1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 dup_vma_anon_name(orig, new); 370 } 371 return new; 372 } 373 374 void vm_area_free(struct vm_area_struct *vma) 375 { 376 free_vma_anon_name(vma); 377 kmem_cache_free(vm_area_cachep, vma); 378 } 379 380 static void account_kernel_stack(struct task_struct *tsk, int account) 381 { 382 void *stack = task_stack_page(tsk); 383 struct vm_struct *vm = task_stack_vm_area(tsk); 384 385 if (vm) { 386 int i; 387 388 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 389 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 390 account * (PAGE_SIZE / 1024)); 391 } else { 392 /* All stack pages are in the same node. */ 393 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 394 account * (THREAD_SIZE / 1024)); 395 } 396 } 397 398 static int memcg_charge_kernel_stack(struct task_struct *tsk) 399 { 400 #ifdef CONFIG_VMAP_STACK 401 struct vm_struct *vm = task_stack_vm_area(tsk); 402 int ret; 403 404 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 405 406 if (vm) { 407 int i; 408 409 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 410 411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 412 /* 413 * If memcg_kmem_charge_page() fails, page's 414 * memory cgroup pointer is NULL, and 415 * memcg_kmem_uncharge_page() in free_thread_stack() 416 * will ignore this page. 417 */ 418 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 419 0); 420 if (ret) 421 return ret; 422 } 423 } 424 #endif 425 return 0; 426 } 427 428 static void release_task_stack(struct task_struct *tsk) 429 { 430 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 431 return; /* Better to leak the stack than to free prematurely */ 432 433 account_kernel_stack(tsk, -1); 434 free_thread_stack(tsk); 435 tsk->stack = NULL; 436 #ifdef CONFIG_VMAP_STACK 437 tsk->stack_vm_area = NULL; 438 #endif 439 } 440 441 #ifdef CONFIG_THREAD_INFO_IN_TASK 442 void put_task_stack(struct task_struct *tsk) 443 { 444 if (refcount_dec_and_test(&tsk->stack_refcount)) 445 release_task_stack(tsk); 446 } 447 #endif 448 449 void free_task(struct task_struct *tsk) 450 { 451 release_user_cpus_ptr(tsk); 452 scs_release(tsk); 453 454 #ifndef CONFIG_THREAD_INFO_IN_TASK 455 /* 456 * The task is finally done with both the stack and thread_info, 457 * so free both. 458 */ 459 release_task_stack(tsk); 460 #else 461 /* 462 * If the task had a separate stack allocation, it should be gone 463 * by now. 464 */ 465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 466 #endif 467 rt_mutex_debug_task_free(tsk); 468 ftrace_graph_exit_task(tsk); 469 arch_release_task_struct(tsk); 470 if (tsk->flags & PF_KTHREAD) 471 free_kthread_struct(tsk); 472 free_task_struct(tsk); 473 } 474 EXPORT_SYMBOL(free_task); 475 476 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 477 { 478 struct file *exe_file; 479 480 exe_file = get_mm_exe_file(oldmm); 481 RCU_INIT_POINTER(mm->exe_file, exe_file); 482 /* 483 * We depend on the oldmm having properly denied write access to the 484 * exe_file already. 485 */ 486 if (exe_file && deny_write_access(exe_file)) 487 pr_warn_once("deny_write_access() failed in %s\n", __func__); 488 } 489 490 #ifdef CONFIG_MMU 491 static __latent_entropy int dup_mmap(struct mm_struct *mm, 492 struct mm_struct *oldmm) 493 { 494 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 495 struct rb_node **rb_link, *rb_parent; 496 int retval; 497 unsigned long charge; 498 LIST_HEAD(uf); 499 500 uprobe_start_dup_mmap(); 501 if (mmap_write_lock_killable(oldmm)) { 502 retval = -EINTR; 503 goto fail_uprobe_end; 504 } 505 flush_cache_dup_mm(oldmm); 506 uprobe_dup_mmap(oldmm, mm); 507 /* 508 * Not linked in yet - no deadlock potential: 509 */ 510 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 511 512 /* No ordering required: file already has been exposed. */ 513 dup_mm_exe_file(mm, oldmm); 514 515 mm->total_vm = oldmm->total_vm; 516 mm->data_vm = oldmm->data_vm; 517 mm->exec_vm = oldmm->exec_vm; 518 mm->stack_vm = oldmm->stack_vm; 519 520 rb_link = &mm->mm_rb.rb_node; 521 rb_parent = NULL; 522 pprev = &mm->mmap; 523 retval = ksm_fork(mm, oldmm); 524 if (retval) 525 goto out; 526 retval = khugepaged_fork(mm, oldmm); 527 if (retval) 528 goto out; 529 530 prev = NULL; 531 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 532 struct file *file; 533 534 if (mpnt->vm_flags & VM_DONTCOPY) { 535 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 536 continue; 537 } 538 charge = 0; 539 /* 540 * Don't duplicate many vmas if we've been oom-killed (for 541 * example) 542 */ 543 if (fatal_signal_pending(current)) { 544 retval = -EINTR; 545 goto out; 546 } 547 if (mpnt->vm_flags & VM_ACCOUNT) { 548 unsigned long len = vma_pages(mpnt); 549 550 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 551 goto fail_nomem; 552 charge = len; 553 } 554 tmp = vm_area_dup(mpnt); 555 if (!tmp) 556 goto fail_nomem; 557 retval = vma_dup_policy(mpnt, tmp); 558 if (retval) 559 goto fail_nomem_policy; 560 tmp->vm_mm = mm; 561 retval = dup_userfaultfd(tmp, &uf); 562 if (retval) 563 goto fail_nomem_anon_vma_fork; 564 if (tmp->vm_flags & VM_WIPEONFORK) { 565 /* 566 * VM_WIPEONFORK gets a clean slate in the child. 567 * Don't prepare anon_vma until fault since we don't 568 * copy page for current vma. 569 */ 570 tmp->anon_vma = NULL; 571 } else if (anon_vma_fork(tmp, mpnt)) 572 goto fail_nomem_anon_vma_fork; 573 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 574 file = tmp->vm_file; 575 if (file) { 576 struct address_space *mapping = file->f_mapping; 577 578 get_file(file); 579 i_mmap_lock_write(mapping); 580 if (tmp->vm_flags & VM_SHARED) 581 mapping_allow_writable(mapping); 582 flush_dcache_mmap_lock(mapping); 583 /* insert tmp into the share list, just after mpnt */ 584 vma_interval_tree_insert_after(tmp, mpnt, 585 &mapping->i_mmap); 586 flush_dcache_mmap_unlock(mapping); 587 i_mmap_unlock_write(mapping); 588 } 589 590 /* 591 * Clear hugetlb-related page reserves for children. This only 592 * affects MAP_PRIVATE mappings. Faults generated by the child 593 * are not guaranteed to succeed, even if read-only 594 */ 595 if (is_vm_hugetlb_page(tmp)) 596 reset_vma_resv_huge_pages(tmp); 597 598 /* 599 * Link in the new vma and copy the page table entries. 600 */ 601 *pprev = tmp; 602 pprev = &tmp->vm_next; 603 tmp->vm_prev = prev; 604 prev = tmp; 605 606 __vma_link_rb(mm, tmp, rb_link, rb_parent); 607 rb_link = &tmp->vm_rb.rb_right; 608 rb_parent = &tmp->vm_rb; 609 610 mm->map_count++; 611 if (!(tmp->vm_flags & VM_WIPEONFORK)) 612 retval = copy_page_range(tmp, mpnt); 613 614 if (tmp->vm_ops && tmp->vm_ops->open) 615 tmp->vm_ops->open(tmp); 616 617 if (retval) 618 goto out; 619 } 620 /* a new mm has just been created */ 621 retval = arch_dup_mmap(oldmm, mm); 622 out: 623 mmap_write_unlock(mm); 624 flush_tlb_mm(oldmm); 625 mmap_write_unlock(oldmm); 626 dup_userfaultfd_complete(&uf); 627 fail_uprobe_end: 628 uprobe_end_dup_mmap(); 629 return retval; 630 fail_nomem_anon_vma_fork: 631 mpol_put(vma_policy(tmp)); 632 fail_nomem_policy: 633 vm_area_free(tmp); 634 fail_nomem: 635 retval = -ENOMEM; 636 vm_unacct_memory(charge); 637 goto out; 638 } 639 640 static inline int mm_alloc_pgd(struct mm_struct *mm) 641 { 642 mm->pgd = pgd_alloc(mm); 643 if (unlikely(!mm->pgd)) 644 return -ENOMEM; 645 return 0; 646 } 647 648 static inline void mm_free_pgd(struct mm_struct *mm) 649 { 650 pgd_free(mm, mm->pgd); 651 } 652 #else 653 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 654 { 655 mmap_write_lock(oldmm); 656 dup_mm_exe_file(mm, oldmm); 657 mmap_write_unlock(oldmm); 658 return 0; 659 } 660 #define mm_alloc_pgd(mm) (0) 661 #define mm_free_pgd(mm) 662 #endif /* CONFIG_MMU */ 663 664 static void check_mm(struct mm_struct *mm) 665 { 666 int i; 667 668 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 669 "Please make sure 'struct resident_page_types[]' is updated as well"); 670 671 for (i = 0; i < NR_MM_COUNTERS; i++) { 672 long x = atomic_long_read(&mm->rss_stat.count[i]); 673 674 if (unlikely(x)) 675 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 676 mm, resident_page_types[i], x); 677 } 678 679 if (mm_pgtables_bytes(mm)) 680 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 681 mm_pgtables_bytes(mm)); 682 683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 684 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 685 #endif 686 } 687 688 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 689 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 690 691 /* 692 * Called when the last reference to the mm 693 * is dropped: either by a lazy thread or by 694 * mmput. Free the page directory and the mm. 695 */ 696 void __mmdrop(struct mm_struct *mm) 697 { 698 BUG_ON(mm == &init_mm); 699 WARN_ON_ONCE(mm == current->mm); 700 WARN_ON_ONCE(mm == current->active_mm); 701 mm_free_pgd(mm); 702 destroy_context(mm); 703 mmu_notifier_subscriptions_destroy(mm); 704 check_mm(mm); 705 put_user_ns(mm->user_ns); 706 free_mm(mm); 707 } 708 EXPORT_SYMBOL_GPL(__mmdrop); 709 710 static void mmdrop_async_fn(struct work_struct *work) 711 { 712 struct mm_struct *mm; 713 714 mm = container_of(work, struct mm_struct, async_put_work); 715 __mmdrop(mm); 716 } 717 718 static void mmdrop_async(struct mm_struct *mm) 719 { 720 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 721 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 722 schedule_work(&mm->async_put_work); 723 } 724 } 725 726 static inline void free_signal_struct(struct signal_struct *sig) 727 { 728 taskstats_tgid_free(sig); 729 sched_autogroup_exit(sig); 730 /* 731 * __mmdrop is not safe to call from softirq context on x86 due to 732 * pgd_dtor so postpone it to the async context 733 */ 734 if (sig->oom_mm) 735 mmdrop_async(sig->oom_mm); 736 kmem_cache_free(signal_cachep, sig); 737 } 738 739 static inline void put_signal_struct(struct signal_struct *sig) 740 { 741 if (refcount_dec_and_test(&sig->sigcnt)) 742 free_signal_struct(sig); 743 } 744 745 void __put_task_struct(struct task_struct *tsk) 746 { 747 WARN_ON(!tsk->exit_state); 748 WARN_ON(refcount_read(&tsk->usage)); 749 WARN_ON(tsk == current); 750 751 io_uring_free(tsk); 752 cgroup_free(tsk); 753 task_numa_free(tsk, true); 754 security_task_free(tsk); 755 bpf_task_storage_free(tsk); 756 exit_creds(tsk); 757 delayacct_tsk_free(tsk); 758 put_signal_struct(tsk->signal); 759 sched_core_free(tsk); 760 761 if (!profile_handoff_task(tsk)) 762 free_task(tsk); 763 } 764 EXPORT_SYMBOL_GPL(__put_task_struct); 765 766 void __init __weak arch_task_cache_init(void) { } 767 768 /* 769 * set_max_threads 770 */ 771 static void set_max_threads(unsigned int max_threads_suggested) 772 { 773 u64 threads; 774 unsigned long nr_pages = totalram_pages(); 775 776 /* 777 * The number of threads shall be limited such that the thread 778 * structures may only consume a small part of the available memory. 779 */ 780 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 781 threads = MAX_THREADS; 782 else 783 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 784 (u64) THREAD_SIZE * 8UL); 785 786 if (threads > max_threads_suggested) 787 threads = max_threads_suggested; 788 789 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 790 } 791 792 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 793 /* Initialized by the architecture: */ 794 int arch_task_struct_size __read_mostly; 795 #endif 796 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 799 { 800 /* Fetch thread_struct whitelist for the architecture. */ 801 arch_thread_struct_whitelist(offset, size); 802 803 /* 804 * Handle zero-sized whitelist or empty thread_struct, otherwise 805 * adjust offset to position of thread_struct in task_struct. 806 */ 807 if (unlikely(*size == 0)) 808 *offset = 0; 809 else 810 *offset += offsetof(struct task_struct, thread); 811 } 812 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 813 814 void __init fork_init(void) 815 { 816 int i; 817 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 818 #ifndef ARCH_MIN_TASKALIGN 819 #define ARCH_MIN_TASKALIGN 0 820 #endif 821 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 822 unsigned long useroffset, usersize; 823 824 /* create a slab on which task_structs can be allocated */ 825 task_struct_whitelist(&useroffset, &usersize); 826 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 827 arch_task_struct_size, align, 828 SLAB_PANIC|SLAB_ACCOUNT, 829 useroffset, usersize, NULL); 830 #endif 831 832 /* do the arch specific task caches init */ 833 arch_task_cache_init(); 834 835 set_max_threads(MAX_THREADS); 836 837 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 838 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 839 init_task.signal->rlim[RLIMIT_SIGPENDING] = 840 init_task.signal->rlim[RLIMIT_NPROC]; 841 842 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 843 init_user_ns.ucount_max[i] = max_threads/2; 844 845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 846 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 847 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 848 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 849 850 #ifdef CONFIG_VMAP_STACK 851 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 852 NULL, free_vm_stack_cache); 853 #endif 854 855 scs_init(); 856 857 lockdep_init_task(&init_task); 858 uprobes_init(); 859 } 860 861 int __weak arch_dup_task_struct(struct task_struct *dst, 862 struct task_struct *src) 863 { 864 *dst = *src; 865 return 0; 866 } 867 868 void set_task_stack_end_magic(struct task_struct *tsk) 869 { 870 unsigned long *stackend; 871 872 stackend = end_of_stack(tsk); 873 *stackend = STACK_END_MAGIC; /* for overflow detection */ 874 } 875 876 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 877 { 878 struct task_struct *tsk; 879 unsigned long *stack; 880 struct vm_struct *stack_vm_area __maybe_unused; 881 int err; 882 883 if (node == NUMA_NO_NODE) 884 node = tsk_fork_get_node(orig); 885 tsk = alloc_task_struct_node(node); 886 if (!tsk) 887 return NULL; 888 889 stack = alloc_thread_stack_node(tsk, node); 890 if (!stack) 891 goto free_tsk; 892 893 if (memcg_charge_kernel_stack(tsk)) 894 goto free_stack; 895 896 stack_vm_area = task_stack_vm_area(tsk); 897 898 err = arch_dup_task_struct(tsk, orig); 899 900 /* 901 * arch_dup_task_struct() clobbers the stack-related fields. Make 902 * sure they're properly initialized before using any stack-related 903 * functions again. 904 */ 905 tsk->stack = stack; 906 #ifdef CONFIG_VMAP_STACK 907 tsk->stack_vm_area = stack_vm_area; 908 #endif 909 #ifdef CONFIG_THREAD_INFO_IN_TASK 910 refcount_set(&tsk->stack_refcount, 1); 911 #endif 912 913 if (err) 914 goto free_stack; 915 916 err = scs_prepare(tsk, node); 917 if (err) 918 goto free_stack; 919 920 #ifdef CONFIG_SECCOMP 921 /* 922 * We must handle setting up seccomp filters once we're under 923 * the sighand lock in case orig has changed between now and 924 * then. Until then, filter must be NULL to avoid messing up 925 * the usage counts on the error path calling free_task. 926 */ 927 tsk->seccomp.filter = NULL; 928 #endif 929 930 setup_thread_stack(tsk, orig); 931 clear_user_return_notifier(tsk); 932 clear_tsk_need_resched(tsk); 933 set_task_stack_end_magic(tsk); 934 clear_syscall_work_syscall_user_dispatch(tsk); 935 936 #ifdef CONFIG_STACKPROTECTOR 937 tsk->stack_canary = get_random_canary(); 938 #endif 939 if (orig->cpus_ptr == &orig->cpus_mask) 940 tsk->cpus_ptr = &tsk->cpus_mask; 941 dup_user_cpus_ptr(tsk, orig, node); 942 943 /* 944 * One for the user space visible state that goes away when reaped. 945 * One for the scheduler. 946 */ 947 refcount_set(&tsk->rcu_users, 2); 948 /* One for the rcu users */ 949 refcount_set(&tsk->usage, 1); 950 #ifdef CONFIG_BLK_DEV_IO_TRACE 951 tsk->btrace_seq = 0; 952 #endif 953 tsk->splice_pipe = NULL; 954 tsk->task_frag.page = NULL; 955 tsk->wake_q.next = NULL; 956 tsk->pf_io_worker = NULL; 957 958 account_kernel_stack(tsk, 1); 959 960 kcov_task_init(tsk); 961 kmap_local_fork(tsk); 962 963 #ifdef CONFIG_FAULT_INJECTION 964 tsk->fail_nth = 0; 965 #endif 966 967 #ifdef CONFIG_BLK_CGROUP 968 tsk->throttle_queue = NULL; 969 tsk->use_memdelay = 0; 970 #endif 971 972 #ifdef CONFIG_MEMCG 973 tsk->active_memcg = NULL; 974 #endif 975 return tsk; 976 977 free_stack: 978 free_thread_stack(tsk); 979 free_tsk: 980 free_task_struct(tsk); 981 return NULL; 982 } 983 984 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 985 986 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 987 988 static int __init coredump_filter_setup(char *s) 989 { 990 default_dump_filter = 991 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 992 MMF_DUMP_FILTER_MASK; 993 return 1; 994 } 995 996 __setup("coredump_filter=", coredump_filter_setup); 997 998 #include <linux/init_task.h> 999 1000 static void mm_init_aio(struct mm_struct *mm) 1001 { 1002 #ifdef CONFIG_AIO 1003 spin_lock_init(&mm->ioctx_lock); 1004 mm->ioctx_table = NULL; 1005 #endif 1006 } 1007 1008 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1009 struct task_struct *p) 1010 { 1011 #ifdef CONFIG_MEMCG 1012 if (mm->owner == p) 1013 WRITE_ONCE(mm->owner, NULL); 1014 #endif 1015 } 1016 1017 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1018 { 1019 #ifdef CONFIG_MEMCG 1020 mm->owner = p; 1021 #endif 1022 } 1023 1024 static void mm_init_pasid(struct mm_struct *mm) 1025 { 1026 #ifdef CONFIG_IOMMU_SUPPORT 1027 mm->pasid = INIT_PASID; 1028 #endif 1029 } 1030 1031 static void mm_init_uprobes_state(struct mm_struct *mm) 1032 { 1033 #ifdef CONFIG_UPROBES 1034 mm->uprobes_state.xol_area = NULL; 1035 #endif 1036 } 1037 1038 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1039 struct user_namespace *user_ns) 1040 { 1041 mm->mmap = NULL; 1042 mm->mm_rb = RB_ROOT; 1043 mm->vmacache_seqnum = 0; 1044 atomic_set(&mm->mm_users, 1); 1045 atomic_set(&mm->mm_count, 1); 1046 seqcount_init(&mm->write_protect_seq); 1047 mmap_init_lock(mm); 1048 INIT_LIST_HEAD(&mm->mmlist); 1049 mm_pgtables_bytes_init(mm); 1050 mm->map_count = 0; 1051 mm->locked_vm = 0; 1052 atomic64_set(&mm->pinned_vm, 0); 1053 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1054 spin_lock_init(&mm->page_table_lock); 1055 spin_lock_init(&mm->arg_lock); 1056 mm_init_cpumask(mm); 1057 mm_init_aio(mm); 1058 mm_init_owner(mm, p); 1059 mm_init_pasid(mm); 1060 RCU_INIT_POINTER(mm->exe_file, NULL); 1061 mmu_notifier_subscriptions_init(mm); 1062 init_tlb_flush_pending(mm); 1063 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1064 mm->pmd_huge_pte = NULL; 1065 #endif 1066 mm_init_uprobes_state(mm); 1067 hugetlb_count_init(mm); 1068 1069 if (current->mm) { 1070 mm->flags = current->mm->flags & MMF_INIT_MASK; 1071 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1072 } else { 1073 mm->flags = default_dump_filter; 1074 mm->def_flags = 0; 1075 } 1076 1077 if (mm_alloc_pgd(mm)) 1078 goto fail_nopgd; 1079 1080 if (init_new_context(p, mm)) 1081 goto fail_nocontext; 1082 1083 mm->user_ns = get_user_ns(user_ns); 1084 return mm; 1085 1086 fail_nocontext: 1087 mm_free_pgd(mm); 1088 fail_nopgd: 1089 free_mm(mm); 1090 return NULL; 1091 } 1092 1093 /* 1094 * Allocate and initialize an mm_struct. 1095 */ 1096 struct mm_struct *mm_alloc(void) 1097 { 1098 struct mm_struct *mm; 1099 1100 mm = allocate_mm(); 1101 if (!mm) 1102 return NULL; 1103 1104 memset(mm, 0, sizeof(*mm)); 1105 return mm_init(mm, current, current_user_ns()); 1106 } 1107 1108 static inline void __mmput(struct mm_struct *mm) 1109 { 1110 VM_BUG_ON(atomic_read(&mm->mm_users)); 1111 1112 uprobe_clear_state(mm); 1113 exit_aio(mm); 1114 ksm_exit(mm); 1115 khugepaged_exit(mm); /* must run before exit_mmap */ 1116 exit_mmap(mm); 1117 mm_put_huge_zero_page(mm); 1118 set_mm_exe_file(mm, NULL); 1119 if (!list_empty(&mm->mmlist)) { 1120 spin_lock(&mmlist_lock); 1121 list_del(&mm->mmlist); 1122 spin_unlock(&mmlist_lock); 1123 } 1124 if (mm->binfmt) 1125 module_put(mm->binfmt->module); 1126 mmdrop(mm); 1127 } 1128 1129 /* 1130 * Decrement the use count and release all resources for an mm. 1131 */ 1132 void mmput(struct mm_struct *mm) 1133 { 1134 might_sleep(); 1135 1136 if (atomic_dec_and_test(&mm->mm_users)) 1137 __mmput(mm); 1138 } 1139 EXPORT_SYMBOL_GPL(mmput); 1140 1141 #ifdef CONFIG_MMU 1142 static void mmput_async_fn(struct work_struct *work) 1143 { 1144 struct mm_struct *mm = container_of(work, struct mm_struct, 1145 async_put_work); 1146 1147 __mmput(mm); 1148 } 1149 1150 void mmput_async(struct mm_struct *mm) 1151 { 1152 if (atomic_dec_and_test(&mm->mm_users)) { 1153 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1154 schedule_work(&mm->async_put_work); 1155 } 1156 } 1157 #endif 1158 1159 /** 1160 * set_mm_exe_file - change a reference to the mm's executable file 1161 * 1162 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1163 * 1164 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1165 * invocations: in mmput() nobody alive left, in execve task is single 1166 * threaded. 1167 * 1168 * Can only fail if new_exe_file != NULL. 1169 */ 1170 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1171 { 1172 struct file *old_exe_file; 1173 1174 /* 1175 * It is safe to dereference the exe_file without RCU as 1176 * this function is only called if nobody else can access 1177 * this mm -- see comment above for justification. 1178 */ 1179 old_exe_file = rcu_dereference_raw(mm->exe_file); 1180 1181 if (new_exe_file) { 1182 /* 1183 * We expect the caller (i.e., sys_execve) to already denied 1184 * write access, so this is unlikely to fail. 1185 */ 1186 if (unlikely(deny_write_access(new_exe_file))) 1187 return -EACCES; 1188 get_file(new_exe_file); 1189 } 1190 rcu_assign_pointer(mm->exe_file, new_exe_file); 1191 if (old_exe_file) { 1192 allow_write_access(old_exe_file); 1193 fput(old_exe_file); 1194 } 1195 return 0; 1196 } 1197 1198 /** 1199 * replace_mm_exe_file - replace a reference to the mm's executable file 1200 * 1201 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1202 * dealing with concurrent invocation and without grabbing the mmap lock in 1203 * write mode. 1204 * 1205 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1206 */ 1207 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1208 { 1209 struct vm_area_struct *vma; 1210 struct file *old_exe_file; 1211 int ret = 0; 1212 1213 /* Forbid mm->exe_file change if old file still mapped. */ 1214 old_exe_file = get_mm_exe_file(mm); 1215 if (old_exe_file) { 1216 mmap_read_lock(mm); 1217 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1218 if (!vma->vm_file) 1219 continue; 1220 if (path_equal(&vma->vm_file->f_path, 1221 &old_exe_file->f_path)) 1222 ret = -EBUSY; 1223 } 1224 mmap_read_unlock(mm); 1225 fput(old_exe_file); 1226 if (ret) 1227 return ret; 1228 } 1229 1230 /* set the new file, lockless */ 1231 ret = deny_write_access(new_exe_file); 1232 if (ret) 1233 return -EACCES; 1234 get_file(new_exe_file); 1235 1236 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1237 if (old_exe_file) { 1238 /* 1239 * Don't race with dup_mmap() getting the file and disallowing 1240 * write access while someone might open the file writable. 1241 */ 1242 mmap_read_lock(mm); 1243 allow_write_access(old_exe_file); 1244 fput(old_exe_file); 1245 mmap_read_unlock(mm); 1246 } 1247 return 0; 1248 } 1249 1250 /** 1251 * get_mm_exe_file - acquire a reference to the mm's executable file 1252 * 1253 * Returns %NULL if mm has no associated executable file. 1254 * User must release file via fput(). 1255 */ 1256 struct file *get_mm_exe_file(struct mm_struct *mm) 1257 { 1258 struct file *exe_file; 1259 1260 rcu_read_lock(); 1261 exe_file = rcu_dereference(mm->exe_file); 1262 if (exe_file && !get_file_rcu(exe_file)) 1263 exe_file = NULL; 1264 rcu_read_unlock(); 1265 return exe_file; 1266 } 1267 1268 /** 1269 * get_task_exe_file - acquire a reference to the task's executable file 1270 * 1271 * Returns %NULL if task's mm (if any) has no associated executable file or 1272 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1273 * User must release file via fput(). 1274 */ 1275 struct file *get_task_exe_file(struct task_struct *task) 1276 { 1277 struct file *exe_file = NULL; 1278 struct mm_struct *mm; 1279 1280 task_lock(task); 1281 mm = task->mm; 1282 if (mm) { 1283 if (!(task->flags & PF_KTHREAD)) 1284 exe_file = get_mm_exe_file(mm); 1285 } 1286 task_unlock(task); 1287 return exe_file; 1288 } 1289 1290 /** 1291 * get_task_mm - acquire a reference to the task's mm 1292 * 1293 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1294 * this kernel workthread has transiently adopted a user mm with use_mm, 1295 * to do its AIO) is not set and if so returns a reference to it, after 1296 * bumping up the use count. User must release the mm via mmput() 1297 * after use. Typically used by /proc and ptrace. 1298 */ 1299 struct mm_struct *get_task_mm(struct task_struct *task) 1300 { 1301 struct mm_struct *mm; 1302 1303 task_lock(task); 1304 mm = task->mm; 1305 if (mm) { 1306 if (task->flags & PF_KTHREAD) 1307 mm = NULL; 1308 else 1309 mmget(mm); 1310 } 1311 task_unlock(task); 1312 return mm; 1313 } 1314 EXPORT_SYMBOL_GPL(get_task_mm); 1315 1316 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1317 { 1318 struct mm_struct *mm; 1319 int err; 1320 1321 err = down_read_killable(&task->signal->exec_update_lock); 1322 if (err) 1323 return ERR_PTR(err); 1324 1325 mm = get_task_mm(task); 1326 if (mm && mm != current->mm && 1327 !ptrace_may_access(task, mode)) { 1328 mmput(mm); 1329 mm = ERR_PTR(-EACCES); 1330 } 1331 up_read(&task->signal->exec_update_lock); 1332 1333 return mm; 1334 } 1335 1336 static void complete_vfork_done(struct task_struct *tsk) 1337 { 1338 struct completion *vfork; 1339 1340 task_lock(tsk); 1341 vfork = tsk->vfork_done; 1342 if (likely(vfork)) { 1343 tsk->vfork_done = NULL; 1344 complete(vfork); 1345 } 1346 task_unlock(tsk); 1347 } 1348 1349 static int wait_for_vfork_done(struct task_struct *child, 1350 struct completion *vfork) 1351 { 1352 int killed; 1353 1354 freezer_do_not_count(); 1355 cgroup_enter_frozen(); 1356 killed = wait_for_completion_killable(vfork); 1357 cgroup_leave_frozen(false); 1358 freezer_count(); 1359 1360 if (killed) { 1361 task_lock(child); 1362 child->vfork_done = NULL; 1363 task_unlock(child); 1364 } 1365 1366 put_task_struct(child); 1367 return killed; 1368 } 1369 1370 /* Please note the differences between mmput and mm_release. 1371 * mmput is called whenever we stop holding onto a mm_struct, 1372 * error success whatever. 1373 * 1374 * mm_release is called after a mm_struct has been removed 1375 * from the current process. 1376 * 1377 * This difference is important for error handling, when we 1378 * only half set up a mm_struct for a new process and need to restore 1379 * the old one. Because we mmput the new mm_struct before 1380 * restoring the old one. . . 1381 * Eric Biederman 10 January 1998 1382 */ 1383 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1384 { 1385 uprobe_free_utask(tsk); 1386 1387 /* Get rid of any cached register state */ 1388 deactivate_mm(tsk, mm); 1389 1390 /* 1391 * Signal userspace if we're not exiting with a core dump 1392 * because we want to leave the value intact for debugging 1393 * purposes. 1394 */ 1395 if (tsk->clear_child_tid) { 1396 if (atomic_read(&mm->mm_users) > 1) { 1397 /* 1398 * We don't check the error code - if userspace has 1399 * not set up a proper pointer then tough luck. 1400 */ 1401 put_user(0, tsk->clear_child_tid); 1402 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1403 1, NULL, NULL, 0, 0); 1404 } 1405 tsk->clear_child_tid = NULL; 1406 } 1407 1408 /* 1409 * All done, finally we can wake up parent and return this mm to him. 1410 * Also kthread_stop() uses this completion for synchronization. 1411 */ 1412 if (tsk->vfork_done) 1413 complete_vfork_done(tsk); 1414 } 1415 1416 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1417 { 1418 futex_exit_release(tsk); 1419 mm_release(tsk, mm); 1420 } 1421 1422 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1423 { 1424 futex_exec_release(tsk); 1425 mm_release(tsk, mm); 1426 } 1427 1428 /** 1429 * dup_mm() - duplicates an existing mm structure 1430 * @tsk: the task_struct with which the new mm will be associated. 1431 * @oldmm: the mm to duplicate. 1432 * 1433 * Allocates a new mm structure and duplicates the provided @oldmm structure 1434 * content into it. 1435 * 1436 * Return: the duplicated mm or NULL on failure. 1437 */ 1438 static struct mm_struct *dup_mm(struct task_struct *tsk, 1439 struct mm_struct *oldmm) 1440 { 1441 struct mm_struct *mm; 1442 int err; 1443 1444 mm = allocate_mm(); 1445 if (!mm) 1446 goto fail_nomem; 1447 1448 memcpy(mm, oldmm, sizeof(*mm)); 1449 1450 if (!mm_init(mm, tsk, mm->user_ns)) 1451 goto fail_nomem; 1452 1453 err = dup_mmap(mm, oldmm); 1454 if (err) 1455 goto free_pt; 1456 1457 mm->hiwater_rss = get_mm_rss(mm); 1458 mm->hiwater_vm = mm->total_vm; 1459 1460 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1461 goto free_pt; 1462 1463 return mm; 1464 1465 free_pt: 1466 /* don't put binfmt in mmput, we haven't got module yet */ 1467 mm->binfmt = NULL; 1468 mm_init_owner(mm, NULL); 1469 mmput(mm); 1470 1471 fail_nomem: 1472 return NULL; 1473 } 1474 1475 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1476 { 1477 struct mm_struct *mm, *oldmm; 1478 1479 tsk->min_flt = tsk->maj_flt = 0; 1480 tsk->nvcsw = tsk->nivcsw = 0; 1481 #ifdef CONFIG_DETECT_HUNG_TASK 1482 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1483 tsk->last_switch_time = 0; 1484 #endif 1485 1486 tsk->mm = NULL; 1487 tsk->active_mm = NULL; 1488 1489 /* 1490 * Are we cloning a kernel thread? 1491 * 1492 * We need to steal a active VM for that.. 1493 */ 1494 oldmm = current->mm; 1495 if (!oldmm) 1496 return 0; 1497 1498 /* initialize the new vmacache entries */ 1499 vmacache_flush(tsk); 1500 1501 if (clone_flags & CLONE_VM) { 1502 mmget(oldmm); 1503 mm = oldmm; 1504 } else { 1505 mm = dup_mm(tsk, current->mm); 1506 if (!mm) 1507 return -ENOMEM; 1508 } 1509 1510 tsk->mm = mm; 1511 tsk->active_mm = mm; 1512 return 0; 1513 } 1514 1515 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1516 { 1517 struct fs_struct *fs = current->fs; 1518 if (clone_flags & CLONE_FS) { 1519 /* tsk->fs is already what we want */ 1520 spin_lock(&fs->lock); 1521 if (fs->in_exec) { 1522 spin_unlock(&fs->lock); 1523 return -EAGAIN; 1524 } 1525 fs->users++; 1526 spin_unlock(&fs->lock); 1527 return 0; 1528 } 1529 tsk->fs = copy_fs_struct(fs); 1530 if (!tsk->fs) 1531 return -ENOMEM; 1532 return 0; 1533 } 1534 1535 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1536 { 1537 struct files_struct *oldf, *newf; 1538 int error = 0; 1539 1540 /* 1541 * A background process may not have any files ... 1542 */ 1543 oldf = current->files; 1544 if (!oldf) 1545 goto out; 1546 1547 if (clone_flags & CLONE_FILES) { 1548 atomic_inc(&oldf->count); 1549 goto out; 1550 } 1551 1552 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1553 if (!newf) 1554 goto out; 1555 1556 tsk->files = newf; 1557 error = 0; 1558 out: 1559 return error; 1560 } 1561 1562 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1563 { 1564 struct sighand_struct *sig; 1565 1566 if (clone_flags & CLONE_SIGHAND) { 1567 refcount_inc(¤t->sighand->count); 1568 return 0; 1569 } 1570 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1571 RCU_INIT_POINTER(tsk->sighand, sig); 1572 if (!sig) 1573 return -ENOMEM; 1574 1575 refcount_set(&sig->count, 1); 1576 spin_lock_irq(¤t->sighand->siglock); 1577 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1578 spin_unlock_irq(¤t->sighand->siglock); 1579 1580 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1581 if (clone_flags & CLONE_CLEAR_SIGHAND) 1582 flush_signal_handlers(tsk, 0); 1583 1584 return 0; 1585 } 1586 1587 void __cleanup_sighand(struct sighand_struct *sighand) 1588 { 1589 if (refcount_dec_and_test(&sighand->count)) { 1590 signalfd_cleanup(sighand); 1591 /* 1592 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1593 * without an RCU grace period, see __lock_task_sighand(). 1594 */ 1595 kmem_cache_free(sighand_cachep, sighand); 1596 } 1597 } 1598 1599 /* 1600 * Initialize POSIX timer handling for a thread group. 1601 */ 1602 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1603 { 1604 struct posix_cputimers *pct = &sig->posix_cputimers; 1605 unsigned long cpu_limit; 1606 1607 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1608 posix_cputimers_group_init(pct, cpu_limit); 1609 } 1610 1611 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1612 { 1613 struct signal_struct *sig; 1614 1615 if (clone_flags & CLONE_THREAD) 1616 return 0; 1617 1618 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1619 tsk->signal = sig; 1620 if (!sig) 1621 return -ENOMEM; 1622 1623 sig->nr_threads = 1; 1624 atomic_set(&sig->live, 1); 1625 refcount_set(&sig->sigcnt, 1); 1626 1627 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1628 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1629 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1630 1631 init_waitqueue_head(&sig->wait_chldexit); 1632 sig->curr_target = tsk; 1633 init_sigpending(&sig->shared_pending); 1634 INIT_HLIST_HEAD(&sig->multiprocess); 1635 seqlock_init(&sig->stats_lock); 1636 prev_cputime_init(&sig->prev_cputime); 1637 1638 #ifdef CONFIG_POSIX_TIMERS 1639 INIT_LIST_HEAD(&sig->posix_timers); 1640 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1641 sig->real_timer.function = it_real_fn; 1642 #endif 1643 1644 task_lock(current->group_leader); 1645 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1646 task_unlock(current->group_leader); 1647 1648 posix_cpu_timers_init_group(sig); 1649 1650 tty_audit_fork(sig); 1651 sched_autogroup_fork(sig); 1652 1653 sig->oom_score_adj = current->signal->oom_score_adj; 1654 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1655 1656 mutex_init(&sig->cred_guard_mutex); 1657 init_rwsem(&sig->exec_update_lock); 1658 1659 return 0; 1660 } 1661 1662 static void copy_seccomp(struct task_struct *p) 1663 { 1664 #ifdef CONFIG_SECCOMP 1665 /* 1666 * Must be called with sighand->lock held, which is common to 1667 * all threads in the group. Holding cred_guard_mutex is not 1668 * needed because this new task is not yet running and cannot 1669 * be racing exec. 1670 */ 1671 assert_spin_locked(¤t->sighand->siglock); 1672 1673 /* Ref-count the new filter user, and assign it. */ 1674 get_seccomp_filter(current); 1675 p->seccomp = current->seccomp; 1676 1677 /* 1678 * Explicitly enable no_new_privs here in case it got set 1679 * between the task_struct being duplicated and holding the 1680 * sighand lock. The seccomp state and nnp must be in sync. 1681 */ 1682 if (task_no_new_privs(current)) 1683 task_set_no_new_privs(p); 1684 1685 /* 1686 * If the parent gained a seccomp mode after copying thread 1687 * flags and between before we held the sighand lock, we have 1688 * to manually enable the seccomp thread flag here. 1689 */ 1690 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1691 set_task_syscall_work(p, SECCOMP); 1692 #endif 1693 } 1694 1695 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1696 { 1697 current->clear_child_tid = tidptr; 1698 1699 return task_pid_vnr(current); 1700 } 1701 1702 static void rt_mutex_init_task(struct task_struct *p) 1703 { 1704 raw_spin_lock_init(&p->pi_lock); 1705 #ifdef CONFIG_RT_MUTEXES 1706 p->pi_waiters = RB_ROOT_CACHED; 1707 p->pi_top_task = NULL; 1708 p->pi_blocked_on = NULL; 1709 #endif 1710 } 1711 1712 static inline void init_task_pid_links(struct task_struct *task) 1713 { 1714 enum pid_type type; 1715 1716 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1717 INIT_HLIST_NODE(&task->pid_links[type]); 1718 } 1719 1720 static inline void 1721 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1722 { 1723 if (type == PIDTYPE_PID) 1724 task->thread_pid = pid; 1725 else 1726 task->signal->pids[type] = pid; 1727 } 1728 1729 static inline void rcu_copy_process(struct task_struct *p) 1730 { 1731 #ifdef CONFIG_PREEMPT_RCU 1732 p->rcu_read_lock_nesting = 0; 1733 p->rcu_read_unlock_special.s = 0; 1734 p->rcu_blocked_node = NULL; 1735 INIT_LIST_HEAD(&p->rcu_node_entry); 1736 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1737 #ifdef CONFIG_TASKS_RCU 1738 p->rcu_tasks_holdout = false; 1739 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1740 p->rcu_tasks_idle_cpu = -1; 1741 #endif /* #ifdef CONFIG_TASKS_RCU */ 1742 #ifdef CONFIG_TASKS_TRACE_RCU 1743 p->trc_reader_nesting = 0; 1744 p->trc_reader_special.s = 0; 1745 INIT_LIST_HEAD(&p->trc_holdout_list); 1746 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1747 } 1748 1749 struct pid *pidfd_pid(const struct file *file) 1750 { 1751 if (file->f_op == &pidfd_fops) 1752 return file->private_data; 1753 1754 return ERR_PTR(-EBADF); 1755 } 1756 1757 static int pidfd_release(struct inode *inode, struct file *file) 1758 { 1759 struct pid *pid = file->private_data; 1760 1761 file->private_data = NULL; 1762 put_pid(pid); 1763 return 0; 1764 } 1765 1766 #ifdef CONFIG_PROC_FS 1767 /** 1768 * pidfd_show_fdinfo - print information about a pidfd 1769 * @m: proc fdinfo file 1770 * @f: file referencing a pidfd 1771 * 1772 * Pid: 1773 * This function will print the pid that a given pidfd refers to in the 1774 * pid namespace of the procfs instance. 1775 * If the pid namespace of the process is not a descendant of the pid 1776 * namespace of the procfs instance 0 will be shown as its pid. This is 1777 * similar to calling getppid() on a process whose parent is outside of 1778 * its pid namespace. 1779 * 1780 * NSpid: 1781 * If pid namespaces are supported then this function will also print 1782 * the pid of a given pidfd refers to for all descendant pid namespaces 1783 * starting from the current pid namespace of the instance, i.e. the 1784 * Pid field and the first entry in the NSpid field will be identical. 1785 * If the pid namespace of the process is not a descendant of the pid 1786 * namespace of the procfs instance 0 will be shown as its first NSpid 1787 * entry and no others will be shown. 1788 * Note that this differs from the Pid and NSpid fields in 1789 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1790 * the pid namespace of the procfs instance. The difference becomes 1791 * obvious when sending around a pidfd between pid namespaces from a 1792 * different branch of the tree, i.e. where no ancestral relation is 1793 * present between the pid namespaces: 1794 * - create two new pid namespaces ns1 and ns2 in the initial pid 1795 * namespace (also take care to create new mount namespaces in the 1796 * new pid namespace and mount procfs) 1797 * - create a process with a pidfd in ns1 1798 * - send pidfd from ns1 to ns2 1799 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1800 * have exactly one entry, which is 0 1801 */ 1802 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1803 { 1804 struct pid *pid = f->private_data; 1805 struct pid_namespace *ns; 1806 pid_t nr = -1; 1807 1808 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1809 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1810 nr = pid_nr_ns(pid, ns); 1811 } 1812 1813 seq_put_decimal_ll(m, "Pid:\t", nr); 1814 1815 #ifdef CONFIG_PID_NS 1816 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1817 if (nr > 0) { 1818 int i; 1819 1820 /* If nr is non-zero it means that 'pid' is valid and that 1821 * ns, i.e. the pid namespace associated with the procfs 1822 * instance, is in the pid namespace hierarchy of pid. 1823 * Start at one below the already printed level. 1824 */ 1825 for (i = ns->level + 1; i <= pid->level; i++) 1826 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1827 } 1828 #endif 1829 seq_putc(m, '\n'); 1830 } 1831 #endif 1832 1833 /* 1834 * Poll support for process exit notification. 1835 */ 1836 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1837 { 1838 struct pid *pid = file->private_data; 1839 __poll_t poll_flags = 0; 1840 1841 poll_wait(file, &pid->wait_pidfd, pts); 1842 1843 /* 1844 * Inform pollers only when the whole thread group exits. 1845 * If the thread group leader exits before all other threads in the 1846 * group, then poll(2) should block, similar to the wait(2) family. 1847 */ 1848 if (thread_group_exited(pid)) 1849 poll_flags = EPOLLIN | EPOLLRDNORM; 1850 1851 return poll_flags; 1852 } 1853 1854 const struct file_operations pidfd_fops = { 1855 .release = pidfd_release, 1856 .poll = pidfd_poll, 1857 #ifdef CONFIG_PROC_FS 1858 .show_fdinfo = pidfd_show_fdinfo, 1859 #endif 1860 }; 1861 1862 static void __delayed_free_task(struct rcu_head *rhp) 1863 { 1864 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1865 1866 free_task(tsk); 1867 } 1868 1869 static __always_inline void delayed_free_task(struct task_struct *tsk) 1870 { 1871 if (IS_ENABLED(CONFIG_MEMCG)) 1872 call_rcu(&tsk->rcu, __delayed_free_task); 1873 else 1874 free_task(tsk); 1875 } 1876 1877 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1878 { 1879 /* Skip if kernel thread */ 1880 if (!tsk->mm) 1881 return; 1882 1883 /* Skip if spawning a thread or using vfork */ 1884 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1885 return; 1886 1887 /* We need to synchronize with __set_oom_adj */ 1888 mutex_lock(&oom_adj_mutex); 1889 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1890 /* Update the values in case they were changed after copy_signal */ 1891 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1892 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1893 mutex_unlock(&oom_adj_mutex); 1894 } 1895 1896 /* 1897 * This creates a new process as a copy of the old one, 1898 * but does not actually start it yet. 1899 * 1900 * It copies the registers, and all the appropriate 1901 * parts of the process environment (as per the clone 1902 * flags). The actual kick-off is left to the caller. 1903 */ 1904 static __latent_entropy struct task_struct *copy_process( 1905 struct pid *pid, 1906 int trace, 1907 int node, 1908 struct kernel_clone_args *args) 1909 { 1910 int pidfd = -1, retval; 1911 struct task_struct *p; 1912 struct multiprocess_signals delayed; 1913 struct file *pidfile = NULL; 1914 u64 clone_flags = args->flags; 1915 struct nsproxy *nsp = current->nsproxy; 1916 1917 /* 1918 * Don't allow sharing the root directory with processes in a different 1919 * namespace 1920 */ 1921 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1922 return ERR_PTR(-EINVAL); 1923 1924 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1925 return ERR_PTR(-EINVAL); 1926 1927 /* 1928 * Thread groups must share signals as well, and detached threads 1929 * can only be started up within the thread group. 1930 */ 1931 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1932 return ERR_PTR(-EINVAL); 1933 1934 /* 1935 * Shared signal handlers imply shared VM. By way of the above, 1936 * thread groups also imply shared VM. Blocking this case allows 1937 * for various simplifications in other code. 1938 */ 1939 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1940 return ERR_PTR(-EINVAL); 1941 1942 /* 1943 * Siblings of global init remain as zombies on exit since they are 1944 * not reaped by their parent (swapper). To solve this and to avoid 1945 * multi-rooted process trees, prevent global and container-inits 1946 * from creating siblings. 1947 */ 1948 if ((clone_flags & CLONE_PARENT) && 1949 current->signal->flags & SIGNAL_UNKILLABLE) 1950 return ERR_PTR(-EINVAL); 1951 1952 /* 1953 * If the new process will be in a different pid or user namespace 1954 * do not allow it to share a thread group with the forking task. 1955 */ 1956 if (clone_flags & CLONE_THREAD) { 1957 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1958 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1959 return ERR_PTR(-EINVAL); 1960 } 1961 1962 /* 1963 * If the new process will be in a different time namespace 1964 * do not allow it to share VM or a thread group with the forking task. 1965 */ 1966 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1967 if (nsp->time_ns != nsp->time_ns_for_children) 1968 return ERR_PTR(-EINVAL); 1969 } 1970 1971 if (clone_flags & CLONE_PIDFD) { 1972 /* 1973 * - CLONE_DETACHED is blocked so that we can potentially 1974 * reuse it later for CLONE_PIDFD. 1975 * - CLONE_THREAD is blocked until someone really needs it. 1976 */ 1977 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1978 return ERR_PTR(-EINVAL); 1979 } 1980 1981 /* 1982 * Force any signals received before this point to be delivered 1983 * before the fork happens. Collect up signals sent to multiple 1984 * processes that happen during the fork and delay them so that 1985 * they appear to happen after the fork. 1986 */ 1987 sigemptyset(&delayed.signal); 1988 INIT_HLIST_NODE(&delayed.node); 1989 1990 spin_lock_irq(¤t->sighand->siglock); 1991 if (!(clone_flags & CLONE_THREAD)) 1992 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1993 recalc_sigpending(); 1994 spin_unlock_irq(¤t->sighand->siglock); 1995 retval = -ERESTARTNOINTR; 1996 if (task_sigpending(current)) 1997 goto fork_out; 1998 1999 retval = -ENOMEM; 2000 p = dup_task_struct(current, node); 2001 if (!p) 2002 goto fork_out; 2003 if (args->io_thread) { 2004 /* 2005 * Mark us an IO worker, and block any signal that isn't 2006 * fatal or STOP 2007 */ 2008 p->flags |= PF_IO_WORKER; 2009 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2010 } 2011 2012 /* 2013 * This _must_ happen before we call free_task(), i.e. before we jump 2014 * to any of the bad_fork_* labels. This is to avoid freeing 2015 * p->set_child_tid which is (ab)used as a kthread's data pointer for 2016 * kernel threads (PF_KTHREAD). 2017 */ 2018 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2019 /* 2020 * Clear TID on mm_release()? 2021 */ 2022 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2023 2024 ftrace_graph_init_task(p); 2025 2026 rt_mutex_init_task(p); 2027 2028 lockdep_assert_irqs_enabled(); 2029 #ifdef CONFIG_PROVE_LOCKING 2030 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2031 #endif 2032 retval = -EAGAIN; 2033 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2034 if (p->real_cred->user != INIT_USER && 2035 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2036 goto bad_fork_free; 2037 } 2038 current->flags &= ~PF_NPROC_EXCEEDED; 2039 2040 retval = copy_creds(p, clone_flags); 2041 if (retval < 0) 2042 goto bad_fork_free; 2043 2044 /* 2045 * If multiple threads are within copy_process(), then this check 2046 * triggers too late. This doesn't hurt, the check is only there 2047 * to stop root fork bombs. 2048 */ 2049 retval = -EAGAIN; 2050 if (data_race(nr_threads >= max_threads)) 2051 goto bad_fork_cleanup_count; 2052 2053 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2054 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2055 p->flags |= PF_FORKNOEXEC; 2056 INIT_LIST_HEAD(&p->children); 2057 INIT_LIST_HEAD(&p->sibling); 2058 rcu_copy_process(p); 2059 p->vfork_done = NULL; 2060 spin_lock_init(&p->alloc_lock); 2061 2062 init_sigpending(&p->pending); 2063 2064 p->utime = p->stime = p->gtime = 0; 2065 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2066 p->utimescaled = p->stimescaled = 0; 2067 #endif 2068 prev_cputime_init(&p->prev_cputime); 2069 2070 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2071 seqcount_init(&p->vtime.seqcount); 2072 p->vtime.starttime = 0; 2073 p->vtime.state = VTIME_INACTIVE; 2074 #endif 2075 2076 #ifdef CONFIG_IO_URING 2077 p->io_uring = NULL; 2078 #endif 2079 2080 #if defined(SPLIT_RSS_COUNTING) 2081 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2082 #endif 2083 2084 p->default_timer_slack_ns = current->timer_slack_ns; 2085 2086 #ifdef CONFIG_PSI 2087 p->psi_flags = 0; 2088 #endif 2089 2090 task_io_accounting_init(&p->ioac); 2091 acct_clear_integrals(p); 2092 2093 posix_cputimers_init(&p->posix_cputimers); 2094 2095 p->io_context = NULL; 2096 audit_set_context(p, NULL); 2097 cgroup_fork(p); 2098 #ifdef CONFIG_NUMA 2099 p->mempolicy = mpol_dup(p->mempolicy); 2100 if (IS_ERR(p->mempolicy)) { 2101 retval = PTR_ERR(p->mempolicy); 2102 p->mempolicy = NULL; 2103 goto bad_fork_cleanup_threadgroup_lock; 2104 } 2105 #endif 2106 #ifdef CONFIG_CPUSETS 2107 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2108 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2109 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2110 #endif 2111 #ifdef CONFIG_TRACE_IRQFLAGS 2112 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2113 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2114 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2115 p->softirqs_enabled = 1; 2116 p->softirq_context = 0; 2117 #endif 2118 2119 p->pagefault_disabled = 0; 2120 2121 #ifdef CONFIG_LOCKDEP 2122 lockdep_init_task(p); 2123 #endif 2124 2125 #ifdef CONFIG_DEBUG_MUTEXES 2126 p->blocked_on = NULL; /* not blocked yet */ 2127 #endif 2128 #ifdef CONFIG_BCACHE 2129 p->sequential_io = 0; 2130 p->sequential_io_avg = 0; 2131 #endif 2132 #ifdef CONFIG_BPF_SYSCALL 2133 RCU_INIT_POINTER(p->bpf_storage, NULL); 2134 p->bpf_ctx = NULL; 2135 #endif 2136 2137 /* Perform scheduler related setup. Assign this task to a CPU. */ 2138 retval = sched_fork(clone_flags, p); 2139 if (retval) 2140 goto bad_fork_cleanup_policy; 2141 2142 retval = perf_event_init_task(p, clone_flags); 2143 if (retval) 2144 goto bad_fork_cleanup_policy; 2145 retval = audit_alloc(p); 2146 if (retval) 2147 goto bad_fork_cleanup_perf; 2148 /* copy all the process information */ 2149 shm_init_task(p); 2150 retval = security_task_alloc(p, clone_flags); 2151 if (retval) 2152 goto bad_fork_cleanup_audit; 2153 retval = copy_semundo(clone_flags, p); 2154 if (retval) 2155 goto bad_fork_cleanup_security; 2156 retval = copy_files(clone_flags, p); 2157 if (retval) 2158 goto bad_fork_cleanup_semundo; 2159 retval = copy_fs(clone_flags, p); 2160 if (retval) 2161 goto bad_fork_cleanup_files; 2162 retval = copy_sighand(clone_flags, p); 2163 if (retval) 2164 goto bad_fork_cleanup_fs; 2165 retval = copy_signal(clone_flags, p); 2166 if (retval) 2167 goto bad_fork_cleanup_sighand; 2168 retval = copy_mm(clone_flags, p); 2169 if (retval) 2170 goto bad_fork_cleanup_signal; 2171 retval = copy_namespaces(clone_flags, p); 2172 if (retval) 2173 goto bad_fork_cleanup_mm; 2174 retval = copy_io(clone_flags, p); 2175 if (retval) 2176 goto bad_fork_cleanup_namespaces; 2177 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2178 if (retval) 2179 goto bad_fork_cleanup_io; 2180 2181 stackleak_task_init(p); 2182 2183 if (pid != &init_struct_pid) { 2184 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2185 args->set_tid_size); 2186 if (IS_ERR(pid)) { 2187 retval = PTR_ERR(pid); 2188 goto bad_fork_cleanup_thread; 2189 } 2190 } 2191 2192 /* 2193 * This has to happen after we've potentially unshared the file 2194 * descriptor table (so that the pidfd doesn't leak into the child 2195 * if the fd table isn't shared). 2196 */ 2197 if (clone_flags & CLONE_PIDFD) { 2198 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2199 if (retval < 0) 2200 goto bad_fork_free_pid; 2201 2202 pidfd = retval; 2203 2204 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2205 O_RDWR | O_CLOEXEC); 2206 if (IS_ERR(pidfile)) { 2207 put_unused_fd(pidfd); 2208 retval = PTR_ERR(pidfile); 2209 goto bad_fork_free_pid; 2210 } 2211 get_pid(pid); /* held by pidfile now */ 2212 2213 retval = put_user(pidfd, args->pidfd); 2214 if (retval) 2215 goto bad_fork_put_pidfd; 2216 } 2217 2218 #ifdef CONFIG_BLOCK 2219 p->plug = NULL; 2220 #endif 2221 futex_init_task(p); 2222 2223 /* 2224 * sigaltstack should be cleared when sharing the same VM 2225 */ 2226 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2227 sas_ss_reset(p); 2228 2229 /* 2230 * Syscall tracing and stepping should be turned off in the 2231 * child regardless of CLONE_PTRACE. 2232 */ 2233 user_disable_single_step(p); 2234 clear_task_syscall_work(p, SYSCALL_TRACE); 2235 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2236 clear_task_syscall_work(p, SYSCALL_EMU); 2237 #endif 2238 clear_tsk_latency_tracing(p); 2239 2240 /* ok, now we should be set up.. */ 2241 p->pid = pid_nr(pid); 2242 if (clone_flags & CLONE_THREAD) { 2243 p->group_leader = current->group_leader; 2244 p->tgid = current->tgid; 2245 } else { 2246 p->group_leader = p; 2247 p->tgid = p->pid; 2248 } 2249 2250 p->nr_dirtied = 0; 2251 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2252 p->dirty_paused_when = 0; 2253 2254 p->pdeath_signal = 0; 2255 INIT_LIST_HEAD(&p->thread_group); 2256 p->task_works = NULL; 2257 clear_posix_cputimers_work(p); 2258 2259 #ifdef CONFIG_KRETPROBES 2260 p->kretprobe_instances.first = NULL; 2261 #endif 2262 2263 /* 2264 * Ensure that the cgroup subsystem policies allow the new process to be 2265 * forked. It should be noted that the new process's css_set can be changed 2266 * between here and cgroup_post_fork() if an organisation operation is in 2267 * progress. 2268 */ 2269 retval = cgroup_can_fork(p, args); 2270 if (retval) 2271 goto bad_fork_put_pidfd; 2272 2273 /* 2274 * From this point on we must avoid any synchronous user-space 2275 * communication until we take the tasklist-lock. In particular, we do 2276 * not want user-space to be able to predict the process start-time by 2277 * stalling fork(2) after we recorded the start_time but before it is 2278 * visible to the system. 2279 */ 2280 2281 p->start_time = ktime_get_ns(); 2282 p->start_boottime = ktime_get_boottime_ns(); 2283 2284 /* 2285 * Make it visible to the rest of the system, but dont wake it up yet. 2286 * Need tasklist lock for parent etc handling! 2287 */ 2288 write_lock_irq(&tasklist_lock); 2289 2290 /* CLONE_PARENT re-uses the old parent */ 2291 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2292 p->real_parent = current->real_parent; 2293 p->parent_exec_id = current->parent_exec_id; 2294 if (clone_flags & CLONE_THREAD) 2295 p->exit_signal = -1; 2296 else 2297 p->exit_signal = current->group_leader->exit_signal; 2298 } else { 2299 p->real_parent = current; 2300 p->parent_exec_id = current->self_exec_id; 2301 p->exit_signal = args->exit_signal; 2302 } 2303 2304 klp_copy_process(p); 2305 2306 sched_core_fork(p); 2307 2308 spin_lock(¤t->sighand->siglock); 2309 2310 /* 2311 * Copy seccomp details explicitly here, in case they were changed 2312 * before holding sighand lock. 2313 */ 2314 copy_seccomp(p); 2315 2316 rseq_fork(p, clone_flags); 2317 2318 /* Don't start children in a dying pid namespace */ 2319 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2320 retval = -ENOMEM; 2321 goto bad_fork_cancel_cgroup; 2322 } 2323 2324 /* Let kill terminate clone/fork in the middle */ 2325 if (fatal_signal_pending(current)) { 2326 retval = -EINTR; 2327 goto bad_fork_cancel_cgroup; 2328 } 2329 2330 /* past the last point of failure */ 2331 if (pidfile) 2332 fd_install(pidfd, pidfile); 2333 2334 init_task_pid_links(p); 2335 if (likely(p->pid)) { 2336 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2337 2338 init_task_pid(p, PIDTYPE_PID, pid); 2339 if (thread_group_leader(p)) { 2340 init_task_pid(p, PIDTYPE_TGID, pid); 2341 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2342 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2343 2344 if (is_child_reaper(pid)) { 2345 ns_of_pid(pid)->child_reaper = p; 2346 p->signal->flags |= SIGNAL_UNKILLABLE; 2347 } 2348 p->signal->shared_pending.signal = delayed.signal; 2349 p->signal->tty = tty_kref_get(current->signal->tty); 2350 /* 2351 * Inherit has_child_subreaper flag under the same 2352 * tasklist_lock with adding child to the process tree 2353 * for propagate_has_child_subreaper optimization. 2354 */ 2355 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2356 p->real_parent->signal->is_child_subreaper; 2357 list_add_tail(&p->sibling, &p->real_parent->children); 2358 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2359 attach_pid(p, PIDTYPE_TGID); 2360 attach_pid(p, PIDTYPE_PGID); 2361 attach_pid(p, PIDTYPE_SID); 2362 __this_cpu_inc(process_counts); 2363 } else { 2364 current->signal->nr_threads++; 2365 atomic_inc(¤t->signal->live); 2366 refcount_inc(¤t->signal->sigcnt); 2367 task_join_group_stop(p); 2368 list_add_tail_rcu(&p->thread_group, 2369 &p->group_leader->thread_group); 2370 list_add_tail_rcu(&p->thread_node, 2371 &p->signal->thread_head); 2372 } 2373 attach_pid(p, PIDTYPE_PID); 2374 nr_threads++; 2375 } 2376 total_forks++; 2377 hlist_del_init(&delayed.node); 2378 spin_unlock(¤t->sighand->siglock); 2379 syscall_tracepoint_update(p); 2380 write_unlock_irq(&tasklist_lock); 2381 2382 proc_fork_connector(p); 2383 sched_post_fork(p, args); 2384 cgroup_post_fork(p, args); 2385 perf_event_fork(p); 2386 2387 trace_task_newtask(p, clone_flags); 2388 uprobe_copy_process(p, clone_flags); 2389 2390 copy_oom_score_adj(clone_flags, p); 2391 2392 return p; 2393 2394 bad_fork_cancel_cgroup: 2395 sched_core_free(p); 2396 spin_unlock(¤t->sighand->siglock); 2397 write_unlock_irq(&tasklist_lock); 2398 cgroup_cancel_fork(p, args); 2399 bad_fork_put_pidfd: 2400 if (clone_flags & CLONE_PIDFD) { 2401 fput(pidfile); 2402 put_unused_fd(pidfd); 2403 } 2404 bad_fork_free_pid: 2405 if (pid != &init_struct_pid) 2406 free_pid(pid); 2407 bad_fork_cleanup_thread: 2408 exit_thread(p); 2409 bad_fork_cleanup_io: 2410 if (p->io_context) 2411 exit_io_context(p); 2412 bad_fork_cleanup_namespaces: 2413 exit_task_namespaces(p); 2414 bad_fork_cleanup_mm: 2415 if (p->mm) { 2416 mm_clear_owner(p->mm, p); 2417 mmput(p->mm); 2418 } 2419 bad_fork_cleanup_signal: 2420 if (!(clone_flags & CLONE_THREAD)) 2421 free_signal_struct(p->signal); 2422 bad_fork_cleanup_sighand: 2423 __cleanup_sighand(p->sighand); 2424 bad_fork_cleanup_fs: 2425 exit_fs(p); /* blocking */ 2426 bad_fork_cleanup_files: 2427 exit_files(p); /* blocking */ 2428 bad_fork_cleanup_semundo: 2429 exit_sem(p); 2430 bad_fork_cleanup_security: 2431 security_task_free(p); 2432 bad_fork_cleanup_audit: 2433 audit_free(p); 2434 bad_fork_cleanup_perf: 2435 perf_event_free_task(p); 2436 bad_fork_cleanup_policy: 2437 lockdep_free_task(p); 2438 #ifdef CONFIG_NUMA 2439 mpol_put(p->mempolicy); 2440 bad_fork_cleanup_threadgroup_lock: 2441 #endif 2442 delayacct_tsk_free(p); 2443 bad_fork_cleanup_count: 2444 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2445 exit_creds(p); 2446 bad_fork_free: 2447 WRITE_ONCE(p->__state, TASK_DEAD); 2448 put_task_stack(p); 2449 delayed_free_task(p); 2450 fork_out: 2451 spin_lock_irq(¤t->sighand->siglock); 2452 hlist_del_init(&delayed.node); 2453 spin_unlock_irq(¤t->sighand->siglock); 2454 return ERR_PTR(retval); 2455 } 2456 2457 static inline void init_idle_pids(struct task_struct *idle) 2458 { 2459 enum pid_type type; 2460 2461 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2462 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2463 init_task_pid(idle, type, &init_struct_pid); 2464 } 2465 } 2466 2467 struct task_struct * __init fork_idle(int cpu) 2468 { 2469 struct task_struct *task; 2470 struct kernel_clone_args args = { 2471 .flags = CLONE_VM, 2472 }; 2473 2474 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2475 if (!IS_ERR(task)) { 2476 init_idle_pids(task); 2477 init_idle(task, cpu); 2478 } 2479 2480 return task; 2481 } 2482 2483 struct mm_struct *copy_init_mm(void) 2484 { 2485 return dup_mm(NULL, &init_mm); 2486 } 2487 2488 /* 2489 * This is like kernel_clone(), but shaved down and tailored to just 2490 * creating io_uring workers. It returns a created task, or an error pointer. 2491 * The returned task is inactive, and the caller must fire it up through 2492 * wake_up_new_task(p). All signals are blocked in the created task. 2493 */ 2494 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2495 { 2496 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2497 CLONE_IO; 2498 struct kernel_clone_args args = { 2499 .flags = ((lower_32_bits(flags) | CLONE_VM | 2500 CLONE_UNTRACED) & ~CSIGNAL), 2501 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2502 .stack = (unsigned long)fn, 2503 .stack_size = (unsigned long)arg, 2504 .io_thread = 1, 2505 }; 2506 2507 return copy_process(NULL, 0, node, &args); 2508 } 2509 2510 /* 2511 * Ok, this is the main fork-routine. 2512 * 2513 * It copies the process, and if successful kick-starts 2514 * it and waits for it to finish using the VM if required. 2515 * 2516 * args->exit_signal is expected to be checked for sanity by the caller. 2517 */ 2518 pid_t kernel_clone(struct kernel_clone_args *args) 2519 { 2520 u64 clone_flags = args->flags; 2521 struct completion vfork; 2522 struct pid *pid; 2523 struct task_struct *p; 2524 int trace = 0; 2525 pid_t nr; 2526 2527 /* 2528 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2529 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2530 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2531 * field in struct clone_args and it still doesn't make sense to have 2532 * them both point at the same memory location. Performing this check 2533 * here has the advantage that we don't need to have a separate helper 2534 * to check for legacy clone(). 2535 */ 2536 if ((args->flags & CLONE_PIDFD) && 2537 (args->flags & CLONE_PARENT_SETTID) && 2538 (args->pidfd == args->parent_tid)) 2539 return -EINVAL; 2540 2541 /* 2542 * Determine whether and which event to report to ptracer. When 2543 * called from kernel_thread or CLONE_UNTRACED is explicitly 2544 * requested, no event is reported; otherwise, report if the event 2545 * for the type of forking is enabled. 2546 */ 2547 if (!(clone_flags & CLONE_UNTRACED)) { 2548 if (clone_flags & CLONE_VFORK) 2549 trace = PTRACE_EVENT_VFORK; 2550 else if (args->exit_signal != SIGCHLD) 2551 trace = PTRACE_EVENT_CLONE; 2552 else 2553 trace = PTRACE_EVENT_FORK; 2554 2555 if (likely(!ptrace_event_enabled(current, trace))) 2556 trace = 0; 2557 } 2558 2559 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2560 add_latent_entropy(); 2561 2562 if (IS_ERR(p)) 2563 return PTR_ERR(p); 2564 2565 /* 2566 * Do this prior waking up the new thread - the thread pointer 2567 * might get invalid after that point, if the thread exits quickly. 2568 */ 2569 trace_sched_process_fork(current, p); 2570 2571 pid = get_task_pid(p, PIDTYPE_PID); 2572 nr = pid_vnr(pid); 2573 2574 if (clone_flags & CLONE_PARENT_SETTID) 2575 put_user(nr, args->parent_tid); 2576 2577 if (clone_flags & CLONE_VFORK) { 2578 p->vfork_done = &vfork; 2579 init_completion(&vfork); 2580 get_task_struct(p); 2581 } 2582 2583 wake_up_new_task(p); 2584 2585 /* forking complete and child started to run, tell ptracer */ 2586 if (unlikely(trace)) 2587 ptrace_event_pid(trace, pid); 2588 2589 if (clone_flags & CLONE_VFORK) { 2590 if (!wait_for_vfork_done(p, &vfork)) 2591 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2592 } 2593 2594 put_pid(pid); 2595 return nr; 2596 } 2597 2598 /* 2599 * Create a kernel thread. 2600 */ 2601 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2602 { 2603 struct kernel_clone_args args = { 2604 .flags = ((lower_32_bits(flags) | CLONE_VM | 2605 CLONE_UNTRACED) & ~CSIGNAL), 2606 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2607 .stack = (unsigned long)fn, 2608 .stack_size = (unsigned long)arg, 2609 }; 2610 2611 return kernel_clone(&args); 2612 } 2613 2614 #ifdef __ARCH_WANT_SYS_FORK 2615 SYSCALL_DEFINE0(fork) 2616 { 2617 #ifdef CONFIG_MMU 2618 struct kernel_clone_args args = { 2619 .exit_signal = SIGCHLD, 2620 }; 2621 2622 return kernel_clone(&args); 2623 #else 2624 /* can not support in nommu mode */ 2625 return -EINVAL; 2626 #endif 2627 } 2628 #endif 2629 2630 #ifdef __ARCH_WANT_SYS_VFORK 2631 SYSCALL_DEFINE0(vfork) 2632 { 2633 struct kernel_clone_args args = { 2634 .flags = CLONE_VFORK | CLONE_VM, 2635 .exit_signal = SIGCHLD, 2636 }; 2637 2638 return kernel_clone(&args); 2639 } 2640 #endif 2641 2642 #ifdef __ARCH_WANT_SYS_CLONE 2643 #ifdef CONFIG_CLONE_BACKWARDS 2644 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2645 int __user *, parent_tidptr, 2646 unsigned long, tls, 2647 int __user *, child_tidptr) 2648 #elif defined(CONFIG_CLONE_BACKWARDS2) 2649 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2650 int __user *, parent_tidptr, 2651 int __user *, child_tidptr, 2652 unsigned long, tls) 2653 #elif defined(CONFIG_CLONE_BACKWARDS3) 2654 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2655 int, stack_size, 2656 int __user *, parent_tidptr, 2657 int __user *, child_tidptr, 2658 unsigned long, tls) 2659 #else 2660 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2661 int __user *, parent_tidptr, 2662 int __user *, child_tidptr, 2663 unsigned long, tls) 2664 #endif 2665 { 2666 struct kernel_clone_args args = { 2667 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2668 .pidfd = parent_tidptr, 2669 .child_tid = child_tidptr, 2670 .parent_tid = parent_tidptr, 2671 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2672 .stack = newsp, 2673 .tls = tls, 2674 }; 2675 2676 return kernel_clone(&args); 2677 } 2678 #endif 2679 2680 #ifdef __ARCH_WANT_SYS_CLONE3 2681 2682 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2683 struct clone_args __user *uargs, 2684 size_t usize) 2685 { 2686 int err; 2687 struct clone_args args; 2688 pid_t *kset_tid = kargs->set_tid; 2689 2690 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2691 CLONE_ARGS_SIZE_VER0); 2692 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2693 CLONE_ARGS_SIZE_VER1); 2694 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2695 CLONE_ARGS_SIZE_VER2); 2696 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2697 2698 if (unlikely(usize > PAGE_SIZE)) 2699 return -E2BIG; 2700 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2701 return -EINVAL; 2702 2703 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2704 if (err) 2705 return err; 2706 2707 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2708 return -EINVAL; 2709 2710 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2711 return -EINVAL; 2712 2713 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2714 return -EINVAL; 2715 2716 /* 2717 * Verify that higher 32bits of exit_signal are unset and that 2718 * it is a valid signal 2719 */ 2720 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2721 !valid_signal(args.exit_signal))) 2722 return -EINVAL; 2723 2724 if ((args.flags & CLONE_INTO_CGROUP) && 2725 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2726 return -EINVAL; 2727 2728 *kargs = (struct kernel_clone_args){ 2729 .flags = args.flags, 2730 .pidfd = u64_to_user_ptr(args.pidfd), 2731 .child_tid = u64_to_user_ptr(args.child_tid), 2732 .parent_tid = u64_to_user_ptr(args.parent_tid), 2733 .exit_signal = args.exit_signal, 2734 .stack = args.stack, 2735 .stack_size = args.stack_size, 2736 .tls = args.tls, 2737 .set_tid_size = args.set_tid_size, 2738 .cgroup = args.cgroup, 2739 }; 2740 2741 if (args.set_tid && 2742 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2743 (kargs->set_tid_size * sizeof(pid_t)))) 2744 return -EFAULT; 2745 2746 kargs->set_tid = kset_tid; 2747 2748 return 0; 2749 } 2750 2751 /** 2752 * clone3_stack_valid - check and prepare stack 2753 * @kargs: kernel clone args 2754 * 2755 * Verify that the stack arguments userspace gave us are sane. 2756 * In addition, set the stack direction for userspace since it's easy for us to 2757 * determine. 2758 */ 2759 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2760 { 2761 if (kargs->stack == 0) { 2762 if (kargs->stack_size > 0) 2763 return false; 2764 } else { 2765 if (kargs->stack_size == 0) 2766 return false; 2767 2768 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2769 return false; 2770 2771 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2772 kargs->stack += kargs->stack_size; 2773 #endif 2774 } 2775 2776 return true; 2777 } 2778 2779 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2780 { 2781 /* Verify that no unknown flags are passed along. */ 2782 if (kargs->flags & 2783 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2784 return false; 2785 2786 /* 2787 * - make the CLONE_DETACHED bit reusable for clone3 2788 * - make the CSIGNAL bits reusable for clone3 2789 */ 2790 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2791 return false; 2792 2793 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2794 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2795 return false; 2796 2797 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2798 kargs->exit_signal) 2799 return false; 2800 2801 if (!clone3_stack_valid(kargs)) 2802 return false; 2803 2804 return true; 2805 } 2806 2807 /** 2808 * clone3 - create a new process with specific properties 2809 * @uargs: argument structure 2810 * @size: size of @uargs 2811 * 2812 * clone3() is the extensible successor to clone()/clone2(). 2813 * It takes a struct as argument that is versioned by its size. 2814 * 2815 * Return: On success, a positive PID for the child process. 2816 * On error, a negative errno number. 2817 */ 2818 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2819 { 2820 int err; 2821 2822 struct kernel_clone_args kargs; 2823 pid_t set_tid[MAX_PID_NS_LEVEL]; 2824 2825 kargs.set_tid = set_tid; 2826 2827 err = copy_clone_args_from_user(&kargs, uargs, size); 2828 if (err) 2829 return err; 2830 2831 if (!clone3_args_valid(&kargs)) 2832 return -EINVAL; 2833 2834 return kernel_clone(&kargs); 2835 } 2836 #endif 2837 2838 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2839 { 2840 struct task_struct *leader, *parent, *child; 2841 int res; 2842 2843 read_lock(&tasklist_lock); 2844 leader = top = top->group_leader; 2845 down: 2846 for_each_thread(leader, parent) { 2847 list_for_each_entry(child, &parent->children, sibling) { 2848 res = visitor(child, data); 2849 if (res) { 2850 if (res < 0) 2851 goto out; 2852 leader = child; 2853 goto down; 2854 } 2855 up: 2856 ; 2857 } 2858 } 2859 2860 if (leader != top) { 2861 child = leader; 2862 parent = child->real_parent; 2863 leader = parent->group_leader; 2864 goto up; 2865 } 2866 out: 2867 read_unlock(&tasklist_lock); 2868 } 2869 2870 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2871 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2872 #endif 2873 2874 static void sighand_ctor(void *data) 2875 { 2876 struct sighand_struct *sighand = data; 2877 2878 spin_lock_init(&sighand->siglock); 2879 init_waitqueue_head(&sighand->signalfd_wqh); 2880 } 2881 2882 void __init proc_caches_init(void) 2883 { 2884 unsigned int mm_size; 2885 2886 sighand_cachep = kmem_cache_create("sighand_cache", 2887 sizeof(struct sighand_struct), 0, 2888 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2889 SLAB_ACCOUNT, sighand_ctor); 2890 signal_cachep = kmem_cache_create("signal_cache", 2891 sizeof(struct signal_struct), 0, 2892 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2893 NULL); 2894 files_cachep = kmem_cache_create("files_cache", 2895 sizeof(struct files_struct), 0, 2896 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2897 NULL); 2898 fs_cachep = kmem_cache_create("fs_cache", 2899 sizeof(struct fs_struct), 0, 2900 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2901 NULL); 2902 2903 /* 2904 * The mm_cpumask is located at the end of mm_struct, and is 2905 * dynamically sized based on the maximum CPU number this system 2906 * can have, taking hotplug into account (nr_cpu_ids). 2907 */ 2908 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2909 2910 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2911 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2912 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2913 offsetof(struct mm_struct, saved_auxv), 2914 sizeof_field(struct mm_struct, saved_auxv), 2915 NULL); 2916 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2917 mmap_init(); 2918 nsproxy_cache_init(); 2919 } 2920 2921 /* 2922 * Check constraints on flags passed to the unshare system call. 2923 */ 2924 static int check_unshare_flags(unsigned long unshare_flags) 2925 { 2926 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2927 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2928 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2929 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2930 CLONE_NEWTIME)) 2931 return -EINVAL; 2932 /* 2933 * Not implemented, but pretend it works if there is nothing 2934 * to unshare. Note that unsharing the address space or the 2935 * signal handlers also need to unshare the signal queues (aka 2936 * CLONE_THREAD). 2937 */ 2938 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2939 if (!thread_group_empty(current)) 2940 return -EINVAL; 2941 } 2942 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2943 if (refcount_read(¤t->sighand->count) > 1) 2944 return -EINVAL; 2945 } 2946 if (unshare_flags & CLONE_VM) { 2947 if (!current_is_single_threaded()) 2948 return -EINVAL; 2949 } 2950 2951 return 0; 2952 } 2953 2954 /* 2955 * Unshare the filesystem structure if it is being shared 2956 */ 2957 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2958 { 2959 struct fs_struct *fs = current->fs; 2960 2961 if (!(unshare_flags & CLONE_FS) || !fs) 2962 return 0; 2963 2964 /* don't need lock here; in the worst case we'll do useless copy */ 2965 if (fs->users == 1) 2966 return 0; 2967 2968 *new_fsp = copy_fs_struct(fs); 2969 if (!*new_fsp) 2970 return -ENOMEM; 2971 2972 return 0; 2973 } 2974 2975 /* 2976 * Unshare file descriptor table if it is being shared 2977 */ 2978 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2979 struct files_struct **new_fdp) 2980 { 2981 struct files_struct *fd = current->files; 2982 int error = 0; 2983 2984 if ((unshare_flags & CLONE_FILES) && 2985 (fd && atomic_read(&fd->count) > 1)) { 2986 *new_fdp = dup_fd(fd, max_fds, &error); 2987 if (!*new_fdp) 2988 return error; 2989 } 2990 2991 return 0; 2992 } 2993 2994 /* 2995 * unshare allows a process to 'unshare' part of the process 2996 * context which was originally shared using clone. copy_* 2997 * functions used by kernel_clone() cannot be used here directly 2998 * because they modify an inactive task_struct that is being 2999 * constructed. Here we are modifying the current, active, 3000 * task_struct. 3001 */ 3002 int ksys_unshare(unsigned long unshare_flags) 3003 { 3004 struct fs_struct *fs, *new_fs = NULL; 3005 struct files_struct *new_fd = NULL; 3006 struct cred *new_cred = NULL; 3007 struct nsproxy *new_nsproxy = NULL; 3008 int do_sysvsem = 0; 3009 int err; 3010 3011 /* 3012 * If unsharing a user namespace must also unshare the thread group 3013 * and unshare the filesystem root and working directories. 3014 */ 3015 if (unshare_flags & CLONE_NEWUSER) 3016 unshare_flags |= CLONE_THREAD | CLONE_FS; 3017 /* 3018 * If unsharing vm, must also unshare signal handlers. 3019 */ 3020 if (unshare_flags & CLONE_VM) 3021 unshare_flags |= CLONE_SIGHAND; 3022 /* 3023 * If unsharing a signal handlers, must also unshare the signal queues. 3024 */ 3025 if (unshare_flags & CLONE_SIGHAND) 3026 unshare_flags |= CLONE_THREAD; 3027 /* 3028 * If unsharing namespace, must also unshare filesystem information. 3029 */ 3030 if (unshare_flags & CLONE_NEWNS) 3031 unshare_flags |= CLONE_FS; 3032 3033 err = check_unshare_flags(unshare_flags); 3034 if (err) 3035 goto bad_unshare_out; 3036 /* 3037 * CLONE_NEWIPC must also detach from the undolist: after switching 3038 * to a new ipc namespace, the semaphore arrays from the old 3039 * namespace are unreachable. 3040 */ 3041 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3042 do_sysvsem = 1; 3043 err = unshare_fs(unshare_flags, &new_fs); 3044 if (err) 3045 goto bad_unshare_out; 3046 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3047 if (err) 3048 goto bad_unshare_cleanup_fs; 3049 err = unshare_userns(unshare_flags, &new_cred); 3050 if (err) 3051 goto bad_unshare_cleanup_fd; 3052 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3053 new_cred, new_fs); 3054 if (err) 3055 goto bad_unshare_cleanup_cred; 3056 3057 if (new_cred) { 3058 err = set_cred_ucounts(new_cred); 3059 if (err) 3060 goto bad_unshare_cleanup_cred; 3061 } 3062 3063 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3064 if (do_sysvsem) { 3065 /* 3066 * CLONE_SYSVSEM is equivalent to sys_exit(). 3067 */ 3068 exit_sem(current); 3069 } 3070 if (unshare_flags & CLONE_NEWIPC) { 3071 /* Orphan segments in old ns (see sem above). */ 3072 exit_shm(current); 3073 shm_init_task(current); 3074 } 3075 3076 if (new_nsproxy) 3077 switch_task_namespaces(current, new_nsproxy); 3078 3079 task_lock(current); 3080 3081 if (new_fs) { 3082 fs = current->fs; 3083 spin_lock(&fs->lock); 3084 current->fs = new_fs; 3085 if (--fs->users) 3086 new_fs = NULL; 3087 else 3088 new_fs = fs; 3089 spin_unlock(&fs->lock); 3090 } 3091 3092 if (new_fd) 3093 swap(current->files, new_fd); 3094 3095 task_unlock(current); 3096 3097 if (new_cred) { 3098 /* Install the new user namespace */ 3099 commit_creds(new_cred); 3100 new_cred = NULL; 3101 } 3102 } 3103 3104 perf_event_namespaces(current); 3105 3106 bad_unshare_cleanup_cred: 3107 if (new_cred) 3108 put_cred(new_cred); 3109 bad_unshare_cleanup_fd: 3110 if (new_fd) 3111 put_files_struct(new_fd); 3112 3113 bad_unshare_cleanup_fs: 3114 if (new_fs) 3115 free_fs_struct(new_fs); 3116 3117 bad_unshare_out: 3118 return err; 3119 } 3120 3121 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3122 { 3123 return ksys_unshare(unshare_flags); 3124 } 3125 3126 /* 3127 * Helper to unshare the files of the current task. 3128 * We don't want to expose copy_files internals to 3129 * the exec layer of the kernel. 3130 */ 3131 3132 int unshare_files(void) 3133 { 3134 struct task_struct *task = current; 3135 struct files_struct *old, *copy = NULL; 3136 int error; 3137 3138 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3139 if (error || !copy) 3140 return error; 3141 3142 old = task->files; 3143 task_lock(task); 3144 task->files = copy; 3145 task_unlock(task); 3146 put_files_struct(old); 3147 return 0; 3148 } 3149 3150 int sysctl_max_threads(struct ctl_table *table, int write, 3151 void *buffer, size_t *lenp, loff_t *ppos) 3152 { 3153 struct ctl_table t; 3154 int ret; 3155 int threads = max_threads; 3156 int min = 1; 3157 int max = MAX_THREADS; 3158 3159 t = *table; 3160 t.data = &threads; 3161 t.extra1 = &min; 3162 t.extra2 = &max; 3163 3164 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3165 if (ret || !write) 3166 return ret; 3167 3168 max_threads = threads; 3169 3170 return 0; 3171 } 3172