xref: /linux-6.15/kernel/fork.c (revision 5e6ded2e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 	int i;
200 
201 	for (i = 0; i < NR_CACHED_STACKS; i++) {
202 		struct vm_struct *vm_stack = cached_vm_stacks[i];
203 
204 		if (!vm_stack)
205 			continue;
206 
207 		vfree(vm_stack->addr);
208 		cached_vm_stacks[i] = NULL;
209 	}
210 
211 	return 0;
212 }
213 #endif
214 
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	void *stack;
219 	int i;
220 
221 	for (i = 0; i < NR_CACHED_STACKS; i++) {
222 		struct vm_struct *s;
223 
224 		s = this_cpu_xchg(cached_stacks[i], NULL);
225 
226 		if (!s)
227 			continue;
228 
229 		/* Mark stack accessible for KASAN. */
230 		kasan_unpoison_range(s->addr, THREAD_SIZE);
231 
232 		/* Clear stale pointers from reused stack. */
233 		memset(s->addr, 0, THREAD_SIZE);
234 
235 		tsk->stack_vm_area = s;
236 		tsk->stack = s->addr;
237 		return s->addr;
238 	}
239 
240 	/*
241 	 * Allocated stacks are cached and later reused by new threads,
242 	 * so memcg accounting is performed manually on assigning/releasing
243 	 * stacks to tasks. Drop __GFP_ACCOUNT.
244 	 */
245 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 				     VMALLOC_START, VMALLOC_END,
247 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
248 				     PAGE_KERNEL,
249 				     0, node, __builtin_return_address(0));
250 
251 	/*
252 	 * We can't call find_vm_area() in interrupt context, and
253 	 * free_thread_stack() can be called in interrupt context,
254 	 * so cache the vm_struct.
255 	 */
256 	if (stack) {
257 		tsk->stack_vm_area = find_vm_area(stack);
258 		tsk->stack = stack;
259 	}
260 	return stack;
261 #else
262 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 					     THREAD_SIZE_ORDER);
264 
265 	if (likely(page)) {
266 		tsk->stack = kasan_reset_tag(page_address(page));
267 		return tsk->stack;
268 	}
269 	return NULL;
270 #endif
271 }
272 
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 	struct vm_struct *vm = task_stack_vm_area(tsk);
277 
278 	if (vm) {
279 		int i;
280 
281 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 			memcg_kmem_uncharge_page(vm->pages[i], 0);
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	stack = kasan_reset_tag(stack);
308 	tsk->stack = stack;
309 	return stack;
310 }
311 
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 	kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316 
317 void thread_stack_cache_init(void)
318 {
319 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 					THREAD_SIZE, THREAD_SIZE, 0, 0,
321 					THREAD_SIZE, NULL);
322 	BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326 
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329 
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332 
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335 
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338 
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341 
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344 
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 	struct vm_area_struct *vma;
348 
349 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 	if (vma)
351 		vma_init(vma, mm);
352 	return vma;
353 }
354 
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 
359 	if (new) {
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 		/*
363 		 * orig->shared.rb may be modified concurrently, but the clone
364 		 * will be reinitialized.
365 		 */
366 		*new = data_race(*orig);
367 		INIT_LIST_HEAD(&new->anon_vma_chain);
368 		new->vm_next = new->vm_prev = NULL;
369 		dup_vma_anon_name(orig, new);
370 	}
371 	return new;
372 }
373 
374 void vm_area_free(struct vm_area_struct *vma)
375 {
376 	free_vma_anon_name(vma);
377 	kmem_cache_free(vm_area_cachep, vma);
378 }
379 
380 static void account_kernel_stack(struct task_struct *tsk, int account)
381 {
382 	void *stack = task_stack_page(tsk);
383 	struct vm_struct *vm = task_stack_vm_area(tsk);
384 
385 	if (vm) {
386 		int i;
387 
388 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
389 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
390 					      account * (PAGE_SIZE / 1024));
391 	} else {
392 		/* All stack pages are in the same node. */
393 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
394 				      account * (THREAD_SIZE / 1024));
395 	}
396 }
397 
398 static int memcg_charge_kernel_stack(struct task_struct *tsk)
399 {
400 #ifdef CONFIG_VMAP_STACK
401 	struct vm_struct *vm = task_stack_vm_area(tsk);
402 	int ret;
403 
404 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
405 
406 	if (vm) {
407 		int i;
408 
409 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
410 
411 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 			/*
413 			 * If memcg_kmem_charge_page() fails, page's
414 			 * memory cgroup pointer is NULL, and
415 			 * memcg_kmem_uncharge_page() in free_thread_stack()
416 			 * will ignore this page.
417 			 */
418 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
419 						     0);
420 			if (ret)
421 				return ret;
422 		}
423 	}
424 #endif
425 	return 0;
426 }
427 
428 static void release_task_stack(struct task_struct *tsk)
429 {
430 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
431 		return;  /* Better to leak the stack than to free prematurely */
432 
433 	account_kernel_stack(tsk, -1);
434 	free_thread_stack(tsk);
435 	tsk->stack = NULL;
436 #ifdef CONFIG_VMAP_STACK
437 	tsk->stack_vm_area = NULL;
438 #endif
439 }
440 
441 #ifdef CONFIG_THREAD_INFO_IN_TASK
442 void put_task_stack(struct task_struct *tsk)
443 {
444 	if (refcount_dec_and_test(&tsk->stack_refcount))
445 		release_task_stack(tsk);
446 }
447 #endif
448 
449 void free_task(struct task_struct *tsk)
450 {
451 	release_user_cpus_ptr(tsk);
452 	scs_release(tsk);
453 
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455 	/*
456 	 * The task is finally done with both the stack and thread_info,
457 	 * so free both.
458 	 */
459 	release_task_stack(tsk);
460 #else
461 	/*
462 	 * If the task had a separate stack allocation, it should be gone
463 	 * by now.
464 	 */
465 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 	rt_mutex_debug_task_free(tsk);
468 	ftrace_graph_exit_task(tsk);
469 	arch_release_task_struct(tsk);
470 	if (tsk->flags & PF_KTHREAD)
471 		free_kthread_struct(tsk);
472 	free_task_struct(tsk);
473 }
474 EXPORT_SYMBOL(free_task);
475 
476 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
477 {
478 	struct file *exe_file;
479 
480 	exe_file = get_mm_exe_file(oldmm);
481 	RCU_INIT_POINTER(mm->exe_file, exe_file);
482 	/*
483 	 * We depend on the oldmm having properly denied write access to the
484 	 * exe_file already.
485 	 */
486 	if (exe_file && deny_write_access(exe_file))
487 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
488 }
489 
490 #ifdef CONFIG_MMU
491 static __latent_entropy int dup_mmap(struct mm_struct *mm,
492 					struct mm_struct *oldmm)
493 {
494 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
495 	struct rb_node **rb_link, *rb_parent;
496 	int retval;
497 	unsigned long charge;
498 	LIST_HEAD(uf);
499 
500 	uprobe_start_dup_mmap();
501 	if (mmap_write_lock_killable(oldmm)) {
502 		retval = -EINTR;
503 		goto fail_uprobe_end;
504 	}
505 	flush_cache_dup_mm(oldmm);
506 	uprobe_dup_mmap(oldmm, mm);
507 	/*
508 	 * Not linked in yet - no deadlock potential:
509 	 */
510 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
511 
512 	/* No ordering required: file already has been exposed. */
513 	dup_mm_exe_file(mm, oldmm);
514 
515 	mm->total_vm = oldmm->total_vm;
516 	mm->data_vm = oldmm->data_vm;
517 	mm->exec_vm = oldmm->exec_vm;
518 	mm->stack_vm = oldmm->stack_vm;
519 
520 	rb_link = &mm->mm_rb.rb_node;
521 	rb_parent = NULL;
522 	pprev = &mm->mmap;
523 	retval = ksm_fork(mm, oldmm);
524 	if (retval)
525 		goto out;
526 	retval = khugepaged_fork(mm, oldmm);
527 	if (retval)
528 		goto out;
529 
530 	prev = NULL;
531 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
532 		struct file *file;
533 
534 		if (mpnt->vm_flags & VM_DONTCOPY) {
535 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
536 			continue;
537 		}
538 		charge = 0;
539 		/*
540 		 * Don't duplicate many vmas if we've been oom-killed (for
541 		 * example)
542 		 */
543 		if (fatal_signal_pending(current)) {
544 			retval = -EINTR;
545 			goto out;
546 		}
547 		if (mpnt->vm_flags & VM_ACCOUNT) {
548 			unsigned long len = vma_pages(mpnt);
549 
550 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
551 				goto fail_nomem;
552 			charge = len;
553 		}
554 		tmp = vm_area_dup(mpnt);
555 		if (!tmp)
556 			goto fail_nomem;
557 		retval = vma_dup_policy(mpnt, tmp);
558 		if (retval)
559 			goto fail_nomem_policy;
560 		tmp->vm_mm = mm;
561 		retval = dup_userfaultfd(tmp, &uf);
562 		if (retval)
563 			goto fail_nomem_anon_vma_fork;
564 		if (tmp->vm_flags & VM_WIPEONFORK) {
565 			/*
566 			 * VM_WIPEONFORK gets a clean slate in the child.
567 			 * Don't prepare anon_vma until fault since we don't
568 			 * copy page for current vma.
569 			 */
570 			tmp->anon_vma = NULL;
571 		} else if (anon_vma_fork(tmp, mpnt))
572 			goto fail_nomem_anon_vma_fork;
573 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
574 		file = tmp->vm_file;
575 		if (file) {
576 			struct address_space *mapping = file->f_mapping;
577 
578 			get_file(file);
579 			i_mmap_lock_write(mapping);
580 			if (tmp->vm_flags & VM_SHARED)
581 				mapping_allow_writable(mapping);
582 			flush_dcache_mmap_lock(mapping);
583 			/* insert tmp into the share list, just after mpnt */
584 			vma_interval_tree_insert_after(tmp, mpnt,
585 					&mapping->i_mmap);
586 			flush_dcache_mmap_unlock(mapping);
587 			i_mmap_unlock_write(mapping);
588 		}
589 
590 		/*
591 		 * Clear hugetlb-related page reserves for children. This only
592 		 * affects MAP_PRIVATE mappings. Faults generated by the child
593 		 * are not guaranteed to succeed, even if read-only
594 		 */
595 		if (is_vm_hugetlb_page(tmp))
596 			reset_vma_resv_huge_pages(tmp);
597 
598 		/*
599 		 * Link in the new vma and copy the page table entries.
600 		 */
601 		*pprev = tmp;
602 		pprev = &tmp->vm_next;
603 		tmp->vm_prev = prev;
604 		prev = tmp;
605 
606 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
607 		rb_link = &tmp->vm_rb.rb_right;
608 		rb_parent = &tmp->vm_rb;
609 
610 		mm->map_count++;
611 		if (!(tmp->vm_flags & VM_WIPEONFORK))
612 			retval = copy_page_range(tmp, mpnt);
613 
614 		if (tmp->vm_ops && tmp->vm_ops->open)
615 			tmp->vm_ops->open(tmp);
616 
617 		if (retval)
618 			goto out;
619 	}
620 	/* a new mm has just been created */
621 	retval = arch_dup_mmap(oldmm, mm);
622 out:
623 	mmap_write_unlock(mm);
624 	flush_tlb_mm(oldmm);
625 	mmap_write_unlock(oldmm);
626 	dup_userfaultfd_complete(&uf);
627 fail_uprobe_end:
628 	uprobe_end_dup_mmap();
629 	return retval;
630 fail_nomem_anon_vma_fork:
631 	mpol_put(vma_policy(tmp));
632 fail_nomem_policy:
633 	vm_area_free(tmp);
634 fail_nomem:
635 	retval = -ENOMEM;
636 	vm_unacct_memory(charge);
637 	goto out;
638 }
639 
640 static inline int mm_alloc_pgd(struct mm_struct *mm)
641 {
642 	mm->pgd = pgd_alloc(mm);
643 	if (unlikely(!mm->pgd))
644 		return -ENOMEM;
645 	return 0;
646 }
647 
648 static inline void mm_free_pgd(struct mm_struct *mm)
649 {
650 	pgd_free(mm, mm->pgd);
651 }
652 #else
653 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
654 {
655 	mmap_write_lock(oldmm);
656 	dup_mm_exe_file(mm, oldmm);
657 	mmap_write_unlock(oldmm);
658 	return 0;
659 }
660 #define mm_alloc_pgd(mm)	(0)
661 #define mm_free_pgd(mm)
662 #endif /* CONFIG_MMU */
663 
664 static void check_mm(struct mm_struct *mm)
665 {
666 	int i;
667 
668 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
669 			 "Please make sure 'struct resident_page_types[]' is updated as well");
670 
671 	for (i = 0; i < NR_MM_COUNTERS; i++) {
672 		long x = atomic_long_read(&mm->rss_stat.count[i]);
673 
674 		if (unlikely(x))
675 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
676 				 mm, resident_page_types[i], x);
677 	}
678 
679 	if (mm_pgtables_bytes(mm))
680 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
681 				mm_pgtables_bytes(mm));
682 
683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
684 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
685 #endif
686 }
687 
688 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
689 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
690 
691 /*
692  * Called when the last reference to the mm
693  * is dropped: either by a lazy thread or by
694  * mmput. Free the page directory and the mm.
695  */
696 void __mmdrop(struct mm_struct *mm)
697 {
698 	BUG_ON(mm == &init_mm);
699 	WARN_ON_ONCE(mm == current->mm);
700 	WARN_ON_ONCE(mm == current->active_mm);
701 	mm_free_pgd(mm);
702 	destroy_context(mm);
703 	mmu_notifier_subscriptions_destroy(mm);
704 	check_mm(mm);
705 	put_user_ns(mm->user_ns);
706 	free_mm(mm);
707 }
708 EXPORT_SYMBOL_GPL(__mmdrop);
709 
710 static void mmdrop_async_fn(struct work_struct *work)
711 {
712 	struct mm_struct *mm;
713 
714 	mm = container_of(work, struct mm_struct, async_put_work);
715 	__mmdrop(mm);
716 }
717 
718 static void mmdrop_async(struct mm_struct *mm)
719 {
720 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
721 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
722 		schedule_work(&mm->async_put_work);
723 	}
724 }
725 
726 static inline void free_signal_struct(struct signal_struct *sig)
727 {
728 	taskstats_tgid_free(sig);
729 	sched_autogroup_exit(sig);
730 	/*
731 	 * __mmdrop is not safe to call from softirq context on x86 due to
732 	 * pgd_dtor so postpone it to the async context
733 	 */
734 	if (sig->oom_mm)
735 		mmdrop_async(sig->oom_mm);
736 	kmem_cache_free(signal_cachep, sig);
737 }
738 
739 static inline void put_signal_struct(struct signal_struct *sig)
740 {
741 	if (refcount_dec_and_test(&sig->sigcnt))
742 		free_signal_struct(sig);
743 }
744 
745 void __put_task_struct(struct task_struct *tsk)
746 {
747 	WARN_ON(!tsk->exit_state);
748 	WARN_ON(refcount_read(&tsk->usage));
749 	WARN_ON(tsk == current);
750 
751 	io_uring_free(tsk);
752 	cgroup_free(tsk);
753 	task_numa_free(tsk, true);
754 	security_task_free(tsk);
755 	bpf_task_storage_free(tsk);
756 	exit_creds(tsk);
757 	delayacct_tsk_free(tsk);
758 	put_signal_struct(tsk->signal);
759 	sched_core_free(tsk);
760 
761 	if (!profile_handoff_task(tsk))
762 		free_task(tsk);
763 }
764 EXPORT_SYMBOL_GPL(__put_task_struct);
765 
766 void __init __weak arch_task_cache_init(void) { }
767 
768 /*
769  * set_max_threads
770  */
771 static void set_max_threads(unsigned int max_threads_suggested)
772 {
773 	u64 threads;
774 	unsigned long nr_pages = totalram_pages();
775 
776 	/*
777 	 * The number of threads shall be limited such that the thread
778 	 * structures may only consume a small part of the available memory.
779 	 */
780 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
781 		threads = MAX_THREADS;
782 	else
783 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
784 				    (u64) THREAD_SIZE * 8UL);
785 
786 	if (threads > max_threads_suggested)
787 		threads = max_threads_suggested;
788 
789 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
790 }
791 
792 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
793 /* Initialized by the architecture: */
794 int arch_task_struct_size __read_mostly;
795 #endif
796 
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
799 {
800 	/* Fetch thread_struct whitelist for the architecture. */
801 	arch_thread_struct_whitelist(offset, size);
802 
803 	/*
804 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
805 	 * adjust offset to position of thread_struct in task_struct.
806 	 */
807 	if (unlikely(*size == 0))
808 		*offset = 0;
809 	else
810 		*offset += offsetof(struct task_struct, thread);
811 }
812 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
813 
814 void __init fork_init(void)
815 {
816 	int i;
817 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
818 #ifndef ARCH_MIN_TASKALIGN
819 #define ARCH_MIN_TASKALIGN	0
820 #endif
821 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
822 	unsigned long useroffset, usersize;
823 
824 	/* create a slab on which task_structs can be allocated */
825 	task_struct_whitelist(&useroffset, &usersize);
826 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
827 			arch_task_struct_size, align,
828 			SLAB_PANIC|SLAB_ACCOUNT,
829 			useroffset, usersize, NULL);
830 #endif
831 
832 	/* do the arch specific task caches init */
833 	arch_task_cache_init();
834 
835 	set_max_threads(MAX_THREADS);
836 
837 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
838 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
839 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
840 		init_task.signal->rlim[RLIMIT_NPROC];
841 
842 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
843 		init_user_ns.ucount_max[i] = max_threads/2;
844 
845 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
846 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
847 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
848 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
849 
850 #ifdef CONFIG_VMAP_STACK
851 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
852 			  NULL, free_vm_stack_cache);
853 #endif
854 
855 	scs_init();
856 
857 	lockdep_init_task(&init_task);
858 	uprobes_init();
859 }
860 
861 int __weak arch_dup_task_struct(struct task_struct *dst,
862 					       struct task_struct *src)
863 {
864 	*dst = *src;
865 	return 0;
866 }
867 
868 void set_task_stack_end_magic(struct task_struct *tsk)
869 {
870 	unsigned long *stackend;
871 
872 	stackend = end_of_stack(tsk);
873 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
874 }
875 
876 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
877 {
878 	struct task_struct *tsk;
879 	unsigned long *stack;
880 	struct vm_struct *stack_vm_area __maybe_unused;
881 	int err;
882 
883 	if (node == NUMA_NO_NODE)
884 		node = tsk_fork_get_node(orig);
885 	tsk = alloc_task_struct_node(node);
886 	if (!tsk)
887 		return NULL;
888 
889 	stack = alloc_thread_stack_node(tsk, node);
890 	if (!stack)
891 		goto free_tsk;
892 
893 	if (memcg_charge_kernel_stack(tsk))
894 		goto free_stack;
895 
896 	stack_vm_area = task_stack_vm_area(tsk);
897 
898 	err = arch_dup_task_struct(tsk, orig);
899 
900 	/*
901 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
902 	 * sure they're properly initialized before using any stack-related
903 	 * functions again.
904 	 */
905 	tsk->stack = stack;
906 #ifdef CONFIG_VMAP_STACK
907 	tsk->stack_vm_area = stack_vm_area;
908 #endif
909 #ifdef CONFIG_THREAD_INFO_IN_TASK
910 	refcount_set(&tsk->stack_refcount, 1);
911 #endif
912 
913 	if (err)
914 		goto free_stack;
915 
916 	err = scs_prepare(tsk, node);
917 	if (err)
918 		goto free_stack;
919 
920 #ifdef CONFIG_SECCOMP
921 	/*
922 	 * We must handle setting up seccomp filters once we're under
923 	 * the sighand lock in case orig has changed between now and
924 	 * then. Until then, filter must be NULL to avoid messing up
925 	 * the usage counts on the error path calling free_task.
926 	 */
927 	tsk->seccomp.filter = NULL;
928 #endif
929 
930 	setup_thread_stack(tsk, orig);
931 	clear_user_return_notifier(tsk);
932 	clear_tsk_need_resched(tsk);
933 	set_task_stack_end_magic(tsk);
934 	clear_syscall_work_syscall_user_dispatch(tsk);
935 
936 #ifdef CONFIG_STACKPROTECTOR
937 	tsk->stack_canary = get_random_canary();
938 #endif
939 	if (orig->cpus_ptr == &orig->cpus_mask)
940 		tsk->cpus_ptr = &tsk->cpus_mask;
941 	dup_user_cpus_ptr(tsk, orig, node);
942 
943 	/*
944 	 * One for the user space visible state that goes away when reaped.
945 	 * One for the scheduler.
946 	 */
947 	refcount_set(&tsk->rcu_users, 2);
948 	/* One for the rcu users */
949 	refcount_set(&tsk->usage, 1);
950 #ifdef CONFIG_BLK_DEV_IO_TRACE
951 	tsk->btrace_seq = 0;
952 #endif
953 	tsk->splice_pipe = NULL;
954 	tsk->task_frag.page = NULL;
955 	tsk->wake_q.next = NULL;
956 	tsk->pf_io_worker = NULL;
957 
958 	account_kernel_stack(tsk, 1);
959 
960 	kcov_task_init(tsk);
961 	kmap_local_fork(tsk);
962 
963 #ifdef CONFIG_FAULT_INJECTION
964 	tsk->fail_nth = 0;
965 #endif
966 
967 #ifdef CONFIG_BLK_CGROUP
968 	tsk->throttle_queue = NULL;
969 	tsk->use_memdelay = 0;
970 #endif
971 
972 #ifdef CONFIG_MEMCG
973 	tsk->active_memcg = NULL;
974 #endif
975 	return tsk;
976 
977 free_stack:
978 	free_thread_stack(tsk);
979 free_tsk:
980 	free_task_struct(tsk);
981 	return NULL;
982 }
983 
984 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
985 
986 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
987 
988 static int __init coredump_filter_setup(char *s)
989 {
990 	default_dump_filter =
991 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
992 		MMF_DUMP_FILTER_MASK;
993 	return 1;
994 }
995 
996 __setup("coredump_filter=", coredump_filter_setup);
997 
998 #include <linux/init_task.h>
999 
1000 static void mm_init_aio(struct mm_struct *mm)
1001 {
1002 #ifdef CONFIG_AIO
1003 	spin_lock_init(&mm->ioctx_lock);
1004 	mm->ioctx_table = NULL;
1005 #endif
1006 }
1007 
1008 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1009 					   struct task_struct *p)
1010 {
1011 #ifdef CONFIG_MEMCG
1012 	if (mm->owner == p)
1013 		WRITE_ONCE(mm->owner, NULL);
1014 #endif
1015 }
1016 
1017 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1018 {
1019 #ifdef CONFIG_MEMCG
1020 	mm->owner = p;
1021 #endif
1022 }
1023 
1024 static void mm_init_pasid(struct mm_struct *mm)
1025 {
1026 #ifdef CONFIG_IOMMU_SUPPORT
1027 	mm->pasid = INIT_PASID;
1028 #endif
1029 }
1030 
1031 static void mm_init_uprobes_state(struct mm_struct *mm)
1032 {
1033 #ifdef CONFIG_UPROBES
1034 	mm->uprobes_state.xol_area = NULL;
1035 #endif
1036 }
1037 
1038 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1039 	struct user_namespace *user_ns)
1040 {
1041 	mm->mmap = NULL;
1042 	mm->mm_rb = RB_ROOT;
1043 	mm->vmacache_seqnum = 0;
1044 	atomic_set(&mm->mm_users, 1);
1045 	atomic_set(&mm->mm_count, 1);
1046 	seqcount_init(&mm->write_protect_seq);
1047 	mmap_init_lock(mm);
1048 	INIT_LIST_HEAD(&mm->mmlist);
1049 	mm_pgtables_bytes_init(mm);
1050 	mm->map_count = 0;
1051 	mm->locked_vm = 0;
1052 	atomic64_set(&mm->pinned_vm, 0);
1053 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1054 	spin_lock_init(&mm->page_table_lock);
1055 	spin_lock_init(&mm->arg_lock);
1056 	mm_init_cpumask(mm);
1057 	mm_init_aio(mm);
1058 	mm_init_owner(mm, p);
1059 	mm_init_pasid(mm);
1060 	RCU_INIT_POINTER(mm->exe_file, NULL);
1061 	mmu_notifier_subscriptions_init(mm);
1062 	init_tlb_flush_pending(mm);
1063 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1064 	mm->pmd_huge_pte = NULL;
1065 #endif
1066 	mm_init_uprobes_state(mm);
1067 	hugetlb_count_init(mm);
1068 
1069 	if (current->mm) {
1070 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1071 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1072 	} else {
1073 		mm->flags = default_dump_filter;
1074 		mm->def_flags = 0;
1075 	}
1076 
1077 	if (mm_alloc_pgd(mm))
1078 		goto fail_nopgd;
1079 
1080 	if (init_new_context(p, mm))
1081 		goto fail_nocontext;
1082 
1083 	mm->user_ns = get_user_ns(user_ns);
1084 	return mm;
1085 
1086 fail_nocontext:
1087 	mm_free_pgd(mm);
1088 fail_nopgd:
1089 	free_mm(mm);
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Allocate and initialize an mm_struct.
1095  */
1096 struct mm_struct *mm_alloc(void)
1097 {
1098 	struct mm_struct *mm;
1099 
1100 	mm = allocate_mm();
1101 	if (!mm)
1102 		return NULL;
1103 
1104 	memset(mm, 0, sizeof(*mm));
1105 	return mm_init(mm, current, current_user_ns());
1106 }
1107 
1108 static inline void __mmput(struct mm_struct *mm)
1109 {
1110 	VM_BUG_ON(atomic_read(&mm->mm_users));
1111 
1112 	uprobe_clear_state(mm);
1113 	exit_aio(mm);
1114 	ksm_exit(mm);
1115 	khugepaged_exit(mm); /* must run before exit_mmap */
1116 	exit_mmap(mm);
1117 	mm_put_huge_zero_page(mm);
1118 	set_mm_exe_file(mm, NULL);
1119 	if (!list_empty(&mm->mmlist)) {
1120 		spin_lock(&mmlist_lock);
1121 		list_del(&mm->mmlist);
1122 		spin_unlock(&mmlist_lock);
1123 	}
1124 	if (mm->binfmt)
1125 		module_put(mm->binfmt->module);
1126 	mmdrop(mm);
1127 }
1128 
1129 /*
1130  * Decrement the use count and release all resources for an mm.
1131  */
1132 void mmput(struct mm_struct *mm)
1133 {
1134 	might_sleep();
1135 
1136 	if (atomic_dec_and_test(&mm->mm_users))
1137 		__mmput(mm);
1138 }
1139 EXPORT_SYMBOL_GPL(mmput);
1140 
1141 #ifdef CONFIG_MMU
1142 static void mmput_async_fn(struct work_struct *work)
1143 {
1144 	struct mm_struct *mm = container_of(work, struct mm_struct,
1145 					    async_put_work);
1146 
1147 	__mmput(mm);
1148 }
1149 
1150 void mmput_async(struct mm_struct *mm)
1151 {
1152 	if (atomic_dec_and_test(&mm->mm_users)) {
1153 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1154 		schedule_work(&mm->async_put_work);
1155 	}
1156 }
1157 #endif
1158 
1159 /**
1160  * set_mm_exe_file - change a reference to the mm's executable file
1161  *
1162  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1163  *
1164  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1165  * invocations: in mmput() nobody alive left, in execve task is single
1166  * threaded.
1167  *
1168  * Can only fail if new_exe_file != NULL.
1169  */
1170 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1171 {
1172 	struct file *old_exe_file;
1173 
1174 	/*
1175 	 * It is safe to dereference the exe_file without RCU as
1176 	 * this function is only called if nobody else can access
1177 	 * this mm -- see comment above for justification.
1178 	 */
1179 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1180 
1181 	if (new_exe_file) {
1182 		/*
1183 		 * We expect the caller (i.e., sys_execve) to already denied
1184 		 * write access, so this is unlikely to fail.
1185 		 */
1186 		if (unlikely(deny_write_access(new_exe_file)))
1187 			return -EACCES;
1188 		get_file(new_exe_file);
1189 	}
1190 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1191 	if (old_exe_file) {
1192 		allow_write_access(old_exe_file);
1193 		fput(old_exe_file);
1194 	}
1195 	return 0;
1196 }
1197 
1198 /**
1199  * replace_mm_exe_file - replace a reference to the mm's executable file
1200  *
1201  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1202  * dealing with concurrent invocation and without grabbing the mmap lock in
1203  * write mode.
1204  *
1205  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1206  */
1207 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1208 {
1209 	struct vm_area_struct *vma;
1210 	struct file *old_exe_file;
1211 	int ret = 0;
1212 
1213 	/* Forbid mm->exe_file change if old file still mapped. */
1214 	old_exe_file = get_mm_exe_file(mm);
1215 	if (old_exe_file) {
1216 		mmap_read_lock(mm);
1217 		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1218 			if (!vma->vm_file)
1219 				continue;
1220 			if (path_equal(&vma->vm_file->f_path,
1221 				       &old_exe_file->f_path))
1222 				ret = -EBUSY;
1223 		}
1224 		mmap_read_unlock(mm);
1225 		fput(old_exe_file);
1226 		if (ret)
1227 			return ret;
1228 	}
1229 
1230 	/* set the new file, lockless */
1231 	ret = deny_write_access(new_exe_file);
1232 	if (ret)
1233 		return -EACCES;
1234 	get_file(new_exe_file);
1235 
1236 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1237 	if (old_exe_file) {
1238 		/*
1239 		 * Don't race with dup_mmap() getting the file and disallowing
1240 		 * write access while someone might open the file writable.
1241 		 */
1242 		mmap_read_lock(mm);
1243 		allow_write_access(old_exe_file);
1244 		fput(old_exe_file);
1245 		mmap_read_unlock(mm);
1246 	}
1247 	return 0;
1248 }
1249 
1250 /**
1251  * get_mm_exe_file - acquire a reference to the mm's executable file
1252  *
1253  * Returns %NULL if mm has no associated executable file.
1254  * User must release file via fput().
1255  */
1256 struct file *get_mm_exe_file(struct mm_struct *mm)
1257 {
1258 	struct file *exe_file;
1259 
1260 	rcu_read_lock();
1261 	exe_file = rcu_dereference(mm->exe_file);
1262 	if (exe_file && !get_file_rcu(exe_file))
1263 		exe_file = NULL;
1264 	rcu_read_unlock();
1265 	return exe_file;
1266 }
1267 
1268 /**
1269  * get_task_exe_file - acquire a reference to the task's executable file
1270  *
1271  * Returns %NULL if task's mm (if any) has no associated executable file or
1272  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1273  * User must release file via fput().
1274  */
1275 struct file *get_task_exe_file(struct task_struct *task)
1276 {
1277 	struct file *exe_file = NULL;
1278 	struct mm_struct *mm;
1279 
1280 	task_lock(task);
1281 	mm = task->mm;
1282 	if (mm) {
1283 		if (!(task->flags & PF_KTHREAD))
1284 			exe_file = get_mm_exe_file(mm);
1285 	}
1286 	task_unlock(task);
1287 	return exe_file;
1288 }
1289 
1290 /**
1291  * get_task_mm - acquire a reference to the task's mm
1292  *
1293  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1294  * this kernel workthread has transiently adopted a user mm with use_mm,
1295  * to do its AIO) is not set and if so returns a reference to it, after
1296  * bumping up the use count.  User must release the mm via mmput()
1297  * after use.  Typically used by /proc and ptrace.
1298  */
1299 struct mm_struct *get_task_mm(struct task_struct *task)
1300 {
1301 	struct mm_struct *mm;
1302 
1303 	task_lock(task);
1304 	mm = task->mm;
1305 	if (mm) {
1306 		if (task->flags & PF_KTHREAD)
1307 			mm = NULL;
1308 		else
1309 			mmget(mm);
1310 	}
1311 	task_unlock(task);
1312 	return mm;
1313 }
1314 EXPORT_SYMBOL_GPL(get_task_mm);
1315 
1316 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1317 {
1318 	struct mm_struct *mm;
1319 	int err;
1320 
1321 	err =  down_read_killable(&task->signal->exec_update_lock);
1322 	if (err)
1323 		return ERR_PTR(err);
1324 
1325 	mm = get_task_mm(task);
1326 	if (mm && mm != current->mm &&
1327 			!ptrace_may_access(task, mode)) {
1328 		mmput(mm);
1329 		mm = ERR_PTR(-EACCES);
1330 	}
1331 	up_read(&task->signal->exec_update_lock);
1332 
1333 	return mm;
1334 }
1335 
1336 static void complete_vfork_done(struct task_struct *tsk)
1337 {
1338 	struct completion *vfork;
1339 
1340 	task_lock(tsk);
1341 	vfork = tsk->vfork_done;
1342 	if (likely(vfork)) {
1343 		tsk->vfork_done = NULL;
1344 		complete(vfork);
1345 	}
1346 	task_unlock(tsk);
1347 }
1348 
1349 static int wait_for_vfork_done(struct task_struct *child,
1350 				struct completion *vfork)
1351 {
1352 	int killed;
1353 
1354 	freezer_do_not_count();
1355 	cgroup_enter_frozen();
1356 	killed = wait_for_completion_killable(vfork);
1357 	cgroup_leave_frozen(false);
1358 	freezer_count();
1359 
1360 	if (killed) {
1361 		task_lock(child);
1362 		child->vfork_done = NULL;
1363 		task_unlock(child);
1364 	}
1365 
1366 	put_task_struct(child);
1367 	return killed;
1368 }
1369 
1370 /* Please note the differences between mmput and mm_release.
1371  * mmput is called whenever we stop holding onto a mm_struct,
1372  * error success whatever.
1373  *
1374  * mm_release is called after a mm_struct has been removed
1375  * from the current process.
1376  *
1377  * This difference is important for error handling, when we
1378  * only half set up a mm_struct for a new process and need to restore
1379  * the old one.  Because we mmput the new mm_struct before
1380  * restoring the old one. . .
1381  * Eric Biederman 10 January 1998
1382  */
1383 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1384 {
1385 	uprobe_free_utask(tsk);
1386 
1387 	/* Get rid of any cached register state */
1388 	deactivate_mm(tsk, mm);
1389 
1390 	/*
1391 	 * Signal userspace if we're not exiting with a core dump
1392 	 * because we want to leave the value intact for debugging
1393 	 * purposes.
1394 	 */
1395 	if (tsk->clear_child_tid) {
1396 		if (atomic_read(&mm->mm_users) > 1) {
1397 			/*
1398 			 * We don't check the error code - if userspace has
1399 			 * not set up a proper pointer then tough luck.
1400 			 */
1401 			put_user(0, tsk->clear_child_tid);
1402 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1403 					1, NULL, NULL, 0, 0);
1404 		}
1405 		tsk->clear_child_tid = NULL;
1406 	}
1407 
1408 	/*
1409 	 * All done, finally we can wake up parent and return this mm to him.
1410 	 * Also kthread_stop() uses this completion for synchronization.
1411 	 */
1412 	if (tsk->vfork_done)
1413 		complete_vfork_done(tsk);
1414 }
1415 
1416 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1417 {
1418 	futex_exit_release(tsk);
1419 	mm_release(tsk, mm);
1420 }
1421 
1422 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1423 {
1424 	futex_exec_release(tsk);
1425 	mm_release(tsk, mm);
1426 }
1427 
1428 /**
1429  * dup_mm() - duplicates an existing mm structure
1430  * @tsk: the task_struct with which the new mm will be associated.
1431  * @oldmm: the mm to duplicate.
1432  *
1433  * Allocates a new mm structure and duplicates the provided @oldmm structure
1434  * content into it.
1435  *
1436  * Return: the duplicated mm or NULL on failure.
1437  */
1438 static struct mm_struct *dup_mm(struct task_struct *tsk,
1439 				struct mm_struct *oldmm)
1440 {
1441 	struct mm_struct *mm;
1442 	int err;
1443 
1444 	mm = allocate_mm();
1445 	if (!mm)
1446 		goto fail_nomem;
1447 
1448 	memcpy(mm, oldmm, sizeof(*mm));
1449 
1450 	if (!mm_init(mm, tsk, mm->user_ns))
1451 		goto fail_nomem;
1452 
1453 	err = dup_mmap(mm, oldmm);
1454 	if (err)
1455 		goto free_pt;
1456 
1457 	mm->hiwater_rss = get_mm_rss(mm);
1458 	mm->hiwater_vm = mm->total_vm;
1459 
1460 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1461 		goto free_pt;
1462 
1463 	return mm;
1464 
1465 free_pt:
1466 	/* don't put binfmt in mmput, we haven't got module yet */
1467 	mm->binfmt = NULL;
1468 	mm_init_owner(mm, NULL);
1469 	mmput(mm);
1470 
1471 fail_nomem:
1472 	return NULL;
1473 }
1474 
1475 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1476 {
1477 	struct mm_struct *mm, *oldmm;
1478 
1479 	tsk->min_flt = tsk->maj_flt = 0;
1480 	tsk->nvcsw = tsk->nivcsw = 0;
1481 #ifdef CONFIG_DETECT_HUNG_TASK
1482 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1483 	tsk->last_switch_time = 0;
1484 #endif
1485 
1486 	tsk->mm = NULL;
1487 	tsk->active_mm = NULL;
1488 
1489 	/*
1490 	 * Are we cloning a kernel thread?
1491 	 *
1492 	 * We need to steal a active VM for that..
1493 	 */
1494 	oldmm = current->mm;
1495 	if (!oldmm)
1496 		return 0;
1497 
1498 	/* initialize the new vmacache entries */
1499 	vmacache_flush(tsk);
1500 
1501 	if (clone_flags & CLONE_VM) {
1502 		mmget(oldmm);
1503 		mm = oldmm;
1504 	} else {
1505 		mm = dup_mm(tsk, current->mm);
1506 		if (!mm)
1507 			return -ENOMEM;
1508 	}
1509 
1510 	tsk->mm = mm;
1511 	tsk->active_mm = mm;
1512 	return 0;
1513 }
1514 
1515 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 	struct fs_struct *fs = current->fs;
1518 	if (clone_flags & CLONE_FS) {
1519 		/* tsk->fs is already what we want */
1520 		spin_lock(&fs->lock);
1521 		if (fs->in_exec) {
1522 			spin_unlock(&fs->lock);
1523 			return -EAGAIN;
1524 		}
1525 		fs->users++;
1526 		spin_unlock(&fs->lock);
1527 		return 0;
1528 	}
1529 	tsk->fs = copy_fs_struct(fs);
1530 	if (!tsk->fs)
1531 		return -ENOMEM;
1532 	return 0;
1533 }
1534 
1535 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1536 {
1537 	struct files_struct *oldf, *newf;
1538 	int error = 0;
1539 
1540 	/*
1541 	 * A background process may not have any files ...
1542 	 */
1543 	oldf = current->files;
1544 	if (!oldf)
1545 		goto out;
1546 
1547 	if (clone_flags & CLONE_FILES) {
1548 		atomic_inc(&oldf->count);
1549 		goto out;
1550 	}
1551 
1552 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1553 	if (!newf)
1554 		goto out;
1555 
1556 	tsk->files = newf;
1557 	error = 0;
1558 out:
1559 	return error;
1560 }
1561 
1562 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1563 {
1564 	struct sighand_struct *sig;
1565 
1566 	if (clone_flags & CLONE_SIGHAND) {
1567 		refcount_inc(&current->sighand->count);
1568 		return 0;
1569 	}
1570 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1571 	RCU_INIT_POINTER(tsk->sighand, sig);
1572 	if (!sig)
1573 		return -ENOMEM;
1574 
1575 	refcount_set(&sig->count, 1);
1576 	spin_lock_irq(&current->sighand->siglock);
1577 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1578 	spin_unlock_irq(&current->sighand->siglock);
1579 
1580 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1581 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1582 		flush_signal_handlers(tsk, 0);
1583 
1584 	return 0;
1585 }
1586 
1587 void __cleanup_sighand(struct sighand_struct *sighand)
1588 {
1589 	if (refcount_dec_and_test(&sighand->count)) {
1590 		signalfd_cleanup(sighand);
1591 		/*
1592 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1593 		 * without an RCU grace period, see __lock_task_sighand().
1594 		 */
1595 		kmem_cache_free(sighand_cachep, sighand);
1596 	}
1597 }
1598 
1599 /*
1600  * Initialize POSIX timer handling for a thread group.
1601  */
1602 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1603 {
1604 	struct posix_cputimers *pct = &sig->posix_cputimers;
1605 	unsigned long cpu_limit;
1606 
1607 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1608 	posix_cputimers_group_init(pct, cpu_limit);
1609 }
1610 
1611 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1612 {
1613 	struct signal_struct *sig;
1614 
1615 	if (clone_flags & CLONE_THREAD)
1616 		return 0;
1617 
1618 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1619 	tsk->signal = sig;
1620 	if (!sig)
1621 		return -ENOMEM;
1622 
1623 	sig->nr_threads = 1;
1624 	atomic_set(&sig->live, 1);
1625 	refcount_set(&sig->sigcnt, 1);
1626 
1627 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1628 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1629 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1630 
1631 	init_waitqueue_head(&sig->wait_chldexit);
1632 	sig->curr_target = tsk;
1633 	init_sigpending(&sig->shared_pending);
1634 	INIT_HLIST_HEAD(&sig->multiprocess);
1635 	seqlock_init(&sig->stats_lock);
1636 	prev_cputime_init(&sig->prev_cputime);
1637 
1638 #ifdef CONFIG_POSIX_TIMERS
1639 	INIT_LIST_HEAD(&sig->posix_timers);
1640 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1641 	sig->real_timer.function = it_real_fn;
1642 #endif
1643 
1644 	task_lock(current->group_leader);
1645 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1646 	task_unlock(current->group_leader);
1647 
1648 	posix_cpu_timers_init_group(sig);
1649 
1650 	tty_audit_fork(sig);
1651 	sched_autogroup_fork(sig);
1652 
1653 	sig->oom_score_adj = current->signal->oom_score_adj;
1654 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1655 
1656 	mutex_init(&sig->cred_guard_mutex);
1657 	init_rwsem(&sig->exec_update_lock);
1658 
1659 	return 0;
1660 }
1661 
1662 static void copy_seccomp(struct task_struct *p)
1663 {
1664 #ifdef CONFIG_SECCOMP
1665 	/*
1666 	 * Must be called with sighand->lock held, which is common to
1667 	 * all threads in the group. Holding cred_guard_mutex is not
1668 	 * needed because this new task is not yet running and cannot
1669 	 * be racing exec.
1670 	 */
1671 	assert_spin_locked(&current->sighand->siglock);
1672 
1673 	/* Ref-count the new filter user, and assign it. */
1674 	get_seccomp_filter(current);
1675 	p->seccomp = current->seccomp;
1676 
1677 	/*
1678 	 * Explicitly enable no_new_privs here in case it got set
1679 	 * between the task_struct being duplicated and holding the
1680 	 * sighand lock. The seccomp state and nnp must be in sync.
1681 	 */
1682 	if (task_no_new_privs(current))
1683 		task_set_no_new_privs(p);
1684 
1685 	/*
1686 	 * If the parent gained a seccomp mode after copying thread
1687 	 * flags and between before we held the sighand lock, we have
1688 	 * to manually enable the seccomp thread flag here.
1689 	 */
1690 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1691 		set_task_syscall_work(p, SECCOMP);
1692 #endif
1693 }
1694 
1695 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1696 {
1697 	current->clear_child_tid = tidptr;
1698 
1699 	return task_pid_vnr(current);
1700 }
1701 
1702 static void rt_mutex_init_task(struct task_struct *p)
1703 {
1704 	raw_spin_lock_init(&p->pi_lock);
1705 #ifdef CONFIG_RT_MUTEXES
1706 	p->pi_waiters = RB_ROOT_CACHED;
1707 	p->pi_top_task = NULL;
1708 	p->pi_blocked_on = NULL;
1709 #endif
1710 }
1711 
1712 static inline void init_task_pid_links(struct task_struct *task)
1713 {
1714 	enum pid_type type;
1715 
1716 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1717 		INIT_HLIST_NODE(&task->pid_links[type]);
1718 }
1719 
1720 static inline void
1721 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1722 {
1723 	if (type == PIDTYPE_PID)
1724 		task->thread_pid = pid;
1725 	else
1726 		task->signal->pids[type] = pid;
1727 }
1728 
1729 static inline void rcu_copy_process(struct task_struct *p)
1730 {
1731 #ifdef CONFIG_PREEMPT_RCU
1732 	p->rcu_read_lock_nesting = 0;
1733 	p->rcu_read_unlock_special.s = 0;
1734 	p->rcu_blocked_node = NULL;
1735 	INIT_LIST_HEAD(&p->rcu_node_entry);
1736 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1737 #ifdef CONFIG_TASKS_RCU
1738 	p->rcu_tasks_holdout = false;
1739 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1740 	p->rcu_tasks_idle_cpu = -1;
1741 #endif /* #ifdef CONFIG_TASKS_RCU */
1742 #ifdef CONFIG_TASKS_TRACE_RCU
1743 	p->trc_reader_nesting = 0;
1744 	p->trc_reader_special.s = 0;
1745 	INIT_LIST_HEAD(&p->trc_holdout_list);
1746 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1747 }
1748 
1749 struct pid *pidfd_pid(const struct file *file)
1750 {
1751 	if (file->f_op == &pidfd_fops)
1752 		return file->private_data;
1753 
1754 	return ERR_PTR(-EBADF);
1755 }
1756 
1757 static int pidfd_release(struct inode *inode, struct file *file)
1758 {
1759 	struct pid *pid = file->private_data;
1760 
1761 	file->private_data = NULL;
1762 	put_pid(pid);
1763 	return 0;
1764 }
1765 
1766 #ifdef CONFIG_PROC_FS
1767 /**
1768  * pidfd_show_fdinfo - print information about a pidfd
1769  * @m: proc fdinfo file
1770  * @f: file referencing a pidfd
1771  *
1772  * Pid:
1773  * This function will print the pid that a given pidfd refers to in the
1774  * pid namespace of the procfs instance.
1775  * If the pid namespace of the process is not a descendant of the pid
1776  * namespace of the procfs instance 0 will be shown as its pid. This is
1777  * similar to calling getppid() on a process whose parent is outside of
1778  * its pid namespace.
1779  *
1780  * NSpid:
1781  * If pid namespaces are supported then this function will also print
1782  * the pid of a given pidfd refers to for all descendant pid namespaces
1783  * starting from the current pid namespace of the instance, i.e. the
1784  * Pid field and the first entry in the NSpid field will be identical.
1785  * If the pid namespace of the process is not a descendant of the pid
1786  * namespace of the procfs instance 0 will be shown as its first NSpid
1787  * entry and no others will be shown.
1788  * Note that this differs from the Pid and NSpid fields in
1789  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1790  * the  pid namespace of the procfs instance. The difference becomes
1791  * obvious when sending around a pidfd between pid namespaces from a
1792  * different branch of the tree, i.e. where no ancestral relation is
1793  * present between the pid namespaces:
1794  * - create two new pid namespaces ns1 and ns2 in the initial pid
1795  *   namespace (also take care to create new mount namespaces in the
1796  *   new pid namespace and mount procfs)
1797  * - create a process with a pidfd in ns1
1798  * - send pidfd from ns1 to ns2
1799  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1800  *   have exactly one entry, which is 0
1801  */
1802 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1803 {
1804 	struct pid *pid = f->private_data;
1805 	struct pid_namespace *ns;
1806 	pid_t nr = -1;
1807 
1808 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1809 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1810 		nr = pid_nr_ns(pid, ns);
1811 	}
1812 
1813 	seq_put_decimal_ll(m, "Pid:\t", nr);
1814 
1815 #ifdef CONFIG_PID_NS
1816 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1817 	if (nr > 0) {
1818 		int i;
1819 
1820 		/* If nr is non-zero it means that 'pid' is valid and that
1821 		 * ns, i.e. the pid namespace associated with the procfs
1822 		 * instance, is in the pid namespace hierarchy of pid.
1823 		 * Start at one below the already printed level.
1824 		 */
1825 		for (i = ns->level + 1; i <= pid->level; i++)
1826 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1827 	}
1828 #endif
1829 	seq_putc(m, '\n');
1830 }
1831 #endif
1832 
1833 /*
1834  * Poll support for process exit notification.
1835  */
1836 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1837 {
1838 	struct pid *pid = file->private_data;
1839 	__poll_t poll_flags = 0;
1840 
1841 	poll_wait(file, &pid->wait_pidfd, pts);
1842 
1843 	/*
1844 	 * Inform pollers only when the whole thread group exits.
1845 	 * If the thread group leader exits before all other threads in the
1846 	 * group, then poll(2) should block, similar to the wait(2) family.
1847 	 */
1848 	if (thread_group_exited(pid))
1849 		poll_flags = EPOLLIN | EPOLLRDNORM;
1850 
1851 	return poll_flags;
1852 }
1853 
1854 const struct file_operations pidfd_fops = {
1855 	.release = pidfd_release,
1856 	.poll = pidfd_poll,
1857 #ifdef CONFIG_PROC_FS
1858 	.show_fdinfo = pidfd_show_fdinfo,
1859 #endif
1860 };
1861 
1862 static void __delayed_free_task(struct rcu_head *rhp)
1863 {
1864 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1865 
1866 	free_task(tsk);
1867 }
1868 
1869 static __always_inline void delayed_free_task(struct task_struct *tsk)
1870 {
1871 	if (IS_ENABLED(CONFIG_MEMCG))
1872 		call_rcu(&tsk->rcu, __delayed_free_task);
1873 	else
1874 		free_task(tsk);
1875 }
1876 
1877 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1878 {
1879 	/* Skip if kernel thread */
1880 	if (!tsk->mm)
1881 		return;
1882 
1883 	/* Skip if spawning a thread or using vfork */
1884 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1885 		return;
1886 
1887 	/* We need to synchronize with __set_oom_adj */
1888 	mutex_lock(&oom_adj_mutex);
1889 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1890 	/* Update the values in case they were changed after copy_signal */
1891 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1892 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1893 	mutex_unlock(&oom_adj_mutex);
1894 }
1895 
1896 /*
1897  * This creates a new process as a copy of the old one,
1898  * but does not actually start it yet.
1899  *
1900  * It copies the registers, and all the appropriate
1901  * parts of the process environment (as per the clone
1902  * flags). The actual kick-off is left to the caller.
1903  */
1904 static __latent_entropy struct task_struct *copy_process(
1905 					struct pid *pid,
1906 					int trace,
1907 					int node,
1908 					struct kernel_clone_args *args)
1909 {
1910 	int pidfd = -1, retval;
1911 	struct task_struct *p;
1912 	struct multiprocess_signals delayed;
1913 	struct file *pidfile = NULL;
1914 	u64 clone_flags = args->flags;
1915 	struct nsproxy *nsp = current->nsproxy;
1916 
1917 	/*
1918 	 * Don't allow sharing the root directory with processes in a different
1919 	 * namespace
1920 	 */
1921 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1922 		return ERR_PTR(-EINVAL);
1923 
1924 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1925 		return ERR_PTR(-EINVAL);
1926 
1927 	/*
1928 	 * Thread groups must share signals as well, and detached threads
1929 	 * can only be started up within the thread group.
1930 	 */
1931 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1932 		return ERR_PTR(-EINVAL);
1933 
1934 	/*
1935 	 * Shared signal handlers imply shared VM. By way of the above,
1936 	 * thread groups also imply shared VM. Blocking this case allows
1937 	 * for various simplifications in other code.
1938 	 */
1939 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1940 		return ERR_PTR(-EINVAL);
1941 
1942 	/*
1943 	 * Siblings of global init remain as zombies on exit since they are
1944 	 * not reaped by their parent (swapper). To solve this and to avoid
1945 	 * multi-rooted process trees, prevent global and container-inits
1946 	 * from creating siblings.
1947 	 */
1948 	if ((clone_flags & CLONE_PARENT) &&
1949 				current->signal->flags & SIGNAL_UNKILLABLE)
1950 		return ERR_PTR(-EINVAL);
1951 
1952 	/*
1953 	 * If the new process will be in a different pid or user namespace
1954 	 * do not allow it to share a thread group with the forking task.
1955 	 */
1956 	if (clone_flags & CLONE_THREAD) {
1957 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1958 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1959 			return ERR_PTR(-EINVAL);
1960 	}
1961 
1962 	/*
1963 	 * If the new process will be in a different time namespace
1964 	 * do not allow it to share VM or a thread group with the forking task.
1965 	 */
1966 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1967 		if (nsp->time_ns != nsp->time_ns_for_children)
1968 			return ERR_PTR(-EINVAL);
1969 	}
1970 
1971 	if (clone_flags & CLONE_PIDFD) {
1972 		/*
1973 		 * - CLONE_DETACHED is blocked so that we can potentially
1974 		 *   reuse it later for CLONE_PIDFD.
1975 		 * - CLONE_THREAD is blocked until someone really needs it.
1976 		 */
1977 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1978 			return ERR_PTR(-EINVAL);
1979 	}
1980 
1981 	/*
1982 	 * Force any signals received before this point to be delivered
1983 	 * before the fork happens.  Collect up signals sent to multiple
1984 	 * processes that happen during the fork and delay them so that
1985 	 * they appear to happen after the fork.
1986 	 */
1987 	sigemptyset(&delayed.signal);
1988 	INIT_HLIST_NODE(&delayed.node);
1989 
1990 	spin_lock_irq(&current->sighand->siglock);
1991 	if (!(clone_flags & CLONE_THREAD))
1992 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1993 	recalc_sigpending();
1994 	spin_unlock_irq(&current->sighand->siglock);
1995 	retval = -ERESTARTNOINTR;
1996 	if (task_sigpending(current))
1997 		goto fork_out;
1998 
1999 	retval = -ENOMEM;
2000 	p = dup_task_struct(current, node);
2001 	if (!p)
2002 		goto fork_out;
2003 	if (args->io_thread) {
2004 		/*
2005 		 * Mark us an IO worker, and block any signal that isn't
2006 		 * fatal or STOP
2007 		 */
2008 		p->flags |= PF_IO_WORKER;
2009 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2010 	}
2011 
2012 	/*
2013 	 * This _must_ happen before we call free_task(), i.e. before we jump
2014 	 * to any of the bad_fork_* labels. This is to avoid freeing
2015 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2016 	 * kernel threads (PF_KTHREAD).
2017 	 */
2018 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2019 	/*
2020 	 * Clear TID on mm_release()?
2021 	 */
2022 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2023 
2024 	ftrace_graph_init_task(p);
2025 
2026 	rt_mutex_init_task(p);
2027 
2028 	lockdep_assert_irqs_enabled();
2029 #ifdef CONFIG_PROVE_LOCKING
2030 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2031 #endif
2032 	retval = -EAGAIN;
2033 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2034 		if (p->real_cred->user != INIT_USER &&
2035 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2036 			goto bad_fork_free;
2037 	}
2038 	current->flags &= ~PF_NPROC_EXCEEDED;
2039 
2040 	retval = copy_creds(p, clone_flags);
2041 	if (retval < 0)
2042 		goto bad_fork_free;
2043 
2044 	/*
2045 	 * If multiple threads are within copy_process(), then this check
2046 	 * triggers too late. This doesn't hurt, the check is only there
2047 	 * to stop root fork bombs.
2048 	 */
2049 	retval = -EAGAIN;
2050 	if (data_race(nr_threads >= max_threads))
2051 		goto bad_fork_cleanup_count;
2052 
2053 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2054 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2055 	p->flags |= PF_FORKNOEXEC;
2056 	INIT_LIST_HEAD(&p->children);
2057 	INIT_LIST_HEAD(&p->sibling);
2058 	rcu_copy_process(p);
2059 	p->vfork_done = NULL;
2060 	spin_lock_init(&p->alloc_lock);
2061 
2062 	init_sigpending(&p->pending);
2063 
2064 	p->utime = p->stime = p->gtime = 0;
2065 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2066 	p->utimescaled = p->stimescaled = 0;
2067 #endif
2068 	prev_cputime_init(&p->prev_cputime);
2069 
2070 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2071 	seqcount_init(&p->vtime.seqcount);
2072 	p->vtime.starttime = 0;
2073 	p->vtime.state = VTIME_INACTIVE;
2074 #endif
2075 
2076 #ifdef CONFIG_IO_URING
2077 	p->io_uring = NULL;
2078 #endif
2079 
2080 #if defined(SPLIT_RSS_COUNTING)
2081 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2082 #endif
2083 
2084 	p->default_timer_slack_ns = current->timer_slack_ns;
2085 
2086 #ifdef CONFIG_PSI
2087 	p->psi_flags = 0;
2088 #endif
2089 
2090 	task_io_accounting_init(&p->ioac);
2091 	acct_clear_integrals(p);
2092 
2093 	posix_cputimers_init(&p->posix_cputimers);
2094 
2095 	p->io_context = NULL;
2096 	audit_set_context(p, NULL);
2097 	cgroup_fork(p);
2098 #ifdef CONFIG_NUMA
2099 	p->mempolicy = mpol_dup(p->mempolicy);
2100 	if (IS_ERR(p->mempolicy)) {
2101 		retval = PTR_ERR(p->mempolicy);
2102 		p->mempolicy = NULL;
2103 		goto bad_fork_cleanup_threadgroup_lock;
2104 	}
2105 #endif
2106 #ifdef CONFIG_CPUSETS
2107 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2108 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2109 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2110 #endif
2111 #ifdef CONFIG_TRACE_IRQFLAGS
2112 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2113 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2114 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2115 	p->softirqs_enabled		= 1;
2116 	p->softirq_context		= 0;
2117 #endif
2118 
2119 	p->pagefault_disabled = 0;
2120 
2121 #ifdef CONFIG_LOCKDEP
2122 	lockdep_init_task(p);
2123 #endif
2124 
2125 #ifdef CONFIG_DEBUG_MUTEXES
2126 	p->blocked_on = NULL; /* not blocked yet */
2127 #endif
2128 #ifdef CONFIG_BCACHE
2129 	p->sequential_io	= 0;
2130 	p->sequential_io_avg	= 0;
2131 #endif
2132 #ifdef CONFIG_BPF_SYSCALL
2133 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2134 	p->bpf_ctx = NULL;
2135 #endif
2136 
2137 	/* Perform scheduler related setup. Assign this task to a CPU. */
2138 	retval = sched_fork(clone_flags, p);
2139 	if (retval)
2140 		goto bad_fork_cleanup_policy;
2141 
2142 	retval = perf_event_init_task(p, clone_flags);
2143 	if (retval)
2144 		goto bad_fork_cleanup_policy;
2145 	retval = audit_alloc(p);
2146 	if (retval)
2147 		goto bad_fork_cleanup_perf;
2148 	/* copy all the process information */
2149 	shm_init_task(p);
2150 	retval = security_task_alloc(p, clone_flags);
2151 	if (retval)
2152 		goto bad_fork_cleanup_audit;
2153 	retval = copy_semundo(clone_flags, p);
2154 	if (retval)
2155 		goto bad_fork_cleanup_security;
2156 	retval = copy_files(clone_flags, p);
2157 	if (retval)
2158 		goto bad_fork_cleanup_semundo;
2159 	retval = copy_fs(clone_flags, p);
2160 	if (retval)
2161 		goto bad_fork_cleanup_files;
2162 	retval = copy_sighand(clone_flags, p);
2163 	if (retval)
2164 		goto bad_fork_cleanup_fs;
2165 	retval = copy_signal(clone_flags, p);
2166 	if (retval)
2167 		goto bad_fork_cleanup_sighand;
2168 	retval = copy_mm(clone_flags, p);
2169 	if (retval)
2170 		goto bad_fork_cleanup_signal;
2171 	retval = copy_namespaces(clone_flags, p);
2172 	if (retval)
2173 		goto bad_fork_cleanup_mm;
2174 	retval = copy_io(clone_flags, p);
2175 	if (retval)
2176 		goto bad_fork_cleanup_namespaces;
2177 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2178 	if (retval)
2179 		goto bad_fork_cleanup_io;
2180 
2181 	stackleak_task_init(p);
2182 
2183 	if (pid != &init_struct_pid) {
2184 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2185 				args->set_tid_size);
2186 		if (IS_ERR(pid)) {
2187 			retval = PTR_ERR(pid);
2188 			goto bad_fork_cleanup_thread;
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * This has to happen after we've potentially unshared the file
2194 	 * descriptor table (so that the pidfd doesn't leak into the child
2195 	 * if the fd table isn't shared).
2196 	 */
2197 	if (clone_flags & CLONE_PIDFD) {
2198 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2199 		if (retval < 0)
2200 			goto bad_fork_free_pid;
2201 
2202 		pidfd = retval;
2203 
2204 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2205 					      O_RDWR | O_CLOEXEC);
2206 		if (IS_ERR(pidfile)) {
2207 			put_unused_fd(pidfd);
2208 			retval = PTR_ERR(pidfile);
2209 			goto bad_fork_free_pid;
2210 		}
2211 		get_pid(pid);	/* held by pidfile now */
2212 
2213 		retval = put_user(pidfd, args->pidfd);
2214 		if (retval)
2215 			goto bad_fork_put_pidfd;
2216 	}
2217 
2218 #ifdef CONFIG_BLOCK
2219 	p->plug = NULL;
2220 #endif
2221 	futex_init_task(p);
2222 
2223 	/*
2224 	 * sigaltstack should be cleared when sharing the same VM
2225 	 */
2226 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2227 		sas_ss_reset(p);
2228 
2229 	/*
2230 	 * Syscall tracing and stepping should be turned off in the
2231 	 * child regardless of CLONE_PTRACE.
2232 	 */
2233 	user_disable_single_step(p);
2234 	clear_task_syscall_work(p, SYSCALL_TRACE);
2235 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2236 	clear_task_syscall_work(p, SYSCALL_EMU);
2237 #endif
2238 	clear_tsk_latency_tracing(p);
2239 
2240 	/* ok, now we should be set up.. */
2241 	p->pid = pid_nr(pid);
2242 	if (clone_flags & CLONE_THREAD) {
2243 		p->group_leader = current->group_leader;
2244 		p->tgid = current->tgid;
2245 	} else {
2246 		p->group_leader = p;
2247 		p->tgid = p->pid;
2248 	}
2249 
2250 	p->nr_dirtied = 0;
2251 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2252 	p->dirty_paused_when = 0;
2253 
2254 	p->pdeath_signal = 0;
2255 	INIT_LIST_HEAD(&p->thread_group);
2256 	p->task_works = NULL;
2257 	clear_posix_cputimers_work(p);
2258 
2259 #ifdef CONFIG_KRETPROBES
2260 	p->kretprobe_instances.first = NULL;
2261 #endif
2262 
2263 	/*
2264 	 * Ensure that the cgroup subsystem policies allow the new process to be
2265 	 * forked. It should be noted that the new process's css_set can be changed
2266 	 * between here and cgroup_post_fork() if an organisation operation is in
2267 	 * progress.
2268 	 */
2269 	retval = cgroup_can_fork(p, args);
2270 	if (retval)
2271 		goto bad_fork_put_pidfd;
2272 
2273 	/*
2274 	 * From this point on we must avoid any synchronous user-space
2275 	 * communication until we take the tasklist-lock. In particular, we do
2276 	 * not want user-space to be able to predict the process start-time by
2277 	 * stalling fork(2) after we recorded the start_time but before it is
2278 	 * visible to the system.
2279 	 */
2280 
2281 	p->start_time = ktime_get_ns();
2282 	p->start_boottime = ktime_get_boottime_ns();
2283 
2284 	/*
2285 	 * Make it visible to the rest of the system, but dont wake it up yet.
2286 	 * Need tasklist lock for parent etc handling!
2287 	 */
2288 	write_lock_irq(&tasklist_lock);
2289 
2290 	/* CLONE_PARENT re-uses the old parent */
2291 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2292 		p->real_parent = current->real_parent;
2293 		p->parent_exec_id = current->parent_exec_id;
2294 		if (clone_flags & CLONE_THREAD)
2295 			p->exit_signal = -1;
2296 		else
2297 			p->exit_signal = current->group_leader->exit_signal;
2298 	} else {
2299 		p->real_parent = current;
2300 		p->parent_exec_id = current->self_exec_id;
2301 		p->exit_signal = args->exit_signal;
2302 	}
2303 
2304 	klp_copy_process(p);
2305 
2306 	sched_core_fork(p);
2307 
2308 	spin_lock(&current->sighand->siglock);
2309 
2310 	/*
2311 	 * Copy seccomp details explicitly here, in case they were changed
2312 	 * before holding sighand lock.
2313 	 */
2314 	copy_seccomp(p);
2315 
2316 	rseq_fork(p, clone_flags);
2317 
2318 	/* Don't start children in a dying pid namespace */
2319 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2320 		retval = -ENOMEM;
2321 		goto bad_fork_cancel_cgroup;
2322 	}
2323 
2324 	/* Let kill terminate clone/fork in the middle */
2325 	if (fatal_signal_pending(current)) {
2326 		retval = -EINTR;
2327 		goto bad_fork_cancel_cgroup;
2328 	}
2329 
2330 	/* past the last point of failure */
2331 	if (pidfile)
2332 		fd_install(pidfd, pidfile);
2333 
2334 	init_task_pid_links(p);
2335 	if (likely(p->pid)) {
2336 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2337 
2338 		init_task_pid(p, PIDTYPE_PID, pid);
2339 		if (thread_group_leader(p)) {
2340 			init_task_pid(p, PIDTYPE_TGID, pid);
2341 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2342 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2343 
2344 			if (is_child_reaper(pid)) {
2345 				ns_of_pid(pid)->child_reaper = p;
2346 				p->signal->flags |= SIGNAL_UNKILLABLE;
2347 			}
2348 			p->signal->shared_pending.signal = delayed.signal;
2349 			p->signal->tty = tty_kref_get(current->signal->tty);
2350 			/*
2351 			 * Inherit has_child_subreaper flag under the same
2352 			 * tasklist_lock with adding child to the process tree
2353 			 * for propagate_has_child_subreaper optimization.
2354 			 */
2355 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2356 							 p->real_parent->signal->is_child_subreaper;
2357 			list_add_tail(&p->sibling, &p->real_parent->children);
2358 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2359 			attach_pid(p, PIDTYPE_TGID);
2360 			attach_pid(p, PIDTYPE_PGID);
2361 			attach_pid(p, PIDTYPE_SID);
2362 			__this_cpu_inc(process_counts);
2363 		} else {
2364 			current->signal->nr_threads++;
2365 			atomic_inc(&current->signal->live);
2366 			refcount_inc(&current->signal->sigcnt);
2367 			task_join_group_stop(p);
2368 			list_add_tail_rcu(&p->thread_group,
2369 					  &p->group_leader->thread_group);
2370 			list_add_tail_rcu(&p->thread_node,
2371 					  &p->signal->thread_head);
2372 		}
2373 		attach_pid(p, PIDTYPE_PID);
2374 		nr_threads++;
2375 	}
2376 	total_forks++;
2377 	hlist_del_init(&delayed.node);
2378 	spin_unlock(&current->sighand->siglock);
2379 	syscall_tracepoint_update(p);
2380 	write_unlock_irq(&tasklist_lock);
2381 
2382 	proc_fork_connector(p);
2383 	sched_post_fork(p, args);
2384 	cgroup_post_fork(p, args);
2385 	perf_event_fork(p);
2386 
2387 	trace_task_newtask(p, clone_flags);
2388 	uprobe_copy_process(p, clone_flags);
2389 
2390 	copy_oom_score_adj(clone_flags, p);
2391 
2392 	return p;
2393 
2394 bad_fork_cancel_cgroup:
2395 	sched_core_free(p);
2396 	spin_unlock(&current->sighand->siglock);
2397 	write_unlock_irq(&tasklist_lock);
2398 	cgroup_cancel_fork(p, args);
2399 bad_fork_put_pidfd:
2400 	if (clone_flags & CLONE_PIDFD) {
2401 		fput(pidfile);
2402 		put_unused_fd(pidfd);
2403 	}
2404 bad_fork_free_pid:
2405 	if (pid != &init_struct_pid)
2406 		free_pid(pid);
2407 bad_fork_cleanup_thread:
2408 	exit_thread(p);
2409 bad_fork_cleanup_io:
2410 	if (p->io_context)
2411 		exit_io_context(p);
2412 bad_fork_cleanup_namespaces:
2413 	exit_task_namespaces(p);
2414 bad_fork_cleanup_mm:
2415 	if (p->mm) {
2416 		mm_clear_owner(p->mm, p);
2417 		mmput(p->mm);
2418 	}
2419 bad_fork_cleanup_signal:
2420 	if (!(clone_flags & CLONE_THREAD))
2421 		free_signal_struct(p->signal);
2422 bad_fork_cleanup_sighand:
2423 	__cleanup_sighand(p->sighand);
2424 bad_fork_cleanup_fs:
2425 	exit_fs(p); /* blocking */
2426 bad_fork_cleanup_files:
2427 	exit_files(p); /* blocking */
2428 bad_fork_cleanup_semundo:
2429 	exit_sem(p);
2430 bad_fork_cleanup_security:
2431 	security_task_free(p);
2432 bad_fork_cleanup_audit:
2433 	audit_free(p);
2434 bad_fork_cleanup_perf:
2435 	perf_event_free_task(p);
2436 bad_fork_cleanup_policy:
2437 	lockdep_free_task(p);
2438 #ifdef CONFIG_NUMA
2439 	mpol_put(p->mempolicy);
2440 bad_fork_cleanup_threadgroup_lock:
2441 #endif
2442 	delayacct_tsk_free(p);
2443 bad_fork_cleanup_count:
2444 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2445 	exit_creds(p);
2446 bad_fork_free:
2447 	WRITE_ONCE(p->__state, TASK_DEAD);
2448 	put_task_stack(p);
2449 	delayed_free_task(p);
2450 fork_out:
2451 	spin_lock_irq(&current->sighand->siglock);
2452 	hlist_del_init(&delayed.node);
2453 	spin_unlock_irq(&current->sighand->siglock);
2454 	return ERR_PTR(retval);
2455 }
2456 
2457 static inline void init_idle_pids(struct task_struct *idle)
2458 {
2459 	enum pid_type type;
2460 
2461 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2462 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2463 		init_task_pid(idle, type, &init_struct_pid);
2464 	}
2465 }
2466 
2467 struct task_struct * __init fork_idle(int cpu)
2468 {
2469 	struct task_struct *task;
2470 	struct kernel_clone_args args = {
2471 		.flags = CLONE_VM,
2472 	};
2473 
2474 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2475 	if (!IS_ERR(task)) {
2476 		init_idle_pids(task);
2477 		init_idle(task, cpu);
2478 	}
2479 
2480 	return task;
2481 }
2482 
2483 struct mm_struct *copy_init_mm(void)
2484 {
2485 	return dup_mm(NULL, &init_mm);
2486 }
2487 
2488 /*
2489  * This is like kernel_clone(), but shaved down and tailored to just
2490  * creating io_uring workers. It returns a created task, or an error pointer.
2491  * The returned task is inactive, and the caller must fire it up through
2492  * wake_up_new_task(p). All signals are blocked in the created task.
2493  */
2494 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2495 {
2496 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2497 				CLONE_IO;
2498 	struct kernel_clone_args args = {
2499 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2500 				    CLONE_UNTRACED) & ~CSIGNAL),
2501 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2502 		.stack		= (unsigned long)fn,
2503 		.stack_size	= (unsigned long)arg,
2504 		.io_thread	= 1,
2505 	};
2506 
2507 	return copy_process(NULL, 0, node, &args);
2508 }
2509 
2510 /*
2511  *  Ok, this is the main fork-routine.
2512  *
2513  * It copies the process, and if successful kick-starts
2514  * it and waits for it to finish using the VM if required.
2515  *
2516  * args->exit_signal is expected to be checked for sanity by the caller.
2517  */
2518 pid_t kernel_clone(struct kernel_clone_args *args)
2519 {
2520 	u64 clone_flags = args->flags;
2521 	struct completion vfork;
2522 	struct pid *pid;
2523 	struct task_struct *p;
2524 	int trace = 0;
2525 	pid_t nr;
2526 
2527 	/*
2528 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2529 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2530 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2531 	 * field in struct clone_args and it still doesn't make sense to have
2532 	 * them both point at the same memory location. Performing this check
2533 	 * here has the advantage that we don't need to have a separate helper
2534 	 * to check for legacy clone().
2535 	 */
2536 	if ((args->flags & CLONE_PIDFD) &&
2537 	    (args->flags & CLONE_PARENT_SETTID) &&
2538 	    (args->pidfd == args->parent_tid))
2539 		return -EINVAL;
2540 
2541 	/*
2542 	 * Determine whether and which event to report to ptracer.  When
2543 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2544 	 * requested, no event is reported; otherwise, report if the event
2545 	 * for the type of forking is enabled.
2546 	 */
2547 	if (!(clone_flags & CLONE_UNTRACED)) {
2548 		if (clone_flags & CLONE_VFORK)
2549 			trace = PTRACE_EVENT_VFORK;
2550 		else if (args->exit_signal != SIGCHLD)
2551 			trace = PTRACE_EVENT_CLONE;
2552 		else
2553 			trace = PTRACE_EVENT_FORK;
2554 
2555 		if (likely(!ptrace_event_enabled(current, trace)))
2556 			trace = 0;
2557 	}
2558 
2559 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2560 	add_latent_entropy();
2561 
2562 	if (IS_ERR(p))
2563 		return PTR_ERR(p);
2564 
2565 	/*
2566 	 * Do this prior waking up the new thread - the thread pointer
2567 	 * might get invalid after that point, if the thread exits quickly.
2568 	 */
2569 	trace_sched_process_fork(current, p);
2570 
2571 	pid = get_task_pid(p, PIDTYPE_PID);
2572 	nr = pid_vnr(pid);
2573 
2574 	if (clone_flags & CLONE_PARENT_SETTID)
2575 		put_user(nr, args->parent_tid);
2576 
2577 	if (clone_flags & CLONE_VFORK) {
2578 		p->vfork_done = &vfork;
2579 		init_completion(&vfork);
2580 		get_task_struct(p);
2581 	}
2582 
2583 	wake_up_new_task(p);
2584 
2585 	/* forking complete and child started to run, tell ptracer */
2586 	if (unlikely(trace))
2587 		ptrace_event_pid(trace, pid);
2588 
2589 	if (clone_flags & CLONE_VFORK) {
2590 		if (!wait_for_vfork_done(p, &vfork))
2591 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2592 	}
2593 
2594 	put_pid(pid);
2595 	return nr;
2596 }
2597 
2598 /*
2599  * Create a kernel thread.
2600  */
2601 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2602 {
2603 	struct kernel_clone_args args = {
2604 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2605 				    CLONE_UNTRACED) & ~CSIGNAL),
2606 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2607 		.stack		= (unsigned long)fn,
2608 		.stack_size	= (unsigned long)arg,
2609 	};
2610 
2611 	return kernel_clone(&args);
2612 }
2613 
2614 #ifdef __ARCH_WANT_SYS_FORK
2615 SYSCALL_DEFINE0(fork)
2616 {
2617 #ifdef CONFIG_MMU
2618 	struct kernel_clone_args args = {
2619 		.exit_signal = SIGCHLD,
2620 	};
2621 
2622 	return kernel_clone(&args);
2623 #else
2624 	/* can not support in nommu mode */
2625 	return -EINVAL;
2626 #endif
2627 }
2628 #endif
2629 
2630 #ifdef __ARCH_WANT_SYS_VFORK
2631 SYSCALL_DEFINE0(vfork)
2632 {
2633 	struct kernel_clone_args args = {
2634 		.flags		= CLONE_VFORK | CLONE_VM,
2635 		.exit_signal	= SIGCHLD,
2636 	};
2637 
2638 	return kernel_clone(&args);
2639 }
2640 #endif
2641 
2642 #ifdef __ARCH_WANT_SYS_CLONE
2643 #ifdef CONFIG_CLONE_BACKWARDS
2644 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2645 		 int __user *, parent_tidptr,
2646 		 unsigned long, tls,
2647 		 int __user *, child_tidptr)
2648 #elif defined(CONFIG_CLONE_BACKWARDS2)
2649 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2650 		 int __user *, parent_tidptr,
2651 		 int __user *, child_tidptr,
2652 		 unsigned long, tls)
2653 #elif defined(CONFIG_CLONE_BACKWARDS3)
2654 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2655 		int, stack_size,
2656 		int __user *, parent_tidptr,
2657 		int __user *, child_tidptr,
2658 		unsigned long, tls)
2659 #else
2660 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2661 		 int __user *, parent_tidptr,
2662 		 int __user *, child_tidptr,
2663 		 unsigned long, tls)
2664 #endif
2665 {
2666 	struct kernel_clone_args args = {
2667 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2668 		.pidfd		= parent_tidptr,
2669 		.child_tid	= child_tidptr,
2670 		.parent_tid	= parent_tidptr,
2671 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2672 		.stack		= newsp,
2673 		.tls		= tls,
2674 	};
2675 
2676 	return kernel_clone(&args);
2677 }
2678 #endif
2679 
2680 #ifdef __ARCH_WANT_SYS_CLONE3
2681 
2682 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2683 					      struct clone_args __user *uargs,
2684 					      size_t usize)
2685 {
2686 	int err;
2687 	struct clone_args args;
2688 	pid_t *kset_tid = kargs->set_tid;
2689 
2690 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2691 		     CLONE_ARGS_SIZE_VER0);
2692 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2693 		     CLONE_ARGS_SIZE_VER1);
2694 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2695 		     CLONE_ARGS_SIZE_VER2);
2696 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2697 
2698 	if (unlikely(usize > PAGE_SIZE))
2699 		return -E2BIG;
2700 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2701 		return -EINVAL;
2702 
2703 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2704 	if (err)
2705 		return err;
2706 
2707 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2708 		return -EINVAL;
2709 
2710 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2711 		return -EINVAL;
2712 
2713 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2714 		return -EINVAL;
2715 
2716 	/*
2717 	 * Verify that higher 32bits of exit_signal are unset and that
2718 	 * it is a valid signal
2719 	 */
2720 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2721 		     !valid_signal(args.exit_signal)))
2722 		return -EINVAL;
2723 
2724 	if ((args.flags & CLONE_INTO_CGROUP) &&
2725 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2726 		return -EINVAL;
2727 
2728 	*kargs = (struct kernel_clone_args){
2729 		.flags		= args.flags,
2730 		.pidfd		= u64_to_user_ptr(args.pidfd),
2731 		.child_tid	= u64_to_user_ptr(args.child_tid),
2732 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2733 		.exit_signal	= args.exit_signal,
2734 		.stack		= args.stack,
2735 		.stack_size	= args.stack_size,
2736 		.tls		= args.tls,
2737 		.set_tid_size	= args.set_tid_size,
2738 		.cgroup		= args.cgroup,
2739 	};
2740 
2741 	if (args.set_tid &&
2742 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2743 			(kargs->set_tid_size * sizeof(pid_t))))
2744 		return -EFAULT;
2745 
2746 	kargs->set_tid = kset_tid;
2747 
2748 	return 0;
2749 }
2750 
2751 /**
2752  * clone3_stack_valid - check and prepare stack
2753  * @kargs: kernel clone args
2754  *
2755  * Verify that the stack arguments userspace gave us are sane.
2756  * In addition, set the stack direction for userspace since it's easy for us to
2757  * determine.
2758  */
2759 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2760 {
2761 	if (kargs->stack == 0) {
2762 		if (kargs->stack_size > 0)
2763 			return false;
2764 	} else {
2765 		if (kargs->stack_size == 0)
2766 			return false;
2767 
2768 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2769 			return false;
2770 
2771 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2772 		kargs->stack += kargs->stack_size;
2773 #endif
2774 	}
2775 
2776 	return true;
2777 }
2778 
2779 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2780 {
2781 	/* Verify that no unknown flags are passed along. */
2782 	if (kargs->flags &
2783 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2784 		return false;
2785 
2786 	/*
2787 	 * - make the CLONE_DETACHED bit reusable for clone3
2788 	 * - make the CSIGNAL bits reusable for clone3
2789 	 */
2790 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2791 		return false;
2792 
2793 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2794 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2795 		return false;
2796 
2797 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2798 	    kargs->exit_signal)
2799 		return false;
2800 
2801 	if (!clone3_stack_valid(kargs))
2802 		return false;
2803 
2804 	return true;
2805 }
2806 
2807 /**
2808  * clone3 - create a new process with specific properties
2809  * @uargs: argument structure
2810  * @size:  size of @uargs
2811  *
2812  * clone3() is the extensible successor to clone()/clone2().
2813  * It takes a struct as argument that is versioned by its size.
2814  *
2815  * Return: On success, a positive PID for the child process.
2816  *         On error, a negative errno number.
2817  */
2818 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2819 {
2820 	int err;
2821 
2822 	struct kernel_clone_args kargs;
2823 	pid_t set_tid[MAX_PID_NS_LEVEL];
2824 
2825 	kargs.set_tid = set_tid;
2826 
2827 	err = copy_clone_args_from_user(&kargs, uargs, size);
2828 	if (err)
2829 		return err;
2830 
2831 	if (!clone3_args_valid(&kargs))
2832 		return -EINVAL;
2833 
2834 	return kernel_clone(&kargs);
2835 }
2836 #endif
2837 
2838 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2839 {
2840 	struct task_struct *leader, *parent, *child;
2841 	int res;
2842 
2843 	read_lock(&tasklist_lock);
2844 	leader = top = top->group_leader;
2845 down:
2846 	for_each_thread(leader, parent) {
2847 		list_for_each_entry(child, &parent->children, sibling) {
2848 			res = visitor(child, data);
2849 			if (res) {
2850 				if (res < 0)
2851 					goto out;
2852 				leader = child;
2853 				goto down;
2854 			}
2855 up:
2856 			;
2857 		}
2858 	}
2859 
2860 	if (leader != top) {
2861 		child = leader;
2862 		parent = child->real_parent;
2863 		leader = parent->group_leader;
2864 		goto up;
2865 	}
2866 out:
2867 	read_unlock(&tasklist_lock);
2868 }
2869 
2870 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2871 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2872 #endif
2873 
2874 static void sighand_ctor(void *data)
2875 {
2876 	struct sighand_struct *sighand = data;
2877 
2878 	spin_lock_init(&sighand->siglock);
2879 	init_waitqueue_head(&sighand->signalfd_wqh);
2880 }
2881 
2882 void __init proc_caches_init(void)
2883 {
2884 	unsigned int mm_size;
2885 
2886 	sighand_cachep = kmem_cache_create("sighand_cache",
2887 			sizeof(struct sighand_struct), 0,
2888 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2889 			SLAB_ACCOUNT, sighand_ctor);
2890 	signal_cachep = kmem_cache_create("signal_cache",
2891 			sizeof(struct signal_struct), 0,
2892 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2893 			NULL);
2894 	files_cachep = kmem_cache_create("files_cache",
2895 			sizeof(struct files_struct), 0,
2896 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2897 			NULL);
2898 	fs_cachep = kmem_cache_create("fs_cache",
2899 			sizeof(struct fs_struct), 0,
2900 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2901 			NULL);
2902 
2903 	/*
2904 	 * The mm_cpumask is located at the end of mm_struct, and is
2905 	 * dynamically sized based on the maximum CPU number this system
2906 	 * can have, taking hotplug into account (nr_cpu_ids).
2907 	 */
2908 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2909 
2910 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2911 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2912 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2913 			offsetof(struct mm_struct, saved_auxv),
2914 			sizeof_field(struct mm_struct, saved_auxv),
2915 			NULL);
2916 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2917 	mmap_init();
2918 	nsproxy_cache_init();
2919 }
2920 
2921 /*
2922  * Check constraints on flags passed to the unshare system call.
2923  */
2924 static int check_unshare_flags(unsigned long unshare_flags)
2925 {
2926 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2927 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2928 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2929 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2930 				CLONE_NEWTIME))
2931 		return -EINVAL;
2932 	/*
2933 	 * Not implemented, but pretend it works if there is nothing
2934 	 * to unshare.  Note that unsharing the address space or the
2935 	 * signal handlers also need to unshare the signal queues (aka
2936 	 * CLONE_THREAD).
2937 	 */
2938 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2939 		if (!thread_group_empty(current))
2940 			return -EINVAL;
2941 	}
2942 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2943 		if (refcount_read(&current->sighand->count) > 1)
2944 			return -EINVAL;
2945 	}
2946 	if (unshare_flags & CLONE_VM) {
2947 		if (!current_is_single_threaded())
2948 			return -EINVAL;
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 /*
2955  * Unshare the filesystem structure if it is being shared
2956  */
2957 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2958 {
2959 	struct fs_struct *fs = current->fs;
2960 
2961 	if (!(unshare_flags & CLONE_FS) || !fs)
2962 		return 0;
2963 
2964 	/* don't need lock here; in the worst case we'll do useless copy */
2965 	if (fs->users == 1)
2966 		return 0;
2967 
2968 	*new_fsp = copy_fs_struct(fs);
2969 	if (!*new_fsp)
2970 		return -ENOMEM;
2971 
2972 	return 0;
2973 }
2974 
2975 /*
2976  * Unshare file descriptor table if it is being shared
2977  */
2978 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2979 	       struct files_struct **new_fdp)
2980 {
2981 	struct files_struct *fd = current->files;
2982 	int error = 0;
2983 
2984 	if ((unshare_flags & CLONE_FILES) &&
2985 	    (fd && atomic_read(&fd->count) > 1)) {
2986 		*new_fdp = dup_fd(fd, max_fds, &error);
2987 		if (!*new_fdp)
2988 			return error;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 /*
2995  * unshare allows a process to 'unshare' part of the process
2996  * context which was originally shared using clone.  copy_*
2997  * functions used by kernel_clone() cannot be used here directly
2998  * because they modify an inactive task_struct that is being
2999  * constructed. Here we are modifying the current, active,
3000  * task_struct.
3001  */
3002 int ksys_unshare(unsigned long unshare_flags)
3003 {
3004 	struct fs_struct *fs, *new_fs = NULL;
3005 	struct files_struct *new_fd = NULL;
3006 	struct cred *new_cred = NULL;
3007 	struct nsproxy *new_nsproxy = NULL;
3008 	int do_sysvsem = 0;
3009 	int err;
3010 
3011 	/*
3012 	 * If unsharing a user namespace must also unshare the thread group
3013 	 * and unshare the filesystem root and working directories.
3014 	 */
3015 	if (unshare_flags & CLONE_NEWUSER)
3016 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3017 	/*
3018 	 * If unsharing vm, must also unshare signal handlers.
3019 	 */
3020 	if (unshare_flags & CLONE_VM)
3021 		unshare_flags |= CLONE_SIGHAND;
3022 	/*
3023 	 * If unsharing a signal handlers, must also unshare the signal queues.
3024 	 */
3025 	if (unshare_flags & CLONE_SIGHAND)
3026 		unshare_flags |= CLONE_THREAD;
3027 	/*
3028 	 * If unsharing namespace, must also unshare filesystem information.
3029 	 */
3030 	if (unshare_flags & CLONE_NEWNS)
3031 		unshare_flags |= CLONE_FS;
3032 
3033 	err = check_unshare_flags(unshare_flags);
3034 	if (err)
3035 		goto bad_unshare_out;
3036 	/*
3037 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3038 	 * to a new ipc namespace, the semaphore arrays from the old
3039 	 * namespace are unreachable.
3040 	 */
3041 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3042 		do_sysvsem = 1;
3043 	err = unshare_fs(unshare_flags, &new_fs);
3044 	if (err)
3045 		goto bad_unshare_out;
3046 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3047 	if (err)
3048 		goto bad_unshare_cleanup_fs;
3049 	err = unshare_userns(unshare_flags, &new_cred);
3050 	if (err)
3051 		goto bad_unshare_cleanup_fd;
3052 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3053 					 new_cred, new_fs);
3054 	if (err)
3055 		goto bad_unshare_cleanup_cred;
3056 
3057 	if (new_cred) {
3058 		err = set_cred_ucounts(new_cred);
3059 		if (err)
3060 			goto bad_unshare_cleanup_cred;
3061 	}
3062 
3063 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3064 		if (do_sysvsem) {
3065 			/*
3066 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3067 			 */
3068 			exit_sem(current);
3069 		}
3070 		if (unshare_flags & CLONE_NEWIPC) {
3071 			/* Orphan segments in old ns (see sem above). */
3072 			exit_shm(current);
3073 			shm_init_task(current);
3074 		}
3075 
3076 		if (new_nsproxy)
3077 			switch_task_namespaces(current, new_nsproxy);
3078 
3079 		task_lock(current);
3080 
3081 		if (new_fs) {
3082 			fs = current->fs;
3083 			spin_lock(&fs->lock);
3084 			current->fs = new_fs;
3085 			if (--fs->users)
3086 				new_fs = NULL;
3087 			else
3088 				new_fs = fs;
3089 			spin_unlock(&fs->lock);
3090 		}
3091 
3092 		if (new_fd)
3093 			swap(current->files, new_fd);
3094 
3095 		task_unlock(current);
3096 
3097 		if (new_cred) {
3098 			/* Install the new user namespace */
3099 			commit_creds(new_cred);
3100 			new_cred = NULL;
3101 		}
3102 	}
3103 
3104 	perf_event_namespaces(current);
3105 
3106 bad_unshare_cleanup_cred:
3107 	if (new_cred)
3108 		put_cred(new_cred);
3109 bad_unshare_cleanup_fd:
3110 	if (new_fd)
3111 		put_files_struct(new_fd);
3112 
3113 bad_unshare_cleanup_fs:
3114 	if (new_fs)
3115 		free_fs_struct(new_fs);
3116 
3117 bad_unshare_out:
3118 	return err;
3119 }
3120 
3121 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3122 {
3123 	return ksys_unshare(unshare_flags);
3124 }
3125 
3126 /*
3127  *	Helper to unshare the files of the current task.
3128  *	We don't want to expose copy_files internals to
3129  *	the exec layer of the kernel.
3130  */
3131 
3132 int unshare_files(void)
3133 {
3134 	struct task_struct *task = current;
3135 	struct files_struct *old, *copy = NULL;
3136 	int error;
3137 
3138 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3139 	if (error || !copy)
3140 		return error;
3141 
3142 	old = task->files;
3143 	task_lock(task);
3144 	task->files = copy;
3145 	task_unlock(task);
3146 	put_files_struct(old);
3147 	return 0;
3148 }
3149 
3150 int sysctl_max_threads(struct ctl_table *table, int write,
3151 		       void *buffer, size_t *lenp, loff_t *ppos)
3152 {
3153 	struct ctl_table t;
3154 	int ret;
3155 	int threads = max_threads;
3156 	int min = 1;
3157 	int max = MAX_THREADS;
3158 
3159 	t = *table;
3160 	t.data = &threads;
3161 	t.extra1 = &min;
3162 	t.extra2 = &max;
3163 
3164 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3165 	if (ret || !write)
3166 		return ret;
3167 
3168 	max_threads = threads;
3169 
3170 	return 0;
3171 }
3172