_mm();
1654 	if (!mm)
1655 		goto fail_nomem;
1656 
1657 	memcpy(mm, oldmm, sizeof(*mm));
1658 
1659 	if (!mm_init(mm, tsk, mm->user_ns))
1660 		goto fail_nomem;
1661 
1662 	uprobe_start_dup_mmap();
1663 	err = dup_mmap(mm, oldmm);
1664 	if (err)
1665 		goto free_pt;
1666 	uprobe_end_dup_mmap();
1667 
1668 	mm->hiwater_rss = get_mm_rss(mm);
1669 	mm->hiwater_vm = mm->total_vm;
1670 
1671 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1672 		goto free_pt;
1673 
1674 	return mm;
1675 
1676 free_pt:
1677 	/* don't put binfmt in mmput, we haven't got module yet */
1678 	mm->binfmt = NULL;
1679 	mm_init_owner(mm, NULL);
1680 	mmput(mm);
1681 	if (err)
1682 		uprobe_end_dup_mmap();
1683 
1684 fail_nomem:
1685 	return NULL;
1686 }
1687 
1688 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1689 {
1690 	struct mm_struct *mm, *oldmm;
1691 
1692 	tsk->min_flt = tsk->maj_flt = 0;
1693 	tsk->nvcsw = tsk->nivcsw = 0;
1694 #ifdef CONFIG_DETECT_HUNG_TASK
1695 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1696 	tsk->last_switch_time = 0;
1697 #endif
1698 
1699 	tsk->mm = NULL;
1700 	tsk->active_mm = NULL;
1701 
1702 	/*
1703 	 * Are we cloning a kernel thread?
1704 	 *
1705 	 * We need to steal a active VM for that..
1706 	 */
1707 	oldmm = current->mm;
1708 	if (!oldmm)
1709 		return 0;
1710 
1711 	if (clone_flags & CLONE_VM) {
1712 		mmget(oldmm);
1713 		mm = oldmm;
1714 	} else {
1715 		mm = dup_mm(tsk, current->mm);
1716 		if (!mm)
1717 			return -ENOMEM;
1718 	}
1719 
1720 	tsk->mm = mm;
1721 	tsk->active_mm = mm;
1722 	sched_mm_cid_fork(tsk);
1723 	return 0;
1724 }
1725 
1726 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1727 {
1728 	struct fs_struct *fs = current->fs;
1729 	if (clone_flags & CLONE_FS) {
1730 		/* tsk->fs is already what we want */
1731 		spin_lock(&fs->lock);
1732 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1733 		if (fs->in_exec) {
1734 			spin_unlock(&fs->lock);
1735 			return -EAGAIN;
1736 		}
1737 		fs->users++;
1738 		spin_unlock(&fs->lock);
1739 		return 0;
1740 	}
1741 	tsk->fs = copy_fs_struct(fs);
1742 	if (!tsk->fs)
1743 		return -ENOMEM;
1744 	return 0;
1745 }
1746 
1747 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1748 		      int no_files)
1749 {
1750 	struct files_struct *oldf, *newf;
1751 
1752 	/*
1753 	 * A background process may not have any files ...
1754 	 */
1755 	oldf = current->files;
1756 	if (!oldf)
1757 		return 0;
1758 
1759 	if (no_files) {
1760 		tsk->files = NULL;
1761 		return 0;
1762 	}
1763 
1764 	if (clone_flags & CLONE_FILES) {
1765 		atomic_inc(&oldf->count);
1766 		return 0;
1767 	}
1768 
1769 	newf = dup_fd(oldf, NULL);
1770 	if (IS_ERR(newf))
1771 		return PTR_ERR(newf);
1772 
1773 	tsk->files = newf;
1774 	return 0;
1775 }
1776 
1777 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1778 {
1779 	struct sighand_struct *sig;
1780 
1781 	if (clone_flags & CLONE_SIGHAND) {
1782 		refcount_inc(&current->sighand->count);
1783 		return 0;
1784 	}
1785 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1786 	RCU_INIT_POINTER(tsk->sighand, sig);
1787 	if (!sig)
1788 		return -ENOMEM;
1789 
1790 	refcount_set(&sig->count, 1);
1791 	spin_lock_irq(&current->sighand->siglock);
1792 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1793 	spin_unlock_irq(&current->sighand->siglock);
1794 
1795 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1796 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1797 		flush_signal_handlers(tsk, 0);
1798 
1799 	return 0;
1800 }
1801 
1802 void __cleanup_sighand(struct sighand_struct *sighand)
1803 {
1804 	if (refcount_dec_and_test(&sighand->count)) {
1805 		signalfd_cleanup(sighand);
1806 		/*
1807 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1808 		 * without an RCU grace period, see __lock_task_sighand().
1809 		 */
1810 		kmem_cache_free(sighand_cachep, sighand);
1811 	}
1812 }
1813 
1814 /*
1815  * Initialize POSIX timer handling for a thread group.
1816  */
1817 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1818 {
1819 	struct posix_cputimers *pct = &sig->posix_cputimers;
1820 	unsigned long cpu_limit;
1821 
1822 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1823 	posix_cputimers_group_init(pct, cpu_limit);
1824 }
1825 
1826 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1827 {
1828 	struct signal_struct *sig;
1829 
1830 	if (clone_flags & CLONE_THREAD)
1831 		return 0;
1832 
1833 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1834 	tsk->signal = sig;
1835 	if (!sig)
1836 		return -ENOMEM;
1837 
1838 	sig->nr_threads = 1;
1839 	sig->quick_threads = 1;
1840 	atomic_set(&sig->live, 1);
1841 	refcount_set(&sig->sigcnt, 1);
1842 
1843 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1844 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1845 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1846 
1847 	init_waitqueue_head(&sig->wait_chldexit);
1848 	sig->curr_target = tsk;
1849 	init_sigpending(&sig->shared_pending);
1850 	INIT_HLIST_HEAD(&sig->multiprocess);
1851 	seqlock_init(&sig->stats_lock);
1852 	prev_cputime_init(&sig->prev_cputime);
1853 
1854 #ifdef CONFIG_POSIX_TIMERS
1855 	INIT_HLIST_HEAD(&sig->posix_timers);
1856 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1857 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1858 	sig->real_timer.function = it_real_fn;
1859 #endif
1860 
1861 	task_lock(current->group_leader);
1862 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1863 	task_unlock(current->group_leader);
1864 
1865 	posix_cpu_timers_init_group(sig);
1866 
1867 	tty_audit_fork(sig);
1868 	sched_autogroup_fork(sig);
1869 
1870 	sig->oom_score_adj = current->signal->oom_score_adj;
1871 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1872 
1873 	mutex_init(&sig->cred_guard_mutex);
1874 	init_rwsem(&sig->exec_update_lock);
1875 
1876 	return 0;
1877 }
1878 
1879 static void copy_seccomp(struct task_struct *p)
1880 {
1881 #ifdef CONFIG_SECCOMP
1882 	/*
1883 	 * Must be called with sighand->lock held, which is common to
1884 	 * all threads in the group. Holding cred_guard_mutex is not
1885 	 * needed because this new task is not yet running and cannot
1886 	 * be racing exec.
1887 	 */
1888 	assert_spin_locked(&current->sighand->siglock);
1889 
1890 	/* Ref-count the new filter user, and assign it. */
1891 	get_seccomp_filter(current);
1892 	p->seccomp = current->seccomp;
1893 
1894 	/*
1895 	 * Explicitly enable no_new_privs here in case it got set
1896 	 * between the task_struct being duplicated and holding the
1897 	 * sighand lock. The seccomp state and nnp must be in sync.
1898 	 */
1899 	if (task_no_new_privs(current))
1900 		task_set_no_new_privs(p);
1901 
1902 	/*
1903 	 * If the parent gained a seccomp mode after copying thread
1904 	 * flags and between before we held the sighand lock, we have
1905 	 * to manually enable the seccomp thread flag here.
1906 	 */
1907 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1908 		set_task_syscall_work(p, SECCOMP);
1909 #endif
1910 }
1911 
1912 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1913 {
1914 	current->clear_child_tid = tidptr;
1915 
1916 	return task_pid_vnr(current);
1917 }
1918 
1919 static void rt_mutex_init_task(struct task_struct *p)
1920 {
1921 	raw_spin_lock_init(&p->pi_lock);
1922 #ifdef CONFIG_RT_MUTEXES
1923 	p->pi_waiters = RB_ROOT_CACHED;
1924 	p->pi_top_task = NULL;
1925 	p->pi_blocked_on = NULL;
1926 #endif
1927 }
1928 
1929 static inline void init_task_pid_links(struct task_struct *task)
1930 {
1931 	enum pid_type type;
1932 
1933 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1934 		INIT_HLIST_NODE(&task->pid_links[type]);
1935 }
1936 
1937 static inline void
1938 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1939 {
1940 	if (type == PIDTYPE_PID)
1941 		task->thread_pid = pid;
1942 	else
1943 		task->signal->pids[type] = pid;
1944 }
1945 
1946 static inline void rcu_copy_process(struct task_struct *p)
1947 {
1948 #ifdef CONFIG_PREEMPT_RCU
1949 	p->rcu_read_lock_nesting = 0;
1950 	p->rcu_read_unlock_special.s = 0;
1951 	p->rcu_blocked_node = NULL;
1952 	INIT_LIST_HEAD(&p->rcu_node_entry);
1953 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1954 #ifdef CONFIG_TASKS_RCU
1955 	p->rcu_tasks_holdout = false;
1956 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1957 	p->rcu_tasks_idle_cpu = -1;
1958 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1959 #endif /* #ifdef CONFIG_TASKS_RCU */
1960 #ifdef CONFIG_TASKS_TRACE_RCU
1961 	p->trc_reader_nesting = 0;
1962 	p->trc_reader_special.s = 0;
1963 	INIT_LIST_HEAD(&p->trc_holdout_list);
1964 	INIT_LIST_HEAD(&p->trc_blkd_node);
1965 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1966 }
1967 
1968 /**
1969  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1970  * @pid:   the struct pid for which to create a pidfd
1971  * @flags: flags of the new @pidfd
1972  * @ret: Where to return the file for the pidfd.
1973  *
1974  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1975  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1976  *
1977  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1978  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1979  * pidfd file are prepared.
1980  *
1981  * If this function returns successfully the caller is responsible to either
1982  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1983  * order to install the pidfd into its file descriptor table or they must use
1984  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1985  * respectively.
1986  *
1987  * This function is useful when a pidfd must already be reserved but there
1988  * might still be points of failure afterwards and the caller wants to ensure
1989  * that no pidfd is leaked into its file descriptor table.
1990  *
1991  * Return: On success, a reserved pidfd is returned from the function and a new
1992  *         pidfd file is returned in the last argument to the function. On
1993  *         error, a negative error code is returned from the function and the
1994  *         last argument remains unchanged.
1995  */
1996 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
1997 {
1998 	int pidfd;
1999 	struct file *pidfd_file;
2000 
2001 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2002 	if (pidfd < 0)
2003 		return pidfd;
2004 
2005 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2006 	if (IS_ERR(pidfd_file)) {
2007 		put_unused_fd(pidfd);
2008 		return PTR_ERR(pidfd_file);
2009 	}
2010 	/*
2011 	 * anon_inode_getfile() ignores everything outside of the
2012 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2013 	 */
2014 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2015 	*ret = pidfd_file;
2016 	return pidfd;
2017 }
2018 
2019 /**
2020  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2021  * @pid:   the struct pid for which to create a pidfd
2022  * @flags: flags of the new @pidfd
2023  * @ret: Where to return the pidfd.
2024  *
2025  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2026  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2027  *
2028  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2029  * task identified by @pid must be a thread-group leader.
2030  *
2031  * If this function returns successfully the caller is responsible to either
2032  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2033  * order to install the pidfd into its file descriptor table or they must use
2034  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2035  * respectively.
2036  *
2037  * This function is useful when a pidfd must already be reserved but there
2038  * might still be points of failure afterwards and the caller wants to ensure
2039  * that no pidfd is leaked into its file descriptor table.
2040  *
2041  * Return: On success, a reserved pidfd is returned from the function and a new
2042  *         pidfd file is returned in the last argument to the function. On
2043  *         error, a negative error code is returned from the function and the
2044  *         last argument remains unchanged.
2045  */
2046 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2047 {
2048 	bool thread = flags & PIDFD_THREAD;
2049 
2050 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2051 		return -EINVAL;
2052 
2053 	return __pidfd_prepare(pid, flags, ret);
2054 }
2055 
2056 static void __delayed_free_task(struct rcu_head *rhp)
2057 {
2058 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2059 
2060 	free_task(tsk);
2061 }
2062 
2063 static __always_inline void delayed_free_task(struct task_struct *tsk)
2064 {
2065 	if (IS_ENABLED(CONFIG_MEMCG))
2066 		call_rcu(&tsk->rcu, __delayed_free_task);
2067 	else
2068 		free_task(tsk);
2069 }
2070 
2071 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2072 {
2073 	/* Skip if kernel thread */
2074 	if (!tsk->mm)
2075 		return;
2076 
2077 	/* Skip if spawning a thread or using vfork */
2078 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2079 		return;
2080 
2081 	/* We need to synchronize with __set_oom_adj */
2082 	mutex_lock(&oom_adj_mutex);
2083 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2084 	/* Update the values in case they were changed after copy_signal */
2085 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2086 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2087 	mutex_unlock(&oom_adj_mutex);
2088 }
2089 
2090 #ifdef CONFIG_RV
2091 static void rv_task_fork(struct task_struct *p)
2092 {
2093 	int i;
2094 
2095 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2096 		p->rv[i].da_mon.monitoring = false;
2097 }
2098 #else
2099 #define rv_task_fork(p) do {} while (0)
2100 #endif
2101 
2102 /*
2103  * This creates a new process as a copy of the old one,
2104  * but does not actually start it yet.
2105  *
2106  * It copies the registers, and all the appropriate
2107  * parts of the process environment (as per the clone
2108  * flags). The actual kick-off is left to the caller.
2109  */
2110 __latent_entropy struct task_struct *copy_process(
2111 					struct pid *pid,
2112 					int trace,
2113 					int node,
2114 					struct kernel_clone_args *args)
2115 {
2116 	int pidfd = -1, retval;
2117 	struct task_struct *p;
2118 	struct multiprocess_signals delayed;
2119 	struct file *pidfile = NULL;
2120 	const u64 clone_flags = args->flags;
2121 	struct nsproxy *nsp = current->nsproxy;
2122 
2123 	/*
2124 	 * Don't allow sharing the root directory with processes in a different
2125 	 * namespace
2126 	 */
2127 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2128 		return ERR_PTR(-EINVAL);
2129 
2130 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2131 		return ERR_PTR(-EINVAL);
2132 
2133 	/*
2134 	 * Thread groups must share signals as well, and detached threads
2135 	 * can only be started up within the thread group.
2136 	 */
2137 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2138 		return ERR_PTR(-EINVAL);
2139 
2140 	/*
2141 	 * Shared signal handlers imply shared VM. By way of the above,
2142 	 * thread groups also imply shared VM. Blocking this case allows
2143 	 * for various simplifications in other code.
2144 	 */
2145 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2146 		return ERR_PTR(-EINVAL);
2147 
2148 	/*
2149 	 * Siblings of global init remain as zombies on exit since they are
2150 	 * not reaped by their parent (swapper). To solve this and to avoid
2151 	 * multi-rooted process trees, prevent global and container-inits
2152 	 * from creating siblings.
2153 	 */
2154 	if ((clone_flags & CLONE_PARENT) &&
2155 				current->signal->flags & SIGNAL_UNKILLABLE)
2156 		return ERR_PTR(-EINVAL);
2157 
2158 	/*
2159 	 * If the new process will be in a different pid or user namespace
2160 	 * do not allow it to share a thread group with the forking task.
2161 	 */
2162 	if (clone_flags & CLONE_THREAD) {
2163 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2164 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2165 			return ERR_PTR(-EINVAL);
2166 	}
2167 
2168 	if (clone_flags & CLONE_PIDFD) {
2169 		/*
2170 		 * - CLONE_DETACHED is blocked so that we can potentially
2171 		 *   reuse it later for CLONE_PIDFD.
2172 		 */
2173 		if (clone_flags & CLONE_DETACHED)
2174 			return ERR_PTR(-EINVAL);
2175 	}
2176 
2177 	/*
2178 	 * Force any signals received before this point to be delivered
2179 	 * before the fork happens.  Collect up signals sent to multiple
2180 	 * processes that happen during the fork and delay them so that
2181 	 * they appear to happen after the fork.
2182 	 */
2183 	sigemptyset(&delayed.signal);
2184 	INIT_HLIST_NODE(&delayed.node);
2185 
2186 	spin_lock_irq(&current->sighand->siglock);
2187 	if (!(clone_flags & CLONE_THREAD))
2188 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2189 	recalc_sigpending();
2190 	spin_unlock_irq(&current->sighand->siglock);
2191 	retval = -ERESTARTNOINTR;
2192 	if (task_sigpending(current))
2193 		goto fork_out;
2194 
2195 	retval = -ENOMEM;
2196 	p = dup_task_struct(current, node);
2197 	if (!p)
2198 		goto fork_out;
2199 	p->flags &= ~PF_KTHREAD;
2200 	if (args->kthread)
2201 		p->flags |= PF_KTHREAD;
2202 	if (args->user_worker) {
2203 		/*
2204 		 * Mark us a user worker, and block any signal that isn't
2205 		 * fatal or STOP
2206 		 */
2207 		p->flags |= PF_USER_WORKER;
2208 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2209 	}
2210 	if (args->io_thread)
2211 		p->flags |= PF_IO_WORKER;
2212 
2213 	if (args->name)
2214 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2215 
2216 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2217 	/*
2218 	 * Clear TID on mm_release()?
2219 	 */
2220 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2221 
2222 	ftrace_graph_init_task(p);
2223 
2224 	rt_mutex_init_task(p);
2225 
2226 	lockdep_assert_irqs_enabled();
2227 #ifdef CONFIG_PROVE_LOCKING
2228 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2229 #endif
2230 	retval = copy_creds(p, clone_flags);
2231 	if (retval < 0)
2232 		goto bad_fork_free;
2233 
2234 	retval = -EAGAIN;
2235 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2236 		if (p->real_cred->user != INIT_USER &&
2237 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2238 			goto bad_fork_cleanup_count;
2239 	}
2240 	current->flags &= ~PF_NPROC_EXCEEDED;
2241 
2242 	/*
2243 	 * If multiple threads are within copy_process(), then this check
2244 	 * triggers too late. This doesn't hurt, the check is only there
2245 	 * to stop root fork bombs.
2246 	 */
2247 	retval = -EAGAIN;
2248 	if (data_race(nr_threads >= max_threads))
2249 		goto bad_fork_cleanup_count;
2250 
2251 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2252 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2253 	p->flags |= PF_FORKNOEXEC;
2254 	INIT_LIST_HEAD(&p->children);
2255 	INIT_LIST_HEAD(&p->sibling);
2256 	rcu_copy_process(p);
2257 	p->vfork_done = NULL;
2258 	spin_lock_init(&p->alloc_lock);
2259 
2260 	init_sigpending(&p->pending);
2261 
2262 	p->utime = p->stime = p->gtime = 0;
2263 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2264 	p->utimescaled = p->stimescaled = 0;
2265 #endif
2266 	prev_cputime_init(&p->prev_cputime);
2267 
2268 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2269 	seqcount_init(&p->vtime.seqcount);
2270 	p->vtime.starttime = 0;
2271 	p->vtime.state = VTIME_INACTIVE;
2272 #endif
2273 
2274 #ifdef CONFIG_IO_URING
2275 	p->io_uring = NULL;
2276 #endif
2277 
2278 	p->default_timer_slack_ns = current->timer_slack_ns;
2279 
2280 #ifdef CONFIG_PSI
2281 	p->psi_flags = 0;
2282 #endif
2283 
2284 	task_io_accounting_init(&p->ioac);
2285 	acct_clear_integrals(p);
2286 
2287 	posix_cputimers_init(&p->posix_cputimers);
2288 	tick_dep_init_task(p);
2289 
2290 	p->io_context = NULL;
2291 	audit_set_context(p, NULL);
2292 	cgroup_fork(p);
2293 	if (args->kthread) {
2294 		if (!set_kthread_struct(p))
2295 			goto bad_fork_cleanup_delayacct;
2296 	}
2297 #ifdef CONFIG_NUMA
2298 	p->mempolicy = mpol_dup(p->mempolicy);
2299 	if (IS_ERR(p->mempolicy)) {
2300 		retval = PTR_ERR(p->mempolicy);
2301 		p->mempolicy = NULL;
2302 		goto bad_fork_cleanup_delayacct;
2303 	}
2304 #endif
2305 #ifdef CONFIG_CPUSETS
2306 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2307 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2308 #endif
2309 #ifdef CONFIG_TRACE_IRQFLAGS
2310 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2311 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2312 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2313 	p->softirqs_enabled		= 1;
2314 	p->softirq_context		= 0;
2315 #endif
2316 
2317 	p->pagefault_disabled = 0;
2318 
2319 #ifdef CONFIG_LOCKDEP
2320 	lockdep_init_task(p);
2321 #endif
2322 
2323 #ifdef CONFIG_DEBUG_MUTEXES
2324 	p->blocked_on = NULL; /* not blocked yet */
2325 #endif
2326 #ifdef CONFIG_BCACHE
2327 	p->sequential_io	= 0;
2328 	p->sequential_io_avg	= 0;
2329 #endif
2330 #ifdef CONFIG_BPF_SYSCALL
2331 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2332 	p->bpf_ctx = NULL;
2333 #endif
2334 
2335 	/* Perform scheduler related setup. Assign this task to a CPU. */
2336 	retval = sched_fork(clone_flags, p);
2337 	if (retval)
2338 		goto bad_fork_cleanup_policy;
2339 
2340 	retval = perf_event_init_task(p, clone_flags);
2341 	if (retval)
2342 		goto bad_fork_sched_cancel_fork;
2343 	retval = audit_alloc(p);
2344 	if (retval)
2345 		goto bad_fork_cleanup_perf;
2346 	/* copy all the process information */
2347 	shm_init_task(p);
2348 	retval = security_task_alloc(p, clone_flags);
2349 	if (retval)
2350 		goto bad_fork_cleanup_audit;
2351 	retval = copy_semundo(clone_flags, p);
2352 	if (retval)
2353 		goto bad_fork_cleanup_security;
2354 	retval = copy_files(clone_flags, p, args->no_files);
2355 	if (retval)
2356 		goto bad_fork_cleanup_semundo;
2357 	retval = copy_fs(clone_flags, p);
2358 	if (retval)
2359 		goto bad_fork_cleanup_files;
2360 	retval = copy_sighand(clone_flags, p);
2361 	if (retval)
2362 		goto bad_fork_cleanup_fs;
2363 	retval = copy_signal(clone_flags, p);
2364 	if (retval)
2365 		goto bad_fork_cleanup_sighand;
2366 	retval = copy_mm(clone_flags, p);
2367 	if (retval)
2368 		goto bad_fork_cleanup_signal;
2369 	retval = copy_namespaces(clone_flags, p);
2370 	if (retval)
2371 		goto bad_fork_cleanup_mm;
2372 	retval = copy_io(clone_flags, p);
2373 	if (retval)
2374 		goto bad_fork_cleanup_namespaces;
2375 	retval = copy_thread(p, args);
2376 	if (retval)
2377 		goto bad_fork_cleanup_io;
2378 
2379 	stackleak_task_init(p);
2380 
2381 	if (pid != &init_struct_pid) {
2382 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2383 				args->set_tid_size);
2384 		if (IS_ERR(pid)) {
2385 			retval = PTR_ERR(pid);
2386 			goto bad_fork_cleanup_thread;
2387 		}
2388 	}
2389 
2390 	/*
2391 	 * This has to happen after we've potentially unshared the file
2392 	 * descriptor table (so that the pidfd doesn't leak into the child
2393 	 * if the fd table isn't shared).
2394 	 */
2395 	if (clone_flags & CLONE_PIDFD) {
2396 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2397 
2398 		/* Note that no task has been attached to @pid yet. */
2399 		retval = __pidfd_prepare(pid, flags, &pidfile);
2400 		if (retval < 0)
2401 			goto bad_fork_free_pid;
2402 		pidfd = retval;
2403 
2404 		retval = put_user(pidfd, args->pidfd);
2405 		if (retval)
2406 			goto bad_fork_put_pidfd;
2407 	}
2408 
2409 #ifdef CONFIG_BLOCK
2410 	p->plug = NULL;
2411 #endif
2412 	futex_init_task(p);
2413 
2414 	/*
2415 	 * sigaltstack should be cleared when sharing the same VM
2416 	 */
2417 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2418 		sas_ss_reset(p);
2419 
2420 	/*
2421 	 * Syscall tracing and stepping should be turned off in the
2422 	 * child regardless of CLONE_PTRACE.
2423 	 */
2424 	user_disable_single_step(p);
2425 	clear_task_syscall_work(p, SYSCALL_TRACE);
2426 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2427 	clear_task_syscall_work(p, SYSCALL_EMU);
2428 #endif
2429 	clear_tsk_latency_tracing(p);
2430 
2431 	/* ok, now we should be set up.. */
2432 	p->pid = pid_nr(pid);
2433 	if (clone_flags & CLONE_THREAD) {
2434 		p->group_leader = current->group_leader;
2435 		p->tgid = current->tgid;
2436 	} else {
2437 		p->group_leader = p;
2438 		p->tgid = p->pid;
2439 	}
2440 
2441 	p->nr_dirtied = 0;
2442 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2443 	p->dirty_paused_when = 0;
2444 
2445 	p->pdeath_signal = 0;
2446 	p->task_works = NULL;
2447 	clear_posix_cputimers_work(p);
2448 
2449 #ifdef CONFIG_KRETPROBES
2450 	p->kretprobe_instances.first = NULL;
2451 #endif
2452 #ifdef CONFIG_RETHOOK
2453 	p->rethooks.first = NULL;
2454 #endif
2455 
2456 	/*
2457 	 * Ensure that the cgroup subsystem policies allow the new process to be
2458 	 * forked. It should be noted that the new process's css_set can be changed
2459 	 * between here and cgroup_post_fork() if an organisation operation is in
2460 	 * progress.
2461 	 */
2462 	retval = cgroup_can_fork(p, args);
2463 	if (retval)
2464 		goto bad_fork_put_pidfd;
2465 
2466 	/*
2467 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2468 	 * the new task on the correct runqueue. All this *before* the task
2469 	 * becomes visible.
2470 	 *
2471 	 * This isn't part of ->can_fork() because while the re-cloning is
2472 	 * cgroup specific, it unconditionally needs to place the task on a
2473 	 * runqueue.
2474 	 */
2475 	retval = sched_cgroup_fork(p, args);
2476 	if (retval)
2477 		goto bad_fork_cancel_cgroup;
2478 
2479 	/*
2480 	 * From this point on we must avoid any synchronous user-space
2481 	 * communication until we take the tasklist-lock. In particular, we do
2482 	 * not want user-space to be able to predict the process start-time by
2483 	 * stalling fork(2) after we recorded the start_time but before it is
2484 	 * visible to the system.
2485 	 */
2486 
2487 	p->start_time = ktime_get_ns();
2488 	p->start_boottime = ktime_get_boottime_ns();
2489 
2490 	/*
2491 	 * Make it visible to the rest of the system, but dont wake it up yet.
2492 	 * Need tasklist lock for parent etc handling!
2493 	 */
2494 	write_lock_irq(&tasklist_lock);
2495 
2496 	/* CLONE_PARENT re-uses the old parent */
2497 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2498 		p->real_parent = current->real_parent;
2499 		p->parent_exec_id = current->parent_exec_id;
2500 		if (clone_flags & CLONE_THREAD)
2501 			p->exit_signal = -1;
2502 		else
2503 			p->exit_signal = current->group_leader->exit_signal;
2504 	} else {
2505 		p->real_parent = current;
2506 		p->parent_exec_id = current->self_exec_id;
2507 		p->exit_signal = args->exit_signal;
2508 	}
2509 
2510 	klp_copy_process(p);
2511 
2512 	sched_core_fork(p);
2513 
2514 	spin_lock(&current->sighand->siglock);
2515 
2516 	rv_task_fork(p);
2517 
2518 	rseq_fork(p, clone_flags);
2519 
2520 	/* Don't start children in a dying pid namespace */
2521 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2522 		retval = -ENOMEM;
2523 		goto bad_fork_core_free;
2524 	}
2525 
2526 	/* Let kill terminate clone/fork in the middle */
2527 	if (fatal_signal_pending(current)) {
2528 		retval = -EINTR;
2529 		goto bad_fork_core_free;
2530 	}
2531 
2532 	/* No more failure paths after this point. */
2533 
2534 	/*
2535 	 * Copy seccomp details explicitly here, in case they were changed
2536 	 * before holding sighand lock.
2537 	 */
2538 	copy_seccomp(p);
2539 
2540 	init_task_pid_links(p);
2541 	if (likely(p->pid)) {
2542 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2543 
2544 		init_task_pid(p, PIDTYPE_PID, pid);
2545 		if (thread_group_leader(p)) {
2546 			init_task_pid(p, PIDTYPE_TGID, pid);
2547 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2548 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2549 
2550 			if (is_child_reaper(pid)) {
2551 				ns_of_pid(pid)->child_reaper = p;
2552 				p->signal->flags |= SIGNAL_UNKILLABLE;
2553 			}
2554 			p->signal->shared_pending.signal = delayed.signal;
2555 			p->signal->tty = tty_kref_get(current->signal->tty);
2556 			/*
2557 			 * Inherit has_child_subreaper flag under the same
2558 			 * tasklist_lock with adding child to the process tree
2559 			 * for propagate_has_child_subreaper optimization.
2560 			 */
2561 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2562 							 p->real_parent->signal->is_child_subreaper;
2563 			list_add_tail(&p->sibling, &p->real_parent->children);
2564 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2565 			attach_pid(p, PIDTYPE_TGID);
2566 			attach_pid(p, PIDTYPE_PGID);
2567 			attach_pid(p, PIDTYPE_SID);
2568 			__this_cpu_inc(process_counts);
2569 		} else {
2570 			current->signal->nr_threads++;
2571 			current->signal->quick_threads++;
2572 			atomic_inc(&current->signal->live);
2573 			refcount_inc(&current->signal->sigcnt);
2574 			task_join_group_stop(p);
2575 			list_add_tail_rcu(&p->thread_node,
2576 					  &p->signal->thread_head);
2577 		}
2578 		attach_pid(p, PIDTYPE_PID);
2579 		nr_threads++;
2580 	}
2581 	total_forks++;
2582 	hlist_del_init(&delayed.node);
2583 	spin_unlock(&current->sighand->siglock);
2584 	syscall_tracepoint_update(p);
2585 	write_unlock_irq(&tasklist_lock);
2586 
2587 	if (pidfile)
2588 		fd_install(pidfd, pidfile);
2589 
2590 	proc_fork_connector(p);
2591 	sched_post_fork(p);
2592 	cgroup_post_fork(p, args);
2593 	perf_event_fork(p);
2594 
2595 	trace_task_newtask(p, clone_flags);
2596 	uprobe_copy_process(p, clone_flags);
2597 	user_events_fork(p, clone_flags);
2598 
2599 	copy_oom_score_adj(clone_flags, p);
2600 
2601 	return p;
2602 
2603 bad_fork_core_free:
2604 	sched_core_free(p);
2605 	spin_unlock(&current->sighand->siglock);
2606 	write_unlock_irq(&tasklist_lock);
2607 bad_fork_cancel_cgroup:
2608 	cgroup_cancel_fork(p, args);
2609 bad_fork_put_pidfd:
2610 	if (clone_flags & CLONE_PIDFD) {
2611 		fput(pidfile);
2612 		put_unused_fd(pidfd);
2613 	}
2614 bad_fork_free_pid:
2615 	if (pid != &init_struct_pid)
2616 		free_pid(pid);
2617 bad_fork_cleanup_thread:
2618 	exit_thread(p);
2619 bad_fork_cleanup_io:
2620 	if (p->io_context)
2621 		exit_io_context(p);
2622 bad_fork_cleanup_namespaces:
2623 	exit_task_namespaces(p);
2624 bad_fork_cleanup_mm:
2625 	if (p->mm) {
2626 		mm_clear_owner(p->mm, p);
2627 		mmput(p->mm);
2628 	}
2629 bad_fork_cleanup_signal:
2630 	if (!(clone_flags & CLONE_THREAD))
2631 		free_signal_struct(p->signal);
2632 bad_fork_cleanup_sighand:
2633 	__cleanup_sighand(p->sighand);
2634 bad_fork_cleanup_fs:
2635 	exit_fs(p); /* blocking */
2636 bad_fork_cleanup_files:
2637 	exit_files(p); /* blocking */
2638 bad_fork_cleanup_semundo:
2639 	exit_sem(p);
2640 bad_fork_cleanup_security:
2641 	security_task_free(p);
2642 bad_fork_cleanup_audit:
2643 	audit_free(p);
2644 bad_fork_cleanup_perf:
2645 	perf_event_free_task(p);
2646 bad_fork_sched_cancel_fork:
2647 	sched_cancel_fork(p);
2648 bad_fork_cleanup_policy:
2649 	lockdep_free_task(p);
2650 #ifdef CONFIG_NUMA
2651 	mpol_put(p->mempolicy);
2652 #endif
2653 bad_fork_cleanup_delayacct:
2654 	delayacct_tsk_free(p);
2655 bad_fork_cleanup_count:
2656 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2657 	exit_creds(p);
2658 bad_fork_free:
2659 	WRITE_ONCE(p->__state, TASK_DEAD);
2660 	exit_task_stack_account(p);
2661 	put_task_stack(p);
2662 	delayed_free_task(p);
2663 fork_out:
2664 	spin_lock_irq(&current->sighand->siglock);
2665 	hlist_del_init(&delayed.node);
2666 	spin_unlock_irq(&current->sighand->siglock);
2667 	return ERR_PTR(retval);
2668 }
2669 
2670 static inline void init_idle_pids(struct task_struct *idle)
2671 {
2672 	enum pid_type type;
2673 
2674 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2675 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2676 		init_task_pid(idle, type, &init_struct_pid);
2677 	}
2678 }
2679 
2680 static int idle_dummy(void *dummy)
2681 {
2682 	/* This function is never called */
2683 	return 0;
2684 }
2685 
2686 struct task_struct * __init fork_idle(int cpu)
2687 {
2688 	struct task_struct *task;
2689 	struct kernel_clone_args args = {
2690 		.flags		= CLONE_VM,
2691 		.fn		= &idle_dummy,
2692 		.fn_arg		= NULL,
2693 		.kthread	= 1,
2694 		.idle		= 1,
2695 	};
2696 
2697 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2698 	if (!IS_ERR(task)) {
2699 		init_idle_pids(task);
2700 		init_idle(task, cpu);
2701 	}
2702 
2703 	return task;
2704 }
2705 
2706 /*
2707  * This is like kernel_clone(), but shaved down and tailored to just
2708  * creating io_uring workers. It returns a created task, or an error pointer.
2709  * The returned task is inactive, and the caller must fire it up through
2710  * wake_up_new_task(p). All signals are blocked in the created task.
2711  */
2712 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2713 {
2714 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2715 				CLONE_IO;
2716 	struct kernel_clone_args args = {
2717 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2718 				    CLONE_UNTRACED) & ~CSIGNAL),
2719 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2720 		.fn		= fn,
2721 		.fn_arg		= arg,
2722 		.io_thread	= 1,
2723 		.user_worker	= 1,
2724 	};
2725 
2726 	return copy_process(NULL, 0, node, &args);
2727 }
2728 
2729 /*
2730  *  Ok, this is the main fork-routine.
2731  *
2732  * It copies the process, and if successful kick-starts
2733  * it and waits for it to finish using the VM if required.
2734  *
2735  * args->exit_signal is expected to be checked for sanity by the caller.
2736  */
2737 pid_t kernel_clone(struct kernel_clone_args *args)
2738 {
2739 	u64 clone_flags = args->flags;
2740 	struct completion vfork;
2741 	struct pid *pid;
2742 	struct task_struct *p;
2743 	int trace = 0;
2744 	pid_t nr;
2745 
2746 	/*
2747 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2748 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2749 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2750 	 * field in struct clone_args and it still doesn't make sense to have
2751 	 * them both point at the same memory location. Performing this check
2752 	 * here has the advantage that we don't need to have a separate helper
2753 	 * to check for legacy clone().
2754 	 */
2755 	if ((clone_flags & CLONE_PIDFD) &&
2756 	    (clone_flags & CLONE_PARENT_SETTID) &&
2757 	    (args->pidfd == args->parent_tid))
2758 		return -EINVAL;
2759 
2760 	/*
2761 	 * Determine whether and which event to report to ptracer.  When
2762 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2763 	 * requested, no event is reported; otherwise, report if the event
2764 	 * for the type of forking is enabled.
2765 	 */
2766 	if (!(clone_flags & CLONE_UNTRACED)) {
2767 		if (clone_flags & CLONE_VFORK)
2768 			trace = PTRACE_EVENT_VFORK;
2769 		else if (args->exit_signal != SIGCHLD)
2770 			trace = PTRACE_EVENT_CLONE;
2771 		else
2772 			trace = PTRACE_EVENT_FORK;
2773 
2774 		if (likely(!ptrace_event_enabled(current, trace)))
2775 			trace = 0;
2776 	}
2777 
2778 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2779 	add_latent_entropy();
2780 
2781 	if (IS_ERR(p))
2782 		return PTR_ERR(p);
2783 
2784 	/*
2785 	 * Do this prior waking up the new thread - the thread pointer
2786 	 * might get invalid after that point, if the thread exits quickly.
2787 	 */
2788 	trace_sched_process_fork(current, p);
2789 
2790 	pid = get_task_pid(p, PIDTYPE_PID);
2791 	nr = pid_vnr(pid);
2792 
2793 	if (clone_flags & CLONE_PARENT_SETTID)
2794 		put_user(nr, args->parent_tid);
2795 
2796 	if (clone_flags & CLONE_VFORK) {
2797 		p->vfork_done = &vfork;
2798 		init_completion(&vfork);
2799 		get_task_struct(p);
2800 	}
2801 
2802 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2803 		/* lock the task to synchronize with memcg migration */
2804 		task_lock(p);
2805 		lru_gen_add_mm(p->mm);
2806 		task_unlock(p);
2807 	}
2808 
2809 	wake_up_new_task(p);
2810 
2811 	/* forking complete and child started to run, tell ptracer */
2812 	if (unlikely(trace))
2813 		ptrace_event_pid(trace, pid);
2814 
2815 	if (clone_flags & CLONE_VFORK) {
2816 		if (!wait_for_vfork_done(p, &vfork))
2817 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2818 	}
2819 
2820 	put_pid(pid);
2821 	return nr;
2822 }
2823 
2824 /*
2825  * Create a kernel thread.
2826  */
2827 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2828 		    unsigned long flags)
2829 {
2830 	struct kernel_clone_args args = {
2831 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2832 				    CLONE_UNTRACED) & ~CSIGNAL),
2833 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2834 		.fn		= fn,
2835 		.fn_arg		= arg,
2836 		.name		= name,
2837 		.kthread	= 1,
2838 	};
2839 
2840 	return kernel_clone(&args);
2841 }
2842 
2843 /*
2844  * Create a user mode thread.
2845  */
2846 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2847 {
2848 	struct kernel_clone_args args = {
2849 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2850 				    CLONE_UNTRACED) & ~CSIGNAL),
2851 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2852 		.fn		= fn,
2853 		.fn_arg		= arg,
2854 	};
2855 
2856 	return kernel_clone(&args);
2857 }
2858 
2859 #ifdef __ARCH_WANT_SYS_FORK
2860 SYSCALL_DEFINE0(fork)
2861 {
2862 #ifdef CONFIG_MMU
2863 	struct kernel_clone_args args = {
2864 		.exit_signal = SIGCHLD,
2865 	};
2866 
2867 	return kernel_clone(&args);
2868 #else
2869 	/* can not support in nommu mode */
2870 	return -EINVAL;
2871 #endif
2872 }
2873 #endif
2874 
2875 #ifdef __ARCH_WANT_SYS_VFORK
2876 SYSCALL_DEFINE0(vfork)
2877 {
2878 	struct kernel_clone_args args = {
2879 		.flags		= CLONE_VFORK | CLONE_VM,
2880 		.exit_signal	= SIGCHLD,
2881 	};
2882 
2883 	return kernel_clone(&args);
2884 }
2885 #endif
2886 
2887 #ifdef __ARCH_WANT_SYS_CLONE
2888 #ifdef CONFIG_CLONE_BACKWARDS
2889 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2890 		 int __user *, parent_tidptr,
2891 		 unsigned long, tls,
2892 		 int __user *, child_tidptr)
2893 #elif defined(CONFIG_CLONE_BACKWARDS2)
2894 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2895 		 int __user *, parent_tidptr,
2896 		 int __user *, child_tidptr,
2897 		 unsigned long, tls)
2898 #elif defined(CONFIG_CLONE_BACKWARDS3)
2899 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2900 		int, stack_size,
2901 		int __user *, parent_tidptr,
2902 		int __user *, child_tidptr,
2903 		unsigned long, tls)
2904 #else
2905 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2906 		 int __user *, parent_tidptr,
2907 		 int __user *, child_tidptr,
2908 		 unsigned long, tls)
2909 #endif
2910 {
2911 	struct kernel_clone_args args = {
2912 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2913 		.pidfd		= parent_tidptr,
2914 		.child_tid	= child_tidptr,
2915 		.parent_tid	= parent_tidptr,
2916 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2917 		.stack		= newsp,
2918 		.tls		= tls,
2919 	};
2920 
2921 	return kernel_clone(&args);
2922 }
2923 #endif
2924 
2925 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2926 					      struct clone_args __user *uargs,
2927 					      size_t usize)
2928 {
2929 	int err;
2930 	struct clone_args args;
2931 	pid_t *kset_tid = kargs->set_tid;
2932 
2933 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2934 		     CLONE_ARGS_SIZE_VER0);
2935 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2936 		     CLONE_ARGS_SIZE_VER1);
2937 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2938 		     CLONE_ARGS_SIZE_VER2);
2939 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2940 
2941 	if (unlikely(usize > PAGE_SIZE))
2942 		return -E2BIG;
2943 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2944 		return -EINVAL;
2945 
2946 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2947 	if (err)
2948 		return err;
2949 
2950 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2951 		return -EINVAL;
2952 
2953 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2954 		return -EINVAL;
2955 
2956 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2957 		return -EINVAL;
2958 
2959 	/*
2960 	 * Verify that higher 32bits of exit_signal are unset and that
2961 	 * it is a valid signal
2962 	 */
2963 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2964 		     !valid_signal(args.exit_signal)))
2965 		return -EINVAL;
2966 
2967 	if ((args.flags & CLONE_INTO_CGROUP) &&
2968 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2969 		return -EINVAL;
2970 
2971 	*kargs = (struct kernel_clone_args){
2972 		.flags		= args.flags,
2973 		.pidfd		= u64_to_user_ptr(args.pidfd),
2974 		.child_tid	= u64_to_user_ptr(args.child_tid),
2975 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2976 		.exit_signal	= args.exit_signal,
2977 		.stack		= args.stack,
2978 		.stack_size	= args.stack_size,
2979 		.tls		= args.tls,
2980 		.set_tid_size	= args.set_tid_size,
2981 		.cgroup		= args.cgroup,
2982 	};
2983 
2984 	if (args.set_tid &&
2985 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2986 			(kargs->set_tid_size * sizeof(pid_t))))
2987 		return -EFAULT;
2988 
2989 	kargs->set_tid = kset_tid;
2990 
2991 	return 0;
2992 }
2993 
2994 /**
2995  * clone3_stack_valid - check and prepare stack
2996  * @kargs: kernel clone args
2997  *
2998  * Verify that the stack arguments userspace gave us are sane.
2999  * In addition, set the stack direction for userspace since it's easy for us to
3000  * determine.
3001  */
3002 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3003 {
3004 	if (kargs->stack == 0) {
3005 		if (kargs->stack_size > 0)
3006 			return false;
3007 	} else {
3008 		if (kargs->stack_size == 0)
3009 			return false;
3010 
3011 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3012 			return false;
3013 
3014 #if !defined(CONFIG_STACK_GROWSUP)
3015 		kargs->stack += kargs->stack_size;
3016 #endif
3017 	}
3018 
3019 	return true;
3020 }
3021 
3022 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3023 {
3024 	/* Verify that no unknown flags are passed along. */
3025 	if (kargs->flags &
3026 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3027 		return false;
3028 
3029 	/*
3030 	 * - make the CLONE_DETACHED bit reusable for clone3
3031 	 * - make the CSIGNAL bits reusable for clone3
3032 	 */
3033 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3034 		return false;
3035 
3036 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3037 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3038 		return false;
3039 
3040 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3041 	    kargs->exit_signal)
3042 		return false;
3043 
3044 	if (!clone3_stack_valid(kargs))
3045 		return false;
3046 
3047 	return true;
3048 }
3049 
3050 /**
3051  * sys_clone3 - create a new process with specific properties
3052  * @uargs: argument structure
3053  * @size:  size of @uargs
3054  *
3055  * clone3() is the extensible successor to clone()/clone2().
3056  * It takes a struct as argument that is versioned by its size.
3057  *
3058  * Return: On success, a positive PID for the child process.
3059  *         On error, a negative errno number.
3060  */
3061 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3062 {
3063 	int err;
3064 
3065 	struct kernel_clone_args kargs;
3066 	pid_t set_tid[MAX_PID_NS_LEVEL];
3067 
3068 #ifdef __ARCH_BROKEN_SYS_CLONE3
3069 #warning clone3() entry point is missing, please fix
3070 	return -ENOSYS;
3071 #endif
3072 
3073 	kargs.set_tid = set_tid;
3074 
3075 	err = copy_clone_args_from_user(&kargs, uargs, size);
3076 	if (err)
3077 		return err;
3078 
3079 	if (!clone3_args_valid(&kargs))
3080 		return -EINVAL;
3081 
3082 	return kernel_clone(&kargs);
3083 }
3084 
3085 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3086 {
3087 	struct task_struct *leader, *parent, *child;
3088 	int res;
3089 
3090 	read_lock(&tasklist_lock);
3091 	leader = top = top->group_leader;
3092 down:
3093 	for_each_thread(leader, parent) {
3094 		list_for_each_entry(child, &parent->children, sibling) {
3095 			res = visitor(child, data);
3096 			if (res) {
3097 				if (res < 0)
3098 					goto out;
3099 				leader = child;
3100 				goto down;
3101 			}
3102 up:
3103 			;
3104 		}
3105 	}
3106 
3107 	if (leader != top) {
3108 		child = leader;
3109 		parent = child->real_parent;
3110 		leader = parent->group_leader;
3111 		goto up;
3112 	}
3113 out:
3114 	read_unlock(&tasklist_lock);
3115 }
3116 
3117 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3118 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3119 #endif
3120 
3121 static void sighand_ctor(void *data)
3122 {
3123 	struct sighand_struct *sighand = data;
3124 
3125 	spin_lock_init(&sighand->siglock);
3126 	init_waitqueue_head(&sighand->signalfd_wqh);
3127 }
3128 
3129 void __init mm_cache_init(void)
3130 {
3131 	unsigned int mm_size;
3132 
3133 	/*
3134 	 * The mm_cpumask is located at the end of mm_struct, and is
3135 	 * dynamically sized based on the maximum CPU number this system
3136 	 * can have, taking hotplug into account (nr_cpu_ids).
3137 	 */
3138 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3139 
3140 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3141 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3142 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3143 			offsetof(struct mm_struct, saved_auxv),
3144 			sizeof_field(struct mm_struct, saved_auxv),
3145 			NULL);
3146 }
3147 
3148 void __init proc_caches_init(void)
3149 {
3150 	sighand_cachep = kmem_cache_create("sighand_cache",
3151 			sizeof(struct sighand_struct), 0,
3152 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3153 			SLAB_ACCOUNT, sighand_ctor);
3154 	signal_cachep = kmem_cache_create("signal_cache",
3155 			sizeof(struct signal_struct), 0,
3156 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3157 			NULL);
3158 	files_cachep = kmem_cache_create("files_cache",
3159 			sizeof(struct files_struct), 0,
3160 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3161 			NULL);
3162 	fs_cachep = kmem_cache_create("fs_cache",
3163 			sizeof(struct fs_struct), 0,
3164 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3165 			NULL);
3166 	vm_area_cachep = KMEM_CACHE(vm_area_struct,
3167 			SLAB_HWCACHE_ALIGN|SLAB_NO_MERGE|SLAB_PANIC|
3168 			SLAB_ACCOUNT);
3169 	mmap_init();
3170 	nsproxy_cache_init();
3171 }
3172 
3173 /*
3174  * Check constraints on flags passed to the unshare system call.
3175  */
3176 static int check_unshare_flags(unsigned long unshare_flags)
3177 {
3178 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3179 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3180 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3181 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3182 				CLONE_NEWTIME))
3183 		return -EINVAL;
3184 	/*
3185 	 * Not implemented, but pretend it works if there is nothing
3186 	 * to unshare.  Note that unsharing the address space or the
3187 	 * signal handlers also need to unshare the signal queues (aka
3188 	 * CLONE_THREAD).
3189 	 */
3190 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3191 		if (!thread_group_empty(current))
3192 			return -EINVAL;
3193 	}
3194 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3195 		if (refcount_read(&current->sighand->count) > 1)
3196 			return -EINVAL;
3197 	}
3198 	if (unshare_flags & CLONE_VM) {
3199 		if (!current_is_single_threaded())
3200 			return -EINVAL;
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 /*
3207  * Unshare the filesystem structure if it is being shared
3208  */
3209 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3210 {
3211 	struct fs_struct *fs = current->fs;
3212 
3213 	if (!(unshare_flags & CLONE_FS) || !fs)
3214 		return 0;
3215 
3216 	/* don't need lock here; in the worst case we'll do useless copy */
3217 	if (fs->users == 1)
3218 		return 0;
3219 
3220 	*new_fsp = copy_fs_struct(fs);
3221 	if (!*new_fsp)
3222 		return -ENOMEM;
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * Unshare file descriptor table if it is being shared
3229  */
3230 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3231 {
3232 	struct files_struct *fd = current->files;
3233 
3234 	if ((unshare_flags & CLONE_FILES) &&
3235 	    (fd && atomic_read(&fd->count) > 1)) {
3236 		fd = dup_fd(fd, NULL);
3237 		if (IS_ERR(fd))
3238 			return PTR_ERR(fd);
3239 		*new_fdp = fd;
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 /*
3246  * unshare allows a process to 'unshare' part of the process
3247  * context which was originally shared using clone.  copy_*
3248  * functions used by kernel_clone() cannot be used here directly
3249  * because they modify an inactive task_struct that is being
3250  * constructed. Here we are modifying the current, active,
3251  * task_struct.
3252  */
3253 int ksys_unshare(unsigned long unshare_flags)
3254 {
3255 	struct fs_struct *fs, *new_fs = NULL;
3256 	struct files_struct *new_fd = NULL;
3257 	struct cred *new_cred = NULL;
3258 	struct nsproxy *new_nsproxy = NULL;
3259 	int do_sysvsem = 0;
3260 	int err;
3261 
3262 	/*
3263 	 * If unsharing a user namespace must also unshare the thread group
3264 	 * and unshare the filesystem root and working directories.
3265 	 */
3266 	if (unshare_flags & CLONE_NEWUSER)
3267 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3268 	/*
3269 	 * If unsharing vm, must also unshare signal handlers.
3270 	 */
3271 	if (unshare_flags & CLONE_VM)
3272 		unshare_flags |= CLONE_SIGHAND;
3273 	/*
3274 	 * If unsharing a signal handlers, must also unshare the signal queues.
3275 	 */
3276 	if (unshare_flags & CLONE_SIGHAND)
3277 		unshare_flags |= CLONE_THREAD;
3278 	/*
3279 	 * If unsharing namespace, must also unshare filesystem information.
3280 	 */
3281 	if (unshare_flags & CLONE_NEWNS)
3282 		unshare_flags |= CLONE_FS;
3283 
3284 	err = check_unshare_flags(unshare_flags);
3285 	if (err)
3286 		goto bad_unshare_out;
3287 	/*
3288 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3289 	 * to a new ipc namespace, the semaphore arrays from the old
3290 	 * namespace are unreachable.
3291 	 */
3292 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3293 		do_sysvsem = 1;
3294 	err = unshare_fs(unshare_flags, &new_fs);
3295 	if (err)
3296 		goto bad_unshare_out;
3297 	err = unshare_fd(unshare_flags, &new_fd);
3298 	if (err)
3299 		goto bad_unshare_cleanup_fs;
3300 	err = unshare_userns(unshare_flags, &new_cred);
3301 	if (err)
3302 		goto bad_unshare_cleanup_fd;
3303 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3304 					 new_cred, new_fs);
3305 	if (err)
3306 		goto bad_unshare_cleanup_cred;
3307 
3308 	if (new_cred) {
3309 		err = set_cred_ucounts(new_cred);
3310 		if (err)
3311 			goto bad_unshare_cleanup_cred;
3312 	}
3313 
3314 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3315 		if (do_sysvsem) {
3316 			/*
3317 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3318 			 */
3319 			exit_sem(current);
3320 		}
3321 		if (unshare_flags & CLONE_NEWIPC) {
3322 			/* Orphan segments in old ns (see sem above). */
3323 			exit_shm(current);
3324 			shm_init_task(current);
3325 		}
3326 
3327 		if (new_nsproxy)
3328 			switch_task_namespaces(current, new_nsproxy);
3329 
3330 		task_lock(current);
3331 
3332 		if (new_fs) {
3333 			fs = current->fs;
3334 			spin_lock(&fs->lock);
3335 			current->fs = new_fs;
3336 			if (--fs->users)
3337 				new_fs = NULL;
3338 			else
3339 				new_fs = fs;
3340 			spin_unlock(&fs->lock);
3341 		}
3342 
3343 		if (new_fd)
3344 			swap(current->files, new_fd);
3345 
3346 		task_unlock(current);
3347 
3348 		if (new_cred) {
3349 			/* Install the new user namespace */
3350 			commit_creds(new_cred);
3351 			new_cred = NULL;
3352 		}
3353 	}
3354 
3355 	perf_event_namespaces(current);
3356 
3357 bad_unshare_cleanup_cred:
3358 	if (new_cred)
3359 		put_cred(new_cred);
3360 bad_unshare_cleanup_fd:
3361 	if (new_fd)
3362 		put_files_struct(new_fd);
3363 
3364 bad_unshare_cleanup_fs:
3365 	if (new_fs)
3366 		free_fs_struct(new_fs);
3367 
3368 bad_unshare_out:
3369 	return err;
3370 }
3371 
3372 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3373 {
3374 	return ksys_unshare(unshare_flags);
3375 }
3376 
3377 /*
3378  *	Helper to unshare the files of the current task.
3379  *	We don't want to expose copy_files internals to
3380  *	the exec layer of the kernel.
3381  */
3382 
3383 int unshare_files(void)
3384 {
3385 	struct task_struct *task = current;
3386 	struct files_struct *old, *copy = NULL;
3387 	int error;
3388 
3389 	error = unshare_fd(CLONE_FILES, &copy);
3390 	if (error || !copy)
3391 		return error;
3392 
3393 	old = task->files;
3394 	task_lock(task);
3395 	task->files = copy;
3396 	task_unlock(task);
3397 	put_files_struct(old);
3398 	return 0;
3399 }
3400 
3401 int sysctl_max_threads(const struct ctl_table *table, int write,
3402 		       void *buffer, size_t *lenp, loff_t *ppos)
3403 {
3404 	struct ctl_table t;
3405 	int ret;
3406 	int threads = max_threads;
3407 	int min = 1;
3408 	int max = MAX_THREADS;
3409 
3410 	t = *table;
3411 	t.data = &threads;
3412 	t.extra1 = &min;
3413 	t.extra2 = &max;
3414 
3415 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3416 	if (ret || !write)
3417 		return ret;
3418 
3419 	max_threads = threads;
3420 
3421 	return 0;
3422 }
3423