xref: /linux-6.15/kernel/fork.c (revision 765532c8)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76 
77 #include <trace/events/sched.h>
78 
79 /*
80  * Protected counters by write_lock_irq(&tasklist_lock)
81  */
82 unsigned long total_forks;	/* Handle normal Linux uptimes. */
83 int nr_threads; 		/* The idle threads do not count.. */
84 
85 int max_threads;		/* tunable limit on nr_threads */
86 
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88 
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
90 
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 	return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98 
99 int nr_processes(void)
100 {
101 	int cpu;
102 	int total = 0;
103 
104 	for_each_possible_cpu(cpu)
105 		total += per_cpu(process_counts, cpu);
106 
107 	return total;
108 }
109 
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
112 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
113 static struct kmem_cache *task_struct_cachep;
114 #endif
115 
116 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
117 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
118 {
119 #ifdef CONFIG_DEBUG_STACK_USAGE
120 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
121 #else
122 	gfp_t mask = GFP_KERNEL;
123 #endif
124 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
125 }
126 
127 static inline void free_thread_info(struct thread_info *ti)
128 {
129 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
130 }
131 #endif
132 
133 /* SLAB cache for signal_struct structures (tsk->signal) */
134 static struct kmem_cache *signal_cachep;
135 
136 /* SLAB cache for sighand_struct structures (tsk->sighand) */
137 struct kmem_cache *sighand_cachep;
138 
139 /* SLAB cache for files_struct structures (tsk->files) */
140 struct kmem_cache *files_cachep;
141 
142 /* SLAB cache for fs_struct structures (tsk->fs) */
143 struct kmem_cache *fs_cachep;
144 
145 /* SLAB cache for vm_area_struct structures */
146 struct kmem_cache *vm_area_cachep;
147 
148 /* SLAB cache for mm_struct structures (tsk->mm) */
149 static struct kmem_cache *mm_cachep;
150 
151 static void account_kernel_stack(struct thread_info *ti, int account)
152 {
153 	struct zone *zone = page_zone(virt_to_page(ti));
154 
155 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
156 }
157 
158 void free_task(struct task_struct *tsk)
159 {
160 	prop_local_destroy_single(&tsk->dirties);
161 	account_kernel_stack(tsk->stack, -1);
162 	free_thread_info(tsk->stack);
163 	rt_mutex_debug_task_free(tsk);
164 	ftrace_graph_exit_task(tsk);
165 	free_task_struct(tsk);
166 }
167 EXPORT_SYMBOL(free_task);
168 
169 static inline void free_signal_struct(struct signal_struct *sig)
170 {
171 	taskstats_tgid_free(sig);
172 	kmem_cache_free(signal_cachep, sig);
173 }
174 
175 static inline void put_signal_struct(struct signal_struct *sig)
176 {
177 	if (atomic_dec_and_test(&sig->sigcnt))
178 		free_signal_struct(sig);
179 }
180 
181 void __put_task_struct(struct task_struct *tsk)
182 {
183 	WARN_ON(!tsk->exit_state);
184 	WARN_ON(atomic_read(&tsk->usage));
185 	WARN_ON(tsk == current);
186 
187 	exit_creds(tsk);
188 	delayacct_tsk_free(tsk);
189 	put_signal_struct(tsk->signal);
190 
191 	if (!profile_handoff_task(tsk))
192 		free_task(tsk);
193 }
194 
195 /*
196  * macro override instead of weak attribute alias, to workaround
197  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
198  */
199 #ifndef arch_task_cache_init
200 #define arch_task_cache_init()
201 #endif
202 
203 void __init fork_init(unsigned long mempages)
204 {
205 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
206 #ifndef ARCH_MIN_TASKALIGN
207 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
208 #endif
209 	/* create a slab on which task_structs can be allocated */
210 	task_struct_cachep =
211 		kmem_cache_create("task_struct", sizeof(struct task_struct),
212 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
213 #endif
214 
215 	/* do the arch specific task caches init */
216 	arch_task_cache_init();
217 
218 	/*
219 	 * The default maximum number of threads is set to a safe
220 	 * value: the thread structures can take up at most half
221 	 * of memory.
222 	 */
223 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
224 
225 	/*
226 	 * we need to allow at least 20 threads to boot a system
227 	 */
228 	if(max_threads < 20)
229 		max_threads = 20;
230 
231 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
232 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
233 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
234 		init_task.signal->rlim[RLIMIT_NPROC];
235 }
236 
237 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
238 					       struct task_struct *src)
239 {
240 	*dst = *src;
241 	return 0;
242 }
243 
244 static struct task_struct *dup_task_struct(struct task_struct *orig)
245 {
246 	struct task_struct *tsk;
247 	struct thread_info *ti;
248 	unsigned long *stackend;
249 
250 	int err;
251 
252 	prepare_to_copy(orig);
253 
254 	tsk = alloc_task_struct();
255 	if (!tsk)
256 		return NULL;
257 
258 	ti = alloc_thread_info(tsk);
259 	if (!ti) {
260 		free_task_struct(tsk);
261 		return NULL;
262 	}
263 
264  	err = arch_dup_task_struct(tsk, orig);
265 	if (err)
266 		goto out;
267 
268 	tsk->stack = ti;
269 
270 	err = prop_local_init_single(&tsk->dirties);
271 	if (err)
272 		goto out;
273 
274 	setup_thread_stack(tsk, orig);
275 	clear_user_return_notifier(tsk);
276 	clear_tsk_need_resched(tsk);
277 	stackend = end_of_stack(tsk);
278 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
279 
280 #ifdef CONFIG_CC_STACKPROTECTOR
281 	tsk->stack_canary = get_random_int();
282 #endif
283 
284 	/* One for us, one for whoever does the "release_task()" (usually parent) */
285 	atomic_set(&tsk->usage,2);
286 	atomic_set(&tsk->fs_excl, 0);
287 #ifdef CONFIG_BLK_DEV_IO_TRACE
288 	tsk->btrace_seq = 0;
289 #endif
290 	tsk->splice_pipe = NULL;
291 
292 	account_kernel_stack(ti, 1);
293 
294 	return tsk;
295 
296 out:
297 	free_thread_info(ti);
298 	free_task_struct(tsk);
299 	return NULL;
300 }
301 
302 #ifdef CONFIG_MMU
303 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
304 {
305 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
306 	struct rb_node **rb_link, *rb_parent;
307 	int retval;
308 	unsigned long charge;
309 	struct mempolicy *pol;
310 
311 	down_write(&oldmm->mmap_sem);
312 	flush_cache_dup_mm(oldmm);
313 	/*
314 	 * Not linked in yet - no deadlock potential:
315 	 */
316 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
317 
318 	mm->locked_vm = 0;
319 	mm->mmap = NULL;
320 	mm->mmap_cache = NULL;
321 	mm->free_area_cache = oldmm->mmap_base;
322 	mm->cached_hole_size = ~0UL;
323 	mm->map_count = 0;
324 	cpumask_clear(mm_cpumask(mm));
325 	mm->mm_rb = RB_ROOT;
326 	rb_link = &mm->mm_rb.rb_node;
327 	rb_parent = NULL;
328 	pprev = &mm->mmap;
329 	retval = ksm_fork(mm, oldmm);
330 	if (retval)
331 		goto out;
332 
333 	prev = NULL;
334 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
335 		struct file *file;
336 
337 		if (mpnt->vm_flags & VM_DONTCOPY) {
338 			long pages = vma_pages(mpnt);
339 			mm->total_vm -= pages;
340 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
341 								-pages);
342 			continue;
343 		}
344 		charge = 0;
345 		if (mpnt->vm_flags & VM_ACCOUNT) {
346 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
347 			if (security_vm_enough_memory(len))
348 				goto fail_nomem;
349 			charge = len;
350 		}
351 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 		if (!tmp)
353 			goto fail_nomem;
354 		*tmp = *mpnt;
355 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
356 		pol = mpol_dup(vma_policy(mpnt));
357 		retval = PTR_ERR(pol);
358 		if (IS_ERR(pol))
359 			goto fail_nomem_policy;
360 		vma_set_policy(tmp, pol);
361 		tmp->vm_mm = mm;
362 		if (anon_vma_fork(tmp, mpnt))
363 			goto fail_nomem_anon_vma_fork;
364 		tmp->vm_flags &= ~VM_LOCKED;
365 		tmp->vm_next = tmp->vm_prev = NULL;
366 		file = tmp->vm_file;
367 		if (file) {
368 			struct inode *inode = file->f_path.dentry->d_inode;
369 			struct address_space *mapping = file->f_mapping;
370 
371 			get_file(file);
372 			if (tmp->vm_flags & VM_DENYWRITE)
373 				atomic_dec(&inode->i_writecount);
374 			spin_lock(&mapping->i_mmap_lock);
375 			if (tmp->vm_flags & VM_SHARED)
376 				mapping->i_mmap_writable++;
377 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
378 			flush_dcache_mmap_lock(mapping);
379 			/* insert tmp into the share list, just after mpnt */
380 			vma_prio_tree_add(tmp, mpnt);
381 			flush_dcache_mmap_unlock(mapping);
382 			spin_unlock(&mapping->i_mmap_lock);
383 		}
384 
385 		/*
386 		 * Clear hugetlb-related page reserves for children. This only
387 		 * affects MAP_PRIVATE mappings. Faults generated by the child
388 		 * are not guaranteed to succeed, even if read-only
389 		 */
390 		if (is_vm_hugetlb_page(tmp))
391 			reset_vma_resv_huge_pages(tmp);
392 
393 		/*
394 		 * Link in the new vma and copy the page table entries.
395 		 */
396 		*pprev = tmp;
397 		pprev = &tmp->vm_next;
398 		tmp->vm_prev = prev;
399 		prev = tmp;
400 
401 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
402 		rb_link = &tmp->vm_rb.rb_right;
403 		rb_parent = &tmp->vm_rb;
404 
405 		mm->map_count++;
406 		retval = copy_page_range(mm, oldmm, mpnt);
407 
408 		if (tmp->vm_ops && tmp->vm_ops->open)
409 			tmp->vm_ops->open(tmp);
410 
411 		if (retval)
412 			goto out;
413 	}
414 	/* a new mm has just been created */
415 	arch_dup_mmap(oldmm, mm);
416 	retval = 0;
417 out:
418 	up_write(&mm->mmap_sem);
419 	flush_tlb_mm(oldmm);
420 	up_write(&oldmm->mmap_sem);
421 	return retval;
422 fail_nomem_anon_vma_fork:
423 	mpol_put(pol);
424 fail_nomem_policy:
425 	kmem_cache_free(vm_area_cachep, tmp);
426 fail_nomem:
427 	retval = -ENOMEM;
428 	vm_unacct_memory(charge);
429 	goto out;
430 }
431 
432 static inline int mm_alloc_pgd(struct mm_struct * mm)
433 {
434 	mm->pgd = pgd_alloc(mm);
435 	if (unlikely(!mm->pgd))
436 		return -ENOMEM;
437 	return 0;
438 }
439 
440 static inline void mm_free_pgd(struct mm_struct * mm)
441 {
442 	pgd_free(mm, mm->pgd);
443 }
444 #else
445 #define dup_mmap(mm, oldmm)	(0)
446 #define mm_alloc_pgd(mm)	(0)
447 #define mm_free_pgd(mm)
448 #endif /* CONFIG_MMU */
449 
450 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
451 
452 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
453 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
454 
455 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
456 
457 static int __init coredump_filter_setup(char *s)
458 {
459 	default_dump_filter =
460 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
461 		MMF_DUMP_FILTER_MASK;
462 	return 1;
463 }
464 
465 __setup("coredump_filter=", coredump_filter_setup);
466 
467 #include <linux/init_task.h>
468 
469 static void mm_init_aio(struct mm_struct *mm)
470 {
471 #ifdef CONFIG_AIO
472 	spin_lock_init(&mm->ioctx_lock);
473 	INIT_HLIST_HEAD(&mm->ioctx_list);
474 #endif
475 }
476 
477 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
478 {
479 	atomic_set(&mm->mm_users, 1);
480 	atomic_set(&mm->mm_count, 1);
481 	init_rwsem(&mm->mmap_sem);
482 	INIT_LIST_HEAD(&mm->mmlist);
483 	mm->flags = (current->mm) ?
484 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
485 	mm->core_state = NULL;
486 	mm->nr_ptes = 0;
487 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
488 	spin_lock_init(&mm->page_table_lock);
489 	mm->free_area_cache = TASK_UNMAPPED_BASE;
490 	mm->cached_hole_size = ~0UL;
491 	mm_init_aio(mm);
492 	mm_init_owner(mm, p);
493 	atomic_set(&mm->oom_disable_count, 0);
494 
495 	if (likely(!mm_alloc_pgd(mm))) {
496 		mm->def_flags = 0;
497 		mmu_notifier_mm_init(mm);
498 		return mm;
499 	}
500 
501 	free_mm(mm);
502 	return NULL;
503 }
504 
505 /*
506  * Allocate and initialize an mm_struct.
507  */
508 struct mm_struct * mm_alloc(void)
509 {
510 	struct mm_struct * mm;
511 
512 	mm = allocate_mm();
513 	if (mm) {
514 		memset(mm, 0, sizeof(*mm));
515 		mm = mm_init(mm, current);
516 	}
517 	return mm;
518 }
519 
520 /*
521  * Called when the last reference to the mm
522  * is dropped: either by a lazy thread or by
523  * mmput. Free the page directory and the mm.
524  */
525 void __mmdrop(struct mm_struct *mm)
526 {
527 	BUG_ON(mm == &init_mm);
528 	mm_free_pgd(mm);
529 	destroy_context(mm);
530 	mmu_notifier_mm_destroy(mm);
531 	free_mm(mm);
532 }
533 EXPORT_SYMBOL_GPL(__mmdrop);
534 
535 /*
536  * Decrement the use count and release all resources for an mm.
537  */
538 void mmput(struct mm_struct *mm)
539 {
540 	might_sleep();
541 
542 	if (atomic_dec_and_test(&mm->mm_users)) {
543 		exit_aio(mm);
544 		ksm_exit(mm);
545 		exit_mmap(mm);
546 		set_mm_exe_file(mm, NULL);
547 		if (!list_empty(&mm->mmlist)) {
548 			spin_lock(&mmlist_lock);
549 			list_del(&mm->mmlist);
550 			spin_unlock(&mmlist_lock);
551 		}
552 		put_swap_token(mm);
553 		if (mm->binfmt)
554 			module_put(mm->binfmt->module);
555 		mmdrop(mm);
556 	}
557 }
558 EXPORT_SYMBOL_GPL(mmput);
559 
560 /**
561  * get_task_mm - acquire a reference to the task's mm
562  *
563  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
564  * this kernel workthread has transiently adopted a user mm with use_mm,
565  * to do its AIO) is not set and if so returns a reference to it, after
566  * bumping up the use count.  User must release the mm via mmput()
567  * after use.  Typically used by /proc and ptrace.
568  */
569 struct mm_struct *get_task_mm(struct task_struct *task)
570 {
571 	struct mm_struct *mm;
572 
573 	task_lock(task);
574 	mm = task->mm;
575 	if (mm) {
576 		if (task->flags & PF_KTHREAD)
577 			mm = NULL;
578 		else
579 			atomic_inc(&mm->mm_users);
580 	}
581 	task_unlock(task);
582 	return mm;
583 }
584 EXPORT_SYMBOL_GPL(get_task_mm);
585 
586 /* Please note the differences between mmput and mm_release.
587  * mmput is called whenever we stop holding onto a mm_struct,
588  * error success whatever.
589  *
590  * mm_release is called after a mm_struct has been removed
591  * from the current process.
592  *
593  * This difference is important for error handling, when we
594  * only half set up a mm_struct for a new process and need to restore
595  * the old one.  Because we mmput the new mm_struct before
596  * restoring the old one. . .
597  * Eric Biederman 10 January 1998
598  */
599 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
600 {
601 	struct completion *vfork_done = tsk->vfork_done;
602 
603 	/* Get rid of any futexes when releasing the mm */
604 #ifdef CONFIG_FUTEX
605 	if (unlikely(tsk->robust_list)) {
606 		exit_robust_list(tsk);
607 		tsk->robust_list = NULL;
608 	}
609 #ifdef CONFIG_COMPAT
610 	if (unlikely(tsk->compat_robust_list)) {
611 		compat_exit_robust_list(tsk);
612 		tsk->compat_robust_list = NULL;
613 	}
614 #endif
615 	if (unlikely(!list_empty(&tsk->pi_state_list)))
616 		exit_pi_state_list(tsk);
617 #endif
618 
619 	/* Get rid of any cached register state */
620 	deactivate_mm(tsk, mm);
621 
622 	/* notify parent sleeping on vfork() */
623 	if (vfork_done) {
624 		tsk->vfork_done = NULL;
625 		complete(vfork_done);
626 	}
627 
628 	/*
629 	 * If we're exiting normally, clear a user-space tid field if
630 	 * requested.  We leave this alone when dying by signal, to leave
631 	 * the value intact in a core dump, and to save the unnecessary
632 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
633 	 */
634 	if (tsk->clear_child_tid) {
635 		if (!(tsk->flags & PF_SIGNALED) &&
636 		    atomic_read(&mm->mm_users) > 1) {
637 			/*
638 			 * We don't check the error code - if userspace has
639 			 * not set up a proper pointer then tough luck.
640 			 */
641 			put_user(0, tsk->clear_child_tid);
642 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
643 					1, NULL, NULL, 0);
644 		}
645 		tsk->clear_child_tid = NULL;
646 	}
647 }
648 
649 /*
650  * Allocate a new mm structure and copy contents from the
651  * mm structure of the passed in task structure.
652  */
653 struct mm_struct *dup_mm(struct task_struct *tsk)
654 {
655 	struct mm_struct *mm, *oldmm = current->mm;
656 	int err;
657 
658 	if (!oldmm)
659 		return NULL;
660 
661 	mm = allocate_mm();
662 	if (!mm)
663 		goto fail_nomem;
664 
665 	memcpy(mm, oldmm, sizeof(*mm));
666 
667 	/* Initializing for Swap token stuff */
668 	mm->token_priority = 0;
669 	mm->last_interval = 0;
670 
671 	if (!mm_init(mm, tsk))
672 		goto fail_nomem;
673 
674 	if (init_new_context(tsk, mm))
675 		goto fail_nocontext;
676 
677 	dup_mm_exe_file(oldmm, mm);
678 
679 	err = dup_mmap(mm, oldmm);
680 	if (err)
681 		goto free_pt;
682 
683 	mm->hiwater_rss = get_mm_rss(mm);
684 	mm->hiwater_vm = mm->total_vm;
685 
686 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
687 		goto free_pt;
688 
689 	return mm;
690 
691 free_pt:
692 	/* don't put binfmt in mmput, we haven't got module yet */
693 	mm->binfmt = NULL;
694 	mmput(mm);
695 
696 fail_nomem:
697 	return NULL;
698 
699 fail_nocontext:
700 	/*
701 	 * If init_new_context() failed, we cannot use mmput() to free the mm
702 	 * because it calls destroy_context()
703 	 */
704 	mm_free_pgd(mm);
705 	free_mm(mm);
706 	return NULL;
707 }
708 
709 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
710 {
711 	struct mm_struct * mm, *oldmm;
712 	int retval;
713 
714 	tsk->min_flt = tsk->maj_flt = 0;
715 	tsk->nvcsw = tsk->nivcsw = 0;
716 #ifdef CONFIG_DETECT_HUNG_TASK
717 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
718 #endif
719 
720 	tsk->mm = NULL;
721 	tsk->active_mm = NULL;
722 
723 	/*
724 	 * Are we cloning a kernel thread?
725 	 *
726 	 * We need to steal a active VM for that..
727 	 */
728 	oldmm = current->mm;
729 	if (!oldmm)
730 		return 0;
731 
732 	if (clone_flags & CLONE_VM) {
733 		atomic_inc(&oldmm->mm_users);
734 		mm = oldmm;
735 		goto good_mm;
736 	}
737 
738 	retval = -ENOMEM;
739 	mm = dup_mm(tsk);
740 	if (!mm)
741 		goto fail_nomem;
742 
743 good_mm:
744 	/* Initializing for Swap token stuff */
745 	mm->token_priority = 0;
746 	mm->last_interval = 0;
747 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
748 		atomic_inc(&mm->oom_disable_count);
749 
750 	tsk->mm = mm;
751 	tsk->active_mm = mm;
752 	return 0;
753 
754 fail_nomem:
755 	return retval;
756 }
757 
758 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
759 {
760 	struct fs_struct *fs = current->fs;
761 	if (clone_flags & CLONE_FS) {
762 		/* tsk->fs is already what we want */
763 		spin_lock(&fs->lock);
764 		if (fs->in_exec) {
765 			spin_unlock(&fs->lock);
766 			return -EAGAIN;
767 		}
768 		fs->users++;
769 		spin_unlock(&fs->lock);
770 		return 0;
771 	}
772 	tsk->fs = copy_fs_struct(fs);
773 	if (!tsk->fs)
774 		return -ENOMEM;
775 	return 0;
776 }
777 
778 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
779 {
780 	struct files_struct *oldf, *newf;
781 	int error = 0;
782 
783 	/*
784 	 * A background process may not have any files ...
785 	 */
786 	oldf = current->files;
787 	if (!oldf)
788 		goto out;
789 
790 	if (clone_flags & CLONE_FILES) {
791 		atomic_inc(&oldf->count);
792 		goto out;
793 	}
794 
795 	newf = dup_fd(oldf, &error);
796 	if (!newf)
797 		goto out;
798 
799 	tsk->files = newf;
800 	error = 0;
801 out:
802 	return error;
803 }
804 
805 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
806 {
807 #ifdef CONFIG_BLOCK
808 	struct io_context *ioc = current->io_context;
809 
810 	if (!ioc)
811 		return 0;
812 	/*
813 	 * Share io context with parent, if CLONE_IO is set
814 	 */
815 	if (clone_flags & CLONE_IO) {
816 		tsk->io_context = ioc_task_link(ioc);
817 		if (unlikely(!tsk->io_context))
818 			return -ENOMEM;
819 	} else if (ioprio_valid(ioc->ioprio)) {
820 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
821 		if (unlikely(!tsk->io_context))
822 			return -ENOMEM;
823 
824 		tsk->io_context->ioprio = ioc->ioprio;
825 	}
826 #endif
827 	return 0;
828 }
829 
830 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
831 {
832 	struct sighand_struct *sig;
833 
834 	if (clone_flags & CLONE_SIGHAND) {
835 		atomic_inc(&current->sighand->count);
836 		return 0;
837 	}
838 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
839 	rcu_assign_pointer(tsk->sighand, sig);
840 	if (!sig)
841 		return -ENOMEM;
842 	atomic_set(&sig->count, 1);
843 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
844 	return 0;
845 }
846 
847 void __cleanup_sighand(struct sighand_struct *sighand)
848 {
849 	if (atomic_dec_and_test(&sighand->count))
850 		kmem_cache_free(sighand_cachep, sighand);
851 }
852 
853 
854 /*
855  * Initialize POSIX timer handling for a thread group.
856  */
857 static void posix_cpu_timers_init_group(struct signal_struct *sig)
858 {
859 	unsigned long cpu_limit;
860 
861 	/* Thread group counters. */
862 	thread_group_cputime_init(sig);
863 
864 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
865 	if (cpu_limit != RLIM_INFINITY) {
866 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
867 		sig->cputimer.running = 1;
868 	}
869 
870 	/* The timer lists. */
871 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
872 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
873 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
874 }
875 
876 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
877 {
878 	struct signal_struct *sig;
879 
880 	if (clone_flags & CLONE_THREAD)
881 		return 0;
882 
883 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
884 	tsk->signal = sig;
885 	if (!sig)
886 		return -ENOMEM;
887 
888 	sig->nr_threads = 1;
889 	atomic_set(&sig->live, 1);
890 	atomic_set(&sig->sigcnt, 1);
891 	init_waitqueue_head(&sig->wait_chldexit);
892 	if (clone_flags & CLONE_NEWPID)
893 		sig->flags |= SIGNAL_UNKILLABLE;
894 	sig->curr_target = tsk;
895 	init_sigpending(&sig->shared_pending);
896 	INIT_LIST_HEAD(&sig->posix_timers);
897 
898 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
899 	sig->real_timer.function = it_real_fn;
900 
901 	task_lock(current->group_leader);
902 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
903 	task_unlock(current->group_leader);
904 
905 	posix_cpu_timers_init_group(sig);
906 
907 	tty_audit_fork(sig);
908 
909 	sig->oom_adj = current->signal->oom_adj;
910 	sig->oom_score_adj = current->signal->oom_score_adj;
911 
912 	mutex_init(&sig->cred_guard_mutex);
913 
914 	return 0;
915 }
916 
917 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
918 {
919 	unsigned long new_flags = p->flags;
920 
921 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
922 	new_flags |= PF_FORKNOEXEC;
923 	new_flags |= PF_STARTING;
924 	p->flags = new_flags;
925 	clear_freeze_flag(p);
926 }
927 
928 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
929 {
930 	current->clear_child_tid = tidptr;
931 
932 	return task_pid_vnr(current);
933 }
934 
935 static void rt_mutex_init_task(struct task_struct *p)
936 {
937 	raw_spin_lock_init(&p->pi_lock);
938 #ifdef CONFIG_RT_MUTEXES
939 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
940 	p->pi_blocked_on = NULL;
941 #endif
942 }
943 
944 #ifdef CONFIG_MM_OWNER
945 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
946 {
947 	mm->owner = p;
948 }
949 #endif /* CONFIG_MM_OWNER */
950 
951 /*
952  * Initialize POSIX timer handling for a single task.
953  */
954 static void posix_cpu_timers_init(struct task_struct *tsk)
955 {
956 	tsk->cputime_expires.prof_exp = cputime_zero;
957 	tsk->cputime_expires.virt_exp = cputime_zero;
958 	tsk->cputime_expires.sched_exp = 0;
959 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
960 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
961 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
962 }
963 
964 /*
965  * This creates a new process as a copy of the old one,
966  * but does not actually start it yet.
967  *
968  * It copies the registers, and all the appropriate
969  * parts of the process environment (as per the clone
970  * flags). The actual kick-off is left to the caller.
971  */
972 static struct task_struct *copy_process(unsigned long clone_flags,
973 					unsigned long stack_start,
974 					struct pt_regs *regs,
975 					unsigned long stack_size,
976 					int __user *child_tidptr,
977 					struct pid *pid,
978 					int trace)
979 {
980 	int retval;
981 	struct task_struct *p;
982 	int cgroup_callbacks_done = 0;
983 
984 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
985 		return ERR_PTR(-EINVAL);
986 
987 	/*
988 	 * Thread groups must share signals as well, and detached threads
989 	 * can only be started up within the thread group.
990 	 */
991 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
992 		return ERR_PTR(-EINVAL);
993 
994 	/*
995 	 * Shared signal handlers imply shared VM. By way of the above,
996 	 * thread groups also imply shared VM. Blocking this case allows
997 	 * for various simplifications in other code.
998 	 */
999 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000 		return ERR_PTR(-EINVAL);
1001 
1002 	/*
1003 	 * Siblings of global init remain as zombies on exit since they are
1004 	 * not reaped by their parent (swapper). To solve this and to avoid
1005 	 * multi-rooted process trees, prevent global and container-inits
1006 	 * from creating siblings.
1007 	 */
1008 	if ((clone_flags & CLONE_PARENT) &&
1009 				current->signal->flags & SIGNAL_UNKILLABLE)
1010 		return ERR_PTR(-EINVAL);
1011 
1012 	retval = security_task_create(clone_flags);
1013 	if (retval)
1014 		goto fork_out;
1015 
1016 	retval = -ENOMEM;
1017 	p = dup_task_struct(current);
1018 	if (!p)
1019 		goto fork_out;
1020 
1021 	ftrace_graph_init_task(p);
1022 
1023 	rt_mutex_init_task(p);
1024 
1025 #ifdef CONFIG_PROVE_LOCKING
1026 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1027 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1028 #endif
1029 	retval = -EAGAIN;
1030 	if (atomic_read(&p->real_cred->user->processes) >=
1031 			task_rlimit(p, RLIMIT_NPROC)) {
1032 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1033 		    p->real_cred->user != INIT_USER)
1034 			goto bad_fork_free;
1035 	}
1036 
1037 	retval = copy_creds(p, clone_flags);
1038 	if (retval < 0)
1039 		goto bad_fork_free;
1040 
1041 	/*
1042 	 * If multiple threads are within copy_process(), then this check
1043 	 * triggers too late. This doesn't hurt, the check is only there
1044 	 * to stop root fork bombs.
1045 	 */
1046 	retval = -EAGAIN;
1047 	if (nr_threads >= max_threads)
1048 		goto bad_fork_cleanup_count;
1049 
1050 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1051 		goto bad_fork_cleanup_count;
1052 
1053 	p->did_exec = 0;
1054 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1055 	copy_flags(clone_flags, p);
1056 	INIT_LIST_HEAD(&p->children);
1057 	INIT_LIST_HEAD(&p->sibling);
1058 	rcu_copy_process(p);
1059 	p->vfork_done = NULL;
1060 	spin_lock_init(&p->alloc_lock);
1061 
1062 	init_sigpending(&p->pending);
1063 
1064 	p->utime = cputime_zero;
1065 	p->stime = cputime_zero;
1066 	p->gtime = cputime_zero;
1067 	p->utimescaled = cputime_zero;
1068 	p->stimescaled = cputime_zero;
1069 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1070 	p->prev_utime = cputime_zero;
1071 	p->prev_stime = cputime_zero;
1072 #endif
1073 #if defined(SPLIT_RSS_COUNTING)
1074 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1075 #endif
1076 
1077 	p->default_timer_slack_ns = current->timer_slack_ns;
1078 
1079 	task_io_accounting_init(&p->ioac);
1080 	acct_clear_integrals(p);
1081 
1082 	posix_cpu_timers_init(p);
1083 
1084 	p->lock_depth = -1;		/* -1 = no lock */
1085 	do_posix_clock_monotonic_gettime(&p->start_time);
1086 	p->real_start_time = p->start_time;
1087 	monotonic_to_bootbased(&p->real_start_time);
1088 	p->io_context = NULL;
1089 	p->audit_context = NULL;
1090 	cgroup_fork(p);
1091 #ifdef CONFIG_NUMA
1092 	p->mempolicy = mpol_dup(p->mempolicy);
1093  	if (IS_ERR(p->mempolicy)) {
1094  		retval = PTR_ERR(p->mempolicy);
1095  		p->mempolicy = NULL;
1096  		goto bad_fork_cleanup_cgroup;
1097  	}
1098 	mpol_fix_fork_child_flag(p);
1099 #endif
1100 #ifdef CONFIG_TRACE_IRQFLAGS
1101 	p->irq_events = 0;
1102 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1103 	p->hardirqs_enabled = 1;
1104 #else
1105 	p->hardirqs_enabled = 0;
1106 #endif
1107 	p->hardirq_enable_ip = 0;
1108 	p->hardirq_enable_event = 0;
1109 	p->hardirq_disable_ip = _THIS_IP_;
1110 	p->hardirq_disable_event = 0;
1111 	p->softirqs_enabled = 1;
1112 	p->softirq_enable_ip = _THIS_IP_;
1113 	p->softirq_enable_event = 0;
1114 	p->softirq_disable_ip = 0;
1115 	p->softirq_disable_event = 0;
1116 	p->hardirq_context = 0;
1117 	p->softirq_context = 0;
1118 #endif
1119 #ifdef CONFIG_LOCKDEP
1120 	p->lockdep_depth = 0; /* no locks held yet */
1121 	p->curr_chain_key = 0;
1122 	p->lockdep_recursion = 0;
1123 #endif
1124 
1125 #ifdef CONFIG_DEBUG_MUTEXES
1126 	p->blocked_on = NULL; /* not blocked yet */
1127 #endif
1128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1129 	p->memcg_batch.do_batch = 0;
1130 	p->memcg_batch.memcg = NULL;
1131 #endif
1132 
1133 	/* Perform scheduler related setup. Assign this task to a CPU. */
1134 	sched_fork(p, clone_flags);
1135 
1136 	retval = perf_event_init_task(p);
1137 	if (retval)
1138 		goto bad_fork_cleanup_policy;
1139 
1140 	if ((retval = audit_alloc(p)))
1141 		goto bad_fork_cleanup_policy;
1142 	/* copy all the process information */
1143 	if ((retval = copy_semundo(clone_flags, p)))
1144 		goto bad_fork_cleanup_audit;
1145 	if ((retval = copy_files(clone_flags, p)))
1146 		goto bad_fork_cleanup_semundo;
1147 	if ((retval = copy_fs(clone_flags, p)))
1148 		goto bad_fork_cleanup_files;
1149 	if ((retval = copy_sighand(clone_flags, p)))
1150 		goto bad_fork_cleanup_fs;
1151 	if ((retval = copy_signal(clone_flags, p)))
1152 		goto bad_fork_cleanup_sighand;
1153 	if ((retval = copy_mm(clone_flags, p)))
1154 		goto bad_fork_cleanup_signal;
1155 	if ((retval = copy_namespaces(clone_flags, p)))
1156 		goto bad_fork_cleanup_mm;
1157 	if ((retval = copy_io(clone_flags, p)))
1158 		goto bad_fork_cleanup_namespaces;
1159 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1160 	if (retval)
1161 		goto bad_fork_cleanup_io;
1162 
1163 	if (pid != &init_struct_pid) {
1164 		retval = -ENOMEM;
1165 		pid = alloc_pid(p->nsproxy->pid_ns);
1166 		if (!pid)
1167 			goto bad_fork_cleanup_io;
1168 
1169 		if (clone_flags & CLONE_NEWPID) {
1170 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1171 			if (retval < 0)
1172 				goto bad_fork_free_pid;
1173 		}
1174 	}
1175 
1176 	p->pid = pid_nr(pid);
1177 	p->tgid = p->pid;
1178 	if (clone_flags & CLONE_THREAD)
1179 		p->tgid = current->tgid;
1180 
1181 	if (current->nsproxy != p->nsproxy) {
1182 		retval = ns_cgroup_clone(p, pid);
1183 		if (retval)
1184 			goto bad_fork_free_pid;
1185 	}
1186 
1187 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1188 	/*
1189 	 * Clear TID on mm_release()?
1190 	 */
1191 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1192 #ifdef CONFIG_FUTEX
1193 	p->robust_list = NULL;
1194 #ifdef CONFIG_COMPAT
1195 	p->compat_robust_list = NULL;
1196 #endif
1197 	INIT_LIST_HEAD(&p->pi_state_list);
1198 	p->pi_state_cache = NULL;
1199 #endif
1200 	/*
1201 	 * sigaltstack should be cleared when sharing the same VM
1202 	 */
1203 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1204 		p->sas_ss_sp = p->sas_ss_size = 0;
1205 
1206 	/*
1207 	 * Syscall tracing and stepping should be turned off in the
1208 	 * child regardless of CLONE_PTRACE.
1209 	 */
1210 	user_disable_single_step(p);
1211 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1212 #ifdef TIF_SYSCALL_EMU
1213 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1214 #endif
1215 	clear_all_latency_tracing(p);
1216 
1217 	/* ok, now we should be set up.. */
1218 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1219 	p->pdeath_signal = 0;
1220 	p->exit_state = 0;
1221 
1222 	/*
1223 	 * Ok, make it visible to the rest of the system.
1224 	 * We dont wake it up yet.
1225 	 */
1226 	p->group_leader = p;
1227 	INIT_LIST_HEAD(&p->thread_group);
1228 
1229 	/* Now that the task is set up, run cgroup callbacks if
1230 	 * necessary. We need to run them before the task is visible
1231 	 * on the tasklist. */
1232 	cgroup_fork_callbacks(p);
1233 	cgroup_callbacks_done = 1;
1234 
1235 	/* Need tasklist lock for parent etc handling! */
1236 	write_lock_irq(&tasklist_lock);
1237 
1238 	/* CLONE_PARENT re-uses the old parent */
1239 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1240 		p->real_parent = current->real_parent;
1241 		p->parent_exec_id = current->parent_exec_id;
1242 	} else {
1243 		p->real_parent = current;
1244 		p->parent_exec_id = current->self_exec_id;
1245 	}
1246 
1247 	spin_lock(&current->sighand->siglock);
1248 
1249 	/*
1250 	 * Process group and session signals need to be delivered to just the
1251 	 * parent before the fork or both the parent and the child after the
1252 	 * fork. Restart if a signal comes in before we add the new process to
1253 	 * it's process group.
1254 	 * A fatal signal pending means that current will exit, so the new
1255 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1256  	 */
1257 	recalc_sigpending();
1258 	if (signal_pending(current)) {
1259 		spin_unlock(&current->sighand->siglock);
1260 		write_unlock_irq(&tasklist_lock);
1261 		retval = -ERESTARTNOINTR;
1262 		goto bad_fork_free_pid;
1263 	}
1264 
1265 	if (clone_flags & CLONE_THREAD) {
1266 		current->signal->nr_threads++;
1267 		atomic_inc(&current->signal->live);
1268 		atomic_inc(&current->signal->sigcnt);
1269 		p->group_leader = current->group_leader;
1270 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1271 	}
1272 
1273 	if (likely(p->pid)) {
1274 		tracehook_finish_clone(p, clone_flags, trace);
1275 
1276 		if (thread_group_leader(p)) {
1277 			if (clone_flags & CLONE_NEWPID)
1278 				p->nsproxy->pid_ns->child_reaper = p;
1279 
1280 			p->signal->leader_pid = pid;
1281 			p->signal->tty = tty_kref_get(current->signal->tty);
1282 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1283 			attach_pid(p, PIDTYPE_SID, task_session(current));
1284 			list_add_tail(&p->sibling, &p->real_parent->children);
1285 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1286 			__get_cpu_var(process_counts)++;
1287 		}
1288 		attach_pid(p, PIDTYPE_PID, pid);
1289 		nr_threads++;
1290 	}
1291 
1292 	total_forks++;
1293 	spin_unlock(&current->sighand->siglock);
1294 	write_unlock_irq(&tasklist_lock);
1295 	proc_fork_connector(p);
1296 	cgroup_post_fork(p);
1297 	perf_event_fork(p);
1298 	return p;
1299 
1300 bad_fork_free_pid:
1301 	if (pid != &init_struct_pid)
1302 		free_pid(pid);
1303 bad_fork_cleanup_io:
1304 	if (p->io_context)
1305 		exit_io_context(p);
1306 bad_fork_cleanup_namespaces:
1307 	exit_task_namespaces(p);
1308 bad_fork_cleanup_mm:
1309 	if (p->mm) {
1310 		task_lock(p);
1311 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1312 			atomic_dec(&p->mm->oom_disable_count);
1313 		task_unlock(p);
1314 		mmput(p->mm);
1315 	}
1316 bad_fork_cleanup_signal:
1317 	if (!(clone_flags & CLONE_THREAD))
1318 		free_signal_struct(p->signal);
1319 bad_fork_cleanup_sighand:
1320 	__cleanup_sighand(p->sighand);
1321 bad_fork_cleanup_fs:
1322 	exit_fs(p); /* blocking */
1323 bad_fork_cleanup_files:
1324 	exit_files(p); /* blocking */
1325 bad_fork_cleanup_semundo:
1326 	exit_sem(p);
1327 bad_fork_cleanup_audit:
1328 	audit_free(p);
1329 bad_fork_cleanup_policy:
1330 	perf_event_free_task(p);
1331 #ifdef CONFIG_NUMA
1332 	mpol_put(p->mempolicy);
1333 bad_fork_cleanup_cgroup:
1334 #endif
1335 	cgroup_exit(p, cgroup_callbacks_done);
1336 	delayacct_tsk_free(p);
1337 	module_put(task_thread_info(p)->exec_domain->module);
1338 bad_fork_cleanup_count:
1339 	atomic_dec(&p->cred->user->processes);
1340 	exit_creds(p);
1341 bad_fork_free:
1342 	free_task(p);
1343 fork_out:
1344 	return ERR_PTR(retval);
1345 }
1346 
1347 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1348 {
1349 	memset(regs, 0, sizeof(struct pt_regs));
1350 	return regs;
1351 }
1352 
1353 static inline void init_idle_pids(struct pid_link *links)
1354 {
1355 	enum pid_type type;
1356 
1357 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1358 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1359 		links[type].pid = &init_struct_pid;
1360 	}
1361 }
1362 
1363 struct task_struct * __cpuinit fork_idle(int cpu)
1364 {
1365 	struct task_struct *task;
1366 	struct pt_regs regs;
1367 
1368 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1369 			    &init_struct_pid, 0);
1370 	if (!IS_ERR(task)) {
1371 		init_idle_pids(task->pids);
1372 		init_idle(task, cpu);
1373 	}
1374 
1375 	return task;
1376 }
1377 
1378 /*
1379  *  Ok, this is the main fork-routine.
1380  *
1381  * It copies the process, and if successful kick-starts
1382  * it and waits for it to finish using the VM if required.
1383  */
1384 long do_fork(unsigned long clone_flags,
1385 	      unsigned long stack_start,
1386 	      struct pt_regs *regs,
1387 	      unsigned long stack_size,
1388 	      int __user *parent_tidptr,
1389 	      int __user *child_tidptr)
1390 {
1391 	struct task_struct *p;
1392 	int trace = 0;
1393 	long nr;
1394 
1395 	/*
1396 	 * Do some preliminary argument and permissions checking before we
1397 	 * actually start allocating stuff
1398 	 */
1399 	if (clone_flags & CLONE_NEWUSER) {
1400 		if (clone_flags & CLONE_THREAD)
1401 			return -EINVAL;
1402 		/* hopefully this check will go away when userns support is
1403 		 * complete
1404 		 */
1405 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1406 				!capable(CAP_SETGID))
1407 			return -EPERM;
1408 	}
1409 
1410 	/*
1411 	 * We hope to recycle these flags after 2.6.26
1412 	 */
1413 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1414 		static int __read_mostly count = 100;
1415 
1416 		if (count > 0 && printk_ratelimit()) {
1417 			char comm[TASK_COMM_LEN];
1418 
1419 			count--;
1420 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1421 					"clone flags 0x%lx\n",
1422 				get_task_comm(comm, current),
1423 				clone_flags & CLONE_STOPPED);
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * When called from kernel_thread, don't do user tracing stuff.
1429 	 */
1430 	if (likely(user_mode(regs)))
1431 		trace = tracehook_prepare_clone(clone_flags);
1432 
1433 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1434 			 child_tidptr, NULL, trace);
1435 	/*
1436 	 * Do this prior waking up the new thread - the thread pointer
1437 	 * might get invalid after that point, if the thread exits quickly.
1438 	 */
1439 	if (!IS_ERR(p)) {
1440 		struct completion vfork;
1441 
1442 		trace_sched_process_fork(current, p);
1443 
1444 		nr = task_pid_vnr(p);
1445 
1446 		if (clone_flags & CLONE_PARENT_SETTID)
1447 			put_user(nr, parent_tidptr);
1448 
1449 		if (clone_flags & CLONE_VFORK) {
1450 			p->vfork_done = &vfork;
1451 			init_completion(&vfork);
1452 		}
1453 
1454 		audit_finish_fork(p);
1455 		tracehook_report_clone(regs, clone_flags, nr, p);
1456 
1457 		/*
1458 		 * We set PF_STARTING at creation in case tracing wants to
1459 		 * use this to distinguish a fully live task from one that
1460 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1461 		 * clear it and set the child going.
1462 		 */
1463 		p->flags &= ~PF_STARTING;
1464 
1465 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1466 			/*
1467 			 * We'll start up with an immediate SIGSTOP.
1468 			 */
1469 			sigaddset(&p->pending.signal, SIGSTOP);
1470 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1471 			__set_task_state(p, TASK_STOPPED);
1472 		} else {
1473 			wake_up_new_task(p, clone_flags);
1474 		}
1475 
1476 		tracehook_report_clone_complete(trace, regs,
1477 						clone_flags, nr, p);
1478 
1479 		if (clone_flags & CLONE_VFORK) {
1480 			freezer_do_not_count();
1481 			wait_for_completion(&vfork);
1482 			freezer_count();
1483 			tracehook_report_vfork_done(p, nr);
1484 		}
1485 	} else {
1486 		nr = PTR_ERR(p);
1487 	}
1488 	return nr;
1489 }
1490 
1491 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1492 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1493 #endif
1494 
1495 static void sighand_ctor(void *data)
1496 {
1497 	struct sighand_struct *sighand = data;
1498 
1499 	spin_lock_init(&sighand->siglock);
1500 	init_waitqueue_head(&sighand->signalfd_wqh);
1501 }
1502 
1503 void __init proc_caches_init(void)
1504 {
1505 	sighand_cachep = kmem_cache_create("sighand_cache",
1506 			sizeof(struct sighand_struct), 0,
1507 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1508 			SLAB_NOTRACK, sighand_ctor);
1509 	signal_cachep = kmem_cache_create("signal_cache",
1510 			sizeof(struct signal_struct), 0,
1511 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1512 	files_cachep = kmem_cache_create("files_cache",
1513 			sizeof(struct files_struct), 0,
1514 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1515 	fs_cachep = kmem_cache_create("fs_cache",
1516 			sizeof(struct fs_struct), 0,
1517 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1518 	mm_cachep = kmem_cache_create("mm_struct",
1519 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1520 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1521 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1522 	mmap_init();
1523 }
1524 
1525 /*
1526  * Check constraints on flags passed to the unshare system call and
1527  * force unsharing of additional process context as appropriate.
1528  */
1529 static void check_unshare_flags(unsigned long *flags_ptr)
1530 {
1531 	/*
1532 	 * If unsharing a thread from a thread group, must also
1533 	 * unshare vm.
1534 	 */
1535 	if (*flags_ptr & CLONE_THREAD)
1536 		*flags_ptr |= CLONE_VM;
1537 
1538 	/*
1539 	 * If unsharing vm, must also unshare signal handlers.
1540 	 */
1541 	if (*flags_ptr & CLONE_VM)
1542 		*flags_ptr |= CLONE_SIGHAND;
1543 
1544 	/*
1545 	 * If unsharing namespace, must also unshare filesystem information.
1546 	 */
1547 	if (*flags_ptr & CLONE_NEWNS)
1548 		*flags_ptr |= CLONE_FS;
1549 }
1550 
1551 /*
1552  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1553  */
1554 static int unshare_thread(unsigned long unshare_flags)
1555 {
1556 	if (unshare_flags & CLONE_THREAD)
1557 		return -EINVAL;
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Unshare the filesystem structure if it is being shared
1564  */
1565 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1566 {
1567 	struct fs_struct *fs = current->fs;
1568 
1569 	if (!(unshare_flags & CLONE_FS) || !fs)
1570 		return 0;
1571 
1572 	/* don't need lock here; in the worst case we'll do useless copy */
1573 	if (fs->users == 1)
1574 		return 0;
1575 
1576 	*new_fsp = copy_fs_struct(fs);
1577 	if (!*new_fsp)
1578 		return -ENOMEM;
1579 
1580 	return 0;
1581 }
1582 
1583 /*
1584  * Unsharing of sighand is not supported yet
1585  */
1586 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1587 {
1588 	struct sighand_struct *sigh = current->sighand;
1589 
1590 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1591 		return -EINVAL;
1592 	else
1593 		return 0;
1594 }
1595 
1596 /*
1597  * Unshare vm if it is being shared
1598  */
1599 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1600 {
1601 	struct mm_struct *mm = current->mm;
1602 
1603 	if ((unshare_flags & CLONE_VM) &&
1604 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1605 		return -EINVAL;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 /*
1612  * Unshare file descriptor table if it is being shared
1613  */
1614 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1615 {
1616 	struct files_struct *fd = current->files;
1617 	int error = 0;
1618 
1619 	if ((unshare_flags & CLONE_FILES) &&
1620 	    (fd && atomic_read(&fd->count) > 1)) {
1621 		*new_fdp = dup_fd(fd, &error);
1622 		if (!*new_fdp)
1623 			return error;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 /*
1630  * unshare allows a process to 'unshare' part of the process
1631  * context which was originally shared using clone.  copy_*
1632  * functions used by do_fork() cannot be used here directly
1633  * because they modify an inactive task_struct that is being
1634  * constructed. Here we are modifying the current, active,
1635  * task_struct.
1636  */
1637 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1638 {
1639 	int err = 0;
1640 	struct fs_struct *fs, *new_fs = NULL;
1641 	struct sighand_struct *new_sigh = NULL;
1642 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1643 	struct files_struct *fd, *new_fd = NULL;
1644 	struct nsproxy *new_nsproxy = NULL;
1645 	int do_sysvsem = 0;
1646 
1647 	check_unshare_flags(&unshare_flags);
1648 
1649 	/* Return -EINVAL for all unsupported flags */
1650 	err = -EINVAL;
1651 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1652 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1653 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1654 		goto bad_unshare_out;
1655 
1656 	/*
1657 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1658 	 * to a new ipc namespace, the semaphore arrays from the old
1659 	 * namespace are unreachable.
1660 	 */
1661 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1662 		do_sysvsem = 1;
1663 	if ((err = unshare_thread(unshare_flags)))
1664 		goto bad_unshare_out;
1665 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1666 		goto bad_unshare_cleanup_thread;
1667 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1668 		goto bad_unshare_cleanup_fs;
1669 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1670 		goto bad_unshare_cleanup_sigh;
1671 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1672 		goto bad_unshare_cleanup_vm;
1673 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1674 			new_fs)))
1675 		goto bad_unshare_cleanup_fd;
1676 
1677 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1678 		if (do_sysvsem) {
1679 			/*
1680 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1681 			 */
1682 			exit_sem(current);
1683 		}
1684 
1685 		if (new_nsproxy) {
1686 			switch_task_namespaces(current, new_nsproxy);
1687 			new_nsproxy = NULL;
1688 		}
1689 
1690 		task_lock(current);
1691 
1692 		if (new_fs) {
1693 			fs = current->fs;
1694 			spin_lock(&fs->lock);
1695 			current->fs = new_fs;
1696 			if (--fs->users)
1697 				new_fs = NULL;
1698 			else
1699 				new_fs = fs;
1700 			spin_unlock(&fs->lock);
1701 		}
1702 
1703 		if (new_mm) {
1704 			mm = current->mm;
1705 			active_mm = current->active_mm;
1706 			current->mm = new_mm;
1707 			current->active_mm = new_mm;
1708 			if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1709 				atomic_dec(&mm->oom_disable_count);
1710 				atomic_inc(&new_mm->oom_disable_count);
1711 			}
1712 			activate_mm(active_mm, new_mm);
1713 			new_mm = mm;
1714 		}
1715 
1716 		if (new_fd) {
1717 			fd = current->files;
1718 			current->files = new_fd;
1719 			new_fd = fd;
1720 		}
1721 
1722 		task_unlock(current);
1723 	}
1724 
1725 	if (new_nsproxy)
1726 		put_nsproxy(new_nsproxy);
1727 
1728 bad_unshare_cleanup_fd:
1729 	if (new_fd)
1730 		put_files_struct(new_fd);
1731 
1732 bad_unshare_cleanup_vm:
1733 	if (new_mm)
1734 		mmput(new_mm);
1735 
1736 bad_unshare_cleanup_sigh:
1737 	if (new_sigh)
1738 		if (atomic_dec_and_test(&new_sigh->count))
1739 			kmem_cache_free(sighand_cachep, new_sigh);
1740 
1741 bad_unshare_cleanup_fs:
1742 	if (new_fs)
1743 		free_fs_struct(new_fs);
1744 
1745 bad_unshare_cleanup_thread:
1746 bad_unshare_out:
1747 	return err;
1748 }
1749 
1750 /*
1751  *	Helper to unshare the files of the current task.
1752  *	We don't want to expose copy_files internals to
1753  *	the exec layer of the kernel.
1754  */
1755 
1756 int unshare_files(struct files_struct **displaced)
1757 {
1758 	struct task_struct *task = current;
1759 	struct files_struct *copy = NULL;
1760 	int error;
1761 
1762 	error = unshare_fd(CLONE_FILES, &copy);
1763 	if (error || !copy) {
1764 		*displaced = NULL;
1765 		return error;
1766 	}
1767 	*displaced = task->files;
1768 	task_lock(task);
1769 	task->files = copy;
1770 	task_unlock(task);
1771 	return 0;
1772 }
1773