xref: /linux-6.15/kernel/fork.c (revision 5375871d)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82 
83 /*
84  * Protected counters by write_lock_irq(&tasklist_lock)
85  */
86 unsigned long total_forks;	/* Handle normal Linux uptimes. */
87 int nr_threads;			/* The idle threads do not count.. */
88 
89 int max_threads;		/* tunable limit on nr_threads */
90 
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92 
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
94 
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 	return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102 
103 int nr_processes(void)
104 {
105 	int cpu;
106 	int total = 0;
107 
108 	for_each_possible_cpu(cpu)
109 		total += per_cpu(process_counts, cpu);
110 
111 	return total;
112 }
113 
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node)		\
116 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk)			\
118 		kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121 
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 						  int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 	gfp_t mask = GFP_KERNEL;
130 #endif
131 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132 
133 	return page ? page_address(page) : NULL;
134 }
135 
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141 
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144 
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147 
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150 
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153 
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156 
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159 
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 	struct zone *zone = page_zone(virt_to_page(ti));
163 
164 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166 
167 void free_task(struct task_struct *tsk)
168 {
169 	account_kernel_stack(tsk->stack, -1);
170 	free_thread_info(tsk->stack);
171 	rt_mutex_debug_task_free(tsk);
172 	ftrace_graph_exit_task(tsk);
173 	free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176 
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 	taskstats_tgid_free(sig);
180 	sched_autogroup_exit(sig);
181 	kmem_cache_free(signal_cachep, sig);
182 }
183 
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 	if (atomic_dec_and_test(&sig->sigcnt))
187 		free_signal_struct(sig);
188 }
189 
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 	WARN_ON(!tsk->exit_state);
193 	WARN_ON(atomic_read(&tsk->usage));
194 	WARN_ON(tsk == current);
195 
196 	security_task_free(tsk);
197 	exit_creds(tsk);
198 	delayacct_tsk_free(tsk);
199 	put_signal_struct(tsk->signal);
200 
201 	if (!profile_handoff_task(tsk))
202 		free_task(tsk);
203 }
204 EXPORT_SYMBOL_GPL(__put_task_struct);
205 
206 /*
207  * macro override instead of weak attribute alias, to workaround
208  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
209  */
210 #ifndef arch_task_cache_init
211 #define arch_task_cache_init()
212 #endif
213 
214 void __init fork_init(unsigned long mempages)
215 {
216 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
217 #ifndef ARCH_MIN_TASKALIGN
218 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
219 #endif
220 	/* create a slab on which task_structs can be allocated */
221 	task_struct_cachep =
222 		kmem_cache_create("task_struct", sizeof(struct task_struct),
223 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
224 #endif
225 
226 	/* do the arch specific task caches init */
227 	arch_task_cache_init();
228 
229 	/*
230 	 * The default maximum number of threads is set to a safe
231 	 * value: the thread structures can take up at most half
232 	 * of memory.
233 	 */
234 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
235 
236 	/*
237 	 * we need to allow at least 20 threads to boot a system
238 	 */
239 	if (max_threads < 20)
240 		max_threads = 20;
241 
242 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
243 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
244 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
245 		init_task.signal->rlim[RLIMIT_NPROC];
246 }
247 
248 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
249 					       struct task_struct *src)
250 {
251 	*dst = *src;
252 	return 0;
253 }
254 
255 static struct task_struct *dup_task_struct(struct task_struct *orig)
256 {
257 	struct task_struct *tsk;
258 	struct thread_info *ti;
259 	unsigned long *stackend;
260 	int node = tsk_fork_get_node(orig);
261 	int err;
262 
263 	prepare_to_copy(orig);
264 
265 	tsk = alloc_task_struct_node(node);
266 	if (!tsk)
267 		return NULL;
268 
269 	ti = alloc_thread_info_node(tsk, node);
270 	if (!ti) {
271 		free_task_struct(tsk);
272 		return NULL;
273 	}
274 
275 	err = arch_dup_task_struct(tsk, orig);
276 	if (err)
277 		goto out;
278 
279 	tsk->stack = ti;
280 
281 	setup_thread_stack(tsk, orig);
282 	clear_user_return_notifier(tsk);
283 	clear_tsk_need_resched(tsk);
284 	stackend = end_of_stack(tsk);
285 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
286 
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 	tsk->stack_canary = get_random_int();
289 #endif
290 
291 	/*
292 	 * One for us, one for whoever does the "release_task()" (usually
293 	 * parent)
294 	 */
295 	atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 	tsk->btrace_seq = 0;
298 #endif
299 	tsk->splice_pipe = NULL;
300 
301 	account_kernel_stack(ti, 1);
302 
303 	return tsk;
304 
305 out:
306 	free_thread_info(ti);
307 	free_task_struct(tsk);
308 	return NULL;
309 }
310 
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 	struct rb_node **rb_link, *rb_parent;
316 	int retval;
317 	unsigned long charge;
318 	struct mempolicy *pol;
319 
320 	down_write(&oldmm->mmap_sem);
321 	flush_cache_dup_mm(oldmm);
322 	/*
323 	 * Not linked in yet - no deadlock potential:
324 	 */
325 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326 
327 	mm->locked_vm = 0;
328 	mm->mmap = NULL;
329 	mm->mmap_cache = NULL;
330 	mm->free_area_cache = oldmm->mmap_base;
331 	mm->cached_hole_size = ~0UL;
332 	mm->map_count = 0;
333 	cpumask_clear(mm_cpumask(mm));
334 	mm->mm_rb = RB_ROOT;
335 	rb_link = &mm->mm_rb.rb_node;
336 	rb_parent = NULL;
337 	pprev = &mm->mmap;
338 	retval = ksm_fork(mm, oldmm);
339 	if (retval)
340 		goto out;
341 	retval = khugepaged_fork(mm, oldmm);
342 	if (retval)
343 		goto out;
344 
345 	prev = NULL;
346 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 		struct file *file;
348 
349 		if (mpnt->vm_flags & VM_DONTCOPY) {
350 			long pages = vma_pages(mpnt);
351 			mm->total_vm -= pages;
352 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 								-pages);
354 			continue;
355 		}
356 		charge = 0;
357 		if (mpnt->vm_flags & VM_ACCOUNT) {
358 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
360 				goto fail_nomem;
361 			charge = len;
362 		}
363 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 		if (!tmp)
365 			goto fail_nomem;
366 		*tmp = *mpnt;
367 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 		pol = mpol_dup(vma_policy(mpnt));
369 		retval = PTR_ERR(pol);
370 		if (IS_ERR(pol))
371 			goto fail_nomem_policy;
372 		vma_set_policy(tmp, pol);
373 		tmp->vm_mm = mm;
374 		if (anon_vma_fork(tmp, mpnt))
375 			goto fail_nomem_anon_vma_fork;
376 		tmp->vm_flags &= ~VM_LOCKED;
377 		tmp->vm_next = tmp->vm_prev = NULL;
378 		file = tmp->vm_file;
379 		if (file) {
380 			struct inode *inode = file->f_path.dentry->d_inode;
381 			struct address_space *mapping = file->f_mapping;
382 
383 			get_file(file);
384 			if (tmp->vm_flags & VM_DENYWRITE)
385 				atomic_dec(&inode->i_writecount);
386 			mutex_lock(&mapping->i_mmap_mutex);
387 			if (tmp->vm_flags & VM_SHARED)
388 				mapping->i_mmap_writable++;
389 			flush_dcache_mmap_lock(mapping);
390 			/* insert tmp into the share list, just after mpnt */
391 			vma_prio_tree_add(tmp, mpnt);
392 			flush_dcache_mmap_unlock(mapping);
393 			mutex_unlock(&mapping->i_mmap_mutex);
394 		}
395 
396 		/*
397 		 * Clear hugetlb-related page reserves for children. This only
398 		 * affects MAP_PRIVATE mappings. Faults generated by the child
399 		 * are not guaranteed to succeed, even if read-only
400 		 */
401 		if (is_vm_hugetlb_page(tmp))
402 			reset_vma_resv_huge_pages(tmp);
403 
404 		/*
405 		 * Link in the new vma and copy the page table entries.
406 		 */
407 		*pprev = tmp;
408 		pprev = &tmp->vm_next;
409 		tmp->vm_prev = prev;
410 		prev = tmp;
411 
412 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
413 		rb_link = &tmp->vm_rb.rb_right;
414 		rb_parent = &tmp->vm_rb;
415 
416 		mm->map_count++;
417 		retval = copy_page_range(mm, oldmm, mpnt);
418 
419 		if (tmp->vm_ops && tmp->vm_ops->open)
420 			tmp->vm_ops->open(tmp);
421 
422 		if (retval)
423 			goto out;
424 	}
425 	/* a new mm has just been created */
426 	arch_dup_mmap(oldmm, mm);
427 	retval = 0;
428 out:
429 	up_write(&mm->mmap_sem);
430 	flush_tlb_mm(oldmm);
431 	up_write(&oldmm->mmap_sem);
432 	return retval;
433 fail_nomem_anon_vma_fork:
434 	mpol_put(pol);
435 fail_nomem_policy:
436 	kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 	retval = -ENOMEM;
439 	vm_unacct_memory(charge);
440 	goto out;
441 }
442 
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
444 {
445 	mm->pgd = pgd_alloc(mm);
446 	if (unlikely(!mm->pgd))
447 		return -ENOMEM;
448 	return 0;
449 }
450 
451 static inline void mm_free_pgd(struct mm_struct *mm)
452 {
453 	pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm)	(0)
457 #define mm_alloc_pgd(mm)	(0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460 
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462 
463 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
465 
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467 
468 static int __init coredump_filter_setup(char *s)
469 {
470 	default_dump_filter =
471 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 		MMF_DUMP_FILTER_MASK;
473 	return 1;
474 }
475 
476 __setup("coredump_filter=", coredump_filter_setup);
477 
478 #include <linux/init_task.h>
479 
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 	spin_lock_init(&mm->ioctx_lock);
484 	INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487 
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489 {
490 	atomic_set(&mm->mm_users, 1);
491 	atomic_set(&mm->mm_count, 1);
492 	init_rwsem(&mm->mmap_sem);
493 	INIT_LIST_HEAD(&mm->mmlist);
494 	mm->flags = (current->mm) ?
495 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 	mm->core_state = NULL;
497 	mm->nr_ptes = 0;
498 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 	spin_lock_init(&mm->page_table_lock);
500 	mm->free_area_cache = TASK_UNMAPPED_BASE;
501 	mm->cached_hole_size = ~0UL;
502 	mm_init_aio(mm);
503 	mm_init_owner(mm, p);
504 
505 	if (likely(!mm_alloc_pgd(mm))) {
506 		mm->def_flags = 0;
507 		mmu_notifier_mm_init(mm);
508 		return mm;
509 	}
510 
511 	free_mm(mm);
512 	return NULL;
513 }
514 
515 /*
516  * Allocate and initialize an mm_struct.
517  */
518 struct mm_struct *mm_alloc(void)
519 {
520 	struct mm_struct *mm;
521 
522 	mm = allocate_mm();
523 	if (!mm)
524 		return NULL;
525 
526 	memset(mm, 0, sizeof(*mm));
527 	mm_init_cpumask(mm);
528 	return mm_init(mm, current);
529 }
530 
531 /*
532  * Called when the last reference to the mm
533  * is dropped: either by a lazy thread or by
534  * mmput. Free the page directory and the mm.
535  */
536 void __mmdrop(struct mm_struct *mm)
537 {
538 	BUG_ON(mm == &init_mm);
539 	mm_free_pgd(mm);
540 	destroy_context(mm);
541 	mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 	VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545 	free_mm(mm);
546 }
547 EXPORT_SYMBOL_GPL(__mmdrop);
548 
549 /*
550  * Decrement the use count and release all resources for an mm.
551  */
552 void mmput(struct mm_struct *mm)
553 {
554 	might_sleep();
555 
556 	if (atomic_dec_and_test(&mm->mm_users)) {
557 		exit_aio(mm);
558 		ksm_exit(mm);
559 		khugepaged_exit(mm); /* must run before exit_mmap */
560 		exit_mmap(mm);
561 		set_mm_exe_file(mm, NULL);
562 		if (!list_empty(&mm->mmlist)) {
563 			spin_lock(&mmlist_lock);
564 			list_del(&mm->mmlist);
565 			spin_unlock(&mmlist_lock);
566 		}
567 		put_swap_token(mm);
568 		if (mm->binfmt)
569 			module_put(mm->binfmt->module);
570 		mmdrop(mm);
571 	}
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574 
575 /*
576  * We added or removed a vma mapping the executable. The vmas are only mapped
577  * during exec and are not mapped with the mmap system call.
578  * Callers must hold down_write() on the mm's mmap_sem for these
579  */
580 void added_exe_file_vma(struct mm_struct *mm)
581 {
582 	mm->num_exe_file_vmas++;
583 }
584 
585 void removed_exe_file_vma(struct mm_struct *mm)
586 {
587 	mm->num_exe_file_vmas--;
588 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
589 		fput(mm->exe_file);
590 		mm->exe_file = NULL;
591 	}
592 
593 }
594 
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 {
597 	if (new_exe_file)
598 		get_file(new_exe_file);
599 	if (mm->exe_file)
600 		fput(mm->exe_file);
601 	mm->exe_file = new_exe_file;
602 	mm->num_exe_file_vmas = 0;
603 }
604 
605 struct file *get_mm_exe_file(struct mm_struct *mm)
606 {
607 	struct file *exe_file;
608 
609 	/* We need mmap_sem to protect against races with removal of
610 	 * VM_EXECUTABLE vmas */
611 	down_read(&mm->mmap_sem);
612 	exe_file = mm->exe_file;
613 	if (exe_file)
614 		get_file(exe_file);
615 	up_read(&mm->mmap_sem);
616 	return exe_file;
617 }
618 
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 {
621 	/* It's safe to write the exe_file pointer without exe_file_lock because
622 	 * this is called during fork when the task is not yet in /proc */
623 	newmm->exe_file = get_mm_exe_file(oldmm);
624 }
625 
626 /**
627  * get_task_mm - acquire a reference to the task's mm
628  *
629  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
630  * this kernel workthread has transiently adopted a user mm with use_mm,
631  * to do its AIO) is not set and if so returns a reference to it, after
632  * bumping up the use count.  User must release the mm via mmput()
633  * after use.  Typically used by /proc and ptrace.
634  */
635 struct mm_struct *get_task_mm(struct task_struct *task)
636 {
637 	struct mm_struct *mm;
638 
639 	task_lock(task);
640 	mm = task->mm;
641 	if (mm) {
642 		if (task->flags & PF_KTHREAD)
643 			mm = NULL;
644 		else
645 			atomic_inc(&mm->mm_users);
646 	}
647 	task_unlock(task);
648 	return mm;
649 }
650 EXPORT_SYMBOL_GPL(get_task_mm);
651 
652 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
653 {
654 	struct mm_struct *mm;
655 	int err;
656 
657 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
658 	if (err)
659 		return ERR_PTR(err);
660 
661 	mm = get_task_mm(task);
662 	if (mm && mm != current->mm &&
663 			!ptrace_may_access(task, mode)) {
664 		mmput(mm);
665 		mm = ERR_PTR(-EACCES);
666 	}
667 	mutex_unlock(&task->signal->cred_guard_mutex);
668 
669 	return mm;
670 }
671 
672 static void complete_vfork_done(struct task_struct *tsk)
673 {
674 	struct completion *vfork;
675 
676 	task_lock(tsk);
677 	vfork = tsk->vfork_done;
678 	if (likely(vfork)) {
679 		tsk->vfork_done = NULL;
680 		complete(vfork);
681 	}
682 	task_unlock(tsk);
683 }
684 
685 static int wait_for_vfork_done(struct task_struct *child,
686 				struct completion *vfork)
687 {
688 	int killed;
689 
690 	freezer_do_not_count();
691 	killed = wait_for_completion_killable(vfork);
692 	freezer_count();
693 
694 	if (killed) {
695 		task_lock(child);
696 		child->vfork_done = NULL;
697 		task_unlock(child);
698 	}
699 
700 	put_task_struct(child);
701 	return killed;
702 }
703 
704 /* Please note the differences between mmput and mm_release.
705  * mmput is called whenever we stop holding onto a mm_struct,
706  * error success whatever.
707  *
708  * mm_release is called after a mm_struct has been removed
709  * from the current process.
710  *
711  * This difference is important for error handling, when we
712  * only half set up a mm_struct for a new process and need to restore
713  * the old one.  Because we mmput the new mm_struct before
714  * restoring the old one. . .
715  * Eric Biederman 10 January 1998
716  */
717 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
718 {
719 	/* Get rid of any futexes when releasing the mm */
720 #ifdef CONFIG_FUTEX
721 	if (unlikely(tsk->robust_list)) {
722 		exit_robust_list(tsk);
723 		tsk->robust_list = NULL;
724 	}
725 #ifdef CONFIG_COMPAT
726 	if (unlikely(tsk->compat_robust_list)) {
727 		compat_exit_robust_list(tsk);
728 		tsk->compat_robust_list = NULL;
729 	}
730 #endif
731 	if (unlikely(!list_empty(&tsk->pi_state_list)))
732 		exit_pi_state_list(tsk);
733 #endif
734 
735 	/* Get rid of any cached register state */
736 	deactivate_mm(tsk, mm);
737 
738 	if (tsk->vfork_done)
739 		complete_vfork_done(tsk);
740 
741 	/*
742 	 * If we're exiting normally, clear a user-space tid field if
743 	 * requested.  We leave this alone when dying by signal, to leave
744 	 * the value intact in a core dump, and to save the unnecessary
745 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
746 	 * Userland only wants this done for a sys_exit.
747 	 */
748 	if (tsk->clear_child_tid) {
749 		if (!(tsk->flags & PF_SIGNALED) &&
750 		    atomic_read(&mm->mm_users) > 1) {
751 			/*
752 			 * We don't check the error code - if userspace has
753 			 * not set up a proper pointer then tough luck.
754 			 */
755 			put_user(0, tsk->clear_child_tid);
756 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
757 					1, NULL, NULL, 0);
758 		}
759 		tsk->clear_child_tid = NULL;
760 	}
761 }
762 
763 /*
764  * Allocate a new mm structure and copy contents from the
765  * mm structure of the passed in task structure.
766  */
767 struct mm_struct *dup_mm(struct task_struct *tsk)
768 {
769 	struct mm_struct *mm, *oldmm = current->mm;
770 	int err;
771 
772 	if (!oldmm)
773 		return NULL;
774 
775 	mm = allocate_mm();
776 	if (!mm)
777 		goto fail_nomem;
778 
779 	memcpy(mm, oldmm, sizeof(*mm));
780 	mm_init_cpumask(mm);
781 
782 	/* Initializing for Swap token stuff */
783 	mm->token_priority = 0;
784 	mm->last_interval = 0;
785 
786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
787 	mm->pmd_huge_pte = NULL;
788 #endif
789 
790 	if (!mm_init(mm, tsk))
791 		goto fail_nomem;
792 
793 	if (init_new_context(tsk, mm))
794 		goto fail_nocontext;
795 
796 	dup_mm_exe_file(oldmm, mm);
797 
798 	err = dup_mmap(mm, oldmm);
799 	if (err)
800 		goto free_pt;
801 
802 	mm->hiwater_rss = get_mm_rss(mm);
803 	mm->hiwater_vm = mm->total_vm;
804 
805 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
806 		goto free_pt;
807 
808 	return mm;
809 
810 free_pt:
811 	/* don't put binfmt in mmput, we haven't got module yet */
812 	mm->binfmt = NULL;
813 	mmput(mm);
814 
815 fail_nomem:
816 	return NULL;
817 
818 fail_nocontext:
819 	/*
820 	 * If init_new_context() failed, we cannot use mmput() to free the mm
821 	 * because it calls destroy_context()
822 	 */
823 	mm_free_pgd(mm);
824 	free_mm(mm);
825 	return NULL;
826 }
827 
828 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
829 {
830 	struct mm_struct *mm, *oldmm;
831 	int retval;
832 
833 	tsk->min_flt = tsk->maj_flt = 0;
834 	tsk->nvcsw = tsk->nivcsw = 0;
835 #ifdef CONFIG_DETECT_HUNG_TASK
836 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
837 #endif
838 
839 	tsk->mm = NULL;
840 	tsk->active_mm = NULL;
841 
842 	/*
843 	 * Are we cloning a kernel thread?
844 	 *
845 	 * We need to steal a active VM for that..
846 	 */
847 	oldmm = current->mm;
848 	if (!oldmm)
849 		return 0;
850 
851 	if (clone_flags & CLONE_VM) {
852 		atomic_inc(&oldmm->mm_users);
853 		mm = oldmm;
854 		goto good_mm;
855 	}
856 
857 	retval = -ENOMEM;
858 	mm = dup_mm(tsk);
859 	if (!mm)
860 		goto fail_nomem;
861 
862 good_mm:
863 	/* Initializing for Swap token stuff */
864 	mm->token_priority = 0;
865 	mm->last_interval = 0;
866 
867 	tsk->mm = mm;
868 	tsk->active_mm = mm;
869 	return 0;
870 
871 fail_nomem:
872 	return retval;
873 }
874 
875 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
876 {
877 	struct fs_struct *fs = current->fs;
878 	if (clone_flags & CLONE_FS) {
879 		/* tsk->fs is already what we want */
880 		spin_lock(&fs->lock);
881 		if (fs->in_exec) {
882 			spin_unlock(&fs->lock);
883 			return -EAGAIN;
884 		}
885 		fs->users++;
886 		spin_unlock(&fs->lock);
887 		return 0;
888 	}
889 	tsk->fs = copy_fs_struct(fs);
890 	if (!tsk->fs)
891 		return -ENOMEM;
892 	return 0;
893 }
894 
895 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
896 {
897 	struct files_struct *oldf, *newf;
898 	int error = 0;
899 
900 	/*
901 	 * A background process may not have any files ...
902 	 */
903 	oldf = current->files;
904 	if (!oldf)
905 		goto out;
906 
907 	if (clone_flags & CLONE_FILES) {
908 		atomic_inc(&oldf->count);
909 		goto out;
910 	}
911 
912 	newf = dup_fd(oldf, &error);
913 	if (!newf)
914 		goto out;
915 
916 	tsk->files = newf;
917 	error = 0;
918 out:
919 	return error;
920 }
921 
922 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
923 {
924 #ifdef CONFIG_BLOCK
925 	struct io_context *ioc = current->io_context;
926 	struct io_context *new_ioc;
927 
928 	if (!ioc)
929 		return 0;
930 	/*
931 	 * Share io context with parent, if CLONE_IO is set
932 	 */
933 	if (clone_flags & CLONE_IO) {
934 		tsk->io_context = ioc_task_link(ioc);
935 		if (unlikely(!tsk->io_context))
936 			return -ENOMEM;
937 	} else if (ioprio_valid(ioc->ioprio)) {
938 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
939 		if (unlikely(!new_ioc))
940 			return -ENOMEM;
941 
942 		new_ioc->ioprio = ioc->ioprio;
943 		put_io_context(new_ioc);
944 	}
945 #endif
946 	return 0;
947 }
948 
949 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 	struct sighand_struct *sig;
952 
953 	if (clone_flags & CLONE_SIGHAND) {
954 		atomic_inc(&current->sighand->count);
955 		return 0;
956 	}
957 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
958 	rcu_assign_pointer(tsk->sighand, sig);
959 	if (!sig)
960 		return -ENOMEM;
961 	atomic_set(&sig->count, 1);
962 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
963 	return 0;
964 }
965 
966 void __cleanup_sighand(struct sighand_struct *sighand)
967 {
968 	if (atomic_dec_and_test(&sighand->count)) {
969 		signalfd_cleanup(sighand);
970 		kmem_cache_free(sighand_cachep, sighand);
971 	}
972 }
973 
974 
975 /*
976  * Initialize POSIX timer handling for a thread group.
977  */
978 static void posix_cpu_timers_init_group(struct signal_struct *sig)
979 {
980 	unsigned long cpu_limit;
981 
982 	/* Thread group counters. */
983 	thread_group_cputime_init(sig);
984 
985 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
986 	if (cpu_limit != RLIM_INFINITY) {
987 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
988 		sig->cputimer.running = 1;
989 	}
990 
991 	/* The timer lists. */
992 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
993 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
994 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
995 }
996 
997 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
998 {
999 	struct signal_struct *sig;
1000 
1001 	if (clone_flags & CLONE_THREAD)
1002 		return 0;
1003 
1004 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1005 	tsk->signal = sig;
1006 	if (!sig)
1007 		return -ENOMEM;
1008 
1009 	sig->nr_threads = 1;
1010 	atomic_set(&sig->live, 1);
1011 	atomic_set(&sig->sigcnt, 1);
1012 	init_waitqueue_head(&sig->wait_chldexit);
1013 	if (clone_flags & CLONE_NEWPID)
1014 		sig->flags |= SIGNAL_UNKILLABLE;
1015 	sig->curr_target = tsk;
1016 	init_sigpending(&sig->shared_pending);
1017 	INIT_LIST_HEAD(&sig->posix_timers);
1018 
1019 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1020 	sig->real_timer.function = it_real_fn;
1021 
1022 	task_lock(current->group_leader);
1023 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1024 	task_unlock(current->group_leader);
1025 
1026 	posix_cpu_timers_init_group(sig);
1027 
1028 	tty_audit_fork(sig);
1029 	sched_autogroup_fork(sig);
1030 
1031 #ifdef CONFIG_CGROUPS
1032 	init_rwsem(&sig->group_rwsem);
1033 #endif
1034 
1035 	sig->oom_adj = current->signal->oom_adj;
1036 	sig->oom_score_adj = current->signal->oom_score_adj;
1037 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1038 
1039 	mutex_init(&sig->cred_guard_mutex);
1040 
1041 	return 0;
1042 }
1043 
1044 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1045 {
1046 	unsigned long new_flags = p->flags;
1047 
1048 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1049 	new_flags |= PF_FORKNOEXEC;
1050 	p->flags = new_flags;
1051 }
1052 
1053 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1054 {
1055 	current->clear_child_tid = tidptr;
1056 
1057 	return task_pid_vnr(current);
1058 }
1059 
1060 static void rt_mutex_init_task(struct task_struct *p)
1061 {
1062 	raw_spin_lock_init(&p->pi_lock);
1063 #ifdef CONFIG_RT_MUTEXES
1064 	plist_head_init(&p->pi_waiters);
1065 	p->pi_blocked_on = NULL;
1066 #endif
1067 }
1068 
1069 #ifdef CONFIG_MM_OWNER
1070 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1071 {
1072 	mm->owner = p;
1073 }
1074 #endif /* CONFIG_MM_OWNER */
1075 
1076 /*
1077  * Initialize POSIX timer handling for a single task.
1078  */
1079 static void posix_cpu_timers_init(struct task_struct *tsk)
1080 {
1081 	tsk->cputime_expires.prof_exp = 0;
1082 	tsk->cputime_expires.virt_exp = 0;
1083 	tsk->cputime_expires.sched_exp = 0;
1084 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1085 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1086 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1087 }
1088 
1089 /*
1090  * This creates a new process as a copy of the old one,
1091  * but does not actually start it yet.
1092  *
1093  * It copies the registers, and all the appropriate
1094  * parts of the process environment (as per the clone
1095  * flags). The actual kick-off is left to the caller.
1096  */
1097 static struct task_struct *copy_process(unsigned long clone_flags,
1098 					unsigned long stack_start,
1099 					struct pt_regs *regs,
1100 					unsigned long stack_size,
1101 					int __user *child_tidptr,
1102 					struct pid *pid,
1103 					int trace)
1104 {
1105 	int retval;
1106 	struct task_struct *p;
1107 	int cgroup_callbacks_done = 0;
1108 
1109 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1110 		return ERR_PTR(-EINVAL);
1111 
1112 	/*
1113 	 * Thread groups must share signals as well, and detached threads
1114 	 * can only be started up within the thread group.
1115 	 */
1116 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1117 		return ERR_PTR(-EINVAL);
1118 
1119 	/*
1120 	 * Shared signal handlers imply shared VM. By way of the above,
1121 	 * thread groups also imply shared VM. Blocking this case allows
1122 	 * for various simplifications in other code.
1123 	 */
1124 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1125 		return ERR_PTR(-EINVAL);
1126 
1127 	/*
1128 	 * Siblings of global init remain as zombies on exit since they are
1129 	 * not reaped by their parent (swapper). To solve this and to avoid
1130 	 * multi-rooted process trees, prevent global and container-inits
1131 	 * from creating siblings.
1132 	 */
1133 	if ((clone_flags & CLONE_PARENT) &&
1134 				current->signal->flags & SIGNAL_UNKILLABLE)
1135 		return ERR_PTR(-EINVAL);
1136 
1137 	retval = security_task_create(clone_flags);
1138 	if (retval)
1139 		goto fork_out;
1140 
1141 	retval = -ENOMEM;
1142 	p = dup_task_struct(current);
1143 	if (!p)
1144 		goto fork_out;
1145 
1146 	ftrace_graph_init_task(p);
1147 
1148 	rt_mutex_init_task(p);
1149 
1150 #ifdef CONFIG_PROVE_LOCKING
1151 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1152 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1153 #endif
1154 	retval = -EAGAIN;
1155 	if (atomic_read(&p->real_cred->user->processes) >=
1156 			task_rlimit(p, RLIMIT_NPROC)) {
1157 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1158 		    p->real_cred->user != INIT_USER)
1159 			goto bad_fork_free;
1160 	}
1161 	current->flags &= ~PF_NPROC_EXCEEDED;
1162 
1163 	retval = copy_creds(p, clone_flags);
1164 	if (retval < 0)
1165 		goto bad_fork_free;
1166 
1167 	/*
1168 	 * If multiple threads are within copy_process(), then this check
1169 	 * triggers too late. This doesn't hurt, the check is only there
1170 	 * to stop root fork bombs.
1171 	 */
1172 	retval = -EAGAIN;
1173 	if (nr_threads >= max_threads)
1174 		goto bad_fork_cleanup_count;
1175 
1176 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1177 		goto bad_fork_cleanup_count;
1178 
1179 	p->did_exec = 0;
1180 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1181 	copy_flags(clone_flags, p);
1182 	INIT_LIST_HEAD(&p->children);
1183 	INIT_LIST_HEAD(&p->sibling);
1184 	rcu_copy_process(p);
1185 	p->vfork_done = NULL;
1186 	spin_lock_init(&p->alloc_lock);
1187 
1188 	init_sigpending(&p->pending);
1189 
1190 	p->utime = p->stime = p->gtime = 0;
1191 	p->utimescaled = p->stimescaled = 0;
1192 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1193 	p->prev_utime = p->prev_stime = 0;
1194 #endif
1195 #if defined(SPLIT_RSS_COUNTING)
1196 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1197 #endif
1198 
1199 	p->default_timer_slack_ns = current->timer_slack_ns;
1200 
1201 	task_io_accounting_init(&p->ioac);
1202 	acct_clear_integrals(p);
1203 
1204 	posix_cpu_timers_init(p);
1205 
1206 	do_posix_clock_monotonic_gettime(&p->start_time);
1207 	p->real_start_time = p->start_time;
1208 	monotonic_to_bootbased(&p->real_start_time);
1209 	p->io_context = NULL;
1210 	p->audit_context = NULL;
1211 	if (clone_flags & CLONE_THREAD)
1212 		threadgroup_change_begin(current);
1213 	cgroup_fork(p);
1214 #ifdef CONFIG_NUMA
1215 	p->mempolicy = mpol_dup(p->mempolicy);
1216 	if (IS_ERR(p->mempolicy)) {
1217 		retval = PTR_ERR(p->mempolicy);
1218 		p->mempolicy = NULL;
1219 		goto bad_fork_cleanup_cgroup;
1220 	}
1221 	mpol_fix_fork_child_flag(p);
1222 #endif
1223 #ifdef CONFIG_CPUSETS
1224 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1225 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1226 #endif
1227 #ifdef CONFIG_TRACE_IRQFLAGS
1228 	p->irq_events = 0;
1229 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1230 	p->hardirqs_enabled = 1;
1231 #else
1232 	p->hardirqs_enabled = 0;
1233 #endif
1234 	p->hardirq_enable_ip = 0;
1235 	p->hardirq_enable_event = 0;
1236 	p->hardirq_disable_ip = _THIS_IP_;
1237 	p->hardirq_disable_event = 0;
1238 	p->softirqs_enabled = 1;
1239 	p->softirq_enable_ip = _THIS_IP_;
1240 	p->softirq_enable_event = 0;
1241 	p->softirq_disable_ip = 0;
1242 	p->softirq_disable_event = 0;
1243 	p->hardirq_context = 0;
1244 	p->softirq_context = 0;
1245 #endif
1246 #ifdef CONFIG_LOCKDEP
1247 	p->lockdep_depth = 0; /* no locks held yet */
1248 	p->curr_chain_key = 0;
1249 	p->lockdep_recursion = 0;
1250 #endif
1251 
1252 #ifdef CONFIG_DEBUG_MUTEXES
1253 	p->blocked_on = NULL; /* not blocked yet */
1254 #endif
1255 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1256 	p->memcg_batch.do_batch = 0;
1257 	p->memcg_batch.memcg = NULL;
1258 #endif
1259 
1260 	/* Perform scheduler related setup. Assign this task to a CPU. */
1261 	sched_fork(p);
1262 
1263 	retval = perf_event_init_task(p);
1264 	if (retval)
1265 		goto bad_fork_cleanup_policy;
1266 	retval = audit_alloc(p);
1267 	if (retval)
1268 		goto bad_fork_cleanup_policy;
1269 	/* copy all the process information */
1270 	retval = copy_semundo(clone_flags, p);
1271 	if (retval)
1272 		goto bad_fork_cleanup_audit;
1273 	retval = copy_files(clone_flags, p);
1274 	if (retval)
1275 		goto bad_fork_cleanup_semundo;
1276 	retval = copy_fs(clone_flags, p);
1277 	if (retval)
1278 		goto bad_fork_cleanup_files;
1279 	retval = copy_sighand(clone_flags, p);
1280 	if (retval)
1281 		goto bad_fork_cleanup_fs;
1282 	retval = copy_signal(clone_flags, p);
1283 	if (retval)
1284 		goto bad_fork_cleanup_sighand;
1285 	retval = copy_mm(clone_flags, p);
1286 	if (retval)
1287 		goto bad_fork_cleanup_signal;
1288 	retval = copy_namespaces(clone_flags, p);
1289 	if (retval)
1290 		goto bad_fork_cleanup_mm;
1291 	retval = copy_io(clone_flags, p);
1292 	if (retval)
1293 		goto bad_fork_cleanup_namespaces;
1294 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1295 	if (retval)
1296 		goto bad_fork_cleanup_io;
1297 
1298 	if (pid != &init_struct_pid) {
1299 		retval = -ENOMEM;
1300 		pid = alloc_pid(p->nsproxy->pid_ns);
1301 		if (!pid)
1302 			goto bad_fork_cleanup_io;
1303 	}
1304 
1305 	p->pid = pid_nr(pid);
1306 	p->tgid = p->pid;
1307 	if (clone_flags & CLONE_THREAD)
1308 		p->tgid = current->tgid;
1309 
1310 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1311 	/*
1312 	 * Clear TID on mm_release()?
1313 	 */
1314 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1315 #ifdef CONFIG_BLOCK
1316 	p->plug = NULL;
1317 #endif
1318 #ifdef CONFIG_FUTEX
1319 	p->robust_list = NULL;
1320 #ifdef CONFIG_COMPAT
1321 	p->compat_robust_list = NULL;
1322 #endif
1323 	INIT_LIST_HEAD(&p->pi_state_list);
1324 	p->pi_state_cache = NULL;
1325 #endif
1326 	/*
1327 	 * sigaltstack should be cleared when sharing the same VM
1328 	 */
1329 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1330 		p->sas_ss_sp = p->sas_ss_size = 0;
1331 
1332 	/*
1333 	 * Syscall tracing and stepping should be turned off in the
1334 	 * child regardless of CLONE_PTRACE.
1335 	 */
1336 	user_disable_single_step(p);
1337 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1338 #ifdef TIF_SYSCALL_EMU
1339 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1340 #endif
1341 	clear_all_latency_tracing(p);
1342 
1343 	/* ok, now we should be set up.. */
1344 	if (clone_flags & CLONE_THREAD)
1345 		p->exit_signal = -1;
1346 	else if (clone_flags & CLONE_PARENT)
1347 		p->exit_signal = current->group_leader->exit_signal;
1348 	else
1349 		p->exit_signal = (clone_flags & CSIGNAL);
1350 
1351 	p->pdeath_signal = 0;
1352 	p->exit_state = 0;
1353 
1354 	p->nr_dirtied = 0;
1355 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1356 	p->dirty_paused_when = 0;
1357 
1358 	/*
1359 	 * Ok, make it visible to the rest of the system.
1360 	 * We dont wake it up yet.
1361 	 */
1362 	p->group_leader = p;
1363 	INIT_LIST_HEAD(&p->thread_group);
1364 
1365 	/* Now that the task is set up, run cgroup callbacks if
1366 	 * necessary. We need to run them before the task is visible
1367 	 * on the tasklist. */
1368 	cgroup_fork_callbacks(p);
1369 	cgroup_callbacks_done = 1;
1370 
1371 	/* Need tasklist lock for parent etc handling! */
1372 	write_lock_irq(&tasklist_lock);
1373 
1374 	/* CLONE_PARENT re-uses the old parent */
1375 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1376 		p->real_parent = current->real_parent;
1377 		p->parent_exec_id = current->parent_exec_id;
1378 	} else {
1379 		p->real_parent = current;
1380 		p->parent_exec_id = current->self_exec_id;
1381 	}
1382 
1383 	spin_lock(&current->sighand->siglock);
1384 
1385 	/*
1386 	 * Process group and session signals need to be delivered to just the
1387 	 * parent before the fork or both the parent and the child after the
1388 	 * fork. Restart if a signal comes in before we add the new process to
1389 	 * it's process group.
1390 	 * A fatal signal pending means that current will exit, so the new
1391 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1392 	*/
1393 	recalc_sigpending();
1394 	if (signal_pending(current)) {
1395 		spin_unlock(&current->sighand->siglock);
1396 		write_unlock_irq(&tasklist_lock);
1397 		retval = -ERESTARTNOINTR;
1398 		goto bad_fork_free_pid;
1399 	}
1400 
1401 	if (clone_flags & CLONE_THREAD) {
1402 		current->signal->nr_threads++;
1403 		atomic_inc(&current->signal->live);
1404 		atomic_inc(&current->signal->sigcnt);
1405 		p->group_leader = current->group_leader;
1406 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1407 	}
1408 
1409 	if (likely(p->pid)) {
1410 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1411 
1412 		if (thread_group_leader(p)) {
1413 			if (is_child_reaper(pid))
1414 				p->nsproxy->pid_ns->child_reaper = p;
1415 
1416 			p->signal->leader_pid = pid;
1417 			p->signal->tty = tty_kref_get(current->signal->tty);
1418 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1419 			attach_pid(p, PIDTYPE_SID, task_session(current));
1420 			list_add_tail(&p->sibling, &p->real_parent->children);
1421 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1422 			__this_cpu_inc(process_counts);
1423 		}
1424 		attach_pid(p, PIDTYPE_PID, pid);
1425 		nr_threads++;
1426 	}
1427 
1428 	total_forks++;
1429 	spin_unlock(&current->sighand->siglock);
1430 	write_unlock_irq(&tasklist_lock);
1431 	proc_fork_connector(p);
1432 	cgroup_post_fork(p);
1433 	if (clone_flags & CLONE_THREAD)
1434 		threadgroup_change_end(current);
1435 	perf_event_fork(p);
1436 
1437 	trace_task_newtask(p, clone_flags);
1438 
1439 	return p;
1440 
1441 bad_fork_free_pid:
1442 	if (pid != &init_struct_pid)
1443 		free_pid(pid);
1444 bad_fork_cleanup_io:
1445 	if (p->io_context)
1446 		exit_io_context(p);
1447 bad_fork_cleanup_namespaces:
1448 	exit_task_namespaces(p);
1449 bad_fork_cleanup_mm:
1450 	if (p->mm)
1451 		mmput(p->mm);
1452 bad_fork_cleanup_signal:
1453 	if (!(clone_flags & CLONE_THREAD))
1454 		free_signal_struct(p->signal);
1455 bad_fork_cleanup_sighand:
1456 	__cleanup_sighand(p->sighand);
1457 bad_fork_cleanup_fs:
1458 	exit_fs(p); /* blocking */
1459 bad_fork_cleanup_files:
1460 	exit_files(p); /* blocking */
1461 bad_fork_cleanup_semundo:
1462 	exit_sem(p);
1463 bad_fork_cleanup_audit:
1464 	audit_free(p);
1465 bad_fork_cleanup_policy:
1466 	perf_event_free_task(p);
1467 #ifdef CONFIG_NUMA
1468 	mpol_put(p->mempolicy);
1469 bad_fork_cleanup_cgroup:
1470 #endif
1471 	if (clone_flags & CLONE_THREAD)
1472 		threadgroup_change_end(current);
1473 	cgroup_exit(p, cgroup_callbacks_done);
1474 	delayacct_tsk_free(p);
1475 	module_put(task_thread_info(p)->exec_domain->module);
1476 bad_fork_cleanup_count:
1477 	atomic_dec(&p->cred->user->processes);
1478 	exit_creds(p);
1479 bad_fork_free:
1480 	free_task(p);
1481 fork_out:
1482 	return ERR_PTR(retval);
1483 }
1484 
1485 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1486 {
1487 	memset(regs, 0, sizeof(struct pt_regs));
1488 	return regs;
1489 }
1490 
1491 static inline void init_idle_pids(struct pid_link *links)
1492 {
1493 	enum pid_type type;
1494 
1495 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1496 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1497 		links[type].pid = &init_struct_pid;
1498 	}
1499 }
1500 
1501 struct task_struct * __cpuinit fork_idle(int cpu)
1502 {
1503 	struct task_struct *task;
1504 	struct pt_regs regs;
1505 
1506 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1507 			    &init_struct_pid, 0);
1508 	if (!IS_ERR(task)) {
1509 		init_idle_pids(task->pids);
1510 		init_idle(task, cpu);
1511 	}
1512 
1513 	return task;
1514 }
1515 
1516 /*
1517  *  Ok, this is the main fork-routine.
1518  *
1519  * It copies the process, and if successful kick-starts
1520  * it and waits for it to finish using the VM if required.
1521  */
1522 long do_fork(unsigned long clone_flags,
1523 	      unsigned long stack_start,
1524 	      struct pt_regs *regs,
1525 	      unsigned long stack_size,
1526 	      int __user *parent_tidptr,
1527 	      int __user *child_tidptr)
1528 {
1529 	struct task_struct *p;
1530 	int trace = 0;
1531 	long nr;
1532 
1533 	/*
1534 	 * Do some preliminary argument and permissions checking before we
1535 	 * actually start allocating stuff
1536 	 */
1537 	if (clone_flags & CLONE_NEWUSER) {
1538 		if (clone_flags & CLONE_THREAD)
1539 			return -EINVAL;
1540 		/* hopefully this check will go away when userns support is
1541 		 * complete
1542 		 */
1543 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1544 				!capable(CAP_SETGID))
1545 			return -EPERM;
1546 	}
1547 
1548 	/*
1549 	 * Determine whether and which event to report to ptracer.  When
1550 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1551 	 * requested, no event is reported; otherwise, report if the event
1552 	 * for the type of forking is enabled.
1553 	 */
1554 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1555 		if (clone_flags & CLONE_VFORK)
1556 			trace = PTRACE_EVENT_VFORK;
1557 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1558 			trace = PTRACE_EVENT_CLONE;
1559 		else
1560 			trace = PTRACE_EVENT_FORK;
1561 
1562 		if (likely(!ptrace_event_enabled(current, trace)))
1563 			trace = 0;
1564 	}
1565 
1566 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1567 			 child_tidptr, NULL, trace);
1568 	/*
1569 	 * Do this prior waking up the new thread - the thread pointer
1570 	 * might get invalid after that point, if the thread exits quickly.
1571 	 */
1572 	if (!IS_ERR(p)) {
1573 		struct completion vfork;
1574 
1575 		trace_sched_process_fork(current, p);
1576 
1577 		nr = task_pid_vnr(p);
1578 
1579 		if (clone_flags & CLONE_PARENT_SETTID)
1580 			put_user(nr, parent_tidptr);
1581 
1582 		if (clone_flags & CLONE_VFORK) {
1583 			p->vfork_done = &vfork;
1584 			init_completion(&vfork);
1585 			get_task_struct(p);
1586 		}
1587 
1588 		wake_up_new_task(p);
1589 
1590 		/* forking complete and child started to run, tell ptracer */
1591 		if (unlikely(trace))
1592 			ptrace_event(trace, nr);
1593 
1594 		if (clone_flags & CLONE_VFORK) {
1595 			if (!wait_for_vfork_done(p, &vfork))
1596 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1597 		}
1598 	} else {
1599 		nr = PTR_ERR(p);
1600 	}
1601 	return nr;
1602 }
1603 
1604 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1605 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1606 #endif
1607 
1608 static void sighand_ctor(void *data)
1609 {
1610 	struct sighand_struct *sighand = data;
1611 
1612 	spin_lock_init(&sighand->siglock);
1613 	init_waitqueue_head(&sighand->signalfd_wqh);
1614 }
1615 
1616 void __init proc_caches_init(void)
1617 {
1618 	sighand_cachep = kmem_cache_create("sighand_cache",
1619 			sizeof(struct sighand_struct), 0,
1620 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1621 			SLAB_NOTRACK, sighand_ctor);
1622 	signal_cachep = kmem_cache_create("signal_cache",
1623 			sizeof(struct signal_struct), 0,
1624 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1625 	files_cachep = kmem_cache_create("files_cache",
1626 			sizeof(struct files_struct), 0,
1627 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1628 	fs_cachep = kmem_cache_create("fs_cache",
1629 			sizeof(struct fs_struct), 0,
1630 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1631 	/*
1632 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1633 	 * whole struct cpumask for the OFFSTACK case. We could change
1634 	 * this to *only* allocate as much of it as required by the
1635 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1636 	 * is at the end of the structure, exactly for that reason.
1637 	 */
1638 	mm_cachep = kmem_cache_create("mm_struct",
1639 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1640 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1641 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1642 	mmap_init();
1643 	nsproxy_cache_init();
1644 }
1645 
1646 /*
1647  * Check constraints on flags passed to the unshare system call.
1648  */
1649 static int check_unshare_flags(unsigned long unshare_flags)
1650 {
1651 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1652 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1653 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1654 		return -EINVAL;
1655 	/*
1656 	 * Not implemented, but pretend it works if there is nothing to
1657 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1658 	 * needs to unshare vm.
1659 	 */
1660 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1661 		/* FIXME: get_task_mm() increments ->mm_users */
1662 		if (atomic_read(&current->mm->mm_users) > 1)
1663 			return -EINVAL;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 /*
1670  * Unshare the filesystem structure if it is being shared
1671  */
1672 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1673 {
1674 	struct fs_struct *fs = current->fs;
1675 
1676 	if (!(unshare_flags & CLONE_FS) || !fs)
1677 		return 0;
1678 
1679 	/* don't need lock here; in the worst case we'll do useless copy */
1680 	if (fs->users == 1)
1681 		return 0;
1682 
1683 	*new_fsp = copy_fs_struct(fs);
1684 	if (!*new_fsp)
1685 		return -ENOMEM;
1686 
1687 	return 0;
1688 }
1689 
1690 /*
1691  * Unshare file descriptor table if it is being shared
1692  */
1693 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1694 {
1695 	struct files_struct *fd = current->files;
1696 	int error = 0;
1697 
1698 	if ((unshare_flags & CLONE_FILES) &&
1699 	    (fd && atomic_read(&fd->count) > 1)) {
1700 		*new_fdp = dup_fd(fd, &error);
1701 		if (!*new_fdp)
1702 			return error;
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 /*
1709  * unshare allows a process to 'unshare' part of the process
1710  * context which was originally shared using clone.  copy_*
1711  * functions used by do_fork() cannot be used here directly
1712  * because they modify an inactive task_struct that is being
1713  * constructed. Here we are modifying the current, active,
1714  * task_struct.
1715  */
1716 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1717 {
1718 	struct fs_struct *fs, *new_fs = NULL;
1719 	struct files_struct *fd, *new_fd = NULL;
1720 	struct nsproxy *new_nsproxy = NULL;
1721 	int do_sysvsem = 0;
1722 	int err;
1723 
1724 	err = check_unshare_flags(unshare_flags);
1725 	if (err)
1726 		goto bad_unshare_out;
1727 
1728 	/*
1729 	 * If unsharing namespace, must also unshare filesystem information.
1730 	 */
1731 	if (unshare_flags & CLONE_NEWNS)
1732 		unshare_flags |= CLONE_FS;
1733 	/*
1734 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1735 	 * to a new ipc namespace, the semaphore arrays from the old
1736 	 * namespace are unreachable.
1737 	 */
1738 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1739 		do_sysvsem = 1;
1740 	err = unshare_fs(unshare_flags, &new_fs);
1741 	if (err)
1742 		goto bad_unshare_out;
1743 	err = unshare_fd(unshare_flags, &new_fd);
1744 	if (err)
1745 		goto bad_unshare_cleanup_fs;
1746 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1747 	if (err)
1748 		goto bad_unshare_cleanup_fd;
1749 
1750 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1751 		if (do_sysvsem) {
1752 			/*
1753 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1754 			 */
1755 			exit_sem(current);
1756 		}
1757 
1758 		if (new_nsproxy) {
1759 			switch_task_namespaces(current, new_nsproxy);
1760 			new_nsproxy = NULL;
1761 		}
1762 
1763 		task_lock(current);
1764 
1765 		if (new_fs) {
1766 			fs = current->fs;
1767 			spin_lock(&fs->lock);
1768 			current->fs = new_fs;
1769 			if (--fs->users)
1770 				new_fs = NULL;
1771 			else
1772 				new_fs = fs;
1773 			spin_unlock(&fs->lock);
1774 		}
1775 
1776 		if (new_fd) {
1777 			fd = current->files;
1778 			current->files = new_fd;
1779 			new_fd = fd;
1780 		}
1781 
1782 		task_unlock(current);
1783 	}
1784 
1785 	if (new_nsproxy)
1786 		put_nsproxy(new_nsproxy);
1787 
1788 bad_unshare_cleanup_fd:
1789 	if (new_fd)
1790 		put_files_struct(new_fd);
1791 
1792 bad_unshare_cleanup_fs:
1793 	if (new_fs)
1794 		free_fs_struct(new_fs);
1795 
1796 bad_unshare_out:
1797 	return err;
1798 }
1799 
1800 /*
1801  *	Helper to unshare the files of the current task.
1802  *	We don't want to expose copy_files internals to
1803  *	the exec layer of the kernel.
1804  */
1805 
1806 int unshare_files(struct files_struct **displaced)
1807 {
1808 	struct task_struct *task = current;
1809 	struct files_struct *copy = NULL;
1810 	int error;
1811 
1812 	error = unshare_fd(CLONE_FILES, &copy);
1813 	if (error || !copy) {
1814 		*displaced = NULL;
1815 		return error;
1816 	}
1817 	*displaced = task->files;
1818 	task_lock(task);
1819 	task->files = copy;
1820 	task_unlock(task);
1821 	return 0;
1822 }
1823