xref: /linux-6.15/kernel/fork.c (revision 7490ca1e)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82 
83 /*
84  * Protected counters by write_lock_irq(&tasklist_lock)
85  */
86 unsigned long total_forks;	/* Handle normal Linux uptimes. */
87 int nr_threads;			/* The idle threads do not count.. */
88 
89 int max_threads;		/* tunable limit on nr_threads */
90 
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92 
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
94 
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 	return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102 
103 int nr_processes(void)
104 {
105 	int cpu;
106 	int total = 0;
107 
108 	for_each_possible_cpu(cpu)
109 		total += per_cpu(process_counts, cpu);
110 
111 	return total;
112 }
113 
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node)		\
116 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk)			\
118 		kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121 
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 						  int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 	gfp_t mask = GFP_KERNEL;
130 #endif
131 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132 
133 	return page ? page_address(page) : NULL;
134 }
135 
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141 
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144 
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147 
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150 
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153 
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156 
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159 
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 	struct zone *zone = page_zone(virt_to_page(ti));
163 
164 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166 
167 void free_task(struct task_struct *tsk)
168 {
169 	account_kernel_stack(tsk->stack, -1);
170 	free_thread_info(tsk->stack);
171 	rt_mutex_debug_task_free(tsk);
172 	ftrace_graph_exit_task(tsk);
173 	free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176 
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 	taskstats_tgid_free(sig);
180 	sched_autogroup_exit(sig);
181 	kmem_cache_free(signal_cachep, sig);
182 }
183 
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 	if (atomic_dec_and_test(&sig->sigcnt))
187 		free_signal_struct(sig);
188 }
189 
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 	WARN_ON(!tsk->exit_state);
193 	WARN_ON(atomic_read(&tsk->usage));
194 	WARN_ON(tsk == current);
195 
196 	exit_creds(tsk);
197 	delayacct_tsk_free(tsk);
198 	put_signal_struct(tsk->signal);
199 
200 	if (!profile_handoff_task(tsk))
201 		free_task(tsk);
202 }
203 EXPORT_SYMBOL_GPL(__put_task_struct);
204 
205 /*
206  * macro override instead of weak attribute alias, to workaround
207  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208  */
209 #ifndef arch_task_cache_init
210 #define arch_task_cache_init()
211 #endif
212 
213 void __init fork_init(unsigned long mempages)
214 {
215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
216 #ifndef ARCH_MIN_TASKALIGN
217 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
218 #endif
219 	/* create a slab on which task_structs can be allocated */
220 	task_struct_cachep =
221 		kmem_cache_create("task_struct", sizeof(struct task_struct),
222 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
223 #endif
224 
225 	/* do the arch specific task caches init */
226 	arch_task_cache_init();
227 
228 	/*
229 	 * The default maximum number of threads is set to a safe
230 	 * value: the thread structures can take up at most half
231 	 * of memory.
232 	 */
233 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234 
235 	/*
236 	 * we need to allow at least 20 threads to boot a system
237 	 */
238 	if (max_threads < 20)
239 		max_threads = 20;
240 
241 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
242 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
243 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
244 		init_task.signal->rlim[RLIMIT_NPROC];
245 }
246 
247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
248 					       struct task_struct *src)
249 {
250 	*dst = *src;
251 	return 0;
252 }
253 
254 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 {
256 	struct task_struct *tsk;
257 	struct thread_info *ti;
258 	unsigned long *stackend;
259 	int node = tsk_fork_get_node(orig);
260 	int err;
261 
262 	prepare_to_copy(orig);
263 
264 	tsk = alloc_task_struct_node(node);
265 	if (!tsk)
266 		return NULL;
267 
268 	ti = alloc_thread_info_node(tsk, node);
269 	if (!ti) {
270 		free_task_struct(tsk);
271 		return NULL;
272 	}
273 
274 	err = arch_dup_task_struct(tsk, orig);
275 	if (err)
276 		goto out;
277 
278 	tsk->stack = ti;
279 
280 	setup_thread_stack(tsk, orig);
281 	clear_user_return_notifier(tsk);
282 	clear_tsk_need_resched(tsk);
283 	stackend = end_of_stack(tsk);
284 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
285 
286 #ifdef CONFIG_CC_STACKPROTECTOR
287 	tsk->stack_canary = get_random_int();
288 #endif
289 
290 	/*
291 	 * One for us, one for whoever does the "release_task()" (usually
292 	 * parent)
293 	 */
294 	atomic_set(&tsk->usage, 2);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296 	tsk->btrace_seq = 0;
297 #endif
298 	tsk->splice_pipe = NULL;
299 
300 	account_kernel_stack(ti, 1);
301 
302 	return tsk;
303 
304 out:
305 	free_thread_info(ti);
306 	free_task_struct(tsk);
307 	return NULL;
308 }
309 
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314 	struct rb_node **rb_link, *rb_parent;
315 	int retval;
316 	unsigned long charge;
317 	struct mempolicy *pol;
318 
319 	down_write(&oldmm->mmap_sem);
320 	flush_cache_dup_mm(oldmm);
321 	/*
322 	 * Not linked in yet - no deadlock potential:
323 	 */
324 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325 
326 	mm->locked_vm = 0;
327 	mm->mmap = NULL;
328 	mm->mmap_cache = NULL;
329 	mm->free_area_cache = oldmm->mmap_base;
330 	mm->cached_hole_size = ~0UL;
331 	mm->map_count = 0;
332 	cpumask_clear(mm_cpumask(mm));
333 	mm->mm_rb = RB_ROOT;
334 	rb_link = &mm->mm_rb.rb_node;
335 	rb_parent = NULL;
336 	pprev = &mm->mmap;
337 	retval = ksm_fork(mm, oldmm);
338 	if (retval)
339 		goto out;
340 	retval = khugepaged_fork(mm, oldmm);
341 	if (retval)
342 		goto out;
343 
344 	prev = NULL;
345 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346 		struct file *file;
347 
348 		if (mpnt->vm_flags & VM_DONTCOPY) {
349 			long pages = vma_pages(mpnt);
350 			mm->total_vm -= pages;
351 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 								-pages);
353 			continue;
354 		}
355 		charge = 0;
356 		if (mpnt->vm_flags & VM_ACCOUNT) {
357 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358 			if (security_vm_enough_memory(len))
359 				goto fail_nomem;
360 			charge = len;
361 		}
362 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 		if (!tmp)
364 			goto fail_nomem;
365 		*tmp = *mpnt;
366 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
367 		pol = mpol_dup(vma_policy(mpnt));
368 		retval = PTR_ERR(pol);
369 		if (IS_ERR(pol))
370 			goto fail_nomem_policy;
371 		vma_set_policy(tmp, pol);
372 		tmp->vm_mm = mm;
373 		if (anon_vma_fork(tmp, mpnt))
374 			goto fail_nomem_anon_vma_fork;
375 		tmp->vm_flags &= ~VM_LOCKED;
376 		tmp->vm_next = tmp->vm_prev = NULL;
377 		file = tmp->vm_file;
378 		if (file) {
379 			struct inode *inode = file->f_path.dentry->d_inode;
380 			struct address_space *mapping = file->f_mapping;
381 
382 			get_file(file);
383 			if (tmp->vm_flags & VM_DENYWRITE)
384 				atomic_dec(&inode->i_writecount);
385 			mutex_lock(&mapping->i_mmap_mutex);
386 			if (tmp->vm_flags & VM_SHARED)
387 				mapping->i_mmap_writable++;
388 			flush_dcache_mmap_lock(mapping);
389 			/* insert tmp into the share list, just after mpnt */
390 			vma_prio_tree_add(tmp, mpnt);
391 			flush_dcache_mmap_unlock(mapping);
392 			mutex_unlock(&mapping->i_mmap_mutex);
393 		}
394 
395 		/*
396 		 * Clear hugetlb-related page reserves for children. This only
397 		 * affects MAP_PRIVATE mappings. Faults generated by the child
398 		 * are not guaranteed to succeed, even if read-only
399 		 */
400 		if (is_vm_hugetlb_page(tmp))
401 			reset_vma_resv_huge_pages(tmp);
402 
403 		/*
404 		 * Link in the new vma and copy the page table entries.
405 		 */
406 		*pprev = tmp;
407 		pprev = &tmp->vm_next;
408 		tmp->vm_prev = prev;
409 		prev = tmp;
410 
411 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
412 		rb_link = &tmp->vm_rb.rb_right;
413 		rb_parent = &tmp->vm_rb;
414 
415 		mm->map_count++;
416 		retval = copy_page_range(mm, oldmm, mpnt);
417 
418 		if (tmp->vm_ops && tmp->vm_ops->open)
419 			tmp->vm_ops->open(tmp);
420 
421 		if (retval)
422 			goto out;
423 	}
424 	/* a new mm has just been created */
425 	arch_dup_mmap(oldmm, mm);
426 	retval = 0;
427 out:
428 	up_write(&mm->mmap_sem);
429 	flush_tlb_mm(oldmm);
430 	up_write(&oldmm->mmap_sem);
431 	return retval;
432 fail_nomem_anon_vma_fork:
433 	mpol_put(pol);
434 fail_nomem_policy:
435 	kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437 	retval = -ENOMEM;
438 	vm_unacct_memory(charge);
439 	goto out;
440 }
441 
442 static inline int mm_alloc_pgd(struct mm_struct *mm)
443 {
444 	mm->pgd = pgd_alloc(mm);
445 	if (unlikely(!mm->pgd))
446 		return -ENOMEM;
447 	return 0;
448 }
449 
450 static inline void mm_free_pgd(struct mm_struct *mm)
451 {
452 	pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)	(0)
456 #define mm_alloc_pgd(mm)	(0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459 
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461 
462 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
464 
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466 
467 static int __init coredump_filter_setup(char *s)
468 {
469 	default_dump_filter =
470 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471 		MMF_DUMP_FILTER_MASK;
472 	return 1;
473 }
474 
475 __setup("coredump_filter=", coredump_filter_setup);
476 
477 #include <linux/init_task.h>
478 
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482 	spin_lock_init(&mm->ioctx_lock);
483 	INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486 
487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
488 {
489 	atomic_set(&mm->mm_users, 1);
490 	atomic_set(&mm->mm_count, 1);
491 	init_rwsem(&mm->mmap_sem);
492 	INIT_LIST_HEAD(&mm->mmlist);
493 	mm->flags = (current->mm) ?
494 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495 	mm->core_state = NULL;
496 	mm->nr_ptes = 0;
497 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498 	spin_lock_init(&mm->page_table_lock);
499 	mm->free_area_cache = TASK_UNMAPPED_BASE;
500 	mm->cached_hole_size = ~0UL;
501 	mm_init_aio(mm);
502 	mm_init_owner(mm, p);
503 
504 	if (likely(!mm_alloc_pgd(mm))) {
505 		mm->def_flags = 0;
506 		mmu_notifier_mm_init(mm);
507 		return mm;
508 	}
509 
510 	free_mm(mm);
511 	return NULL;
512 }
513 
514 /*
515  * Allocate and initialize an mm_struct.
516  */
517 struct mm_struct *mm_alloc(void)
518 {
519 	struct mm_struct *mm;
520 
521 	mm = allocate_mm();
522 	if (!mm)
523 		return NULL;
524 
525 	memset(mm, 0, sizeof(*mm));
526 	mm_init_cpumask(mm);
527 	return mm_init(mm, current);
528 }
529 
530 /*
531  * Called when the last reference to the mm
532  * is dropped: either by a lazy thread or by
533  * mmput. Free the page directory and the mm.
534  */
535 void __mmdrop(struct mm_struct *mm)
536 {
537 	BUG_ON(mm == &init_mm);
538 	mm_free_pgd(mm);
539 	destroy_context(mm);
540 	mmu_notifier_mm_destroy(mm);
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 	VM_BUG_ON(mm->pmd_huge_pte);
543 #endif
544 	free_mm(mm);
545 }
546 EXPORT_SYMBOL_GPL(__mmdrop);
547 
548 /*
549  * Decrement the use count and release all resources for an mm.
550  */
551 void mmput(struct mm_struct *mm)
552 {
553 	might_sleep();
554 
555 	if (atomic_dec_and_test(&mm->mm_users)) {
556 		exit_aio(mm);
557 		ksm_exit(mm);
558 		khugepaged_exit(mm); /* must run before exit_mmap */
559 		exit_mmap(mm);
560 		set_mm_exe_file(mm, NULL);
561 		if (!list_empty(&mm->mmlist)) {
562 			spin_lock(&mmlist_lock);
563 			list_del(&mm->mmlist);
564 			spin_unlock(&mmlist_lock);
565 		}
566 		put_swap_token(mm);
567 		if (mm->binfmt)
568 			module_put(mm->binfmt->module);
569 		mmdrop(mm);
570 	}
571 }
572 EXPORT_SYMBOL_GPL(mmput);
573 
574 /*
575  * We added or removed a vma mapping the executable. The vmas are only mapped
576  * during exec and are not mapped with the mmap system call.
577  * Callers must hold down_write() on the mm's mmap_sem for these
578  */
579 void added_exe_file_vma(struct mm_struct *mm)
580 {
581 	mm->num_exe_file_vmas++;
582 }
583 
584 void removed_exe_file_vma(struct mm_struct *mm)
585 {
586 	mm->num_exe_file_vmas--;
587 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
588 		fput(mm->exe_file);
589 		mm->exe_file = NULL;
590 	}
591 
592 }
593 
594 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
595 {
596 	if (new_exe_file)
597 		get_file(new_exe_file);
598 	if (mm->exe_file)
599 		fput(mm->exe_file);
600 	mm->exe_file = new_exe_file;
601 	mm->num_exe_file_vmas = 0;
602 }
603 
604 struct file *get_mm_exe_file(struct mm_struct *mm)
605 {
606 	struct file *exe_file;
607 
608 	/* We need mmap_sem to protect against races with removal of
609 	 * VM_EXECUTABLE vmas */
610 	down_read(&mm->mmap_sem);
611 	exe_file = mm->exe_file;
612 	if (exe_file)
613 		get_file(exe_file);
614 	up_read(&mm->mmap_sem);
615 	return exe_file;
616 }
617 
618 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
619 {
620 	/* It's safe to write the exe_file pointer without exe_file_lock because
621 	 * this is called during fork when the task is not yet in /proc */
622 	newmm->exe_file = get_mm_exe_file(oldmm);
623 }
624 
625 /**
626  * get_task_mm - acquire a reference to the task's mm
627  *
628  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
629  * this kernel workthread has transiently adopted a user mm with use_mm,
630  * to do its AIO) is not set and if so returns a reference to it, after
631  * bumping up the use count.  User must release the mm via mmput()
632  * after use.  Typically used by /proc and ptrace.
633  */
634 struct mm_struct *get_task_mm(struct task_struct *task)
635 {
636 	struct mm_struct *mm;
637 
638 	task_lock(task);
639 	mm = task->mm;
640 	if (mm) {
641 		if (task->flags & PF_KTHREAD)
642 			mm = NULL;
643 		else
644 			atomic_inc(&mm->mm_users);
645 	}
646 	task_unlock(task);
647 	return mm;
648 }
649 EXPORT_SYMBOL_GPL(get_task_mm);
650 
651 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
652 {
653 	struct mm_struct *mm;
654 	int err;
655 
656 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
657 	if (err)
658 		return ERR_PTR(err);
659 
660 	mm = get_task_mm(task);
661 	if (mm && mm != current->mm &&
662 			!ptrace_may_access(task, mode)) {
663 		mmput(mm);
664 		mm = ERR_PTR(-EACCES);
665 	}
666 	mutex_unlock(&task->signal->cred_guard_mutex);
667 
668 	return mm;
669 }
670 
671 /* Please note the differences between mmput and mm_release.
672  * mmput is called whenever we stop holding onto a mm_struct,
673  * error success whatever.
674  *
675  * mm_release is called after a mm_struct has been removed
676  * from the current process.
677  *
678  * This difference is important for error handling, when we
679  * only half set up a mm_struct for a new process and need to restore
680  * the old one.  Because we mmput the new mm_struct before
681  * restoring the old one. . .
682  * Eric Biederman 10 January 1998
683  */
684 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
685 {
686 	struct completion *vfork_done = tsk->vfork_done;
687 
688 	/* Get rid of any futexes when releasing the mm */
689 #ifdef CONFIG_FUTEX
690 	if (unlikely(tsk->robust_list)) {
691 		exit_robust_list(tsk);
692 		tsk->robust_list = NULL;
693 	}
694 #ifdef CONFIG_COMPAT
695 	if (unlikely(tsk->compat_robust_list)) {
696 		compat_exit_robust_list(tsk);
697 		tsk->compat_robust_list = NULL;
698 	}
699 #endif
700 	if (unlikely(!list_empty(&tsk->pi_state_list)))
701 		exit_pi_state_list(tsk);
702 #endif
703 
704 	/* Get rid of any cached register state */
705 	deactivate_mm(tsk, mm);
706 
707 	/* notify parent sleeping on vfork() */
708 	if (vfork_done) {
709 		tsk->vfork_done = NULL;
710 		complete(vfork_done);
711 	}
712 
713 	/*
714 	 * If we're exiting normally, clear a user-space tid field if
715 	 * requested.  We leave this alone when dying by signal, to leave
716 	 * the value intact in a core dump, and to save the unnecessary
717 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
718 	 */
719 	if (tsk->clear_child_tid) {
720 		if (!(tsk->flags & PF_SIGNALED) &&
721 		    atomic_read(&mm->mm_users) > 1) {
722 			/*
723 			 * We don't check the error code - if userspace has
724 			 * not set up a proper pointer then tough luck.
725 			 */
726 			put_user(0, tsk->clear_child_tid);
727 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
728 					1, NULL, NULL, 0);
729 		}
730 		tsk->clear_child_tid = NULL;
731 	}
732 }
733 
734 /*
735  * Allocate a new mm structure and copy contents from the
736  * mm structure of the passed in task structure.
737  */
738 struct mm_struct *dup_mm(struct task_struct *tsk)
739 {
740 	struct mm_struct *mm, *oldmm = current->mm;
741 	int err;
742 
743 	if (!oldmm)
744 		return NULL;
745 
746 	mm = allocate_mm();
747 	if (!mm)
748 		goto fail_nomem;
749 
750 	memcpy(mm, oldmm, sizeof(*mm));
751 	mm_init_cpumask(mm);
752 
753 	/* Initializing for Swap token stuff */
754 	mm->token_priority = 0;
755 	mm->last_interval = 0;
756 
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 	mm->pmd_huge_pte = NULL;
759 #endif
760 
761 	if (!mm_init(mm, tsk))
762 		goto fail_nomem;
763 
764 	if (init_new_context(tsk, mm))
765 		goto fail_nocontext;
766 
767 	dup_mm_exe_file(oldmm, mm);
768 
769 	err = dup_mmap(mm, oldmm);
770 	if (err)
771 		goto free_pt;
772 
773 	mm->hiwater_rss = get_mm_rss(mm);
774 	mm->hiwater_vm = mm->total_vm;
775 
776 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
777 		goto free_pt;
778 
779 	return mm;
780 
781 free_pt:
782 	/* don't put binfmt in mmput, we haven't got module yet */
783 	mm->binfmt = NULL;
784 	mmput(mm);
785 
786 fail_nomem:
787 	return NULL;
788 
789 fail_nocontext:
790 	/*
791 	 * If init_new_context() failed, we cannot use mmput() to free the mm
792 	 * because it calls destroy_context()
793 	 */
794 	mm_free_pgd(mm);
795 	free_mm(mm);
796 	return NULL;
797 }
798 
799 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
800 {
801 	struct mm_struct *mm, *oldmm;
802 	int retval;
803 
804 	tsk->min_flt = tsk->maj_flt = 0;
805 	tsk->nvcsw = tsk->nivcsw = 0;
806 #ifdef CONFIG_DETECT_HUNG_TASK
807 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
808 #endif
809 
810 	tsk->mm = NULL;
811 	tsk->active_mm = NULL;
812 
813 	/*
814 	 * Are we cloning a kernel thread?
815 	 *
816 	 * We need to steal a active VM for that..
817 	 */
818 	oldmm = current->mm;
819 	if (!oldmm)
820 		return 0;
821 
822 	if (clone_flags & CLONE_VM) {
823 		atomic_inc(&oldmm->mm_users);
824 		mm = oldmm;
825 		goto good_mm;
826 	}
827 
828 	retval = -ENOMEM;
829 	mm = dup_mm(tsk);
830 	if (!mm)
831 		goto fail_nomem;
832 
833 good_mm:
834 	/* Initializing for Swap token stuff */
835 	mm->token_priority = 0;
836 	mm->last_interval = 0;
837 
838 	tsk->mm = mm;
839 	tsk->active_mm = mm;
840 	return 0;
841 
842 fail_nomem:
843 	return retval;
844 }
845 
846 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
847 {
848 	struct fs_struct *fs = current->fs;
849 	if (clone_flags & CLONE_FS) {
850 		/* tsk->fs is already what we want */
851 		spin_lock(&fs->lock);
852 		if (fs->in_exec) {
853 			spin_unlock(&fs->lock);
854 			return -EAGAIN;
855 		}
856 		fs->users++;
857 		spin_unlock(&fs->lock);
858 		return 0;
859 	}
860 	tsk->fs = copy_fs_struct(fs);
861 	if (!tsk->fs)
862 		return -ENOMEM;
863 	return 0;
864 }
865 
866 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
867 {
868 	struct files_struct *oldf, *newf;
869 	int error = 0;
870 
871 	/*
872 	 * A background process may not have any files ...
873 	 */
874 	oldf = current->files;
875 	if (!oldf)
876 		goto out;
877 
878 	if (clone_flags & CLONE_FILES) {
879 		atomic_inc(&oldf->count);
880 		goto out;
881 	}
882 
883 	newf = dup_fd(oldf, &error);
884 	if (!newf)
885 		goto out;
886 
887 	tsk->files = newf;
888 	error = 0;
889 out:
890 	return error;
891 }
892 
893 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
894 {
895 #ifdef CONFIG_BLOCK
896 	struct io_context *ioc = current->io_context;
897 	struct io_context *new_ioc;
898 
899 	if (!ioc)
900 		return 0;
901 	/*
902 	 * Share io context with parent, if CLONE_IO is set
903 	 */
904 	if (clone_flags & CLONE_IO) {
905 		tsk->io_context = ioc_task_link(ioc);
906 		if (unlikely(!tsk->io_context))
907 			return -ENOMEM;
908 	} else if (ioprio_valid(ioc->ioprio)) {
909 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
910 		if (unlikely(!new_ioc))
911 			return -ENOMEM;
912 
913 		new_ioc->ioprio = ioc->ioprio;
914 		put_io_context(new_ioc);
915 	}
916 #endif
917 	return 0;
918 }
919 
920 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
921 {
922 	struct sighand_struct *sig;
923 
924 	if (clone_flags & CLONE_SIGHAND) {
925 		atomic_inc(&current->sighand->count);
926 		return 0;
927 	}
928 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
929 	rcu_assign_pointer(tsk->sighand, sig);
930 	if (!sig)
931 		return -ENOMEM;
932 	atomic_set(&sig->count, 1);
933 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
934 	return 0;
935 }
936 
937 void __cleanup_sighand(struct sighand_struct *sighand)
938 {
939 	if (atomic_dec_and_test(&sighand->count)) {
940 		signalfd_cleanup(sighand);
941 		kmem_cache_free(sighand_cachep, sighand);
942 	}
943 }
944 
945 
946 /*
947  * Initialize POSIX timer handling for a thread group.
948  */
949 static void posix_cpu_timers_init_group(struct signal_struct *sig)
950 {
951 	unsigned long cpu_limit;
952 
953 	/* Thread group counters. */
954 	thread_group_cputime_init(sig);
955 
956 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
957 	if (cpu_limit != RLIM_INFINITY) {
958 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
959 		sig->cputimer.running = 1;
960 	}
961 
962 	/* The timer lists. */
963 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
964 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
965 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
966 }
967 
968 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
969 {
970 	struct signal_struct *sig;
971 
972 	if (clone_flags & CLONE_THREAD)
973 		return 0;
974 
975 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
976 	tsk->signal = sig;
977 	if (!sig)
978 		return -ENOMEM;
979 
980 	sig->nr_threads = 1;
981 	atomic_set(&sig->live, 1);
982 	atomic_set(&sig->sigcnt, 1);
983 	init_waitqueue_head(&sig->wait_chldexit);
984 	if (clone_flags & CLONE_NEWPID)
985 		sig->flags |= SIGNAL_UNKILLABLE;
986 	sig->curr_target = tsk;
987 	init_sigpending(&sig->shared_pending);
988 	INIT_LIST_HEAD(&sig->posix_timers);
989 
990 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
991 	sig->real_timer.function = it_real_fn;
992 
993 	task_lock(current->group_leader);
994 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
995 	task_unlock(current->group_leader);
996 
997 	posix_cpu_timers_init_group(sig);
998 
999 	tty_audit_fork(sig);
1000 	sched_autogroup_fork(sig);
1001 
1002 #ifdef CONFIG_CGROUPS
1003 	init_rwsem(&sig->group_rwsem);
1004 #endif
1005 
1006 	sig->oom_adj = current->signal->oom_adj;
1007 	sig->oom_score_adj = current->signal->oom_score_adj;
1008 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1009 
1010 	mutex_init(&sig->cred_guard_mutex);
1011 
1012 	return 0;
1013 }
1014 
1015 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1016 {
1017 	unsigned long new_flags = p->flags;
1018 
1019 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1020 	new_flags |= PF_FORKNOEXEC;
1021 	new_flags |= PF_STARTING;
1022 	p->flags = new_flags;
1023 }
1024 
1025 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1026 {
1027 	current->clear_child_tid = tidptr;
1028 
1029 	return task_pid_vnr(current);
1030 }
1031 
1032 static void rt_mutex_init_task(struct task_struct *p)
1033 {
1034 	raw_spin_lock_init(&p->pi_lock);
1035 #ifdef CONFIG_RT_MUTEXES
1036 	plist_head_init(&p->pi_waiters);
1037 	p->pi_blocked_on = NULL;
1038 #endif
1039 }
1040 
1041 #ifdef CONFIG_MM_OWNER
1042 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1043 {
1044 	mm->owner = p;
1045 }
1046 #endif /* CONFIG_MM_OWNER */
1047 
1048 /*
1049  * Initialize POSIX timer handling for a single task.
1050  */
1051 static void posix_cpu_timers_init(struct task_struct *tsk)
1052 {
1053 	tsk->cputime_expires.prof_exp = 0;
1054 	tsk->cputime_expires.virt_exp = 0;
1055 	tsk->cputime_expires.sched_exp = 0;
1056 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1057 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1058 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1059 }
1060 
1061 /*
1062  * This creates a new process as a copy of the old one,
1063  * but does not actually start it yet.
1064  *
1065  * It copies the registers, and all the appropriate
1066  * parts of the process environment (as per the clone
1067  * flags). The actual kick-off is left to the caller.
1068  */
1069 static struct task_struct *copy_process(unsigned long clone_flags,
1070 					unsigned long stack_start,
1071 					struct pt_regs *regs,
1072 					unsigned long stack_size,
1073 					int __user *child_tidptr,
1074 					struct pid *pid,
1075 					int trace)
1076 {
1077 	int retval;
1078 	struct task_struct *p;
1079 	int cgroup_callbacks_done = 0;
1080 
1081 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1082 		return ERR_PTR(-EINVAL);
1083 
1084 	/*
1085 	 * Thread groups must share signals as well, and detached threads
1086 	 * can only be started up within the thread group.
1087 	 */
1088 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1089 		return ERR_PTR(-EINVAL);
1090 
1091 	/*
1092 	 * Shared signal handlers imply shared VM. By way of the above,
1093 	 * thread groups also imply shared VM. Blocking this case allows
1094 	 * for various simplifications in other code.
1095 	 */
1096 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1097 		return ERR_PTR(-EINVAL);
1098 
1099 	/*
1100 	 * Siblings of global init remain as zombies on exit since they are
1101 	 * not reaped by their parent (swapper). To solve this and to avoid
1102 	 * multi-rooted process trees, prevent global and container-inits
1103 	 * from creating siblings.
1104 	 */
1105 	if ((clone_flags & CLONE_PARENT) &&
1106 				current->signal->flags & SIGNAL_UNKILLABLE)
1107 		return ERR_PTR(-EINVAL);
1108 
1109 	retval = security_task_create(clone_flags);
1110 	if (retval)
1111 		goto fork_out;
1112 
1113 	retval = -ENOMEM;
1114 	p = dup_task_struct(current);
1115 	if (!p)
1116 		goto fork_out;
1117 
1118 	ftrace_graph_init_task(p);
1119 
1120 	rt_mutex_init_task(p);
1121 
1122 #ifdef CONFIG_PROVE_LOCKING
1123 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1124 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1125 #endif
1126 	retval = -EAGAIN;
1127 	if (atomic_read(&p->real_cred->user->processes) >=
1128 			task_rlimit(p, RLIMIT_NPROC)) {
1129 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1130 		    p->real_cred->user != INIT_USER)
1131 			goto bad_fork_free;
1132 	}
1133 	current->flags &= ~PF_NPROC_EXCEEDED;
1134 
1135 	retval = copy_creds(p, clone_flags);
1136 	if (retval < 0)
1137 		goto bad_fork_free;
1138 
1139 	/*
1140 	 * If multiple threads are within copy_process(), then this check
1141 	 * triggers too late. This doesn't hurt, the check is only there
1142 	 * to stop root fork bombs.
1143 	 */
1144 	retval = -EAGAIN;
1145 	if (nr_threads >= max_threads)
1146 		goto bad_fork_cleanup_count;
1147 
1148 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1149 		goto bad_fork_cleanup_count;
1150 
1151 	p->did_exec = 0;
1152 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1153 	copy_flags(clone_flags, p);
1154 	INIT_LIST_HEAD(&p->children);
1155 	INIT_LIST_HEAD(&p->sibling);
1156 	rcu_copy_process(p);
1157 	p->vfork_done = NULL;
1158 	spin_lock_init(&p->alloc_lock);
1159 
1160 	init_sigpending(&p->pending);
1161 
1162 	p->utime = p->stime = p->gtime = 0;
1163 	p->utimescaled = p->stimescaled = 0;
1164 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1165 	p->prev_utime = p->prev_stime = 0;
1166 #endif
1167 #if defined(SPLIT_RSS_COUNTING)
1168 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1169 #endif
1170 
1171 	p->default_timer_slack_ns = current->timer_slack_ns;
1172 
1173 	task_io_accounting_init(&p->ioac);
1174 	acct_clear_integrals(p);
1175 
1176 	posix_cpu_timers_init(p);
1177 
1178 	do_posix_clock_monotonic_gettime(&p->start_time);
1179 	p->real_start_time = p->start_time;
1180 	monotonic_to_bootbased(&p->real_start_time);
1181 	p->io_context = NULL;
1182 	p->audit_context = NULL;
1183 	if (clone_flags & CLONE_THREAD)
1184 		threadgroup_change_begin(current);
1185 	cgroup_fork(p);
1186 #ifdef CONFIG_NUMA
1187 	p->mempolicy = mpol_dup(p->mempolicy);
1188 	if (IS_ERR(p->mempolicy)) {
1189 		retval = PTR_ERR(p->mempolicy);
1190 		p->mempolicy = NULL;
1191 		goto bad_fork_cleanup_cgroup;
1192 	}
1193 	mpol_fix_fork_child_flag(p);
1194 #endif
1195 #ifdef CONFIG_CPUSETS
1196 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1197 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1198 #endif
1199 #ifdef CONFIG_TRACE_IRQFLAGS
1200 	p->irq_events = 0;
1201 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1202 	p->hardirqs_enabled = 1;
1203 #else
1204 	p->hardirqs_enabled = 0;
1205 #endif
1206 	p->hardirq_enable_ip = 0;
1207 	p->hardirq_enable_event = 0;
1208 	p->hardirq_disable_ip = _THIS_IP_;
1209 	p->hardirq_disable_event = 0;
1210 	p->softirqs_enabled = 1;
1211 	p->softirq_enable_ip = _THIS_IP_;
1212 	p->softirq_enable_event = 0;
1213 	p->softirq_disable_ip = 0;
1214 	p->softirq_disable_event = 0;
1215 	p->hardirq_context = 0;
1216 	p->softirq_context = 0;
1217 #endif
1218 #ifdef CONFIG_LOCKDEP
1219 	p->lockdep_depth = 0; /* no locks held yet */
1220 	p->curr_chain_key = 0;
1221 	p->lockdep_recursion = 0;
1222 #endif
1223 
1224 #ifdef CONFIG_DEBUG_MUTEXES
1225 	p->blocked_on = NULL; /* not blocked yet */
1226 #endif
1227 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1228 	p->memcg_batch.do_batch = 0;
1229 	p->memcg_batch.memcg = NULL;
1230 #endif
1231 
1232 	/* Perform scheduler related setup. Assign this task to a CPU. */
1233 	sched_fork(p);
1234 
1235 	retval = perf_event_init_task(p);
1236 	if (retval)
1237 		goto bad_fork_cleanup_policy;
1238 	retval = audit_alloc(p);
1239 	if (retval)
1240 		goto bad_fork_cleanup_policy;
1241 	/* copy all the process information */
1242 	retval = copy_semundo(clone_flags, p);
1243 	if (retval)
1244 		goto bad_fork_cleanup_audit;
1245 	retval = copy_files(clone_flags, p);
1246 	if (retval)
1247 		goto bad_fork_cleanup_semundo;
1248 	retval = copy_fs(clone_flags, p);
1249 	if (retval)
1250 		goto bad_fork_cleanup_files;
1251 	retval = copy_sighand(clone_flags, p);
1252 	if (retval)
1253 		goto bad_fork_cleanup_fs;
1254 	retval = copy_signal(clone_flags, p);
1255 	if (retval)
1256 		goto bad_fork_cleanup_sighand;
1257 	retval = copy_mm(clone_flags, p);
1258 	if (retval)
1259 		goto bad_fork_cleanup_signal;
1260 	retval = copy_namespaces(clone_flags, p);
1261 	if (retval)
1262 		goto bad_fork_cleanup_mm;
1263 	retval = copy_io(clone_flags, p);
1264 	if (retval)
1265 		goto bad_fork_cleanup_namespaces;
1266 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1267 	if (retval)
1268 		goto bad_fork_cleanup_io;
1269 
1270 	if (pid != &init_struct_pid) {
1271 		retval = -ENOMEM;
1272 		pid = alloc_pid(p->nsproxy->pid_ns);
1273 		if (!pid)
1274 			goto bad_fork_cleanup_io;
1275 	}
1276 
1277 	p->pid = pid_nr(pid);
1278 	p->tgid = p->pid;
1279 	if (clone_flags & CLONE_THREAD)
1280 		p->tgid = current->tgid;
1281 
1282 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1283 	/*
1284 	 * Clear TID on mm_release()?
1285 	 */
1286 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1287 #ifdef CONFIG_BLOCK
1288 	p->plug = NULL;
1289 #endif
1290 #ifdef CONFIG_FUTEX
1291 	p->robust_list = NULL;
1292 #ifdef CONFIG_COMPAT
1293 	p->compat_robust_list = NULL;
1294 #endif
1295 	INIT_LIST_HEAD(&p->pi_state_list);
1296 	p->pi_state_cache = NULL;
1297 #endif
1298 	/*
1299 	 * sigaltstack should be cleared when sharing the same VM
1300 	 */
1301 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1302 		p->sas_ss_sp = p->sas_ss_size = 0;
1303 
1304 	/*
1305 	 * Syscall tracing and stepping should be turned off in the
1306 	 * child regardless of CLONE_PTRACE.
1307 	 */
1308 	user_disable_single_step(p);
1309 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1310 #ifdef TIF_SYSCALL_EMU
1311 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1312 #endif
1313 	clear_all_latency_tracing(p);
1314 
1315 	/* ok, now we should be set up.. */
1316 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1317 	p->pdeath_signal = 0;
1318 	p->exit_state = 0;
1319 
1320 	p->nr_dirtied = 0;
1321 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1322 	p->dirty_paused_when = 0;
1323 
1324 	/*
1325 	 * Ok, make it visible to the rest of the system.
1326 	 * We dont wake it up yet.
1327 	 */
1328 	p->group_leader = p;
1329 	INIT_LIST_HEAD(&p->thread_group);
1330 
1331 	/* Now that the task is set up, run cgroup callbacks if
1332 	 * necessary. We need to run them before the task is visible
1333 	 * on the tasklist. */
1334 	cgroup_fork_callbacks(p);
1335 	cgroup_callbacks_done = 1;
1336 
1337 	/* Need tasklist lock for parent etc handling! */
1338 	write_lock_irq(&tasklist_lock);
1339 
1340 	/* CLONE_PARENT re-uses the old parent */
1341 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1342 		p->real_parent = current->real_parent;
1343 		p->parent_exec_id = current->parent_exec_id;
1344 	} else {
1345 		p->real_parent = current;
1346 		p->parent_exec_id = current->self_exec_id;
1347 	}
1348 
1349 	spin_lock(&current->sighand->siglock);
1350 
1351 	/*
1352 	 * Process group and session signals need to be delivered to just the
1353 	 * parent before the fork or both the parent and the child after the
1354 	 * fork. Restart if a signal comes in before we add the new process to
1355 	 * it's process group.
1356 	 * A fatal signal pending means that current will exit, so the new
1357 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1358 	*/
1359 	recalc_sigpending();
1360 	if (signal_pending(current)) {
1361 		spin_unlock(&current->sighand->siglock);
1362 		write_unlock_irq(&tasklist_lock);
1363 		retval = -ERESTARTNOINTR;
1364 		goto bad_fork_free_pid;
1365 	}
1366 
1367 	if (clone_flags & CLONE_THREAD) {
1368 		current->signal->nr_threads++;
1369 		atomic_inc(&current->signal->live);
1370 		atomic_inc(&current->signal->sigcnt);
1371 		p->group_leader = current->group_leader;
1372 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1373 	}
1374 
1375 	if (likely(p->pid)) {
1376 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1377 
1378 		if (thread_group_leader(p)) {
1379 			if (is_child_reaper(pid))
1380 				p->nsproxy->pid_ns->child_reaper = p;
1381 
1382 			p->signal->leader_pid = pid;
1383 			p->signal->tty = tty_kref_get(current->signal->tty);
1384 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1385 			attach_pid(p, PIDTYPE_SID, task_session(current));
1386 			list_add_tail(&p->sibling, &p->real_parent->children);
1387 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1388 			__this_cpu_inc(process_counts);
1389 		}
1390 		attach_pid(p, PIDTYPE_PID, pid);
1391 		nr_threads++;
1392 	}
1393 
1394 	total_forks++;
1395 	spin_unlock(&current->sighand->siglock);
1396 	write_unlock_irq(&tasklist_lock);
1397 	proc_fork_connector(p);
1398 	cgroup_post_fork(p);
1399 	if (clone_flags & CLONE_THREAD)
1400 		threadgroup_change_end(current);
1401 	perf_event_fork(p);
1402 
1403 	trace_task_newtask(p, clone_flags);
1404 
1405 	return p;
1406 
1407 bad_fork_free_pid:
1408 	if (pid != &init_struct_pid)
1409 		free_pid(pid);
1410 bad_fork_cleanup_io:
1411 	if (p->io_context)
1412 		exit_io_context(p);
1413 bad_fork_cleanup_namespaces:
1414 	exit_task_namespaces(p);
1415 bad_fork_cleanup_mm:
1416 	if (p->mm)
1417 		mmput(p->mm);
1418 bad_fork_cleanup_signal:
1419 	if (!(clone_flags & CLONE_THREAD))
1420 		free_signal_struct(p->signal);
1421 bad_fork_cleanup_sighand:
1422 	__cleanup_sighand(p->sighand);
1423 bad_fork_cleanup_fs:
1424 	exit_fs(p); /* blocking */
1425 bad_fork_cleanup_files:
1426 	exit_files(p); /* blocking */
1427 bad_fork_cleanup_semundo:
1428 	exit_sem(p);
1429 bad_fork_cleanup_audit:
1430 	audit_free(p);
1431 bad_fork_cleanup_policy:
1432 	perf_event_free_task(p);
1433 #ifdef CONFIG_NUMA
1434 	mpol_put(p->mempolicy);
1435 bad_fork_cleanup_cgroup:
1436 #endif
1437 	if (clone_flags & CLONE_THREAD)
1438 		threadgroup_change_end(current);
1439 	cgroup_exit(p, cgroup_callbacks_done);
1440 	delayacct_tsk_free(p);
1441 	module_put(task_thread_info(p)->exec_domain->module);
1442 bad_fork_cleanup_count:
1443 	atomic_dec(&p->cred->user->processes);
1444 	exit_creds(p);
1445 bad_fork_free:
1446 	free_task(p);
1447 fork_out:
1448 	return ERR_PTR(retval);
1449 }
1450 
1451 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1452 {
1453 	memset(regs, 0, sizeof(struct pt_regs));
1454 	return regs;
1455 }
1456 
1457 static inline void init_idle_pids(struct pid_link *links)
1458 {
1459 	enum pid_type type;
1460 
1461 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1462 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1463 		links[type].pid = &init_struct_pid;
1464 	}
1465 }
1466 
1467 struct task_struct * __cpuinit fork_idle(int cpu)
1468 {
1469 	struct task_struct *task;
1470 	struct pt_regs regs;
1471 
1472 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1473 			    &init_struct_pid, 0);
1474 	if (!IS_ERR(task)) {
1475 		init_idle_pids(task->pids);
1476 		init_idle(task, cpu);
1477 	}
1478 
1479 	return task;
1480 }
1481 
1482 /*
1483  *  Ok, this is the main fork-routine.
1484  *
1485  * It copies the process, and if successful kick-starts
1486  * it and waits for it to finish using the VM if required.
1487  */
1488 long do_fork(unsigned long clone_flags,
1489 	      unsigned long stack_start,
1490 	      struct pt_regs *regs,
1491 	      unsigned long stack_size,
1492 	      int __user *parent_tidptr,
1493 	      int __user *child_tidptr)
1494 {
1495 	struct task_struct *p;
1496 	int trace = 0;
1497 	long nr;
1498 
1499 	/*
1500 	 * Do some preliminary argument and permissions checking before we
1501 	 * actually start allocating stuff
1502 	 */
1503 	if (clone_flags & CLONE_NEWUSER) {
1504 		if (clone_flags & CLONE_THREAD)
1505 			return -EINVAL;
1506 		/* hopefully this check will go away when userns support is
1507 		 * complete
1508 		 */
1509 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1510 				!capable(CAP_SETGID))
1511 			return -EPERM;
1512 	}
1513 
1514 	/*
1515 	 * Determine whether and which event to report to ptracer.  When
1516 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1517 	 * requested, no event is reported; otherwise, report if the event
1518 	 * for the type of forking is enabled.
1519 	 */
1520 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1521 		if (clone_flags & CLONE_VFORK)
1522 			trace = PTRACE_EVENT_VFORK;
1523 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1524 			trace = PTRACE_EVENT_CLONE;
1525 		else
1526 			trace = PTRACE_EVENT_FORK;
1527 
1528 		if (likely(!ptrace_event_enabled(current, trace)))
1529 			trace = 0;
1530 	}
1531 
1532 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1533 			 child_tidptr, NULL, trace);
1534 	/*
1535 	 * Do this prior waking up the new thread - the thread pointer
1536 	 * might get invalid after that point, if the thread exits quickly.
1537 	 */
1538 	if (!IS_ERR(p)) {
1539 		struct completion vfork;
1540 
1541 		trace_sched_process_fork(current, p);
1542 
1543 		nr = task_pid_vnr(p);
1544 
1545 		if (clone_flags & CLONE_PARENT_SETTID)
1546 			put_user(nr, parent_tidptr);
1547 
1548 		if (clone_flags & CLONE_VFORK) {
1549 			p->vfork_done = &vfork;
1550 			init_completion(&vfork);
1551 		}
1552 
1553 		/*
1554 		 * We set PF_STARTING at creation in case tracing wants to
1555 		 * use this to distinguish a fully live task from one that
1556 		 * hasn't finished SIGSTOP raising yet.  Now we clear it
1557 		 * and set the child going.
1558 		 */
1559 		p->flags &= ~PF_STARTING;
1560 
1561 		wake_up_new_task(p);
1562 
1563 		/* forking complete and child started to run, tell ptracer */
1564 		if (unlikely(trace))
1565 			ptrace_event(trace, nr);
1566 
1567 		if (clone_flags & CLONE_VFORK) {
1568 			freezer_do_not_count();
1569 			wait_for_completion(&vfork);
1570 			freezer_count();
1571 			ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1572 		}
1573 	} else {
1574 		nr = PTR_ERR(p);
1575 	}
1576 	return nr;
1577 }
1578 
1579 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1580 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1581 #endif
1582 
1583 static void sighand_ctor(void *data)
1584 {
1585 	struct sighand_struct *sighand = data;
1586 
1587 	spin_lock_init(&sighand->siglock);
1588 	init_waitqueue_head(&sighand->signalfd_wqh);
1589 }
1590 
1591 void __init proc_caches_init(void)
1592 {
1593 	sighand_cachep = kmem_cache_create("sighand_cache",
1594 			sizeof(struct sighand_struct), 0,
1595 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1596 			SLAB_NOTRACK, sighand_ctor);
1597 	signal_cachep = kmem_cache_create("signal_cache",
1598 			sizeof(struct signal_struct), 0,
1599 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1600 	files_cachep = kmem_cache_create("files_cache",
1601 			sizeof(struct files_struct), 0,
1602 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1603 	fs_cachep = kmem_cache_create("fs_cache",
1604 			sizeof(struct fs_struct), 0,
1605 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1606 	/*
1607 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1608 	 * whole struct cpumask for the OFFSTACK case. We could change
1609 	 * this to *only* allocate as much of it as required by the
1610 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1611 	 * is at the end of the structure, exactly for that reason.
1612 	 */
1613 	mm_cachep = kmem_cache_create("mm_struct",
1614 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1615 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1616 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1617 	mmap_init();
1618 	nsproxy_cache_init();
1619 }
1620 
1621 /*
1622  * Check constraints on flags passed to the unshare system call.
1623  */
1624 static int check_unshare_flags(unsigned long unshare_flags)
1625 {
1626 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1627 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1628 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1629 		return -EINVAL;
1630 	/*
1631 	 * Not implemented, but pretend it works if there is nothing to
1632 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1633 	 * needs to unshare vm.
1634 	 */
1635 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1636 		/* FIXME: get_task_mm() increments ->mm_users */
1637 		if (atomic_read(&current->mm->mm_users) > 1)
1638 			return -EINVAL;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Unshare the filesystem structure if it is being shared
1646  */
1647 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1648 {
1649 	struct fs_struct *fs = current->fs;
1650 
1651 	if (!(unshare_flags & CLONE_FS) || !fs)
1652 		return 0;
1653 
1654 	/* don't need lock here; in the worst case we'll do useless copy */
1655 	if (fs->users == 1)
1656 		return 0;
1657 
1658 	*new_fsp = copy_fs_struct(fs);
1659 	if (!*new_fsp)
1660 		return -ENOMEM;
1661 
1662 	return 0;
1663 }
1664 
1665 /*
1666  * Unshare file descriptor table if it is being shared
1667  */
1668 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1669 {
1670 	struct files_struct *fd = current->files;
1671 	int error = 0;
1672 
1673 	if ((unshare_flags & CLONE_FILES) &&
1674 	    (fd && atomic_read(&fd->count) > 1)) {
1675 		*new_fdp = dup_fd(fd, &error);
1676 		if (!*new_fdp)
1677 			return error;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 /*
1684  * unshare allows a process to 'unshare' part of the process
1685  * context which was originally shared using clone.  copy_*
1686  * functions used by do_fork() cannot be used here directly
1687  * because they modify an inactive task_struct that is being
1688  * constructed. Here we are modifying the current, active,
1689  * task_struct.
1690  */
1691 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1692 {
1693 	struct fs_struct *fs, *new_fs = NULL;
1694 	struct files_struct *fd, *new_fd = NULL;
1695 	struct nsproxy *new_nsproxy = NULL;
1696 	int do_sysvsem = 0;
1697 	int err;
1698 
1699 	err = check_unshare_flags(unshare_flags);
1700 	if (err)
1701 		goto bad_unshare_out;
1702 
1703 	/*
1704 	 * If unsharing namespace, must also unshare filesystem information.
1705 	 */
1706 	if (unshare_flags & CLONE_NEWNS)
1707 		unshare_flags |= CLONE_FS;
1708 	/*
1709 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1710 	 * to a new ipc namespace, the semaphore arrays from the old
1711 	 * namespace are unreachable.
1712 	 */
1713 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1714 		do_sysvsem = 1;
1715 	err = unshare_fs(unshare_flags, &new_fs);
1716 	if (err)
1717 		goto bad_unshare_out;
1718 	err = unshare_fd(unshare_flags, &new_fd);
1719 	if (err)
1720 		goto bad_unshare_cleanup_fs;
1721 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1722 	if (err)
1723 		goto bad_unshare_cleanup_fd;
1724 
1725 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1726 		if (do_sysvsem) {
1727 			/*
1728 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1729 			 */
1730 			exit_sem(current);
1731 		}
1732 
1733 		if (new_nsproxy) {
1734 			switch_task_namespaces(current, new_nsproxy);
1735 			new_nsproxy = NULL;
1736 		}
1737 
1738 		task_lock(current);
1739 
1740 		if (new_fs) {
1741 			fs = current->fs;
1742 			spin_lock(&fs->lock);
1743 			current->fs = new_fs;
1744 			if (--fs->users)
1745 				new_fs = NULL;
1746 			else
1747 				new_fs = fs;
1748 			spin_unlock(&fs->lock);
1749 		}
1750 
1751 		if (new_fd) {
1752 			fd = current->files;
1753 			current->files = new_fd;
1754 			new_fd = fd;
1755 		}
1756 
1757 		task_unlock(current);
1758 	}
1759 
1760 	if (new_nsproxy)
1761 		put_nsproxy(new_nsproxy);
1762 
1763 bad_unshare_cleanup_fd:
1764 	if (new_fd)
1765 		put_files_struct(new_fd);
1766 
1767 bad_unshare_cleanup_fs:
1768 	if (new_fs)
1769 		free_fs_struct(new_fs);
1770 
1771 bad_unshare_out:
1772 	return err;
1773 }
1774 
1775 /*
1776  *	Helper to unshare the files of the current task.
1777  *	We don't want to expose copy_files internals to
1778  *	the exec layer of the kernel.
1779  */
1780 
1781 int unshare_files(struct files_struct **displaced)
1782 {
1783 	struct task_struct *task = current;
1784 	struct files_struct *copy = NULL;
1785 	int error;
1786 
1787 	error = unshare_fd(CLONE_FILES, &copy);
1788 	if (error || !copy) {
1789 		*displaced = NULL;
1790 		return error;
1791 	}
1792 	*displaced = task->files;
1793 	task_lock(task);
1794 	task->files = copy;
1795 	task_unlock(task);
1796 	return 0;
1797 }
1798