1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/swap.h> 38 #include <linux/syscalls.h> 39 #include <linux/jiffies.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/kthread.h> 43 #include <linux/task_io_accounting_ops.h> 44 #include <linux/rcupdate.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/audit.h> 48 #include <linux/memcontrol.h> 49 #include <linux/ftrace.h> 50 #include <linux/profile.h> 51 #include <linux/rmap.h> 52 #include <linux/ksm.h> 53 #include <linux/acct.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/freezer.h> 57 #include <linux/delayacct.h> 58 #include <linux/taskstats_kern.h> 59 #include <linux/random.h> 60 #include <linux/tty.h> 61 #include <linux/blkdev.h> 62 #include <linux/fs_struct.h> 63 #include <linux/magic.h> 64 #include <linux/perf_event.h> 65 #include <linux/posix-timers.h> 66 #include <linux/user-return-notifier.h> 67 #include <linux/oom.h> 68 #include <linux/khugepaged.h> 69 #include <linux/signalfd.h> 70 71 #include <asm/pgtable.h> 72 #include <asm/pgalloc.h> 73 #include <asm/uaccess.h> 74 #include <asm/mmu_context.h> 75 #include <asm/cacheflush.h> 76 #include <asm/tlbflush.h> 77 78 #include <trace/events/sched.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/task.h> 82 83 /* 84 * Protected counters by write_lock_irq(&tasklist_lock) 85 */ 86 unsigned long total_forks; /* Handle normal Linux uptimes. */ 87 int nr_threads; /* The idle threads do not count.. */ 88 89 int max_threads; /* tunable limit on nr_threads */ 90 91 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 92 93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 94 95 #ifdef CONFIG_PROVE_RCU 96 int lockdep_tasklist_lock_is_held(void) 97 { 98 return lockdep_is_held(&tasklist_lock); 99 } 100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 101 #endif /* #ifdef CONFIG_PROVE_RCU */ 102 103 int nr_processes(void) 104 { 105 int cpu; 106 int total = 0; 107 108 for_each_possible_cpu(cpu) 109 total += per_cpu(process_counts, cpu); 110 111 return total; 112 } 113 114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 115 # define alloc_task_struct_node(node) \ 116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node) 117 # define free_task_struct(tsk) \ 118 kmem_cache_free(task_struct_cachep, (tsk)) 119 static struct kmem_cache *task_struct_cachep; 120 #endif 121 122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 124 int node) 125 { 126 #ifdef CONFIG_DEBUG_STACK_USAGE 127 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 128 #else 129 gfp_t mask = GFP_KERNEL; 130 #endif 131 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER); 132 133 return page ? page_address(page) : NULL; 134 } 135 136 static inline void free_thread_info(struct thread_info *ti) 137 { 138 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 139 } 140 #endif 141 142 /* SLAB cache for signal_struct structures (tsk->signal) */ 143 static struct kmem_cache *signal_cachep; 144 145 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 146 struct kmem_cache *sighand_cachep; 147 148 /* SLAB cache for files_struct structures (tsk->files) */ 149 struct kmem_cache *files_cachep; 150 151 /* SLAB cache for fs_struct structures (tsk->fs) */ 152 struct kmem_cache *fs_cachep; 153 154 /* SLAB cache for vm_area_struct structures */ 155 struct kmem_cache *vm_area_cachep; 156 157 /* SLAB cache for mm_struct structures (tsk->mm) */ 158 static struct kmem_cache *mm_cachep; 159 160 static void account_kernel_stack(struct thread_info *ti, int account) 161 { 162 struct zone *zone = page_zone(virt_to_page(ti)); 163 164 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 165 } 166 167 void free_task(struct task_struct *tsk) 168 { 169 account_kernel_stack(tsk->stack, -1); 170 free_thread_info(tsk->stack); 171 rt_mutex_debug_task_free(tsk); 172 ftrace_graph_exit_task(tsk); 173 free_task_struct(tsk); 174 } 175 EXPORT_SYMBOL(free_task); 176 177 static inline void free_signal_struct(struct signal_struct *sig) 178 { 179 taskstats_tgid_free(sig); 180 sched_autogroup_exit(sig); 181 kmem_cache_free(signal_cachep, sig); 182 } 183 184 static inline void put_signal_struct(struct signal_struct *sig) 185 { 186 if (atomic_dec_and_test(&sig->sigcnt)) 187 free_signal_struct(sig); 188 } 189 190 void __put_task_struct(struct task_struct *tsk) 191 { 192 WARN_ON(!tsk->exit_state); 193 WARN_ON(atomic_read(&tsk->usage)); 194 WARN_ON(tsk == current); 195 196 security_task_free(tsk); 197 exit_creds(tsk); 198 delayacct_tsk_free(tsk); 199 put_signal_struct(tsk->signal); 200 201 if (!profile_handoff_task(tsk)) 202 free_task(tsk); 203 } 204 EXPORT_SYMBOL_GPL(__put_task_struct); 205 206 /* 207 * macro override instead of weak attribute alias, to workaround 208 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 209 */ 210 #ifndef arch_task_cache_init 211 #define arch_task_cache_init() 212 #endif 213 214 void __init fork_init(unsigned long mempages) 215 { 216 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 217 #ifndef ARCH_MIN_TASKALIGN 218 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 219 #endif 220 /* create a slab on which task_structs can be allocated */ 221 task_struct_cachep = 222 kmem_cache_create("task_struct", sizeof(struct task_struct), 223 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 224 #endif 225 226 /* do the arch specific task caches init */ 227 arch_task_cache_init(); 228 229 /* 230 * The default maximum number of threads is set to a safe 231 * value: the thread structures can take up at most half 232 * of memory. 233 */ 234 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 235 236 /* 237 * we need to allow at least 20 threads to boot a system 238 */ 239 if (max_threads < 20) 240 max_threads = 20; 241 242 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 243 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 244 init_task.signal->rlim[RLIMIT_SIGPENDING] = 245 init_task.signal->rlim[RLIMIT_NPROC]; 246 } 247 248 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 249 struct task_struct *src) 250 { 251 *dst = *src; 252 return 0; 253 } 254 255 static struct task_struct *dup_task_struct(struct task_struct *orig) 256 { 257 struct task_struct *tsk; 258 struct thread_info *ti; 259 unsigned long *stackend; 260 int node = tsk_fork_get_node(orig); 261 int err; 262 263 prepare_to_copy(orig); 264 265 tsk = alloc_task_struct_node(node); 266 if (!tsk) 267 return NULL; 268 269 ti = alloc_thread_info_node(tsk, node); 270 if (!ti) { 271 free_task_struct(tsk); 272 return NULL; 273 } 274 275 err = arch_dup_task_struct(tsk, orig); 276 if (err) 277 goto out; 278 279 tsk->stack = ti; 280 281 setup_thread_stack(tsk, orig); 282 clear_user_return_notifier(tsk); 283 clear_tsk_need_resched(tsk); 284 stackend = end_of_stack(tsk); 285 *stackend = STACK_END_MAGIC; /* for overflow detection */ 286 287 #ifdef CONFIG_CC_STACKPROTECTOR 288 tsk->stack_canary = get_random_int(); 289 #endif 290 291 /* 292 * One for us, one for whoever does the "release_task()" (usually 293 * parent) 294 */ 295 atomic_set(&tsk->usage, 2); 296 #ifdef CONFIG_BLK_DEV_IO_TRACE 297 tsk->btrace_seq = 0; 298 #endif 299 tsk->splice_pipe = NULL; 300 301 account_kernel_stack(ti, 1); 302 303 return tsk; 304 305 out: 306 free_thread_info(ti); 307 free_task_struct(tsk); 308 return NULL; 309 } 310 311 #ifdef CONFIG_MMU 312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 313 { 314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 315 struct rb_node **rb_link, *rb_parent; 316 int retval; 317 unsigned long charge; 318 struct mempolicy *pol; 319 320 down_write(&oldmm->mmap_sem); 321 flush_cache_dup_mm(oldmm); 322 /* 323 * Not linked in yet - no deadlock potential: 324 */ 325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 326 327 mm->locked_vm = 0; 328 mm->mmap = NULL; 329 mm->mmap_cache = NULL; 330 mm->free_area_cache = oldmm->mmap_base; 331 mm->cached_hole_size = ~0UL; 332 mm->map_count = 0; 333 cpumask_clear(mm_cpumask(mm)); 334 mm->mm_rb = RB_ROOT; 335 rb_link = &mm->mm_rb.rb_node; 336 rb_parent = NULL; 337 pprev = &mm->mmap; 338 retval = ksm_fork(mm, oldmm); 339 if (retval) 340 goto out; 341 retval = khugepaged_fork(mm, oldmm); 342 if (retval) 343 goto out; 344 345 prev = NULL; 346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 347 struct file *file; 348 349 if (mpnt->vm_flags & VM_DONTCOPY) { 350 long pages = vma_pages(mpnt); 351 mm->total_vm -= pages; 352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 353 -pages); 354 continue; 355 } 356 charge = 0; 357 if (mpnt->vm_flags & VM_ACCOUNT) { 358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 359 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 360 goto fail_nomem; 361 charge = len; 362 } 363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 364 if (!tmp) 365 goto fail_nomem; 366 *tmp = *mpnt; 367 INIT_LIST_HEAD(&tmp->anon_vma_chain); 368 pol = mpol_dup(vma_policy(mpnt)); 369 retval = PTR_ERR(pol); 370 if (IS_ERR(pol)) 371 goto fail_nomem_policy; 372 vma_set_policy(tmp, pol); 373 tmp->vm_mm = mm; 374 if (anon_vma_fork(tmp, mpnt)) 375 goto fail_nomem_anon_vma_fork; 376 tmp->vm_flags &= ~VM_LOCKED; 377 tmp->vm_next = tmp->vm_prev = NULL; 378 file = tmp->vm_file; 379 if (file) { 380 struct inode *inode = file->f_path.dentry->d_inode; 381 struct address_space *mapping = file->f_mapping; 382 383 get_file(file); 384 if (tmp->vm_flags & VM_DENYWRITE) 385 atomic_dec(&inode->i_writecount); 386 mutex_lock(&mapping->i_mmap_mutex); 387 if (tmp->vm_flags & VM_SHARED) 388 mapping->i_mmap_writable++; 389 flush_dcache_mmap_lock(mapping); 390 /* insert tmp into the share list, just after mpnt */ 391 vma_prio_tree_add(tmp, mpnt); 392 flush_dcache_mmap_unlock(mapping); 393 mutex_unlock(&mapping->i_mmap_mutex); 394 } 395 396 /* 397 * Clear hugetlb-related page reserves for children. This only 398 * affects MAP_PRIVATE mappings. Faults generated by the child 399 * are not guaranteed to succeed, even if read-only 400 */ 401 if (is_vm_hugetlb_page(tmp)) 402 reset_vma_resv_huge_pages(tmp); 403 404 /* 405 * Link in the new vma and copy the page table entries. 406 */ 407 *pprev = tmp; 408 pprev = &tmp->vm_next; 409 tmp->vm_prev = prev; 410 prev = tmp; 411 412 __vma_link_rb(mm, tmp, rb_link, rb_parent); 413 rb_link = &tmp->vm_rb.rb_right; 414 rb_parent = &tmp->vm_rb; 415 416 mm->map_count++; 417 retval = copy_page_range(mm, oldmm, mpnt); 418 419 if (tmp->vm_ops && tmp->vm_ops->open) 420 tmp->vm_ops->open(tmp); 421 422 if (retval) 423 goto out; 424 } 425 /* a new mm has just been created */ 426 arch_dup_mmap(oldmm, mm); 427 retval = 0; 428 out: 429 up_write(&mm->mmap_sem); 430 flush_tlb_mm(oldmm); 431 up_write(&oldmm->mmap_sem); 432 return retval; 433 fail_nomem_anon_vma_fork: 434 mpol_put(pol); 435 fail_nomem_policy: 436 kmem_cache_free(vm_area_cachep, tmp); 437 fail_nomem: 438 retval = -ENOMEM; 439 vm_unacct_memory(charge); 440 goto out; 441 } 442 443 static inline int mm_alloc_pgd(struct mm_struct *mm) 444 { 445 mm->pgd = pgd_alloc(mm); 446 if (unlikely(!mm->pgd)) 447 return -ENOMEM; 448 return 0; 449 } 450 451 static inline void mm_free_pgd(struct mm_struct *mm) 452 { 453 pgd_free(mm, mm->pgd); 454 } 455 #else 456 #define dup_mmap(mm, oldmm) (0) 457 #define mm_alloc_pgd(mm) (0) 458 #define mm_free_pgd(mm) 459 #endif /* CONFIG_MMU */ 460 461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 462 463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 465 466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 467 468 static int __init coredump_filter_setup(char *s) 469 { 470 default_dump_filter = 471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 472 MMF_DUMP_FILTER_MASK; 473 return 1; 474 } 475 476 __setup("coredump_filter=", coredump_filter_setup); 477 478 #include <linux/init_task.h> 479 480 static void mm_init_aio(struct mm_struct *mm) 481 { 482 #ifdef CONFIG_AIO 483 spin_lock_init(&mm->ioctx_lock); 484 INIT_HLIST_HEAD(&mm->ioctx_list); 485 #endif 486 } 487 488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 489 { 490 atomic_set(&mm->mm_users, 1); 491 atomic_set(&mm->mm_count, 1); 492 init_rwsem(&mm->mmap_sem); 493 INIT_LIST_HEAD(&mm->mmlist); 494 mm->flags = (current->mm) ? 495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 496 mm->core_state = NULL; 497 mm->nr_ptes = 0; 498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 499 spin_lock_init(&mm->page_table_lock); 500 mm->free_area_cache = TASK_UNMAPPED_BASE; 501 mm->cached_hole_size = ~0UL; 502 mm_init_aio(mm); 503 mm_init_owner(mm, p); 504 505 if (likely(!mm_alloc_pgd(mm))) { 506 mm->def_flags = 0; 507 mmu_notifier_mm_init(mm); 508 return mm; 509 } 510 511 free_mm(mm); 512 return NULL; 513 } 514 515 /* 516 * Allocate and initialize an mm_struct. 517 */ 518 struct mm_struct *mm_alloc(void) 519 { 520 struct mm_struct *mm; 521 522 mm = allocate_mm(); 523 if (!mm) 524 return NULL; 525 526 memset(mm, 0, sizeof(*mm)); 527 mm_init_cpumask(mm); 528 return mm_init(mm, current); 529 } 530 531 /* 532 * Called when the last reference to the mm 533 * is dropped: either by a lazy thread or by 534 * mmput. Free the page directory and the mm. 535 */ 536 void __mmdrop(struct mm_struct *mm) 537 { 538 BUG_ON(mm == &init_mm); 539 mm_free_pgd(mm); 540 destroy_context(mm); 541 mmu_notifier_mm_destroy(mm); 542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 543 VM_BUG_ON(mm->pmd_huge_pte); 544 #endif 545 free_mm(mm); 546 } 547 EXPORT_SYMBOL_GPL(__mmdrop); 548 549 /* 550 * Decrement the use count and release all resources for an mm. 551 */ 552 void mmput(struct mm_struct *mm) 553 { 554 might_sleep(); 555 556 if (atomic_dec_and_test(&mm->mm_users)) { 557 exit_aio(mm); 558 ksm_exit(mm); 559 khugepaged_exit(mm); /* must run before exit_mmap */ 560 exit_mmap(mm); 561 set_mm_exe_file(mm, NULL); 562 if (!list_empty(&mm->mmlist)) { 563 spin_lock(&mmlist_lock); 564 list_del(&mm->mmlist); 565 spin_unlock(&mmlist_lock); 566 } 567 put_swap_token(mm); 568 if (mm->binfmt) 569 module_put(mm->binfmt->module); 570 mmdrop(mm); 571 } 572 } 573 EXPORT_SYMBOL_GPL(mmput); 574 575 /* 576 * We added or removed a vma mapping the executable. The vmas are only mapped 577 * during exec and are not mapped with the mmap system call. 578 * Callers must hold down_write() on the mm's mmap_sem for these 579 */ 580 void added_exe_file_vma(struct mm_struct *mm) 581 { 582 mm->num_exe_file_vmas++; 583 } 584 585 void removed_exe_file_vma(struct mm_struct *mm) 586 { 587 mm->num_exe_file_vmas--; 588 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) { 589 fput(mm->exe_file); 590 mm->exe_file = NULL; 591 } 592 593 } 594 595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 596 { 597 if (new_exe_file) 598 get_file(new_exe_file); 599 if (mm->exe_file) 600 fput(mm->exe_file); 601 mm->exe_file = new_exe_file; 602 mm->num_exe_file_vmas = 0; 603 } 604 605 struct file *get_mm_exe_file(struct mm_struct *mm) 606 { 607 struct file *exe_file; 608 609 /* We need mmap_sem to protect against races with removal of 610 * VM_EXECUTABLE vmas */ 611 down_read(&mm->mmap_sem); 612 exe_file = mm->exe_file; 613 if (exe_file) 614 get_file(exe_file); 615 up_read(&mm->mmap_sem); 616 return exe_file; 617 } 618 619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 620 { 621 /* It's safe to write the exe_file pointer without exe_file_lock because 622 * this is called during fork when the task is not yet in /proc */ 623 newmm->exe_file = get_mm_exe_file(oldmm); 624 } 625 626 /** 627 * get_task_mm - acquire a reference to the task's mm 628 * 629 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 630 * this kernel workthread has transiently adopted a user mm with use_mm, 631 * to do its AIO) is not set and if so returns a reference to it, after 632 * bumping up the use count. User must release the mm via mmput() 633 * after use. Typically used by /proc and ptrace. 634 */ 635 struct mm_struct *get_task_mm(struct task_struct *task) 636 { 637 struct mm_struct *mm; 638 639 task_lock(task); 640 mm = task->mm; 641 if (mm) { 642 if (task->flags & PF_KTHREAD) 643 mm = NULL; 644 else 645 atomic_inc(&mm->mm_users); 646 } 647 task_unlock(task); 648 return mm; 649 } 650 EXPORT_SYMBOL_GPL(get_task_mm); 651 652 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 653 { 654 struct mm_struct *mm; 655 int err; 656 657 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 658 if (err) 659 return ERR_PTR(err); 660 661 mm = get_task_mm(task); 662 if (mm && mm != current->mm && 663 !ptrace_may_access(task, mode)) { 664 mmput(mm); 665 mm = ERR_PTR(-EACCES); 666 } 667 mutex_unlock(&task->signal->cred_guard_mutex); 668 669 return mm; 670 } 671 672 static void complete_vfork_done(struct task_struct *tsk) 673 { 674 struct completion *vfork; 675 676 task_lock(tsk); 677 vfork = tsk->vfork_done; 678 if (likely(vfork)) { 679 tsk->vfork_done = NULL; 680 complete(vfork); 681 } 682 task_unlock(tsk); 683 } 684 685 static int wait_for_vfork_done(struct task_struct *child, 686 struct completion *vfork) 687 { 688 int killed; 689 690 freezer_do_not_count(); 691 killed = wait_for_completion_killable(vfork); 692 freezer_count(); 693 694 if (killed) { 695 task_lock(child); 696 child->vfork_done = NULL; 697 task_unlock(child); 698 } 699 700 put_task_struct(child); 701 return killed; 702 } 703 704 /* Please note the differences between mmput and mm_release. 705 * mmput is called whenever we stop holding onto a mm_struct, 706 * error success whatever. 707 * 708 * mm_release is called after a mm_struct has been removed 709 * from the current process. 710 * 711 * This difference is important for error handling, when we 712 * only half set up a mm_struct for a new process and need to restore 713 * the old one. Because we mmput the new mm_struct before 714 * restoring the old one. . . 715 * Eric Biederman 10 January 1998 716 */ 717 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 718 { 719 /* Get rid of any futexes when releasing the mm */ 720 #ifdef CONFIG_FUTEX 721 if (unlikely(tsk->robust_list)) { 722 exit_robust_list(tsk); 723 tsk->robust_list = NULL; 724 } 725 #ifdef CONFIG_COMPAT 726 if (unlikely(tsk->compat_robust_list)) { 727 compat_exit_robust_list(tsk); 728 tsk->compat_robust_list = NULL; 729 } 730 #endif 731 if (unlikely(!list_empty(&tsk->pi_state_list))) 732 exit_pi_state_list(tsk); 733 #endif 734 735 /* Get rid of any cached register state */ 736 deactivate_mm(tsk, mm); 737 738 if (tsk->vfork_done) 739 complete_vfork_done(tsk); 740 741 /* 742 * If we're exiting normally, clear a user-space tid field if 743 * requested. We leave this alone when dying by signal, to leave 744 * the value intact in a core dump, and to save the unnecessary 745 * trouble, say, a killed vfork parent shouldn't touch this mm. 746 * Userland only wants this done for a sys_exit. 747 */ 748 if (tsk->clear_child_tid) { 749 if (!(tsk->flags & PF_SIGNALED) && 750 atomic_read(&mm->mm_users) > 1) { 751 /* 752 * We don't check the error code - if userspace has 753 * not set up a proper pointer then tough luck. 754 */ 755 put_user(0, tsk->clear_child_tid); 756 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 757 1, NULL, NULL, 0); 758 } 759 tsk->clear_child_tid = NULL; 760 } 761 } 762 763 /* 764 * Allocate a new mm structure and copy contents from the 765 * mm structure of the passed in task structure. 766 */ 767 struct mm_struct *dup_mm(struct task_struct *tsk) 768 { 769 struct mm_struct *mm, *oldmm = current->mm; 770 int err; 771 772 if (!oldmm) 773 return NULL; 774 775 mm = allocate_mm(); 776 if (!mm) 777 goto fail_nomem; 778 779 memcpy(mm, oldmm, sizeof(*mm)); 780 mm_init_cpumask(mm); 781 782 /* Initializing for Swap token stuff */ 783 mm->token_priority = 0; 784 mm->last_interval = 0; 785 786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 787 mm->pmd_huge_pte = NULL; 788 #endif 789 790 if (!mm_init(mm, tsk)) 791 goto fail_nomem; 792 793 if (init_new_context(tsk, mm)) 794 goto fail_nocontext; 795 796 dup_mm_exe_file(oldmm, mm); 797 798 err = dup_mmap(mm, oldmm); 799 if (err) 800 goto free_pt; 801 802 mm->hiwater_rss = get_mm_rss(mm); 803 mm->hiwater_vm = mm->total_vm; 804 805 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 806 goto free_pt; 807 808 return mm; 809 810 free_pt: 811 /* don't put binfmt in mmput, we haven't got module yet */ 812 mm->binfmt = NULL; 813 mmput(mm); 814 815 fail_nomem: 816 return NULL; 817 818 fail_nocontext: 819 /* 820 * If init_new_context() failed, we cannot use mmput() to free the mm 821 * because it calls destroy_context() 822 */ 823 mm_free_pgd(mm); 824 free_mm(mm); 825 return NULL; 826 } 827 828 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 829 { 830 struct mm_struct *mm, *oldmm; 831 int retval; 832 833 tsk->min_flt = tsk->maj_flt = 0; 834 tsk->nvcsw = tsk->nivcsw = 0; 835 #ifdef CONFIG_DETECT_HUNG_TASK 836 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 837 #endif 838 839 tsk->mm = NULL; 840 tsk->active_mm = NULL; 841 842 /* 843 * Are we cloning a kernel thread? 844 * 845 * We need to steal a active VM for that.. 846 */ 847 oldmm = current->mm; 848 if (!oldmm) 849 return 0; 850 851 if (clone_flags & CLONE_VM) { 852 atomic_inc(&oldmm->mm_users); 853 mm = oldmm; 854 goto good_mm; 855 } 856 857 retval = -ENOMEM; 858 mm = dup_mm(tsk); 859 if (!mm) 860 goto fail_nomem; 861 862 good_mm: 863 /* Initializing for Swap token stuff */ 864 mm->token_priority = 0; 865 mm->last_interval = 0; 866 867 tsk->mm = mm; 868 tsk->active_mm = mm; 869 return 0; 870 871 fail_nomem: 872 return retval; 873 } 874 875 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 876 { 877 struct fs_struct *fs = current->fs; 878 if (clone_flags & CLONE_FS) { 879 /* tsk->fs is already what we want */ 880 spin_lock(&fs->lock); 881 if (fs->in_exec) { 882 spin_unlock(&fs->lock); 883 return -EAGAIN; 884 } 885 fs->users++; 886 spin_unlock(&fs->lock); 887 return 0; 888 } 889 tsk->fs = copy_fs_struct(fs); 890 if (!tsk->fs) 891 return -ENOMEM; 892 return 0; 893 } 894 895 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 896 { 897 struct files_struct *oldf, *newf; 898 int error = 0; 899 900 /* 901 * A background process may not have any files ... 902 */ 903 oldf = current->files; 904 if (!oldf) 905 goto out; 906 907 if (clone_flags & CLONE_FILES) { 908 atomic_inc(&oldf->count); 909 goto out; 910 } 911 912 newf = dup_fd(oldf, &error); 913 if (!newf) 914 goto out; 915 916 tsk->files = newf; 917 error = 0; 918 out: 919 return error; 920 } 921 922 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 923 { 924 #ifdef CONFIG_BLOCK 925 struct io_context *ioc = current->io_context; 926 struct io_context *new_ioc; 927 928 if (!ioc) 929 return 0; 930 /* 931 * Share io context with parent, if CLONE_IO is set 932 */ 933 if (clone_flags & CLONE_IO) { 934 tsk->io_context = ioc_task_link(ioc); 935 if (unlikely(!tsk->io_context)) 936 return -ENOMEM; 937 } else if (ioprio_valid(ioc->ioprio)) { 938 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 939 if (unlikely(!new_ioc)) 940 return -ENOMEM; 941 942 new_ioc->ioprio = ioc->ioprio; 943 put_io_context(new_ioc); 944 } 945 #endif 946 return 0; 947 } 948 949 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 950 { 951 struct sighand_struct *sig; 952 953 if (clone_flags & CLONE_SIGHAND) { 954 atomic_inc(¤t->sighand->count); 955 return 0; 956 } 957 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 958 rcu_assign_pointer(tsk->sighand, sig); 959 if (!sig) 960 return -ENOMEM; 961 atomic_set(&sig->count, 1); 962 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 963 return 0; 964 } 965 966 void __cleanup_sighand(struct sighand_struct *sighand) 967 { 968 if (atomic_dec_and_test(&sighand->count)) { 969 signalfd_cleanup(sighand); 970 kmem_cache_free(sighand_cachep, sighand); 971 } 972 } 973 974 975 /* 976 * Initialize POSIX timer handling for a thread group. 977 */ 978 static void posix_cpu_timers_init_group(struct signal_struct *sig) 979 { 980 unsigned long cpu_limit; 981 982 /* Thread group counters. */ 983 thread_group_cputime_init(sig); 984 985 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 986 if (cpu_limit != RLIM_INFINITY) { 987 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 988 sig->cputimer.running = 1; 989 } 990 991 /* The timer lists. */ 992 INIT_LIST_HEAD(&sig->cpu_timers[0]); 993 INIT_LIST_HEAD(&sig->cpu_timers[1]); 994 INIT_LIST_HEAD(&sig->cpu_timers[2]); 995 } 996 997 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 998 { 999 struct signal_struct *sig; 1000 1001 if (clone_flags & CLONE_THREAD) 1002 return 0; 1003 1004 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1005 tsk->signal = sig; 1006 if (!sig) 1007 return -ENOMEM; 1008 1009 sig->nr_threads = 1; 1010 atomic_set(&sig->live, 1); 1011 atomic_set(&sig->sigcnt, 1); 1012 init_waitqueue_head(&sig->wait_chldexit); 1013 if (clone_flags & CLONE_NEWPID) 1014 sig->flags |= SIGNAL_UNKILLABLE; 1015 sig->curr_target = tsk; 1016 init_sigpending(&sig->shared_pending); 1017 INIT_LIST_HEAD(&sig->posix_timers); 1018 1019 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1020 sig->real_timer.function = it_real_fn; 1021 1022 task_lock(current->group_leader); 1023 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1024 task_unlock(current->group_leader); 1025 1026 posix_cpu_timers_init_group(sig); 1027 1028 tty_audit_fork(sig); 1029 sched_autogroup_fork(sig); 1030 1031 #ifdef CONFIG_CGROUPS 1032 init_rwsem(&sig->group_rwsem); 1033 #endif 1034 1035 sig->oom_adj = current->signal->oom_adj; 1036 sig->oom_score_adj = current->signal->oom_score_adj; 1037 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1038 1039 mutex_init(&sig->cred_guard_mutex); 1040 1041 return 0; 1042 } 1043 1044 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1045 { 1046 unsigned long new_flags = p->flags; 1047 1048 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1049 new_flags |= PF_FORKNOEXEC; 1050 p->flags = new_flags; 1051 } 1052 1053 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1054 { 1055 current->clear_child_tid = tidptr; 1056 1057 return task_pid_vnr(current); 1058 } 1059 1060 static void rt_mutex_init_task(struct task_struct *p) 1061 { 1062 raw_spin_lock_init(&p->pi_lock); 1063 #ifdef CONFIG_RT_MUTEXES 1064 plist_head_init(&p->pi_waiters); 1065 p->pi_blocked_on = NULL; 1066 #endif 1067 } 1068 1069 #ifdef CONFIG_MM_OWNER 1070 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1071 { 1072 mm->owner = p; 1073 } 1074 #endif /* CONFIG_MM_OWNER */ 1075 1076 /* 1077 * Initialize POSIX timer handling for a single task. 1078 */ 1079 static void posix_cpu_timers_init(struct task_struct *tsk) 1080 { 1081 tsk->cputime_expires.prof_exp = 0; 1082 tsk->cputime_expires.virt_exp = 0; 1083 tsk->cputime_expires.sched_exp = 0; 1084 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1085 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1086 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1087 } 1088 1089 /* 1090 * This creates a new process as a copy of the old one, 1091 * but does not actually start it yet. 1092 * 1093 * It copies the registers, and all the appropriate 1094 * parts of the process environment (as per the clone 1095 * flags). The actual kick-off is left to the caller. 1096 */ 1097 static struct task_struct *copy_process(unsigned long clone_flags, 1098 unsigned long stack_start, 1099 struct pt_regs *regs, 1100 unsigned long stack_size, 1101 int __user *child_tidptr, 1102 struct pid *pid, 1103 int trace) 1104 { 1105 int retval; 1106 struct task_struct *p; 1107 int cgroup_callbacks_done = 0; 1108 1109 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1110 return ERR_PTR(-EINVAL); 1111 1112 /* 1113 * Thread groups must share signals as well, and detached threads 1114 * can only be started up within the thread group. 1115 */ 1116 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1117 return ERR_PTR(-EINVAL); 1118 1119 /* 1120 * Shared signal handlers imply shared VM. By way of the above, 1121 * thread groups also imply shared VM. Blocking this case allows 1122 * for various simplifications in other code. 1123 */ 1124 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1125 return ERR_PTR(-EINVAL); 1126 1127 /* 1128 * Siblings of global init remain as zombies on exit since they are 1129 * not reaped by their parent (swapper). To solve this and to avoid 1130 * multi-rooted process trees, prevent global and container-inits 1131 * from creating siblings. 1132 */ 1133 if ((clone_flags & CLONE_PARENT) && 1134 current->signal->flags & SIGNAL_UNKILLABLE) 1135 return ERR_PTR(-EINVAL); 1136 1137 retval = security_task_create(clone_flags); 1138 if (retval) 1139 goto fork_out; 1140 1141 retval = -ENOMEM; 1142 p = dup_task_struct(current); 1143 if (!p) 1144 goto fork_out; 1145 1146 ftrace_graph_init_task(p); 1147 1148 rt_mutex_init_task(p); 1149 1150 #ifdef CONFIG_PROVE_LOCKING 1151 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1152 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1153 #endif 1154 retval = -EAGAIN; 1155 if (atomic_read(&p->real_cred->user->processes) >= 1156 task_rlimit(p, RLIMIT_NPROC)) { 1157 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1158 p->real_cred->user != INIT_USER) 1159 goto bad_fork_free; 1160 } 1161 current->flags &= ~PF_NPROC_EXCEEDED; 1162 1163 retval = copy_creds(p, clone_flags); 1164 if (retval < 0) 1165 goto bad_fork_free; 1166 1167 /* 1168 * If multiple threads are within copy_process(), then this check 1169 * triggers too late. This doesn't hurt, the check is only there 1170 * to stop root fork bombs. 1171 */ 1172 retval = -EAGAIN; 1173 if (nr_threads >= max_threads) 1174 goto bad_fork_cleanup_count; 1175 1176 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1177 goto bad_fork_cleanup_count; 1178 1179 p->did_exec = 0; 1180 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1181 copy_flags(clone_flags, p); 1182 INIT_LIST_HEAD(&p->children); 1183 INIT_LIST_HEAD(&p->sibling); 1184 rcu_copy_process(p); 1185 p->vfork_done = NULL; 1186 spin_lock_init(&p->alloc_lock); 1187 1188 init_sigpending(&p->pending); 1189 1190 p->utime = p->stime = p->gtime = 0; 1191 p->utimescaled = p->stimescaled = 0; 1192 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1193 p->prev_utime = p->prev_stime = 0; 1194 #endif 1195 #if defined(SPLIT_RSS_COUNTING) 1196 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1197 #endif 1198 1199 p->default_timer_slack_ns = current->timer_slack_ns; 1200 1201 task_io_accounting_init(&p->ioac); 1202 acct_clear_integrals(p); 1203 1204 posix_cpu_timers_init(p); 1205 1206 do_posix_clock_monotonic_gettime(&p->start_time); 1207 p->real_start_time = p->start_time; 1208 monotonic_to_bootbased(&p->real_start_time); 1209 p->io_context = NULL; 1210 p->audit_context = NULL; 1211 if (clone_flags & CLONE_THREAD) 1212 threadgroup_change_begin(current); 1213 cgroup_fork(p); 1214 #ifdef CONFIG_NUMA 1215 p->mempolicy = mpol_dup(p->mempolicy); 1216 if (IS_ERR(p->mempolicy)) { 1217 retval = PTR_ERR(p->mempolicy); 1218 p->mempolicy = NULL; 1219 goto bad_fork_cleanup_cgroup; 1220 } 1221 mpol_fix_fork_child_flag(p); 1222 #endif 1223 #ifdef CONFIG_CPUSETS 1224 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1225 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1226 #endif 1227 #ifdef CONFIG_TRACE_IRQFLAGS 1228 p->irq_events = 0; 1229 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1230 p->hardirqs_enabled = 1; 1231 #else 1232 p->hardirqs_enabled = 0; 1233 #endif 1234 p->hardirq_enable_ip = 0; 1235 p->hardirq_enable_event = 0; 1236 p->hardirq_disable_ip = _THIS_IP_; 1237 p->hardirq_disable_event = 0; 1238 p->softirqs_enabled = 1; 1239 p->softirq_enable_ip = _THIS_IP_; 1240 p->softirq_enable_event = 0; 1241 p->softirq_disable_ip = 0; 1242 p->softirq_disable_event = 0; 1243 p->hardirq_context = 0; 1244 p->softirq_context = 0; 1245 #endif 1246 #ifdef CONFIG_LOCKDEP 1247 p->lockdep_depth = 0; /* no locks held yet */ 1248 p->curr_chain_key = 0; 1249 p->lockdep_recursion = 0; 1250 #endif 1251 1252 #ifdef CONFIG_DEBUG_MUTEXES 1253 p->blocked_on = NULL; /* not blocked yet */ 1254 #endif 1255 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1256 p->memcg_batch.do_batch = 0; 1257 p->memcg_batch.memcg = NULL; 1258 #endif 1259 1260 /* Perform scheduler related setup. Assign this task to a CPU. */ 1261 sched_fork(p); 1262 1263 retval = perf_event_init_task(p); 1264 if (retval) 1265 goto bad_fork_cleanup_policy; 1266 retval = audit_alloc(p); 1267 if (retval) 1268 goto bad_fork_cleanup_policy; 1269 /* copy all the process information */ 1270 retval = copy_semundo(clone_flags, p); 1271 if (retval) 1272 goto bad_fork_cleanup_audit; 1273 retval = copy_files(clone_flags, p); 1274 if (retval) 1275 goto bad_fork_cleanup_semundo; 1276 retval = copy_fs(clone_flags, p); 1277 if (retval) 1278 goto bad_fork_cleanup_files; 1279 retval = copy_sighand(clone_flags, p); 1280 if (retval) 1281 goto bad_fork_cleanup_fs; 1282 retval = copy_signal(clone_flags, p); 1283 if (retval) 1284 goto bad_fork_cleanup_sighand; 1285 retval = copy_mm(clone_flags, p); 1286 if (retval) 1287 goto bad_fork_cleanup_signal; 1288 retval = copy_namespaces(clone_flags, p); 1289 if (retval) 1290 goto bad_fork_cleanup_mm; 1291 retval = copy_io(clone_flags, p); 1292 if (retval) 1293 goto bad_fork_cleanup_namespaces; 1294 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1295 if (retval) 1296 goto bad_fork_cleanup_io; 1297 1298 if (pid != &init_struct_pid) { 1299 retval = -ENOMEM; 1300 pid = alloc_pid(p->nsproxy->pid_ns); 1301 if (!pid) 1302 goto bad_fork_cleanup_io; 1303 } 1304 1305 p->pid = pid_nr(pid); 1306 p->tgid = p->pid; 1307 if (clone_flags & CLONE_THREAD) 1308 p->tgid = current->tgid; 1309 1310 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1311 /* 1312 * Clear TID on mm_release()? 1313 */ 1314 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1315 #ifdef CONFIG_BLOCK 1316 p->plug = NULL; 1317 #endif 1318 #ifdef CONFIG_FUTEX 1319 p->robust_list = NULL; 1320 #ifdef CONFIG_COMPAT 1321 p->compat_robust_list = NULL; 1322 #endif 1323 INIT_LIST_HEAD(&p->pi_state_list); 1324 p->pi_state_cache = NULL; 1325 #endif 1326 /* 1327 * sigaltstack should be cleared when sharing the same VM 1328 */ 1329 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1330 p->sas_ss_sp = p->sas_ss_size = 0; 1331 1332 /* 1333 * Syscall tracing and stepping should be turned off in the 1334 * child regardless of CLONE_PTRACE. 1335 */ 1336 user_disable_single_step(p); 1337 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1338 #ifdef TIF_SYSCALL_EMU 1339 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1340 #endif 1341 clear_all_latency_tracing(p); 1342 1343 /* ok, now we should be set up.. */ 1344 if (clone_flags & CLONE_THREAD) 1345 p->exit_signal = -1; 1346 else if (clone_flags & CLONE_PARENT) 1347 p->exit_signal = current->group_leader->exit_signal; 1348 else 1349 p->exit_signal = (clone_flags & CSIGNAL); 1350 1351 p->pdeath_signal = 0; 1352 p->exit_state = 0; 1353 1354 p->nr_dirtied = 0; 1355 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1356 p->dirty_paused_when = 0; 1357 1358 /* 1359 * Ok, make it visible to the rest of the system. 1360 * We dont wake it up yet. 1361 */ 1362 p->group_leader = p; 1363 INIT_LIST_HEAD(&p->thread_group); 1364 1365 /* Now that the task is set up, run cgroup callbacks if 1366 * necessary. We need to run them before the task is visible 1367 * on the tasklist. */ 1368 cgroup_fork_callbacks(p); 1369 cgroup_callbacks_done = 1; 1370 1371 /* Need tasklist lock for parent etc handling! */ 1372 write_lock_irq(&tasklist_lock); 1373 1374 /* CLONE_PARENT re-uses the old parent */ 1375 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1376 p->real_parent = current->real_parent; 1377 p->parent_exec_id = current->parent_exec_id; 1378 } else { 1379 p->real_parent = current; 1380 p->parent_exec_id = current->self_exec_id; 1381 } 1382 1383 spin_lock(¤t->sighand->siglock); 1384 1385 /* 1386 * Process group and session signals need to be delivered to just the 1387 * parent before the fork or both the parent and the child after the 1388 * fork. Restart if a signal comes in before we add the new process to 1389 * it's process group. 1390 * A fatal signal pending means that current will exit, so the new 1391 * thread can't slip out of an OOM kill (or normal SIGKILL). 1392 */ 1393 recalc_sigpending(); 1394 if (signal_pending(current)) { 1395 spin_unlock(¤t->sighand->siglock); 1396 write_unlock_irq(&tasklist_lock); 1397 retval = -ERESTARTNOINTR; 1398 goto bad_fork_free_pid; 1399 } 1400 1401 if (clone_flags & CLONE_THREAD) { 1402 current->signal->nr_threads++; 1403 atomic_inc(¤t->signal->live); 1404 atomic_inc(¤t->signal->sigcnt); 1405 p->group_leader = current->group_leader; 1406 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1407 } 1408 1409 if (likely(p->pid)) { 1410 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1411 1412 if (thread_group_leader(p)) { 1413 if (is_child_reaper(pid)) 1414 p->nsproxy->pid_ns->child_reaper = p; 1415 1416 p->signal->leader_pid = pid; 1417 p->signal->tty = tty_kref_get(current->signal->tty); 1418 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1419 attach_pid(p, PIDTYPE_SID, task_session(current)); 1420 list_add_tail(&p->sibling, &p->real_parent->children); 1421 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1422 __this_cpu_inc(process_counts); 1423 } 1424 attach_pid(p, PIDTYPE_PID, pid); 1425 nr_threads++; 1426 } 1427 1428 total_forks++; 1429 spin_unlock(¤t->sighand->siglock); 1430 write_unlock_irq(&tasklist_lock); 1431 proc_fork_connector(p); 1432 cgroup_post_fork(p); 1433 if (clone_flags & CLONE_THREAD) 1434 threadgroup_change_end(current); 1435 perf_event_fork(p); 1436 1437 trace_task_newtask(p, clone_flags); 1438 1439 return p; 1440 1441 bad_fork_free_pid: 1442 if (pid != &init_struct_pid) 1443 free_pid(pid); 1444 bad_fork_cleanup_io: 1445 if (p->io_context) 1446 exit_io_context(p); 1447 bad_fork_cleanup_namespaces: 1448 exit_task_namespaces(p); 1449 bad_fork_cleanup_mm: 1450 if (p->mm) 1451 mmput(p->mm); 1452 bad_fork_cleanup_signal: 1453 if (!(clone_flags & CLONE_THREAD)) 1454 free_signal_struct(p->signal); 1455 bad_fork_cleanup_sighand: 1456 __cleanup_sighand(p->sighand); 1457 bad_fork_cleanup_fs: 1458 exit_fs(p); /* blocking */ 1459 bad_fork_cleanup_files: 1460 exit_files(p); /* blocking */ 1461 bad_fork_cleanup_semundo: 1462 exit_sem(p); 1463 bad_fork_cleanup_audit: 1464 audit_free(p); 1465 bad_fork_cleanup_policy: 1466 perf_event_free_task(p); 1467 #ifdef CONFIG_NUMA 1468 mpol_put(p->mempolicy); 1469 bad_fork_cleanup_cgroup: 1470 #endif 1471 if (clone_flags & CLONE_THREAD) 1472 threadgroup_change_end(current); 1473 cgroup_exit(p, cgroup_callbacks_done); 1474 delayacct_tsk_free(p); 1475 module_put(task_thread_info(p)->exec_domain->module); 1476 bad_fork_cleanup_count: 1477 atomic_dec(&p->cred->user->processes); 1478 exit_creds(p); 1479 bad_fork_free: 1480 free_task(p); 1481 fork_out: 1482 return ERR_PTR(retval); 1483 } 1484 1485 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1486 { 1487 memset(regs, 0, sizeof(struct pt_regs)); 1488 return regs; 1489 } 1490 1491 static inline void init_idle_pids(struct pid_link *links) 1492 { 1493 enum pid_type type; 1494 1495 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1496 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1497 links[type].pid = &init_struct_pid; 1498 } 1499 } 1500 1501 struct task_struct * __cpuinit fork_idle(int cpu) 1502 { 1503 struct task_struct *task; 1504 struct pt_regs regs; 1505 1506 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1507 &init_struct_pid, 0); 1508 if (!IS_ERR(task)) { 1509 init_idle_pids(task->pids); 1510 init_idle(task, cpu); 1511 } 1512 1513 return task; 1514 } 1515 1516 /* 1517 * Ok, this is the main fork-routine. 1518 * 1519 * It copies the process, and if successful kick-starts 1520 * it and waits for it to finish using the VM if required. 1521 */ 1522 long do_fork(unsigned long clone_flags, 1523 unsigned long stack_start, 1524 struct pt_regs *regs, 1525 unsigned long stack_size, 1526 int __user *parent_tidptr, 1527 int __user *child_tidptr) 1528 { 1529 struct task_struct *p; 1530 int trace = 0; 1531 long nr; 1532 1533 /* 1534 * Do some preliminary argument and permissions checking before we 1535 * actually start allocating stuff 1536 */ 1537 if (clone_flags & CLONE_NEWUSER) { 1538 if (clone_flags & CLONE_THREAD) 1539 return -EINVAL; 1540 /* hopefully this check will go away when userns support is 1541 * complete 1542 */ 1543 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1544 !capable(CAP_SETGID)) 1545 return -EPERM; 1546 } 1547 1548 /* 1549 * Determine whether and which event to report to ptracer. When 1550 * called from kernel_thread or CLONE_UNTRACED is explicitly 1551 * requested, no event is reported; otherwise, report if the event 1552 * for the type of forking is enabled. 1553 */ 1554 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) { 1555 if (clone_flags & CLONE_VFORK) 1556 trace = PTRACE_EVENT_VFORK; 1557 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1558 trace = PTRACE_EVENT_CLONE; 1559 else 1560 trace = PTRACE_EVENT_FORK; 1561 1562 if (likely(!ptrace_event_enabled(current, trace))) 1563 trace = 0; 1564 } 1565 1566 p = copy_process(clone_flags, stack_start, regs, stack_size, 1567 child_tidptr, NULL, trace); 1568 /* 1569 * Do this prior waking up the new thread - the thread pointer 1570 * might get invalid after that point, if the thread exits quickly. 1571 */ 1572 if (!IS_ERR(p)) { 1573 struct completion vfork; 1574 1575 trace_sched_process_fork(current, p); 1576 1577 nr = task_pid_vnr(p); 1578 1579 if (clone_flags & CLONE_PARENT_SETTID) 1580 put_user(nr, parent_tidptr); 1581 1582 if (clone_flags & CLONE_VFORK) { 1583 p->vfork_done = &vfork; 1584 init_completion(&vfork); 1585 get_task_struct(p); 1586 } 1587 1588 wake_up_new_task(p); 1589 1590 /* forking complete and child started to run, tell ptracer */ 1591 if (unlikely(trace)) 1592 ptrace_event(trace, nr); 1593 1594 if (clone_flags & CLONE_VFORK) { 1595 if (!wait_for_vfork_done(p, &vfork)) 1596 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1597 } 1598 } else { 1599 nr = PTR_ERR(p); 1600 } 1601 return nr; 1602 } 1603 1604 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1605 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1606 #endif 1607 1608 static void sighand_ctor(void *data) 1609 { 1610 struct sighand_struct *sighand = data; 1611 1612 spin_lock_init(&sighand->siglock); 1613 init_waitqueue_head(&sighand->signalfd_wqh); 1614 } 1615 1616 void __init proc_caches_init(void) 1617 { 1618 sighand_cachep = kmem_cache_create("sighand_cache", 1619 sizeof(struct sighand_struct), 0, 1620 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1621 SLAB_NOTRACK, sighand_ctor); 1622 signal_cachep = kmem_cache_create("signal_cache", 1623 sizeof(struct signal_struct), 0, 1624 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1625 files_cachep = kmem_cache_create("files_cache", 1626 sizeof(struct files_struct), 0, 1627 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1628 fs_cachep = kmem_cache_create("fs_cache", 1629 sizeof(struct fs_struct), 0, 1630 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1631 /* 1632 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1633 * whole struct cpumask for the OFFSTACK case. We could change 1634 * this to *only* allocate as much of it as required by the 1635 * maximum number of CPU's we can ever have. The cpumask_allocation 1636 * is at the end of the structure, exactly for that reason. 1637 */ 1638 mm_cachep = kmem_cache_create("mm_struct", 1639 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1640 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1641 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1642 mmap_init(); 1643 nsproxy_cache_init(); 1644 } 1645 1646 /* 1647 * Check constraints on flags passed to the unshare system call. 1648 */ 1649 static int check_unshare_flags(unsigned long unshare_flags) 1650 { 1651 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1652 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1653 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1654 return -EINVAL; 1655 /* 1656 * Not implemented, but pretend it works if there is nothing to 1657 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1658 * needs to unshare vm. 1659 */ 1660 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1661 /* FIXME: get_task_mm() increments ->mm_users */ 1662 if (atomic_read(¤t->mm->mm_users) > 1) 1663 return -EINVAL; 1664 } 1665 1666 return 0; 1667 } 1668 1669 /* 1670 * Unshare the filesystem structure if it is being shared 1671 */ 1672 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1673 { 1674 struct fs_struct *fs = current->fs; 1675 1676 if (!(unshare_flags & CLONE_FS) || !fs) 1677 return 0; 1678 1679 /* don't need lock here; in the worst case we'll do useless copy */ 1680 if (fs->users == 1) 1681 return 0; 1682 1683 *new_fsp = copy_fs_struct(fs); 1684 if (!*new_fsp) 1685 return -ENOMEM; 1686 1687 return 0; 1688 } 1689 1690 /* 1691 * Unshare file descriptor table if it is being shared 1692 */ 1693 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1694 { 1695 struct files_struct *fd = current->files; 1696 int error = 0; 1697 1698 if ((unshare_flags & CLONE_FILES) && 1699 (fd && atomic_read(&fd->count) > 1)) { 1700 *new_fdp = dup_fd(fd, &error); 1701 if (!*new_fdp) 1702 return error; 1703 } 1704 1705 return 0; 1706 } 1707 1708 /* 1709 * unshare allows a process to 'unshare' part of the process 1710 * context which was originally shared using clone. copy_* 1711 * functions used by do_fork() cannot be used here directly 1712 * because they modify an inactive task_struct that is being 1713 * constructed. Here we are modifying the current, active, 1714 * task_struct. 1715 */ 1716 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1717 { 1718 struct fs_struct *fs, *new_fs = NULL; 1719 struct files_struct *fd, *new_fd = NULL; 1720 struct nsproxy *new_nsproxy = NULL; 1721 int do_sysvsem = 0; 1722 int err; 1723 1724 err = check_unshare_flags(unshare_flags); 1725 if (err) 1726 goto bad_unshare_out; 1727 1728 /* 1729 * If unsharing namespace, must also unshare filesystem information. 1730 */ 1731 if (unshare_flags & CLONE_NEWNS) 1732 unshare_flags |= CLONE_FS; 1733 /* 1734 * CLONE_NEWIPC must also detach from the undolist: after switching 1735 * to a new ipc namespace, the semaphore arrays from the old 1736 * namespace are unreachable. 1737 */ 1738 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1739 do_sysvsem = 1; 1740 err = unshare_fs(unshare_flags, &new_fs); 1741 if (err) 1742 goto bad_unshare_out; 1743 err = unshare_fd(unshare_flags, &new_fd); 1744 if (err) 1745 goto bad_unshare_cleanup_fs; 1746 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs); 1747 if (err) 1748 goto bad_unshare_cleanup_fd; 1749 1750 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1751 if (do_sysvsem) { 1752 /* 1753 * CLONE_SYSVSEM is equivalent to sys_exit(). 1754 */ 1755 exit_sem(current); 1756 } 1757 1758 if (new_nsproxy) { 1759 switch_task_namespaces(current, new_nsproxy); 1760 new_nsproxy = NULL; 1761 } 1762 1763 task_lock(current); 1764 1765 if (new_fs) { 1766 fs = current->fs; 1767 spin_lock(&fs->lock); 1768 current->fs = new_fs; 1769 if (--fs->users) 1770 new_fs = NULL; 1771 else 1772 new_fs = fs; 1773 spin_unlock(&fs->lock); 1774 } 1775 1776 if (new_fd) { 1777 fd = current->files; 1778 current->files = new_fd; 1779 new_fd = fd; 1780 } 1781 1782 task_unlock(current); 1783 } 1784 1785 if (new_nsproxy) 1786 put_nsproxy(new_nsproxy); 1787 1788 bad_unshare_cleanup_fd: 1789 if (new_fd) 1790 put_files_struct(new_fd); 1791 1792 bad_unshare_cleanup_fs: 1793 if (new_fs) 1794 free_fs_struct(new_fs); 1795 1796 bad_unshare_out: 1797 return err; 1798 } 1799 1800 /* 1801 * Helper to unshare the files of the current task. 1802 * We don't want to expose copy_files internals to 1803 * the exec layer of the kernel. 1804 */ 1805 1806 int unshare_files(struct files_struct **displaced) 1807 { 1808 struct task_struct *task = current; 1809 struct files_struct *copy = NULL; 1810 int error; 1811 1812 error = unshare_fd(CLONE_FILES, ©); 1813 if (error || !copy) { 1814 *displaced = NULL; 1815 return error; 1816 } 1817 *displaced = task->files; 1818 task_lock(task); 1819 task->files = copy; 1820 task_unlock(task); 1821 return 0; 1822 } 1823