1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 73 #include <asm/pgtable.h> 74 #include <asm/pgalloc.h> 75 #include <asm/uaccess.h> 76 #include <asm/mmu_context.h> 77 #include <asm/cacheflush.h> 78 #include <asm/tlbflush.h> 79 80 #include <trace/events/sched.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/task.h> 84 85 /* 86 * Protected counters by write_lock_irq(&tasklist_lock) 87 */ 88 unsigned long total_forks; /* Handle normal Linux uptimes. */ 89 int nr_threads; /* The idle threads do not count.. */ 90 91 int max_threads; /* tunable limit on nr_threads */ 92 93 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 94 95 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 96 97 #ifdef CONFIG_PROVE_RCU 98 int lockdep_tasklist_lock_is_held(void) 99 { 100 return lockdep_is_held(&tasklist_lock); 101 } 102 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 103 #endif /* #ifdef CONFIG_PROVE_RCU */ 104 105 int nr_processes(void) 106 { 107 int cpu; 108 int total = 0; 109 110 for_each_possible_cpu(cpu) 111 total += per_cpu(process_counts, cpu); 112 113 return total; 114 } 115 116 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 117 static struct kmem_cache *task_struct_cachep; 118 119 static inline struct task_struct *alloc_task_struct_node(int node) 120 { 121 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 122 } 123 124 void __weak arch_release_task_struct(struct task_struct *tsk) { } 125 126 static inline void free_task_struct(struct task_struct *tsk) 127 { 128 arch_release_task_struct(tsk); 129 kmem_cache_free(task_struct_cachep, tsk); 130 } 131 #endif 132 133 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 134 void __weak arch_release_thread_info(struct thread_info *ti) { } 135 136 /* 137 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 138 * kmemcache based allocator. 139 */ 140 # if THREAD_SIZE >= PAGE_SIZE 141 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 142 int node) 143 { 144 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 145 THREAD_SIZE_ORDER); 146 147 return page ? page_address(page) : NULL; 148 } 149 150 static inline void free_thread_info(struct thread_info *ti) 151 { 152 arch_release_thread_info(ti); 153 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 154 } 155 # else 156 static struct kmem_cache *thread_info_cache; 157 158 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 159 int node) 160 { 161 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 162 } 163 164 static void free_thread_info(struct thread_info *ti) 165 { 166 arch_release_thread_info(ti); 167 kmem_cache_free(thread_info_cache, ti); 168 } 169 170 void thread_info_cache_init(void) 171 { 172 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 173 THREAD_SIZE, 0, NULL); 174 BUG_ON(thread_info_cache == NULL); 175 } 176 # endif 177 #endif 178 179 /* SLAB cache for signal_struct structures (tsk->signal) */ 180 static struct kmem_cache *signal_cachep; 181 182 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 183 struct kmem_cache *sighand_cachep; 184 185 /* SLAB cache for files_struct structures (tsk->files) */ 186 struct kmem_cache *files_cachep; 187 188 /* SLAB cache for fs_struct structures (tsk->fs) */ 189 struct kmem_cache *fs_cachep; 190 191 /* SLAB cache for vm_area_struct structures */ 192 struct kmem_cache *vm_area_cachep; 193 194 /* SLAB cache for mm_struct structures (tsk->mm) */ 195 static struct kmem_cache *mm_cachep; 196 197 static void account_kernel_stack(struct thread_info *ti, int account) 198 { 199 struct zone *zone = page_zone(virt_to_page(ti)); 200 201 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 202 } 203 204 void free_task(struct task_struct *tsk) 205 { 206 account_kernel_stack(tsk->stack, -1); 207 free_thread_info(tsk->stack); 208 rt_mutex_debug_task_free(tsk); 209 ftrace_graph_exit_task(tsk); 210 put_seccomp_filter(tsk); 211 free_task_struct(tsk); 212 } 213 EXPORT_SYMBOL(free_task); 214 215 static inline void free_signal_struct(struct signal_struct *sig) 216 { 217 taskstats_tgid_free(sig); 218 sched_autogroup_exit(sig); 219 kmem_cache_free(signal_cachep, sig); 220 } 221 222 static inline void put_signal_struct(struct signal_struct *sig) 223 { 224 if (atomic_dec_and_test(&sig->sigcnt)) 225 free_signal_struct(sig); 226 } 227 228 void __put_task_struct(struct task_struct *tsk) 229 { 230 WARN_ON(!tsk->exit_state); 231 WARN_ON(atomic_read(&tsk->usage)); 232 WARN_ON(tsk == current); 233 234 security_task_free(tsk); 235 exit_creds(tsk); 236 delayacct_tsk_free(tsk); 237 put_signal_struct(tsk->signal); 238 239 if (!profile_handoff_task(tsk)) 240 free_task(tsk); 241 } 242 EXPORT_SYMBOL_GPL(__put_task_struct); 243 244 void __init __weak arch_task_cache_init(void) { } 245 246 void __init fork_init(unsigned long mempages) 247 { 248 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 249 #ifndef ARCH_MIN_TASKALIGN 250 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 251 #endif 252 /* create a slab on which task_structs can be allocated */ 253 task_struct_cachep = 254 kmem_cache_create("task_struct", sizeof(struct task_struct), 255 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 256 #endif 257 258 /* do the arch specific task caches init */ 259 arch_task_cache_init(); 260 261 /* 262 * The default maximum number of threads is set to a safe 263 * value: the thread structures can take up at most half 264 * of memory. 265 */ 266 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 267 268 /* 269 * we need to allow at least 20 threads to boot a system 270 */ 271 if (max_threads < 20) 272 max_threads = 20; 273 274 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 275 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 276 init_task.signal->rlim[RLIMIT_SIGPENDING] = 277 init_task.signal->rlim[RLIMIT_NPROC]; 278 } 279 280 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 281 struct task_struct *src) 282 { 283 *dst = *src; 284 return 0; 285 } 286 287 static struct task_struct *dup_task_struct(struct task_struct *orig) 288 { 289 struct task_struct *tsk; 290 struct thread_info *ti; 291 unsigned long *stackend; 292 int node = tsk_fork_get_node(orig); 293 int err; 294 295 tsk = alloc_task_struct_node(node); 296 if (!tsk) 297 return NULL; 298 299 ti = alloc_thread_info_node(tsk, node); 300 if (!ti) { 301 free_task_struct(tsk); 302 return NULL; 303 } 304 305 err = arch_dup_task_struct(tsk, orig); 306 if (err) 307 goto out; 308 309 tsk->stack = ti; 310 311 setup_thread_stack(tsk, orig); 312 clear_user_return_notifier(tsk); 313 clear_tsk_need_resched(tsk); 314 stackend = end_of_stack(tsk); 315 *stackend = STACK_END_MAGIC; /* for overflow detection */ 316 317 #ifdef CONFIG_CC_STACKPROTECTOR 318 tsk->stack_canary = get_random_int(); 319 #endif 320 321 /* 322 * One for us, one for whoever does the "release_task()" (usually 323 * parent) 324 */ 325 atomic_set(&tsk->usage, 2); 326 #ifdef CONFIG_BLK_DEV_IO_TRACE 327 tsk->btrace_seq = 0; 328 #endif 329 tsk->splice_pipe = NULL; 330 331 account_kernel_stack(ti, 1); 332 333 return tsk; 334 335 out: 336 free_thread_info(ti); 337 free_task_struct(tsk); 338 return NULL; 339 } 340 341 #ifdef CONFIG_MMU 342 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 343 { 344 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 345 struct rb_node **rb_link, *rb_parent; 346 int retval; 347 unsigned long charge; 348 struct mempolicy *pol; 349 350 down_write(&oldmm->mmap_sem); 351 flush_cache_dup_mm(oldmm); 352 /* 353 * Not linked in yet - no deadlock potential: 354 */ 355 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 356 357 mm->locked_vm = 0; 358 mm->mmap = NULL; 359 mm->mmap_cache = NULL; 360 mm->free_area_cache = oldmm->mmap_base; 361 mm->cached_hole_size = ~0UL; 362 mm->map_count = 0; 363 cpumask_clear(mm_cpumask(mm)); 364 mm->mm_rb = RB_ROOT; 365 rb_link = &mm->mm_rb.rb_node; 366 rb_parent = NULL; 367 pprev = &mm->mmap; 368 retval = ksm_fork(mm, oldmm); 369 if (retval) 370 goto out; 371 retval = khugepaged_fork(mm, oldmm); 372 if (retval) 373 goto out; 374 375 prev = NULL; 376 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 377 struct file *file; 378 379 if (mpnt->vm_flags & VM_DONTCOPY) { 380 long pages = vma_pages(mpnt); 381 mm->total_vm -= pages; 382 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 383 -pages); 384 continue; 385 } 386 charge = 0; 387 if (mpnt->vm_flags & VM_ACCOUNT) { 388 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 389 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 390 goto fail_nomem; 391 charge = len; 392 } 393 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 394 if (!tmp) 395 goto fail_nomem; 396 *tmp = *mpnt; 397 INIT_LIST_HEAD(&tmp->anon_vma_chain); 398 pol = mpol_dup(vma_policy(mpnt)); 399 retval = PTR_ERR(pol); 400 if (IS_ERR(pol)) 401 goto fail_nomem_policy; 402 vma_set_policy(tmp, pol); 403 tmp->vm_mm = mm; 404 if (anon_vma_fork(tmp, mpnt)) 405 goto fail_nomem_anon_vma_fork; 406 tmp->vm_flags &= ~VM_LOCKED; 407 tmp->vm_next = tmp->vm_prev = NULL; 408 file = tmp->vm_file; 409 if (file) { 410 struct inode *inode = file->f_path.dentry->d_inode; 411 struct address_space *mapping = file->f_mapping; 412 413 get_file(file); 414 if (tmp->vm_flags & VM_DENYWRITE) 415 atomic_dec(&inode->i_writecount); 416 mutex_lock(&mapping->i_mmap_mutex); 417 if (tmp->vm_flags & VM_SHARED) 418 mapping->i_mmap_writable++; 419 flush_dcache_mmap_lock(mapping); 420 /* insert tmp into the share list, just after mpnt */ 421 vma_prio_tree_add(tmp, mpnt); 422 flush_dcache_mmap_unlock(mapping); 423 mutex_unlock(&mapping->i_mmap_mutex); 424 } 425 426 /* 427 * Clear hugetlb-related page reserves for children. This only 428 * affects MAP_PRIVATE mappings. Faults generated by the child 429 * are not guaranteed to succeed, even if read-only 430 */ 431 if (is_vm_hugetlb_page(tmp)) 432 reset_vma_resv_huge_pages(tmp); 433 434 /* 435 * Link in the new vma and copy the page table entries. 436 */ 437 *pprev = tmp; 438 pprev = &tmp->vm_next; 439 tmp->vm_prev = prev; 440 prev = tmp; 441 442 __vma_link_rb(mm, tmp, rb_link, rb_parent); 443 rb_link = &tmp->vm_rb.rb_right; 444 rb_parent = &tmp->vm_rb; 445 446 mm->map_count++; 447 retval = copy_page_range(mm, oldmm, mpnt); 448 449 if (tmp->vm_ops && tmp->vm_ops->open) 450 tmp->vm_ops->open(tmp); 451 452 if (retval) 453 goto out; 454 } 455 /* a new mm has just been created */ 456 arch_dup_mmap(oldmm, mm); 457 retval = 0; 458 out: 459 up_write(&mm->mmap_sem); 460 flush_tlb_mm(oldmm); 461 up_write(&oldmm->mmap_sem); 462 return retval; 463 fail_nomem_anon_vma_fork: 464 mpol_put(pol); 465 fail_nomem_policy: 466 kmem_cache_free(vm_area_cachep, tmp); 467 fail_nomem: 468 retval = -ENOMEM; 469 vm_unacct_memory(charge); 470 goto out; 471 } 472 473 static inline int mm_alloc_pgd(struct mm_struct *mm) 474 { 475 mm->pgd = pgd_alloc(mm); 476 if (unlikely(!mm->pgd)) 477 return -ENOMEM; 478 return 0; 479 } 480 481 static inline void mm_free_pgd(struct mm_struct *mm) 482 { 483 pgd_free(mm, mm->pgd); 484 } 485 #else 486 #define dup_mmap(mm, oldmm) (0) 487 #define mm_alloc_pgd(mm) (0) 488 #define mm_free_pgd(mm) 489 #endif /* CONFIG_MMU */ 490 491 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 492 493 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 494 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 495 496 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 497 498 static int __init coredump_filter_setup(char *s) 499 { 500 default_dump_filter = 501 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 502 MMF_DUMP_FILTER_MASK; 503 return 1; 504 } 505 506 __setup("coredump_filter=", coredump_filter_setup); 507 508 #include <linux/init_task.h> 509 510 static void mm_init_aio(struct mm_struct *mm) 511 { 512 #ifdef CONFIG_AIO 513 spin_lock_init(&mm->ioctx_lock); 514 INIT_HLIST_HEAD(&mm->ioctx_list); 515 #endif 516 } 517 518 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 519 { 520 atomic_set(&mm->mm_users, 1); 521 atomic_set(&mm->mm_count, 1); 522 init_rwsem(&mm->mmap_sem); 523 INIT_LIST_HEAD(&mm->mmlist); 524 mm->flags = (current->mm) ? 525 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 526 mm->core_state = NULL; 527 mm->nr_ptes = 0; 528 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 529 spin_lock_init(&mm->page_table_lock); 530 mm->free_area_cache = TASK_UNMAPPED_BASE; 531 mm->cached_hole_size = ~0UL; 532 mm_init_aio(mm); 533 mm_init_owner(mm, p); 534 535 if (likely(!mm_alloc_pgd(mm))) { 536 mm->def_flags = 0; 537 mmu_notifier_mm_init(mm); 538 return mm; 539 } 540 541 free_mm(mm); 542 return NULL; 543 } 544 545 static void check_mm(struct mm_struct *mm) 546 { 547 int i; 548 549 for (i = 0; i < NR_MM_COUNTERS; i++) { 550 long x = atomic_long_read(&mm->rss_stat.count[i]); 551 552 if (unlikely(x)) 553 printk(KERN_ALERT "BUG: Bad rss-counter state " 554 "mm:%p idx:%d val:%ld\n", mm, i, x); 555 } 556 557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 558 VM_BUG_ON(mm->pmd_huge_pte); 559 #endif 560 } 561 562 /* 563 * Allocate and initialize an mm_struct. 564 */ 565 struct mm_struct *mm_alloc(void) 566 { 567 struct mm_struct *mm; 568 569 mm = allocate_mm(); 570 if (!mm) 571 return NULL; 572 573 memset(mm, 0, sizeof(*mm)); 574 mm_init_cpumask(mm); 575 return mm_init(mm, current); 576 } 577 578 /* 579 * Called when the last reference to the mm 580 * is dropped: either by a lazy thread or by 581 * mmput. Free the page directory and the mm. 582 */ 583 void __mmdrop(struct mm_struct *mm) 584 { 585 BUG_ON(mm == &init_mm); 586 mm_free_pgd(mm); 587 destroy_context(mm); 588 mmu_notifier_mm_destroy(mm); 589 check_mm(mm); 590 free_mm(mm); 591 } 592 EXPORT_SYMBOL_GPL(__mmdrop); 593 594 /* 595 * Decrement the use count and release all resources for an mm. 596 */ 597 void mmput(struct mm_struct *mm) 598 { 599 might_sleep(); 600 601 if (atomic_dec_and_test(&mm->mm_users)) { 602 exit_aio(mm); 603 ksm_exit(mm); 604 khugepaged_exit(mm); /* must run before exit_mmap */ 605 exit_mmap(mm); 606 set_mm_exe_file(mm, NULL); 607 if (!list_empty(&mm->mmlist)) { 608 spin_lock(&mmlist_lock); 609 list_del(&mm->mmlist); 610 spin_unlock(&mmlist_lock); 611 } 612 put_swap_token(mm); 613 if (mm->binfmt) 614 module_put(mm->binfmt->module); 615 mmdrop(mm); 616 } 617 } 618 EXPORT_SYMBOL_GPL(mmput); 619 620 /* 621 * We added or removed a vma mapping the executable. The vmas are only mapped 622 * during exec and are not mapped with the mmap system call. 623 * Callers must hold down_write() on the mm's mmap_sem for these 624 */ 625 void added_exe_file_vma(struct mm_struct *mm) 626 { 627 mm->num_exe_file_vmas++; 628 } 629 630 void removed_exe_file_vma(struct mm_struct *mm) 631 { 632 mm->num_exe_file_vmas--; 633 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) { 634 fput(mm->exe_file); 635 mm->exe_file = NULL; 636 } 637 638 } 639 640 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 641 { 642 if (new_exe_file) 643 get_file(new_exe_file); 644 if (mm->exe_file) 645 fput(mm->exe_file); 646 mm->exe_file = new_exe_file; 647 mm->num_exe_file_vmas = 0; 648 } 649 650 struct file *get_mm_exe_file(struct mm_struct *mm) 651 { 652 struct file *exe_file; 653 654 /* We need mmap_sem to protect against races with removal of 655 * VM_EXECUTABLE vmas */ 656 down_read(&mm->mmap_sem); 657 exe_file = mm->exe_file; 658 if (exe_file) 659 get_file(exe_file); 660 up_read(&mm->mmap_sem); 661 return exe_file; 662 } 663 664 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 665 { 666 /* It's safe to write the exe_file pointer without exe_file_lock because 667 * this is called during fork when the task is not yet in /proc */ 668 newmm->exe_file = get_mm_exe_file(oldmm); 669 } 670 671 /** 672 * get_task_mm - acquire a reference to the task's mm 673 * 674 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 675 * this kernel workthread has transiently adopted a user mm with use_mm, 676 * to do its AIO) is not set and if so returns a reference to it, after 677 * bumping up the use count. User must release the mm via mmput() 678 * after use. Typically used by /proc and ptrace. 679 */ 680 struct mm_struct *get_task_mm(struct task_struct *task) 681 { 682 struct mm_struct *mm; 683 684 task_lock(task); 685 mm = task->mm; 686 if (mm) { 687 if (task->flags & PF_KTHREAD) 688 mm = NULL; 689 else 690 atomic_inc(&mm->mm_users); 691 } 692 task_unlock(task); 693 return mm; 694 } 695 EXPORT_SYMBOL_GPL(get_task_mm); 696 697 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 698 { 699 struct mm_struct *mm; 700 int err; 701 702 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 703 if (err) 704 return ERR_PTR(err); 705 706 mm = get_task_mm(task); 707 if (mm && mm != current->mm && 708 !ptrace_may_access(task, mode)) { 709 mmput(mm); 710 mm = ERR_PTR(-EACCES); 711 } 712 mutex_unlock(&task->signal->cred_guard_mutex); 713 714 return mm; 715 } 716 717 static void complete_vfork_done(struct task_struct *tsk) 718 { 719 struct completion *vfork; 720 721 task_lock(tsk); 722 vfork = tsk->vfork_done; 723 if (likely(vfork)) { 724 tsk->vfork_done = NULL; 725 complete(vfork); 726 } 727 task_unlock(tsk); 728 } 729 730 static int wait_for_vfork_done(struct task_struct *child, 731 struct completion *vfork) 732 { 733 int killed; 734 735 freezer_do_not_count(); 736 killed = wait_for_completion_killable(vfork); 737 freezer_count(); 738 739 if (killed) { 740 task_lock(child); 741 child->vfork_done = NULL; 742 task_unlock(child); 743 } 744 745 put_task_struct(child); 746 return killed; 747 } 748 749 /* Please note the differences between mmput and mm_release. 750 * mmput is called whenever we stop holding onto a mm_struct, 751 * error success whatever. 752 * 753 * mm_release is called after a mm_struct has been removed 754 * from the current process. 755 * 756 * This difference is important for error handling, when we 757 * only half set up a mm_struct for a new process and need to restore 758 * the old one. Because we mmput the new mm_struct before 759 * restoring the old one. . . 760 * Eric Biederman 10 January 1998 761 */ 762 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 763 { 764 /* Get rid of any futexes when releasing the mm */ 765 #ifdef CONFIG_FUTEX 766 if (unlikely(tsk->robust_list)) { 767 exit_robust_list(tsk); 768 tsk->robust_list = NULL; 769 } 770 #ifdef CONFIG_COMPAT 771 if (unlikely(tsk->compat_robust_list)) { 772 compat_exit_robust_list(tsk); 773 tsk->compat_robust_list = NULL; 774 } 775 #endif 776 if (unlikely(!list_empty(&tsk->pi_state_list))) 777 exit_pi_state_list(tsk); 778 #endif 779 780 /* Get rid of any cached register state */ 781 deactivate_mm(tsk, mm); 782 783 if (tsk->vfork_done) 784 complete_vfork_done(tsk); 785 786 /* 787 * If we're exiting normally, clear a user-space tid field if 788 * requested. We leave this alone when dying by signal, to leave 789 * the value intact in a core dump, and to save the unnecessary 790 * trouble, say, a killed vfork parent shouldn't touch this mm. 791 * Userland only wants this done for a sys_exit. 792 */ 793 if (tsk->clear_child_tid) { 794 if (!(tsk->flags & PF_SIGNALED) && 795 atomic_read(&mm->mm_users) > 1) { 796 /* 797 * We don't check the error code - if userspace has 798 * not set up a proper pointer then tough luck. 799 */ 800 put_user(0, tsk->clear_child_tid); 801 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 802 1, NULL, NULL, 0); 803 } 804 tsk->clear_child_tid = NULL; 805 } 806 } 807 808 /* 809 * Allocate a new mm structure and copy contents from the 810 * mm structure of the passed in task structure. 811 */ 812 struct mm_struct *dup_mm(struct task_struct *tsk) 813 { 814 struct mm_struct *mm, *oldmm = current->mm; 815 int err; 816 817 if (!oldmm) 818 return NULL; 819 820 mm = allocate_mm(); 821 if (!mm) 822 goto fail_nomem; 823 824 memcpy(mm, oldmm, sizeof(*mm)); 825 mm_init_cpumask(mm); 826 827 /* Initializing for Swap token stuff */ 828 mm->token_priority = 0; 829 mm->last_interval = 0; 830 831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 832 mm->pmd_huge_pte = NULL; 833 #endif 834 835 if (!mm_init(mm, tsk)) 836 goto fail_nomem; 837 838 if (init_new_context(tsk, mm)) 839 goto fail_nocontext; 840 841 dup_mm_exe_file(oldmm, mm); 842 843 err = dup_mmap(mm, oldmm); 844 if (err) 845 goto free_pt; 846 847 mm->hiwater_rss = get_mm_rss(mm); 848 mm->hiwater_vm = mm->total_vm; 849 850 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 851 goto free_pt; 852 853 return mm; 854 855 free_pt: 856 /* don't put binfmt in mmput, we haven't got module yet */ 857 mm->binfmt = NULL; 858 mmput(mm); 859 860 fail_nomem: 861 return NULL; 862 863 fail_nocontext: 864 /* 865 * If init_new_context() failed, we cannot use mmput() to free the mm 866 * because it calls destroy_context() 867 */ 868 mm_free_pgd(mm); 869 free_mm(mm); 870 return NULL; 871 } 872 873 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 874 { 875 struct mm_struct *mm, *oldmm; 876 int retval; 877 878 tsk->min_flt = tsk->maj_flt = 0; 879 tsk->nvcsw = tsk->nivcsw = 0; 880 #ifdef CONFIG_DETECT_HUNG_TASK 881 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 882 #endif 883 884 tsk->mm = NULL; 885 tsk->active_mm = NULL; 886 887 /* 888 * Are we cloning a kernel thread? 889 * 890 * We need to steal a active VM for that.. 891 */ 892 oldmm = current->mm; 893 if (!oldmm) 894 return 0; 895 896 if (clone_flags & CLONE_VM) { 897 atomic_inc(&oldmm->mm_users); 898 mm = oldmm; 899 goto good_mm; 900 } 901 902 retval = -ENOMEM; 903 mm = dup_mm(tsk); 904 if (!mm) 905 goto fail_nomem; 906 907 good_mm: 908 /* Initializing for Swap token stuff */ 909 mm->token_priority = 0; 910 mm->last_interval = 0; 911 912 tsk->mm = mm; 913 tsk->active_mm = mm; 914 return 0; 915 916 fail_nomem: 917 return retval; 918 } 919 920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 921 { 922 struct fs_struct *fs = current->fs; 923 if (clone_flags & CLONE_FS) { 924 /* tsk->fs is already what we want */ 925 spin_lock(&fs->lock); 926 if (fs->in_exec) { 927 spin_unlock(&fs->lock); 928 return -EAGAIN; 929 } 930 fs->users++; 931 spin_unlock(&fs->lock); 932 return 0; 933 } 934 tsk->fs = copy_fs_struct(fs); 935 if (!tsk->fs) 936 return -ENOMEM; 937 return 0; 938 } 939 940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 941 { 942 struct files_struct *oldf, *newf; 943 int error = 0; 944 945 /* 946 * A background process may not have any files ... 947 */ 948 oldf = current->files; 949 if (!oldf) 950 goto out; 951 952 if (clone_flags & CLONE_FILES) { 953 atomic_inc(&oldf->count); 954 goto out; 955 } 956 957 newf = dup_fd(oldf, &error); 958 if (!newf) 959 goto out; 960 961 tsk->files = newf; 962 error = 0; 963 out: 964 return error; 965 } 966 967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 968 { 969 #ifdef CONFIG_BLOCK 970 struct io_context *ioc = current->io_context; 971 struct io_context *new_ioc; 972 973 if (!ioc) 974 return 0; 975 /* 976 * Share io context with parent, if CLONE_IO is set 977 */ 978 if (clone_flags & CLONE_IO) { 979 tsk->io_context = ioc_task_link(ioc); 980 if (unlikely(!tsk->io_context)) 981 return -ENOMEM; 982 } else if (ioprio_valid(ioc->ioprio)) { 983 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 984 if (unlikely(!new_ioc)) 985 return -ENOMEM; 986 987 new_ioc->ioprio = ioc->ioprio; 988 put_io_context(new_ioc); 989 } 990 #endif 991 return 0; 992 } 993 994 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 995 { 996 struct sighand_struct *sig; 997 998 if (clone_flags & CLONE_SIGHAND) { 999 atomic_inc(¤t->sighand->count); 1000 return 0; 1001 } 1002 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1003 rcu_assign_pointer(tsk->sighand, sig); 1004 if (!sig) 1005 return -ENOMEM; 1006 atomic_set(&sig->count, 1); 1007 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1008 return 0; 1009 } 1010 1011 void __cleanup_sighand(struct sighand_struct *sighand) 1012 { 1013 if (atomic_dec_and_test(&sighand->count)) { 1014 signalfd_cleanup(sighand); 1015 kmem_cache_free(sighand_cachep, sighand); 1016 } 1017 } 1018 1019 1020 /* 1021 * Initialize POSIX timer handling for a thread group. 1022 */ 1023 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1024 { 1025 unsigned long cpu_limit; 1026 1027 /* Thread group counters. */ 1028 thread_group_cputime_init(sig); 1029 1030 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1031 if (cpu_limit != RLIM_INFINITY) { 1032 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1033 sig->cputimer.running = 1; 1034 } 1035 1036 /* The timer lists. */ 1037 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1038 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1039 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1040 } 1041 1042 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1043 { 1044 struct signal_struct *sig; 1045 1046 if (clone_flags & CLONE_THREAD) 1047 return 0; 1048 1049 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1050 tsk->signal = sig; 1051 if (!sig) 1052 return -ENOMEM; 1053 1054 sig->nr_threads = 1; 1055 atomic_set(&sig->live, 1); 1056 atomic_set(&sig->sigcnt, 1); 1057 init_waitqueue_head(&sig->wait_chldexit); 1058 if (clone_flags & CLONE_NEWPID) 1059 sig->flags |= SIGNAL_UNKILLABLE; 1060 sig->curr_target = tsk; 1061 init_sigpending(&sig->shared_pending); 1062 INIT_LIST_HEAD(&sig->posix_timers); 1063 1064 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1065 sig->real_timer.function = it_real_fn; 1066 1067 task_lock(current->group_leader); 1068 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1069 task_unlock(current->group_leader); 1070 1071 posix_cpu_timers_init_group(sig); 1072 1073 tty_audit_fork(sig); 1074 sched_autogroup_fork(sig); 1075 1076 #ifdef CONFIG_CGROUPS 1077 init_rwsem(&sig->group_rwsem); 1078 #endif 1079 1080 sig->oom_adj = current->signal->oom_adj; 1081 sig->oom_score_adj = current->signal->oom_score_adj; 1082 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1083 1084 sig->has_child_subreaper = current->signal->has_child_subreaper || 1085 current->signal->is_child_subreaper; 1086 1087 mutex_init(&sig->cred_guard_mutex); 1088 1089 return 0; 1090 } 1091 1092 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1093 { 1094 unsigned long new_flags = p->flags; 1095 1096 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1097 new_flags |= PF_FORKNOEXEC; 1098 p->flags = new_flags; 1099 } 1100 1101 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1102 { 1103 current->clear_child_tid = tidptr; 1104 1105 return task_pid_vnr(current); 1106 } 1107 1108 static void rt_mutex_init_task(struct task_struct *p) 1109 { 1110 raw_spin_lock_init(&p->pi_lock); 1111 #ifdef CONFIG_RT_MUTEXES 1112 plist_head_init(&p->pi_waiters); 1113 p->pi_blocked_on = NULL; 1114 #endif 1115 } 1116 1117 #ifdef CONFIG_MM_OWNER 1118 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1119 { 1120 mm->owner = p; 1121 } 1122 #endif /* CONFIG_MM_OWNER */ 1123 1124 /* 1125 * Initialize POSIX timer handling for a single task. 1126 */ 1127 static void posix_cpu_timers_init(struct task_struct *tsk) 1128 { 1129 tsk->cputime_expires.prof_exp = 0; 1130 tsk->cputime_expires.virt_exp = 0; 1131 tsk->cputime_expires.sched_exp = 0; 1132 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1133 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1134 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1135 } 1136 1137 /* 1138 * This creates a new process as a copy of the old one, 1139 * but does not actually start it yet. 1140 * 1141 * It copies the registers, and all the appropriate 1142 * parts of the process environment (as per the clone 1143 * flags). The actual kick-off is left to the caller. 1144 */ 1145 static struct task_struct *copy_process(unsigned long clone_flags, 1146 unsigned long stack_start, 1147 struct pt_regs *regs, 1148 unsigned long stack_size, 1149 int __user *child_tidptr, 1150 struct pid *pid, 1151 int trace) 1152 { 1153 int retval; 1154 struct task_struct *p; 1155 int cgroup_callbacks_done = 0; 1156 1157 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1158 return ERR_PTR(-EINVAL); 1159 1160 /* 1161 * Thread groups must share signals as well, and detached threads 1162 * can only be started up within the thread group. 1163 */ 1164 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1165 return ERR_PTR(-EINVAL); 1166 1167 /* 1168 * Shared signal handlers imply shared VM. By way of the above, 1169 * thread groups also imply shared VM. Blocking this case allows 1170 * for various simplifications in other code. 1171 */ 1172 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1173 return ERR_PTR(-EINVAL); 1174 1175 /* 1176 * Siblings of global init remain as zombies on exit since they are 1177 * not reaped by their parent (swapper). To solve this and to avoid 1178 * multi-rooted process trees, prevent global and container-inits 1179 * from creating siblings. 1180 */ 1181 if ((clone_flags & CLONE_PARENT) && 1182 current->signal->flags & SIGNAL_UNKILLABLE) 1183 return ERR_PTR(-EINVAL); 1184 1185 retval = security_task_create(clone_flags); 1186 if (retval) 1187 goto fork_out; 1188 1189 retval = -ENOMEM; 1190 p = dup_task_struct(current); 1191 if (!p) 1192 goto fork_out; 1193 1194 ftrace_graph_init_task(p); 1195 get_seccomp_filter(p); 1196 1197 rt_mutex_init_task(p); 1198 1199 #ifdef CONFIG_PROVE_LOCKING 1200 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1201 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1202 #endif 1203 retval = -EAGAIN; 1204 if (atomic_read(&p->real_cred->user->processes) >= 1205 task_rlimit(p, RLIMIT_NPROC)) { 1206 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1207 p->real_cred->user != INIT_USER) 1208 goto bad_fork_free; 1209 } 1210 current->flags &= ~PF_NPROC_EXCEEDED; 1211 1212 retval = copy_creds(p, clone_flags); 1213 if (retval < 0) 1214 goto bad_fork_free; 1215 1216 /* 1217 * If multiple threads are within copy_process(), then this check 1218 * triggers too late. This doesn't hurt, the check is only there 1219 * to stop root fork bombs. 1220 */ 1221 retval = -EAGAIN; 1222 if (nr_threads >= max_threads) 1223 goto bad_fork_cleanup_count; 1224 1225 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1226 goto bad_fork_cleanup_count; 1227 1228 p->did_exec = 0; 1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1230 copy_flags(clone_flags, p); 1231 INIT_LIST_HEAD(&p->children); 1232 INIT_LIST_HEAD(&p->sibling); 1233 rcu_copy_process(p); 1234 p->vfork_done = NULL; 1235 spin_lock_init(&p->alloc_lock); 1236 1237 init_sigpending(&p->pending); 1238 1239 p->utime = p->stime = p->gtime = 0; 1240 p->utimescaled = p->stimescaled = 0; 1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1242 p->prev_utime = p->prev_stime = 0; 1243 #endif 1244 #if defined(SPLIT_RSS_COUNTING) 1245 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1246 #endif 1247 1248 p->default_timer_slack_ns = current->timer_slack_ns; 1249 1250 task_io_accounting_init(&p->ioac); 1251 acct_clear_integrals(p); 1252 1253 posix_cpu_timers_init(p); 1254 1255 do_posix_clock_monotonic_gettime(&p->start_time); 1256 p->real_start_time = p->start_time; 1257 monotonic_to_bootbased(&p->real_start_time); 1258 p->io_context = NULL; 1259 p->audit_context = NULL; 1260 if (clone_flags & CLONE_THREAD) 1261 threadgroup_change_begin(current); 1262 cgroup_fork(p); 1263 #ifdef CONFIG_NUMA 1264 p->mempolicy = mpol_dup(p->mempolicy); 1265 if (IS_ERR(p->mempolicy)) { 1266 retval = PTR_ERR(p->mempolicy); 1267 p->mempolicy = NULL; 1268 goto bad_fork_cleanup_cgroup; 1269 } 1270 mpol_fix_fork_child_flag(p); 1271 #endif 1272 #ifdef CONFIG_CPUSETS 1273 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1274 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1275 seqcount_init(&p->mems_allowed_seq); 1276 #endif 1277 #ifdef CONFIG_TRACE_IRQFLAGS 1278 p->irq_events = 0; 1279 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1280 p->hardirqs_enabled = 1; 1281 #else 1282 p->hardirqs_enabled = 0; 1283 #endif 1284 p->hardirq_enable_ip = 0; 1285 p->hardirq_enable_event = 0; 1286 p->hardirq_disable_ip = _THIS_IP_; 1287 p->hardirq_disable_event = 0; 1288 p->softirqs_enabled = 1; 1289 p->softirq_enable_ip = _THIS_IP_; 1290 p->softirq_enable_event = 0; 1291 p->softirq_disable_ip = 0; 1292 p->softirq_disable_event = 0; 1293 p->hardirq_context = 0; 1294 p->softirq_context = 0; 1295 #endif 1296 #ifdef CONFIG_LOCKDEP 1297 p->lockdep_depth = 0; /* no locks held yet */ 1298 p->curr_chain_key = 0; 1299 p->lockdep_recursion = 0; 1300 #endif 1301 1302 #ifdef CONFIG_DEBUG_MUTEXES 1303 p->blocked_on = NULL; /* not blocked yet */ 1304 #endif 1305 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1306 p->memcg_batch.do_batch = 0; 1307 p->memcg_batch.memcg = NULL; 1308 #endif 1309 1310 /* Perform scheduler related setup. Assign this task to a CPU. */ 1311 sched_fork(p); 1312 1313 retval = perf_event_init_task(p); 1314 if (retval) 1315 goto bad_fork_cleanup_policy; 1316 retval = audit_alloc(p); 1317 if (retval) 1318 goto bad_fork_cleanup_policy; 1319 /* copy all the process information */ 1320 retval = copy_semundo(clone_flags, p); 1321 if (retval) 1322 goto bad_fork_cleanup_audit; 1323 retval = copy_files(clone_flags, p); 1324 if (retval) 1325 goto bad_fork_cleanup_semundo; 1326 retval = copy_fs(clone_flags, p); 1327 if (retval) 1328 goto bad_fork_cleanup_files; 1329 retval = copy_sighand(clone_flags, p); 1330 if (retval) 1331 goto bad_fork_cleanup_fs; 1332 retval = copy_signal(clone_flags, p); 1333 if (retval) 1334 goto bad_fork_cleanup_sighand; 1335 retval = copy_mm(clone_flags, p); 1336 if (retval) 1337 goto bad_fork_cleanup_signal; 1338 retval = copy_namespaces(clone_flags, p); 1339 if (retval) 1340 goto bad_fork_cleanup_mm; 1341 retval = copy_io(clone_flags, p); 1342 if (retval) 1343 goto bad_fork_cleanup_namespaces; 1344 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1345 if (retval) 1346 goto bad_fork_cleanup_io; 1347 1348 if (pid != &init_struct_pid) { 1349 retval = -ENOMEM; 1350 pid = alloc_pid(p->nsproxy->pid_ns); 1351 if (!pid) 1352 goto bad_fork_cleanup_io; 1353 } 1354 1355 p->pid = pid_nr(pid); 1356 p->tgid = p->pid; 1357 if (clone_flags & CLONE_THREAD) 1358 p->tgid = current->tgid; 1359 1360 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1361 /* 1362 * Clear TID on mm_release()? 1363 */ 1364 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1365 #ifdef CONFIG_BLOCK 1366 p->plug = NULL; 1367 #endif 1368 #ifdef CONFIG_FUTEX 1369 p->robust_list = NULL; 1370 #ifdef CONFIG_COMPAT 1371 p->compat_robust_list = NULL; 1372 #endif 1373 INIT_LIST_HEAD(&p->pi_state_list); 1374 p->pi_state_cache = NULL; 1375 #endif 1376 /* 1377 * sigaltstack should be cleared when sharing the same VM 1378 */ 1379 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1380 p->sas_ss_sp = p->sas_ss_size = 0; 1381 1382 /* 1383 * Syscall tracing and stepping should be turned off in the 1384 * child regardless of CLONE_PTRACE. 1385 */ 1386 user_disable_single_step(p); 1387 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1388 #ifdef TIF_SYSCALL_EMU 1389 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1390 #endif 1391 clear_all_latency_tracing(p); 1392 1393 /* ok, now we should be set up.. */ 1394 if (clone_flags & CLONE_THREAD) 1395 p->exit_signal = -1; 1396 else if (clone_flags & CLONE_PARENT) 1397 p->exit_signal = current->group_leader->exit_signal; 1398 else 1399 p->exit_signal = (clone_flags & CSIGNAL); 1400 1401 p->pdeath_signal = 0; 1402 p->exit_state = 0; 1403 1404 p->nr_dirtied = 0; 1405 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1406 p->dirty_paused_when = 0; 1407 1408 /* 1409 * Ok, make it visible to the rest of the system. 1410 * We dont wake it up yet. 1411 */ 1412 p->group_leader = p; 1413 INIT_LIST_HEAD(&p->thread_group); 1414 1415 /* Now that the task is set up, run cgroup callbacks if 1416 * necessary. We need to run them before the task is visible 1417 * on the tasklist. */ 1418 cgroup_fork_callbacks(p); 1419 cgroup_callbacks_done = 1; 1420 1421 /* Need tasklist lock for parent etc handling! */ 1422 write_lock_irq(&tasklist_lock); 1423 1424 /* CLONE_PARENT re-uses the old parent */ 1425 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1426 p->real_parent = current->real_parent; 1427 p->parent_exec_id = current->parent_exec_id; 1428 } else { 1429 p->real_parent = current; 1430 p->parent_exec_id = current->self_exec_id; 1431 } 1432 1433 spin_lock(¤t->sighand->siglock); 1434 1435 /* 1436 * Process group and session signals need to be delivered to just the 1437 * parent before the fork or both the parent and the child after the 1438 * fork. Restart if a signal comes in before we add the new process to 1439 * it's process group. 1440 * A fatal signal pending means that current will exit, so the new 1441 * thread can't slip out of an OOM kill (or normal SIGKILL). 1442 */ 1443 recalc_sigpending(); 1444 if (signal_pending(current)) { 1445 spin_unlock(¤t->sighand->siglock); 1446 write_unlock_irq(&tasklist_lock); 1447 retval = -ERESTARTNOINTR; 1448 goto bad_fork_free_pid; 1449 } 1450 1451 if (clone_flags & CLONE_THREAD) { 1452 current->signal->nr_threads++; 1453 atomic_inc(¤t->signal->live); 1454 atomic_inc(¤t->signal->sigcnt); 1455 p->group_leader = current->group_leader; 1456 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1457 } 1458 1459 if (likely(p->pid)) { 1460 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1461 1462 if (thread_group_leader(p)) { 1463 if (is_child_reaper(pid)) 1464 p->nsproxy->pid_ns->child_reaper = p; 1465 1466 p->signal->leader_pid = pid; 1467 p->signal->tty = tty_kref_get(current->signal->tty); 1468 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1469 attach_pid(p, PIDTYPE_SID, task_session(current)); 1470 list_add_tail(&p->sibling, &p->real_parent->children); 1471 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1472 __this_cpu_inc(process_counts); 1473 } 1474 attach_pid(p, PIDTYPE_PID, pid); 1475 nr_threads++; 1476 } 1477 1478 total_forks++; 1479 spin_unlock(¤t->sighand->siglock); 1480 write_unlock_irq(&tasklist_lock); 1481 proc_fork_connector(p); 1482 cgroup_post_fork(p); 1483 if (clone_flags & CLONE_THREAD) 1484 threadgroup_change_end(current); 1485 perf_event_fork(p); 1486 1487 trace_task_newtask(p, clone_flags); 1488 1489 return p; 1490 1491 bad_fork_free_pid: 1492 if (pid != &init_struct_pid) 1493 free_pid(pid); 1494 bad_fork_cleanup_io: 1495 if (p->io_context) 1496 exit_io_context(p); 1497 bad_fork_cleanup_namespaces: 1498 if (unlikely(clone_flags & CLONE_NEWPID)) 1499 pid_ns_release_proc(p->nsproxy->pid_ns); 1500 exit_task_namespaces(p); 1501 bad_fork_cleanup_mm: 1502 if (p->mm) 1503 mmput(p->mm); 1504 bad_fork_cleanup_signal: 1505 if (!(clone_flags & CLONE_THREAD)) 1506 free_signal_struct(p->signal); 1507 bad_fork_cleanup_sighand: 1508 __cleanup_sighand(p->sighand); 1509 bad_fork_cleanup_fs: 1510 exit_fs(p); /* blocking */ 1511 bad_fork_cleanup_files: 1512 exit_files(p); /* blocking */ 1513 bad_fork_cleanup_semundo: 1514 exit_sem(p); 1515 bad_fork_cleanup_audit: 1516 audit_free(p); 1517 bad_fork_cleanup_policy: 1518 perf_event_free_task(p); 1519 #ifdef CONFIG_NUMA 1520 mpol_put(p->mempolicy); 1521 bad_fork_cleanup_cgroup: 1522 #endif 1523 if (clone_flags & CLONE_THREAD) 1524 threadgroup_change_end(current); 1525 cgroup_exit(p, cgroup_callbacks_done); 1526 delayacct_tsk_free(p); 1527 module_put(task_thread_info(p)->exec_domain->module); 1528 bad_fork_cleanup_count: 1529 atomic_dec(&p->cred->user->processes); 1530 exit_creds(p); 1531 bad_fork_free: 1532 free_task(p); 1533 fork_out: 1534 return ERR_PTR(retval); 1535 } 1536 1537 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1538 { 1539 memset(regs, 0, sizeof(struct pt_regs)); 1540 return regs; 1541 } 1542 1543 static inline void init_idle_pids(struct pid_link *links) 1544 { 1545 enum pid_type type; 1546 1547 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1548 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1549 links[type].pid = &init_struct_pid; 1550 } 1551 } 1552 1553 struct task_struct * __cpuinit fork_idle(int cpu) 1554 { 1555 struct task_struct *task; 1556 struct pt_regs regs; 1557 1558 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1559 &init_struct_pid, 0); 1560 if (!IS_ERR(task)) { 1561 init_idle_pids(task->pids); 1562 init_idle(task, cpu); 1563 } 1564 1565 return task; 1566 } 1567 1568 /* 1569 * Ok, this is the main fork-routine. 1570 * 1571 * It copies the process, and if successful kick-starts 1572 * it and waits for it to finish using the VM if required. 1573 */ 1574 long do_fork(unsigned long clone_flags, 1575 unsigned long stack_start, 1576 struct pt_regs *regs, 1577 unsigned long stack_size, 1578 int __user *parent_tidptr, 1579 int __user *child_tidptr) 1580 { 1581 struct task_struct *p; 1582 int trace = 0; 1583 long nr; 1584 1585 /* 1586 * Do some preliminary argument and permissions checking before we 1587 * actually start allocating stuff 1588 */ 1589 if (clone_flags & CLONE_NEWUSER) { 1590 if (clone_flags & CLONE_THREAD) 1591 return -EINVAL; 1592 /* hopefully this check will go away when userns support is 1593 * complete 1594 */ 1595 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1596 !capable(CAP_SETGID)) 1597 return -EPERM; 1598 } 1599 1600 /* 1601 * Determine whether and which event to report to ptracer. When 1602 * called from kernel_thread or CLONE_UNTRACED is explicitly 1603 * requested, no event is reported; otherwise, report if the event 1604 * for the type of forking is enabled. 1605 */ 1606 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) { 1607 if (clone_flags & CLONE_VFORK) 1608 trace = PTRACE_EVENT_VFORK; 1609 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1610 trace = PTRACE_EVENT_CLONE; 1611 else 1612 trace = PTRACE_EVENT_FORK; 1613 1614 if (likely(!ptrace_event_enabled(current, trace))) 1615 trace = 0; 1616 } 1617 1618 p = copy_process(clone_flags, stack_start, regs, stack_size, 1619 child_tidptr, NULL, trace); 1620 /* 1621 * Do this prior waking up the new thread - the thread pointer 1622 * might get invalid after that point, if the thread exits quickly. 1623 */ 1624 if (!IS_ERR(p)) { 1625 struct completion vfork; 1626 1627 trace_sched_process_fork(current, p); 1628 1629 nr = task_pid_vnr(p); 1630 1631 if (clone_flags & CLONE_PARENT_SETTID) 1632 put_user(nr, parent_tidptr); 1633 1634 if (clone_flags & CLONE_VFORK) { 1635 p->vfork_done = &vfork; 1636 init_completion(&vfork); 1637 get_task_struct(p); 1638 } 1639 1640 wake_up_new_task(p); 1641 1642 /* forking complete and child started to run, tell ptracer */ 1643 if (unlikely(trace)) 1644 ptrace_event(trace, nr); 1645 1646 if (clone_flags & CLONE_VFORK) { 1647 if (!wait_for_vfork_done(p, &vfork)) 1648 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1649 } 1650 } else { 1651 nr = PTR_ERR(p); 1652 } 1653 return nr; 1654 } 1655 1656 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1657 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1658 #endif 1659 1660 static void sighand_ctor(void *data) 1661 { 1662 struct sighand_struct *sighand = data; 1663 1664 spin_lock_init(&sighand->siglock); 1665 init_waitqueue_head(&sighand->signalfd_wqh); 1666 } 1667 1668 void __init proc_caches_init(void) 1669 { 1670 sighand_cachep = kmem_cache_create("sighand_cache", 1671 sizeof(struct sighand_struct), 0, 1672 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1673 SLAB_NOTRACK, sighand_ctor); 1674 signal_cachep = kmem_cache_create("signal_cache", 1675 sizeof(struct signal_struct), 0, 1676 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1677 files_cachep = kmem_cache_create("files_cache", 1678 sizeof(struct files_struct), 0, 1679 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1680 fs_cachep = kmem_cache_create("fs_cache", 1681 sizeof(struct fs_struct), 0, 1682 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1683 /* 1684 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1685 * whole struct cpumask for the OFFSTACK case. We could change 1686 * this to *only* allocate as much of it as required by the 1687 * maximum number of CPU's we can ever have. The cpumask_allocation 1688 * is at the end of the structure, exactly for that reason. 1689 */ 1690 mm_cachep = kmem_cache_create("mm_struct", 1691 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1692 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1693 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1694 mmap_init(); 1695 nsproxy_cache_init(); 1696 } 1697 1698 /* 1699 * Check constraints on flags passed to the unshare system call. 1700 */ 1701 static int check_unshare_flags(unsigned long unshare_flags) 1702 { 1703 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1704 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1705 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1706 return -EINVAL; 1707 /* 1708 * Not implemented, but pretend it works if there is nothing to 1709 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1710 * needs to unshare vm. 1711 */ 1712 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1713 /* FIXME: get_task_mm() increments ->mm_users */ 1714 if (atomic_read(¤t->mm->mm_users) > 1) 1715 return -EINVAL; 1716 } 1717 1718 return 0; 1719 } 1720 1721 /* 1722 * Unshare the filesystem structure if it is being shared 1723 */ 1724 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1725 { 1726 struct fs_struct *fs = current->fs; 1727 1728 if (!(unshare_flags & CLONE_FS) || !fs) 1729 return 0; 1730 1731 /* don't need lock here; in the worst case we'll do useless copy */ 1732 if (fs->users == 1) 1733 return 0; 1734 1735 *new_fsp = copy_fs_struct(fs); 1736 if (!*new_fsp) 1737 return -ENOMEM; 1738 1739 return 0; 1740 } 1741 1742 /* 1743 * Unshare file descriptor table if it is being shared 1744 */ 1745 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1746 { 1747 struct files_struct *fd = current->files; 1748 int error = 0; 1749 1750 if ((unshare_flags & CLONE_FILES) && 1751 (fd && atomic_read(&fd->count) > 1)) { 1752 *new_fdp = dup_fd(fd, &error); 1753 if (!*new_fdp) 1754 return error; 1755 } 1756 1757 return 0; 1758 } 1759 1760 /* 1761 * unshare allows a process to 'unshare' part of the process 1762 * context which was originally shared using clone. copy_* 1763 * functions used by do_fork() cannot be used here directly 1764 * because they modify an inactive task_struct that is being 1765 * constructed. Here we are modifying the current, active, 1766 * task_struct. 1767 */ 1768 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1769 { 1770 struct fs_struct *fs, *new_fs = NULL; 1771 struct files_struct *fd, *new_fd = NULL; 1772 struct nsproxy *new_nsproxy = NULL; 1773 int do_sysvsem = 0; 1774 int err; 1775 1776 err = check_unshare_flags(unshare_flags); 1777 if (err) 1778 goto bad_unshare_out; 1779 1780 /* 1781 * If unsharing namespace, must also unshare filesystem information. 1782 */ 1783 if (unshare_flags & CLONE_NEWNS) 1784 unshare_flags |= CLONE_FS; 1785 /* 1786 * CLONE_NEWIPC must also detach from the undolist: after switching 1787 * to a new ipc namespace, the semaphore arrays from the old 1788 * namespace are unreachable. 1789 */ 1790 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1791 do_sysvsem = 1; 1792 err = unshare_fs(unshare_flags, &new_fs); 1793 if (err) 1794 goto bad_unshare_out; 1795 err = unshare_fd(unshare_flags, &new_fd); 1796 if (err) 1797 goto bad_unshare_cleanup_fs; 1798 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs); 1799 if (err) 1800 goto bad_unshare_cleanup_fd; 1801 1802 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1803 if (do_sysvsem) { 1804 /* 1805 * CLONE_SYSVSEM is equivalent to sys_exit(). 1806 */ 1807 exit_sem(current); 1808 } 1809 1810 if (new_nsproxy) { 1811 switch_task_namespaces(current, new_nsproxy); 1812 new_nsproxy = NULL; 1813 } 1814 1815 task_lock(current); 1816 1817 if (new_fs) { 1818 fs = current->fs; 1819 spin_lock(&fs->lock); 1820 current->fs = new_fs; 1821 if (--fs->users) 1822 new_fs = NULL; 1823 else 1824 new_fs = fs; 1825 spin_unlock(&fs->lock); 1826 } 1827 1828 if (new_fd) { 1829 fd = current->files; 1830 current->files = new_fd; 1831 new_fd = fd; 1832 } 1833 1834 task_unlock(current); 1835 } 1836 1837 if (new_nsproxy) 1838 put_nsproxy(new_nsproxy); 1839 1840 bad_unshare_cleanup_fd: 1841 if (new_fd) 1842 put_files_struct(new_fd); 1843 1844 bad_unshare_cleanup_fs: 1845 if (new_fs) 1846 free_fs_struct(new_fs); 1847 1848 bad_unshare_out: 1849 return err; 1850 } 1851 1852 /* 1853 * Helper to unshare the files of the current task. 1854 * We don't want to expose copy_files internals to 1855 * the exec layer of the kernel. 1856 */ 1857 1858 int unshare_files(struct files_struct **displaced) 1859 { 1860 struct task_struct *task = current; 1861 struct files_struct *copy = NULL; 1862 int error; 1863 1864 error = unshare_fd(CLONE_FILES, ©); 1865 if (error || !copy) { 1866 *displaced = NULL; 1867 return error; 1868 } 1869 *displaced = task->files; 1870 task_lock(task); 1871 task->files = copy; 1872 task_unlock(task); 1873 return 0; 1874 } 1875