1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/swap.h> 38 #include <linux/syscalls.h> 39 #include <linux/jiffies.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/kthread.h> 43 #include <linux/task_io_accounting_ops.h> 44 #include <linux/rcupdate.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/audit.h> 48 #include <linux/memcontrol.h> 49 #include <linux/ftrace.h> 50 #include <linux/profile.h> 51 #include <linux/rmap.h> 52 #include <linux/ksm.h> 53 #include <linux/acct.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/freezer.h> 57 #include <linux/delayacct.h> 58 #include <linux/taskstats_kern.h> 59 #include <linux/random.h> 60 #include <linux/tty.h> 61 #include <linux/blkdev.h> 62 #include <linux/fs_struct.h> 63 #include <linux/magic.h> 64 #include <linux/perf_event.h> 65 #include <linux/posix-timers.h> 66 #include <linux/user-return-notifier.h> 67 #include <linux/oom.h> 68 #include <linux/khugepaged.h> 69 #include <linux/signalfd.h> 70 71 #include <asm/pgtable.h> 72 #include <asm/pgalloc.h> 73 #include <asm/uaccess.h> 74 #include <asm/mmu_context.h> 75 #include <asm/cacheflush.h> 76 #include <asm/tlbflush.h> 77 78 #include <trace/events/sched.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/task.h> 82 83 /* 84 * Protected counters by write_lock_irq(&tasklist_lock) 85 */ 86 unsigned long total_forks; /* Handle normal Linux uptimes. */ 87 int nr_threads; /* The idle threads do not count.. */ 88 89 int max_threads; /* tunable limit on nr_threads */ 90 91 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 92 93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 94 95 #ifdef CONFIG_PROVE_RCU 96 int lockdep_tasklist_lock_is_held(void) 97 { 98 return lockdep_is_held(&tasklist_lock); 99 } 100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 101 #endif /* #ifdef CONFIG_PROVE_RCU */ 102 103 int nr_processes(void) 104 { 105 int cpu; 106 int total = 0; 107 108 for_each_possible_cpu(cpu) 109 total += per_cpu(process_counts, cpu); 110 111 return total; 112 } 113 114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 115 # define alloc_task_struct_node(node) \ 116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node) 117 # define free_task_struct(tsk) \ 118 kmem_cache_free(task_struct_cachep, (tsk)) 119 static struct kmem_cache *task_struct_cachep; 120 #endif 121 122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 124 int node) 125 { 126 #ifdef CONFIG_DEBUG_STACK_USAGE 127 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 128 #else 129 gfp_t mask = GFP_KERNEL; 130 #endif 131 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER); 132 133 return page ? page_address(page) : NULL; 134 } 135 136 static inline void free_thread_info(struct thread_info *ti) 137 { 138 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 139 } 140 #endif 141 142 /* SLAB cache for signal_struct structures (tsk->signal) */ 143 static struct kmem_cache *signal_cachep; 144 145 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 146 struct kmem_cache *sighand_cachep; 147 148 /* SLAB cache for files_struct structures (tsk->files) */ 149 struct kmem_cache *files_cachep; 150 151 /* SLAB cache for fs_struct structures (tsk->fs) */ 152 struct kmem_cache *fs_cachep; 153 154 /* SLAB cache for vm_area_struct structures */ 155 struct kmem_cache *vm_area_cachep; 156 157 /* SLAB cache for mm_struct structures (tsk->mm) */ 158 static struct kmem_cache *mm_cachep; 159 160 static void account_kernel_stack(struct thread_info *ti, int account) 161 { 162 struct zone *zone = page_zone(virt_to_page(ti)); 163 164 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 165 } 166 167 void free_task(struct task_struct *tsk) 168 { 169 account_kernel_stack(tsk->stack, -1); 170 free_thread_info(tsk->stack); 171 rt_mutex_debug_task_free(tsk); 172 ftrace_graph_exit_task(tsk); 173 free_task_struct(tsk); 174 } 175 EXPORT_SYMBOL(free_task); 176 177 static inline void free_signal_struct(struct signal_struct *sig) 178 { 179 taskstats_tgid_free(sig); 180 sched_autogroup_exit(sig); 181 kmem_cache_free(signal_cachep, sig); 182 } 183 184 static inline void put_signal_struct(struct signal_struct *sig) 185 { 186 if (atomic_dec_and_test(&sig->sigcnt)) 187 free_signal_struct(sig); 188 } 189 190 void __put_task_struct(struct task_struct *tsk) 191 { 192 WARN_ON(!tsk->exit_state); 193 WARN_ON(atomic_read(&tsk->usage)); 194 WARN_ON(tsk == current); 195 196 exit_creds(tsk); 197 delayacct_tsk_free(tsk); 198 put_signal_struct(tsk->signal); 199 200 if (!profile_handoff_task(tsk)) 201 free_task(tsk); 202 } 203 EXPORT_SYMBOL_GPL(__put_task_struct); 204 205 /* 206 * macro override instead of weak attribute alias, to workaround 207 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 208 */ 209 #ifndef arch_task_cache_init 210 #define arch_task_cache_init() 211 #endif 212 213 void __init fork_init(unsigned long mempages) 214 { 215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 216 #ifndef ARCH_MIN_TASKALIGN 217 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 218 #endif 219 /* create a slab on which task_structs can be allocated */ 220 task_struct_cachep = 221 kmem_cache_create("task_struct", sizeof(struct task_struct), 222 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 223 #endif 224 225 /* do the arch specific task caches init */ 226 arch_task_cache_init(); 227 228 /* 229 * The default maximum number of threads is set to a safe 230 * value: the thread structures can take up at most half 231 * of memory. 232 */ 233 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 234 235 /* 236 * we need to allow at least 20 threads to boot a system 237 */ 238 if (max_threads < 20) 239 max_threads = 20; 240 241 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 242 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 243 init_task.signal->rlim[RLIMIT_SIGPENDING] = 244 init_task.signal->rlim[RLIMIT_NPROC]; 245 } 246 247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 248 struct task_struct *src) 249 { 250 *dst = *src; 251 return 0; 252 } 253 254 static struct task_struct *dup_task_struct(struct task_struct *orig) 255 { 256 struct task_struct *tsk; 257 struct thread_info *ti; 258 unsigned long *stackend; 259 int node = tsk_fork_get_node(orig); 260 int err; 261 262 prepare_to_copy(orig); 263 264 tsk = alloc_task_struct_node(node); 265 if (!tsk) 266 return NULL; 267 268 ti = alloc_thread_info_node(tsk, node); 269 if (!ti) { 270 free_task_struct(tsk); 271 return NULL; 272 } 273 274 err = arch_dup_task_struct(tsk, orig); 275 if (err) 276 goto out; 277 278 tsk->stack = ti; 279 280 setup_thread_stack(tsk, orig); 281 clear_user_return_notifier(tsk); 282 clear_tsk_need_resched(tsk); 283 stackend = end_of_stack(tsk); 284 *stackend = STACK_END_MAGIC; /* for overflow detection */ 285 286 #ifdef CONFIG_CC_STACKPROTECTOR 287 tsk->stack_canary = get_random_int(); 288 #endif 289 290 /* 291 * One for us, one for whoever does the "release_task()" (usually 292 * parent) 293 */ 294 atomic_set(&tsk->usage, 2); 295 #ifdef CONFIG_BLK_DEV_IO_TRACE 296 tsk->btrace_seq = 0; 297 #endif 298 tsk->splice_pipe = NULL; 299 300 account_kernel_stack(ti, 1); 301 302 return tsk; 303 304 out: 305 free_thread_info(ti); 306 free_task_struct(tsk); 307 return NULL; 308 } 309 310 #ifdef CONFIG_MMU 311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 312 { 313 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 314 struct rb_node **rb_link, *rb_parent; 315 int retval; 316 unsigned long charge; 317 struct mempolicy *pol; 318 319 down_write(&oldmm->mmap_sem); 320 flush_cache_dup_mm(oldmm); 321 /* 322 * Not linked in yet - no deadlock potential: 323 */ 324 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 325 326 mm->locked_vm = 0; 327 mm->mmap = NULL; 328 mm->mmap_cache = NULL; 329 mm->free_area_cache = oldmm->mmap_base; 330 mm->cached_hole_size = ~0UL; 331 mm->map_count = 0; 332 cpumask_clear(mm_cpumask(mm)); 333 mm->mm_rb = RB_ROOT; 334 rb_link = &mm->mm_rb.rb_node; 335 rb_parent = NULL; 336 pprev = &mm->mmap; 337 retval = ksm_fork(mm, oldmm); 338 if (retval) 339 goto out; 340 retval = khugepaged_fork(mm, oldmm); 341 if (retval) 342 goto out; 343 344 prev = NULL; 345 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 346 struct file *file; 347 348 if (mpnt->vm_flags & VM_DONTCOPY) { 349 long pages = vma_pages(mpnt); 350 mm->total_vm -= pages; 351 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 352 -pages); 353 continue; 354 } 355 charge = 0; 356 if (mpnt->vm_flags & VM_ACCOUNT) { 357 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 358 if (security_vm_enough_memory(len)) 359 goto fail_nomem; 360 charge = len; 361 } 362 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 363 if (!tmp) 364 goto fail_nomem; 365 *tmp = *mpnt; 366 INIT_LIST_HEAD(&tmp->anon_vma_chain); 367 pol = mpol_dup(vma_policy(mpnt)); 368 retval = PTR_ERR(pol); 369 if (IS_ERR(pol)) 370 goto fail_nomem_policy; 371 vma_set_policy(tmp, pol); 372 tmp->vm_mm = mm; 373 if (anon_vma_fork(tmp, mpnt)) 374 goto fail_nomem_anon_vma_fork; 375 tmp->vm_flags &= ~VM_LOCKED; 376 tmp->vm_next = tmp->vm_prev = NULL; 377 file = tmp->vm_file; 378 if (file) { 379 struct inode *inode = file->f_path.dentry->d_inode; 380 struct address_space *mapping = file->f_mapping; 381 382 get_file(file); 383 if (tmp->vm_flags & VM_DENYWRITE) 384 atomic_dec(&inode->i_writecount); 385 mutex_lock(&mapping->i_mmap_mutex); 386 if (tmp->vm_flags & VM_SHARED) 387 mapping->i_mmap_writable++; 388 flush_dcache_mmap_lock(mapping); 389 /* insert tmp into the share list, just after mpnt */ 390 vma_prio_tree_add(tmp, mpnt); 391 flush_dcache_mmap_unlock(mapping); 392 mutex_unlock(&mapping->i_mmap_mutex); 393 } 394 395 /* 396 * Clear hugetlb-related page reserves for children. This only 397 * affects MAP_PRIVATE mappings. Faults generated by the child 398 * are not guaranteed to succeed, even if read-only 399 */ 400 if (is_vm_hugetlb_page(tmp)) 401 reset_vma_resv_huge_pages(tmp); 402 403 /* 404 * Link in the new vma and copy the page table entries. 405 */ 406 *pprev = tmp; 407 pprev = &tmp->vm_next; 408 tmp->vm_prev = prev; 409 prev = tmp; 410 411 __vma_link_rb(mm, tmp, rb_link, rb_parent); 412 rb_link = &tmp->vm_rb.rb_right; 413 rb_parent = &tmp->vm_rb; 414 415 mm->map_count++; 416 retval = copy_page_range(mm, oldmm, mpnt); 417 418 if (tmp->vm_ops && tmp->vm_ops->open) 419 tmp->vm_ops->open(tmp); 420 421 if (retval) 422 goto out; 423 } 424 /* a new mm has just been created */ 425 arch_dup_mmap(oldmm, mm); 426 retval = 0; 427 out: 428 up_write(&mm->mmap_sem); 429 flush_tlb_mm(oldmm); 430 up_write(&oldmm->mmap_sem); 431 return retval; 432 fail_nomem_anon_vma_fork: 433 mpol_put(pol); 434 fail_nomem_policy: 435 kmem_cache_free(vm_area_cachep, tmp); 436 fail_nomem: 437 retval = -ENOMEM; 438 vm_unacct_memory(charge); 439 goto out; 440 } 441 442 static inline int mm_alloc_pgd(struct mm_struct *mm) 443 { 444 mm->pgd = pgd_alloc(mm); 445 if (unlikely(!mm->pgd)) 446 return -ENOMEM; 447 return 0; 448 } 449 450 static inline void mm_free_pgd(struct mm_struct *mm) 451 { 452 pgd_free(mm, mm->pgd); 453 } 454 #else 455 #define dup_mmap(mm, oldmm) (0) 456 #define mm_alloc_pgd(mm) (0) 457 #define mm_free_pgd(mm) 458 #endif /* CONFIG_MMU */ 459 460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 461 462 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 463 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 464 465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 466 467 static int __init coredump_filter_setup(char *s) 468 { 469 default_dump_filter = 470 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 471 MMF_DUMP_FILTER_MASK; 472 return 1; 473 } 474 475 __setup("coredump_filter=", coredump_filter_setup); 476 477 #include <linux/init_task.h> 478 479 static void mm_init_aio(struct mm_struct *mm) 480 { 481 #ifdef CONFIG_AIO 482 spin_lock_init(&mm->ioctx_lock); 483 INIT_HLIST_HEAD(&mm->ioctx_list); 484 #endif 485 } 486 487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 488 { 489 atomic_set(&mm->mm_users, 1); 490 atomic_set(&mm->mm_count, 1); 491 init_rwsem(&mm->mmap_sem); 492 INIT_LIST_HEAD(&mm->mmlist); 493 mm->flags = (current->mm) ? 494 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 495 mm->core_state = NULL; 496 mm->nr_ptes = 0; 497 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 498 spin_lock_init(&mm->page_table_lock); 499 mm->free_area_cache = TASK_UNMAPPED_BASE; 500 mm->cached_hole_size = ~0UL; 501 mm_init_aio(mm); 502 mm_init_owner(mm, p); 503 504 if (likely(!mm_alloc_pgd(mm))) { 505 mm->def_flags = 0; 506 mmu_notifier_mm_init(mm); 507 return mm; 508 } 509 510 free_mm(mm); 511 return NULL; 512 } 513 514 /* 515 * Allocate and initialize an mm_struct. 516 */ 517 struct mm_struct *mm_alloc(void) 518 { 519 struct mm_struct *mm; 520 521 mm = allocate_mm(); 522 if (!mm) 523 return NULL; 524 525 memset(mm, 0, sizeof(*mm)); 526 mm_init_cpumask(mm); 527 return mm_init(mm, current); 528 } 529 530 /* 531 * Called when the last reference to the mm 532 * is dropped: either by a lazy thread or by 533 * mmput. Free the page directory and the mm. 534 */ 535 void __mmdrop(struct mm_struct *mm) 536 { 537 BUG_ON(mm == &init_mm); 538 mm_free_pgd(mm); 539 destroy_context(mm); 540 mmu_notifier_mm_destroy(mm); 541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 542 VM_BUG_ON(mm->pmd_huge_pte); 543 #endif 544 free_mm(mm); 545 } 546 EXPORT_SYMBOL_GPL(__mmdrop); 547 548 /* 549 * Decrement the use count and release all resources for an mm. 550 */ 551 void mmput(struct mm_struct *mm) 552 { 553 might_sleep(); 554 555 if (atomic_dec_and_test(&mm->mm_users)) { 556 exit_aio(mm); 557 ksm_exit(mm); 558 khugepaged_exit(mm); /* must run before exit_mmap */ 559 exit_mmap(mm); 560 set_mm_exe_file(mm, NULL); 561 if (!list_empty(&mm->mmlist)) { 562 spin_lock(&mmlist_lock); 563 list_del(&mm->mmlist); 564 spin_unlock(&mmlist_lock); 565 } 566 put_swap_token(mm); 567 if (mm->binfmt) 568 module_put(mm->binfmt->module); 569 mmdrop(mm); 570 } 571 } 572 EXPORT_SYMBOL_GPL(mmput); 573 574 /* 575 * We added or removed a vma mapping the executable. The vmas are only mapped 576 * during exec and are not mapped with the mmap system call. 577 * Callers must hold down_write() on the mm's mmap_sem for these 578 */ 579 void added_exe_file_vma(struct mm_struct *mm) 580 { 581 mm->num_exe_file_vmas++; 582 } 583 584 void removed_exe_file_vma(struct mm_struct *mm) 585 { 586 mm->num_exe_file_vmas--; 587 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) { 588 fput(mm->exe_file); 589 mm->exe_file = NULL; 590 } 591 592 } 593 594 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 595 { 596 if (new_exe_file) 597 get_file(new_exe_file); 598 if (mm->exe_file) 599 fput(mm->exe_file); 600 mm->exe_file = new_exe_file; 601 mm->num_exe_file_vmas = 0; 602 } 603 604 struct file *get_mm_exe_file(struct mm_struct *mm) 605 { 606 struct file *exe_file; 607 608 /* We need mmap_sem to protect against races with removal of 609 * VM_EXECUTABLE vmas */ 610 down_read(&mm->mmap_sem); 611 exe_file = mm->exe_file; 612 if (exe_file) 613 get_file(exe_file); 614 up_read(&mm->mmap_sem); 615 return exe_file; 616 } 617 618 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 619 { 620 /* It's safe to write the exe_file pointer without exe_file_lock because 621 * this is called during fork when the task is not yet in /proc */ 622 newmm->exe_file = get_mm_exe_file(oldmm); 623 } 624 625 /** 626 * get_task_mm - acquire a reference to the task's mm 627 * 628 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 629 * this kernel workthread has transiently adopted a user mm with use_mm, 630 * to do its AIO) is not set and if so returns a reference to it, after 631 * bumping up the use count. User must release the mm via mmput() 632 * after use. Typically used by /proc and ptrace. 633 */ 634 struct mm_struct *get_task_mm(struct task_struct *task) 635 { 636 struct mm_struct *mm; 637 638 task_lock(task); 639 mm = task->mm; 640 if (mm) { 641 if (task->flags & PF_KTHREAD) 642 mm = NULL; 643 else 644 atomic_inc(&mm->mm_users); 645 } 646 task_unlock(task); 647 return mm; 648 } 649 EXPORT_SYMBOL_GPL(get_task_mm); 650 651 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 652 { 653 struct mm_struct *mm; 654 int err; 655 656 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 657 if (err) 658 return ERR_PTR(err); 659 660 mm = get_task_mm(task); 661 if (mm && mm != current->mm && 662 !ptrace_may_access(task, mode)) { 663 mmput(mm); 664 mm = ERR_PTR(-EACCES); 665 } 666 mutex_unlock(&task->signal->cred_guard_mutex); 667 668 return mm; 669 } 670 671 /* Please note the differences between mmput and mm_release. 672 * mmput is called whenever we stop holding onto a mm_struct, 673 * error success whatever. 674 * 675 * mm_release is called after a mm_struct has been removed 676 * from the current process. 677 * 678 * This difference is important for error handling, when we 679 * only half set up a mm_struct for a new process and need to restore 680 * the old one. Because we mmput the new mm_struct before 681 * restoring the old one. . . 682 * Eric Biederman 10 January 1998 683 */ 684 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 685 { 686 struct completion *vfork_done = tsk->vfork_done; 687 688 /* Get rid of any futexes when releasing the mm */ 689 #ifdef CONFIG_FUTEX 690 if (unlikely(tsk->robust_list)) { 691 exit_robust_list(tsk); 692 tsk->robust_list = NULL; 693 } 694 #ifdef CONFIG_COMPAT 695 if (unlikely(tsk->compat_robust_list)) { 696 compat_exit_robust_list(tsk); 697 tsk->compat_robust_list = NULL; 698 } 699 #endif 700 if (unlikely(!list_empty(&tsk->pi_state_list))) 701 exit_pi_state_list(tsk); 702 #endif 703 704 /* Get rid of any cached register state */ 705 deactivate_mm(tsk, mm); 706 707 /* notify parent sleeping on vfork() */ 708 if (vfork_done) { 709 tsk->vfork_done = NULL; 710 complete(vfork_done); 711 } 712 713 /* 714 * If we're exiting normally, clear a user-space tid field if 715 * requested. We leave this alone when dying by signal, to leave 716 * the value intact in a core dump, and to save the unnecessary 717 * trouble otherwise. Userland only wants this done for a sys_exit. 718 */ 719 if (tsk->clear_child_tid) { 720 if (!(tsk->flags & PF_SIGNALED) && 721 atomic_read(&mm->mm_users) > 1) { 722 /* 723 * We don't check the error code - if userspace has 724 * not set up a proper pointer then tough luck. 725 */ 726 put_user(0, tsk->clear_child_tid); 727 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 728 1, NULL, NULL, 0); 729 } 730 tsk->clear_child_tid = NULL; 731 } 732 } 733 734 /* 735 * Allocate a new mm structure and copy contents from the 736 * mm structure of the passed in task structure. 737 */ 738 struct mm_struct *dup_mm(struct task_struct *tsk) 739 { 740 struct mm_struct *mm, *oldmm = current->mm; 741 int err; 742 743 if (!oldmm) 744 return NULL; 745 746 mm = allocate_mm(); 747 if (!mm) 748 goto fail_nomem; 749 750 memcpy(mm, oldmm, sizeof(*mm)); 751 mm_init_cpumask(mm); 752 753 /* Initializing for Swap token stuff */ 754 mm->token_priority = 0; 755 mm->last_interval = 0; 756 757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 758 mm->pmd_huge_pte = NULL; 759 #endif 760 761 if (!mm_init(mm, tsk)) 762 goto fail_nomem; 763 764 if (init_new_context(tsk, mm)) 765 goto fail_nocontext; 766 767 dup_mm_exe_file(oldmm, mm); 768 769 err = dup_mmap(mm, oldmm); 770 if (err) 771 goto free_pt; 772 773 mm->hiwater_rss = get_mm_rss(mm); 774 mm->hiwater_vm = mm->total_vm; 775 776 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 777 goto free_pt; 778 779 return mm; 780 781 free_pt: 782 /* don't put binfmt in mmput, we haven't got module yet */ 783 mm->binfmt = NULL; 784 mmput(mm); 785 786 fail_nomem: 787 return NULL; 788 789 fail_nocontext: 790 /* 791 * If init_new_context() failed, we cannot use mmput() to free the mm 792 * because it calls destroy_context() 793 */ 794 mm_free_pgd(mm); 795 free_mm(mm); 796 return NULL; 797 } 798 799 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 800 { 801 struct mm_struct *mm, *oldmm; 802 int retval; 803 804 tsk->min_flt = tsk->maj_flt = 0; 805 tsk->nvcsw = tsk->nivcsw = 0; 806 #ifdef CONFIG_DETECT_HUNG_TASK 807 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 808 #endif 809 810 tsk->mm = NULL; 811 tsk->active_mm = NULL; 812 813 /* 814 * Are we cloning a kernel thread? 815 * 816 * We need to steal a active VM for that.. 817 */ 818 oldmm = current->mm; 819 if (!oldmm) 820 return 0; 821 822 if (clone_flags & CLONE_VM) { 823 atomic_inc(&oldmm->mm_users); 824 mm = oldmm; 825 goto good_mm; 826 } 827 828 retval = -ENOMEM; 829 mm = dup_mm(tsk); 830 if (!mm) 831 goto fail_nomem; 832 833 good_mm: 834 /* Initializing for Swap token stuff */ 835 mm->token_priority = 0; 836 mm->last_interval = 0; 837 838 tsk->mm = mm; 839 tsk->active_mm = mm; 840 return 0; 841 842 fail_nomem: 843 return retval; 844 } 845 846 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 847 { 848 struct fs_struct *fs = current->fs; 849 if (clone_flags & CLONE_FS) { 850 /* tsk->fs is already what we want */ 851 spin_lock(&fs->lock); 852 if (fs->in_exec) { 853 spin_unlock(&fs->lock); 854 return -EAGAIN; 855 } 856 fs->users++; 857 spin_unlock(&fs->lock); 858 return 0; 859 } 860 tsk->fs = copy_fs_struct(fs); 861 if (!tsk->fs) 862 return -ENOMEM; 863 return 0; 864 } 865 866 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 867 { 868 struct files_struct *oldf, *newf; 869 int error = 0; 870 871 /* 872 * A background process may not have any files ... 873 */ 874 oldf = current->files; 875 if (!oldf) 876 goto out; 877 878 if (clone_flags & CLONE_FILES) { 879 atomic_inc(&oldf->count); 880 goto out; 881 } 882 883 newf = dup_fd(oldf, &error); 884 if (!newf) 885 goto out; 886 887 tsk->files = newf; 888 error = 0; 889 out: 890 return error; 891 } 892 893 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 894 { 895 #ifdef CONFIG_BLOCK 896 struct io_context *ioc = current->io_context; 897 struct io_context *new_ioc; 898 899 if (!ioc) 900 return 0; 901 /* 902 * Share io context with parent, if CLONE_IO is set 903 */ 904 if (clone_flags & CLONE_IO) { 905 tsk->io_context = ioc_task_link(ioc); 906 if (unlikely(!tsk->io_context)) 907 return -ENOMEM; 908 } else if (ioprio_valid(ioc->ioprio)) { 909 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 910 if (unlikely(!new_ioc)) 911 return -ENOMEM; 912 913 new_ioc->ioprio = ioc->ioprio; 914 put_io_context(new_ioc); 915 } 916 #endif 917 return 0; 918 } 919 920 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 921 { 922 struct sighand_struct *sig; 923 924 if (clone_flags & CLONE_SIGHAND) { 925 atomic_inc(¤t->sighand->count); 926 return 0; 927 } 928 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 929 rcu_assign_pointer(tsk->sighand, sig); 930 if (!sig) 931 return -ENOMEM; 932 atomic_set(&sig->count, 1); 933 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 934 return 0; 935 } 936 937 void __cleanup_sighand(struct sighand_struct *sighand) 938 { 939 if (atomic_dec_and_test(&sighand->count)) { 940 signalfd_cleanup(sighand); 941 kmem_cache_free(sighand_cachep, sighand); 942 } 943 } 944 945 946 /* 947 * Initialize POSIX timer handling for a thread group. 948 */ 949 static void posix_cpu_timers_init_group(struct signal_struct *sig) 950 { 951 unsigned long cpu_limit; 952 953 /* Thread group counters. */ 954 thread_group_cputime_init(sig); 955 956 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 957 if (cpu_limit != RLIM_INFINITY) { 958 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 959 sig->cputimer.running = 1; 960 } 961 962 /* The timer lists. */ 963 INIT_LIST_HEAD(&sig->cpu_timers[0]); 964 INIT_LIST_HEAD(&sig->cpu_timers[1]); 965 INIT_LIST_HEAD(&sig->cpu_timers[2]); 966 } 967 968 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 969 { 970 struct signal_struct *sig; 971 972 if (clone_flags & CLONE_THREAD) 973 return 0; 974 975 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 976 tsk->signal = sig; 977 if (!sig) 978 return -ENOMEM; 979 980 sig->nr_threads = 1; 981 atomic_set(&sig->live, 1); 982 atomic_set(&sig->sigcnt, 1); 983 init_waitqueue_head(&sig->wait_chldexit); 984 if (clone_flags & CLONE_NEWPID) 985 sig->flags |= SIGNAL_UNKILLABLE; 986 sig->curr_target = tsk; 987 init_sigpending(&sig->shared_pending); 988 INIT_LIST_HEAD(&sig->posix_timers); 989 990 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 991 sig->real_timer.function = it_real_fn; 992 993 task_lock(current->group_leader); 994 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 995 task_unlock(current->group_leader); 996 997 posix_cpu_timers_init_group(sig); 998 999 tty_audit_fork(sig); 1000 sched_autogroup_fork(sig); 1001 1002 #ifdef CONFIG_CGROUPS 1003 init_rwsem(&sig->group_rwsem); 1004 #endif 1005 1006 sig->oom_adj = current->signal->oom_adj; 1007 sig->oom_score_adj = current->signal->oom_score_adj; 1008 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1009 1010 mutex_init(&sig->cred_guard_mutex); 1011 1012 return 0; 1013 } 1014 1015 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1016 { 1017 unsigned long new_flags = p->flags; 1018 1019 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1020 new_flags |= PF_FORKNOEXEC; 1021 new_flags |= PF_STARTING; 1022 p->flags = new_flags; 1023 } 1024 1025 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1026 { 1027 current->clear_child_tid = tidptr; 1028 1029 return task_pid_vnr(current); 1030 } 1031 1032 static void rt_mutex_init_task(struct task_struct *p) 1033 { 1034 raw_spin_lock_init(&p->pi_lock); 1035 #ifdef CONFIG_RT_MUTEXES 1036 plist_head_init(&p->pi_waiters); 1037 p->pi_blocked_on = NULL; 1038 #endif 1039 } 1040 1041 #ifdef CONFIG_MM_OWNER 1042 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1043 { 1044 mm->owner = p; 1045 } 1046 #endif /* CONFIG_MM_OWNER */ 1047 1048 /* 1049 * Initialize POSIX timer handling for a single task. 1050 */ 1051 static void posix_cpu_timers_init(struct task_struct *tsk) 1052 { 1053 tsk->cputime_expires.prof_exp = 0; 1054 tsk->cputime_expires.virt_exp = 0; 1055 tsk->cputime_expires.sched_exp = 0; 1056 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1057 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1058 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1059 } 1060 1061 /* 1062 * This creates a new process as a copy of the old one, 1063 * but does not actually start it yet. 1064 * 1065 * It copies the registers, and all the appropriate 1066 * parts of the process environment (as per the clone 1067 * flags). The actual kick-off is left to the caller. 1068 */ 1069 static struct task_struct *copy_process(unsigned long clone_flags, 1070 unsigned long stack_start, 1071 struct pt_regs *regs, 1072 unsigned long stack_size, 1073 int __user *child_tidptr, 1074 struct pid *pid, 1075 int trace) 1076 { 1077 int retval; 1078 struct task_struct *p; 1079 int cgroup_callbacks_done = 0; 1080 1081 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1082 return ERR_PTR(-EINVAL); 1083 1084 /* 1085 * Thread groups must share signals as well, and detached threads 1086 * can only be started up within the thread group. 1087 */ 1088 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1089 return ERR_PTR(-EINVAL); 1090 1091 /* 1092 * Shared signal handlers imply shared VM. By way of the above, 1093 * thread groups also imply shared VM. Blocking this case allows 1094 * for various simplifications in other code. 1095 */ 1096 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1097 return ERR_PTR(-EINVAL); 1098 1099 /* 1100 * Siblings of global init remain as zombies on exit since they are 1101 * not reaped by their parent (swapper). To solve this and to avoid 1102 * multi-rooted process trees, prevent global and container-inits 1103 * from creating siblings. 1104 */ 1105 if ((clone_flags & CLONE_PARENT) && 1106 current->signal->flags & SIGNAL_UNKILLABLE) 1107 return ERR_PTR(-EINVAL); 1108 1109 retval = security_task_create(clone_flags); 1110 if (retval) 1111 goto fork_out; 1112 1113 retval = -ENOMEM; 1114 p = dup_task_struct(current); 1115 if (!p) 1116 goto fork_out; 1117 1118 ftrace_graph_init_task(p); 1119 1120 rt_mutex_init_task(p); 1121 1122 #ifdef CONFIG_PROVE_LOCKING 1123 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1124 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1125 #endif 1126 retval = -EAGAIN; 1127 if (atomic_read(&p->real_cred->user->processes) >= 1128 task_rlimit(p, RLIMIT_NPROC)) { 1129 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1130 p->real_cred->user != INIT_USER) 1131 goto bad_fork_free; 1132 } 1133 current->flags &= ~PF_NPROC_EXCEEDED; 1134 1135 retval = copy_creds(p, clone_flags); 1136 if (retval < 0) 1137 goto bad_fork_free; 1138 1139 /* 1140 * If multiple threads are within copy_process(), then this check 1141 * triggers too late. This doesn't hurt, the check is only there 1142 * to stop root fork bombs. 1143 */ 1144 retval = -EAGAIN; 1145 if (nr_threads >= max_threads) 1146 goto bad_fork_cleanup_count; 1147 1148 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1149 goto bad_fork_cleanup_count; 1150 1151 p->did_exec = 0; 1152 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1153 copy_flags(clone_flags, p); 1154 INIT_LIST_HEAD(&p->children); 1155 INIT_LIST_HEAD(&p->sibling); 1156 rcu_copy_process(p); 1157 p->vfork_done = NULL; 1158 spin_lock_init(&p->alloc_lock); 1159 1160 init_sigpending(&p->pending); 1161 1162 p->utime = p->stime = p->gtime = 0; 1163 p->utimescaled = p->stimescaled = 0; 1164 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1165 p->prev_utime = p->prev_stime = 0; 1166 #endif 1167 #if defined(SPLIT_RSS_COUNTING) 1168 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1169 #endif 1170 1171 p->default_timer_slack_ns = current->timer_slack_ns; 1172 1173 task_io_accounting_init(&p->ioac); 1174 acct_clear_integrals(p); 1175 1176 posix_cpu_timers_init(p); 1177 1178 do_posix_clock_monotonic_gettime(&p->start_time); 1179 p->real_start_time = p->start_time; 1180 monotonic_to_bootbased(&p->real_start_time); 1181 p->io_context = NULL; 1182 p->audit_context = NULL; 1183 if (clone_flags & CLONE_THREAD) 1184 threadgroup_change_begin(current); 1185 cgroup_fork(p); 1186 #ifdef CONFIG_NUMA 1187 p->mempolicy = mpol_dup(p->mempolicy); 1188 if (IS_ERR(p->mempolicy)) { 1189 retval = PTR_ERR(p->mempolicy); 1190 p->mempolicy = NULL; 1191 goto bad_fork_cleanup_cgroup; 1192 } 1193 mpol_fix_fork_child_flag(p); 1194 #endif 1195 #ifdef CONFIG_CPUSETS 1196 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1197 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1198 #endif 1199 #ifdef CONFIG_TRACE_IRQFLAGS 1200 p->irq_events = 0; 1201 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1202 p->hardirqs_enabled = 1; 1203 #else 1204 p->hardirqs_enabled = 0; 1205 #endif 1206 p->hardirq_enable_ip = 0; 1207 p->hardirq_enable_event = 0; 1208 p->hardirq_disable_ip = _THIS_IP_; 1209 p->hardirq_disable_event = 0; 1210 p->softirqs_enabled = 1; 1211 p->softirq_enable_ip = _THIS_IP_; 1212 p->softirq_enable_event = 0; 1213 p->softirq_disable_ip = 0; 1214 p->softirq_disable_event = 0; 1215 p->hardirq_context = 0; 1216 p->softirq_context = 0; 1217 #endif 1218 #ifdef CONFIG_LOCKDEP 1219 p->lockdep_depth = 0; /* no locks held yet */ 1220 p->curr_chain_key = 0; 1221 p->lockdep_recursion = 0; 1222 #endif 1223 1224 #ifdef CONFIG_DEBUG_MUTEXES 1225 p->blocked_on = NULL; /* not blocked yet */ 1226 #endif 1227 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1228 p->memcg_batch.do_batch = 0; 1229 p->memcg_batch.memcg = NULL; 1230 #endif 1231 1232 /* Perform scheduler related setup. Assign this task to a CPU. */ 1233 sched_fork(p); 1234 1235 retval = perf_event_init_task(p); 1236 if (retval) 1237 goto bad_fork_cleanup_policy; 1238 retval = audit_alloc(p); 1239 if (retval) 1240 goto bad_fork_cleanup_policy; 1241 /* copy all the process information */ 1242 retval = copy_semundo(clone_flags, p); 1243 if (retval) 1244 goto bad_fork_cleanup_audit; 1245 retval = copy_files(clone_flags, p); 1246 if (retval) 1247 goto bad_fork_cleanup_semundo; 1248 retval = copy_fs(clone_flags, p); 1249 if (retval) 1250 goto bad_fork_cleanup_files; 1251 retval = copy_sighand(clone_flags, p); 1252 if (retval) 1253 goto bad_fork_cleanup_fs; 1254 retval = copy_signal(clone_flags, p); 1255 if (retval) 1256 goto bad_fork_cleanup_sighand; 1257 retval = copy_mm(clone_flags, p); 1258 if (retval) 1259 goto bad_fork_cleanup_signal; 1260 retval = copy_namespaces(clone_flags, p); 1261 if (retval) 1262 goto bad_fork_cleanup_mm; 1263 retval = copy_io(clone_flags, p); 1264 if (retval) 1265 goto bad_fork_cleanup_namespaces; 1266 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1267 if (retval) 1268 goto bad_fork_cleanup_io; 1269 1270 if (pid != &init_struct_pid) { 1271 retval = -ENOMEM; 1272 pid = alloc_pid(p->nsproxy->pid_ns); 1273 if (!pid) 1274 goto bad_fork_cleanup_io; 1275 } 1276 1277 p->pid = pid_nr(pid); 1278 p->tgid = p->pid; 1279 if (clone_flags & CLONE_THREAD) 1280 p->tgid = current->tgid; 1281 1282 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1283 /* 1284 * Clear TID on mm_release()? 1285 */ 1286 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1287 #ifdef CONFIG_BLOCK 1288 p->plug = NULL; 1289 #endif 1290 #ifdef CONFIG_FUTEX 1291 p->robust_list = NULL; 1292 #ifdef CONFIG_COMPAT 1293 p->compat_robust_list = NULL; 1294 #endif 1295 INIT_LIST_HEAD(&p->pi_state_list); 1296 p->pi_state_cache = NULL; 1297 #endif 1298 /* 1299 * sigaltstack should be cleared when sharing the same VM 1300 */ 1301 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1302 p->sas_ss_sp = p->sas_ss_size = 0; 1303 1304 /* 1305 * Syscall tracing and stepping should be turned off in the 1306 * child regardless of CLONE_PTRACE. 1307 */ 1308 user_disable_single_step(p); 1309 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1310 #ifdef TIF_SYSCALL_EMU 1311 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1312 #endif 1313 clear_all_latency_tracing(p); 1314 1315 /* ok, now we should be set up.. */ 1316 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1317 p->pdeath_signal = 0; 1318 p->exit_state = 0; 1319 1320 p->nr_dirtied = 0; 1321 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1322 p->dirty_paused_when = 0; 1323 1324 /* 1325 * Ok, make it visible to the rest of the system. 1326 * We dont wake it up yet. 1327 */ 1328 p->group_leader = p; 1329 INIT_LIST_HEAD(&p->thread_group); 1330 1331 /* Now that the task is set up, run cgroup callbacks if 1332 * necessary. We need to run them before the task is visible 1333 * on the tasklist. */ 1334 cgroup_fork_callbacks(p); 1335 cgroup_callbacks_done = 1; 1336 1337 /* Need tasklist lock for parent etc handling! */ 1338 write_lock_irq(&tasklist_lock); 1339 1340 /* CLONE_PARENT re-uses the old parent */ 1341 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1342 p->real_parent = current->real_parent; 1343 p->parent_exec_id = current->parent_exec_id; 1344 } else { 1345 p->real_parent = current; 1346 p->parent_exec_id = current->self_exec_id; 1347 } 1348 1349 spin_lock(¤t->sighand->siglock); 1350 1351 /* 1352 * Process group and session signals need to be delivered to just the 1353 * parent before the fork or both the parent and the child after the 1354 * fork. Restart if a signal comes in before we add the new process to 1355 * it's process group. 1356 * A fatal signal pending means that current will exit, so the new 1357 * thread can't slip out of an OOM kill (or normal SIGKILL). 1358 */ 1359 recalc_sigpending(); 1360 if (signal_pending(current)) { 1361 spin_unlock(¤t->sighand->siglock); 1362 write_unlock_irq(&tasklist_lock); 1363 retval = -ERESTARTNOINTR; 1364 goto bad_fork_free_pid; 1365 } 1366 1367 if (clone_flags & CLONE_THREAD) { 1368 current->signal->nr_threads++; 1369 atomic_inc(¤t->signal->live); 1370 atomic_inc(¤t->signal->sigcnt); 1371 p->group_leader = current->group_leader; 1372 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1373 } 1374 1375 if (likely(p->pid)) { 1376 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1377 1378 if (thread_group_leader(p)) { 1379 if (is_child_reaper(pid)) 1380 p->nsproxy->pid_ns->child_reaper = p; 1381 1382 p->signal->leader_pid = pid; 1383 p->signal->tty = tty_kref_get(current->signal->tty); 1384 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1385 attach_pid(p, PIDTYPE_SID, task_session(current)); 1386 list_add_tail(&p->sibling, &p->real_parent->children); 1387 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1388 __this_cpu_inc(process_counts); 1389 } 1390 attach_pid(p, PIDTYPE_PID, pid); 1391 nr_threads++; 1392 } 1393 1394 total_forks++; 1395 spin_unlock(¤t->sighand->siglock); 1396 write_unlock_irq(&tasklist_lock); 1397 proc_fork_connector(p); 1398 cgroup_post_fork(p); 1399 if (clone_flags & CLONE_THREAD) 1400 threadgroup_change_end(current); 1401 perf_event_fork(p); 1402 1403 trace_task_newtask(p, clone_flags); 1404 1405 return p; 1406 1407 bad_fork_free_pid: 1408 if (pid != &init_struct_pid) 1409 free_pid(pid); 1410 bad_fork_cleanup_io: 1411 if (p->io_context) 1412 exit_io_context(p); 1413 bad_fork_cleanup_namespaces: 1414 exit_task_namespaces(p); 1415 bad_fork_cleanup_mm: 1416 if (p->mm) 1417 mmput(p->mm); 1418 bad_fork_cleanup_signal: 1419 if (!(clone_flags & CLONE_THREAD)) 1420 free_signal_struct(p->signal); 1421 bad_fork_cleanup_sighand: 1422 __cleanup_sighand(p->sighand); 1423 bad_fork_cleanup_fs: 1424 exit_fs(p); /* blocking */ 1425 bad_fork_cleanup_files: 1426 exit_files(p); /* blocking */ 1427 bad_fork_cleanup_semundo: 1428 exit_sem(p); 1429 bad_fork_cleanup_audit: 1430 audit_free(p); 1431 bad_fork_cleanup_policy: 1432 perf_event_free_task(p); 1433 #ifdef CONFIG_NUMA 1434 mpol_put(p->mempolicy); 1435 bad_fork_cleanup_cgroup: 1436 #endif 1437 if (clone_flags & CLONE_THREAD) 1438 threadgroup_change_end(current); 1439 cgroup_exit(p, cgroup_callbacks_done); 1440 delayacct_tsk_free(p); 1441 module_put(task_thread_info(p)->exec_domain->module); 1442 bad_fork_cleanup_count: 1443 atomic_dec(&p->cred->user->processes); 1444 exit_creds(p); 1445 bad_fork_free: 1446 free_task(p); 1447 fork_out: 1448 return ERR_PTR(retval); 1449 } 1450 1451 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1452 { 1453 memset(regs, 0, sizeof(struct pt_regs)); 1454 return regs; 1455 } 1456 1457 static inline void init_idle_pids(struct pid_link *links) 1458 { 1459 enum pid_type type; 1460 1461 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1462 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1463 links[type].pid = &init_struct_pid; 1464 } 1465 } 1466 1467 struct task_struct * __cpuinit fork_idle(int cpu) 1468 { 1469 struct task_struct *task; 1470 struct pt_regs regs; 1471 1472 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1473 &init_struct_pid, 0); 1474 if (!IS_ERR(task)) { 1475 init_idle_pids(task->pids); 1476 init_idle(task, cpu); 1477 } 1478 1479 return task; 1480 } 1481 1482 /* 1483 * Ok, this is the main fork-routine. 1484 * 1485 * It copies the process, and if successful kick-starts 1486 * it and waits for it to finish using the VM if required. 1487 */ 1488 long do_fork(unsigned long clone_flags, 1489 unsigned long stack_start, 1490 struct pt_regs *regs, 1491 unsigned long stack_size, 1492 int __user *parent_tidptr, 1493 int __user *child_tidptr) 1494 { 1495 struct task_struct *p; 1496 int trace = 0; 1497 long nr; 1498 1499 /* 1500 * Do some preliminary argument and permissions checking before we 1501 * actually start allocating stuff 1502 */ 1503 if (clone_flags & CLONE_NEWUSER) { 1504 if (clone_flags & CLONE_THREAD) 1505 return -EINVAL; 1506 /* hopefully this check will go away when userns support is 1507 * complete 1508 */ 1509 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1510 !capable(CAP_SETGID)) 1511 return -EPERM; 1512 } 1513 1514 /* 1515 * Determine whether and which event to report to ptracer. When 1516 * called from kernel_thread or CLONE_UNTRACED is explicitly 1517 * requested, no event is reported; otherwise, report if the event 1518 * for the type of forking is enabled. 1519 */ 1520 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) { 1521 if (clone_flags & CLONE_VFORK) 1522 trace = PTRACE_EVENT_VFORK; 1523 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1524 trace = PTRACE_EVENT_CLONE; 1525 else 1526 trace = PTRACE_EVENT_FORK; 1527 1528 if (likely(!ptrace_event_enabled(current, trace))) 1529 trace = 0; 1530 } 1531 1532 p = copy_process(clone_flags, stack_start, regs, stack_size, 1533 child_tidptr, NULL, trace); 1534 /* 1535 * Do this prior waking up the new thread - the thread pointer 1536 * might get invalid after that point, if the thread exits quickly. 1537 */ 1538 if (!IS_ERR(p)) { 1539 struct completion vfork; 1540 1541 trace_sched_process_fork(current, p); 1542 1543 nr = task_pid_vnr(p); 1544 1545 if (clone_flags & CLONE_PARENT_SETTID) 1546 put_user(nr, parent_tidptr); 1547 1548 if (clone_flags & CLONE_VFORK) { 1549 p->vfork_done = &vfork; 1550 init_completion(&vfork); 1551 } 1552 1553 /* 1554 * We set PF_STARTING at creation in case tracing wants to 1555 * use this to distinguish a fully live task from one that 1556 * hasn't finished SIGSTOP raising yet. Now we clear it 1557 * and set the child going. 1558 */ 1559 p->flags &= ~PF_STARTING; 1560 1561 wake_up_new_task(p); 1562 1563 /* forking complete and child started to run, tell ptracer */ 1564 if (unlikely(trace)) 1565 ptrace_event(trace, nr); 1566 1567 if (clone_flags & CLONE_VFORK) { 1568 freezer_do_not_count(); 1569 wait_for_completion(&vfork); 1570 freezer_count(); 1571 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1572 } 1573 } else { 1574 nr = PTR_ERR(p); 1575 } 1576 return nr; 1577 } 1578 1579 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1580 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1581 #endif 1582 1583 static void sighand_ctor(void *data) 1584 { 1585 struct sighand_struct *sighand = data; 1586 1587 spin_lock_init(&sighand->siglock); 1588 init_waitqueue_head(&sighand->signalfd_wqh); 1589 } 1590 1591 void __init proc_caches_init(void) 1592 { 1593 sighand_cachep = kmem_cache_create("sighand_cache", 1594 sizeof(struct sighand_struct), 0, 1595 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1596 SLAB_NOTRACK, sighand_ctor); 1597 signal_cachep = kmem_cache_create("signal_cache", 1598 sizeof(struct signal_struct), 0, 1599 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1600 files_cachep = kmem_cache_create("files_cache", 1601 sizeof(struct files_struct), 0, 1602 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1603 fs_cachep = kmem_cache_create("fs_cache", 1604 sizeof(struct fs_struct), 0, 1605 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1606 /* 1607 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1608 * whole struct cpumask for the OFFSTACK case. We could change 1609 * this to *only* allocate as much of it as required by the 1610 * maximum number of CPU's we can ever have. The cpumask_allocation 1611 * is at the end of the structure, exactly for that reason. 1612 */ 1613 mm_cachep = kmem_cache_create("mm_struct", 1614 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1615 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1616 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1617 mmap_init(); 1618 nsproxy_cache_init(); 1619 } 1620 1621 /* 1622 * Check constraints on flags passed to the unshare system call. 1623 */ 1624 static int check_unshare_flags(unsigned long unshare_flags) 1625 { 1626 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1627 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1628 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1629 return -EINVAL; 1630 /* 1631 * Not implemented, but pretend it works if there is nothing to 1632 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1633 * needs to unshare vm. 1634 */ 1635 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1636 /* FIXME: get_task_mm() increments ->mm_users */ 1637 if (atomic_read(¤t->mm->mm_users) > 1) 1638 return -EINVAL; 1639 } 1640 1641 return 0; 1642 } 1643 1644 /* 1645 * Unshare the filesystem structure if it is being shared 1646 */ 1647 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1648 { 1649 struct fs_struct *fs = current->fs; 1650 1651 if (!(unshare_flags & CLONE_FS) || !fs) 1652 return 0; 1653 1654 /* don't need lock here; in the worst case we'll do useless copy */ 1655 if (fs->users == 1) 1656 return 0; 1657 1658 *new_fsp = copy_fs_struct(fs); 1659 if (!*new_fsp) 1660 return -ENOMEM; 1661 1662 return 0; 1663 } 1664 1665 /* 1666 * Unshare file descriptor table if it is being shared 1667 */ 1668 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1669 { 1670 struct files_struct *fd = current->files; 1671 int error = 0; 1672 1673 if ((unshare_flags & CLONE_FILES) && 1674 (fd && atomic_read(&fd->count) > 1)) { 1675 *new_fdp = dup_fd(fd, &error); 1676 if (!*new_fdp) 1677 return error; 1678 } 1679 1680 return 0; 1681 } 1682 1683 /* 1684 * unshare allows a process to 'unshare' part of the process 1685 * context which was originally shared using clone. copy_* 1686 * functions used by do_fork() cannot be used here directly 1687 * because they modify an inactive task_struct that is being 1688 * constructed. Here we are modifying the current, active, 1689 * task_struct. 1690 */ 1691 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1692 { 1693 struct fs_struct *fs, *new_fs = NULL; 1694 struct files_struct *fd, *new_fd = NULL; 1695 struct nsproxy *new_nsproxy = NULL; 1696 int do_sysvsem = 0; 1697 int err; 1698 1699 err = check_unshare_flags(unshare_flags); 1700 if (err) 1701 goto bad_unshare_out; 1702 1703 /* 1704 * If unsharing namespace, must also unshare filesystem information. 1705 */ 1706 if (unshare_flags & CLONE_NEWNS) 1707 unshare_flags |= CLONE_FS; 1708 /* 1709 * CLONE_NEWIPC must also detach from the undolist: after switching 1710 * to a new ipc namespace, the semaphore arrays from the old 1711 * namespace are unreachable. 1712 */ 1713 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1714 do_sysvsem = 1; 1715 err = unshare_fs(unshare_flags, &new_fs); 1716 if (err) 1717 goto bad_unshare_out; 1718 err = unshare_fd(unshare_flags, &new_fd); 1719 if (err) 1720 goto bad_unshare_cleanup_fs; 1721 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs); 1722 if (err) 1723 goto bad_unshare_cleanup_fd; 1724 1725 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1726 if (do_sysvsem) { 1727 /* 1728 * CLONE_SYSVSEM is equivalent to sys_exit(). 1729 */ 1730 exit_sem(current); 1731 } 1732 1733 if (new_nsproxy) { 1734 switch_task_namespaces(current, new_nsproxy); 1735 new_nsproxy = NULL; 1736 } 1737 1738 task_lock(current); 1739 1740 if (new_fs) { 1741 fs = current->fs; 1742 spin_lock(&fs->lock); 1743 current->fs = new_fs; 1744 if (--fs->users) 1745 new_fs = NULL; 1746 else 1747 new_fs = fs; 1748 spin_unlock(&fs->lock); 1749 } 1750 1751 if (new_fd) { 1752 fd = current->files; 1753 current->files = new_fd; 1754 new_fd = fd; 1755 } 1756 1757 task_unlock(current); 1758 } 1759 1760 if (new_nsproxy) 1761 put_nsproxy(new_nsproxy); 1762 1763 bad_unshare_cleanup_fd: 1764 if (new_fd) 1765 put_files_struct(new_fd); 1766 1767 bad_unshare_cleanup_fs: 1768 if (new_fs) 1769 free_fs_struct(new_fs); 1770 1771 bad_unshare_out: 1772 return err; 1773 } 1774 1775 /* 1776 * Helper to unshare the files of the current task. 1777 * We don't want to expose copy_files internals to 1778 * the exec layer of the kernel. 1779 */ 1780 1781 int unshare_files(struct files_struct **displaced) 1782 { 1783 struct task_struct *task = current; 1784 struct files_struct *copy = NULL; 1785 int error; 1786 1787 error = unshare_fd(CLONE_FILES, ©); 1788 if (error || !copy) { 1789 *displaced = NULL; 1790 return error; 1791 } 1792 *displaced = task->files; 1793 task_lock(task); 1794 task->files = copy; 1795 task_unlock(task); 1796 return 0; 1797 } 1798