xref: /linux-6.15/kernel/fork.c (revision 5148fa52)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 
73 #include <asm/pgtable.h>
74 #include <asm/pgalloc.h>
75 #include <asm/uaccess.h>
76 #include <asm/mmu_context.h>
77 #include <asm/cacheflush.h>
78 #include <asm/tlbflush.h>
79 
80 #include <trace/events/sched.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/task.h>
84 
85 /*
86  * Protected counters by write_lock_irq(&tasklist_lock)
87  */
88 unsigned long total_forks;	/* Handle normal Linux uptimes. */
89 int nr_threads;			/* The idle threads do not count.. */
90 
91 int max_threads;		/* tunable limit on nr_threads */
92 
93 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
94 
95 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
96 
97 #ifdef CONFIG_PROVE_RCU
98 int lockdep_tasklist_lock_is_held(void)
99 {
100 	return lockdep_is_held(&tasklist_lock);
101 }
102 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
103 #endif /* #ifdef CONFIG_PROVE_RCU */
104 
105 int nr_processes(void)
106 {
107 	int cpu;
108 	int total = 0;
109 
110 	for_each_possible_cpu(cpu)
111 		total += per_cpu(process_counts, cpu);
112 
113 	return total;
114 }
115 
116 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
117 static struct kmem_cache *task_struct_cachep;
118 
119 static inline struct task_struct *alloc_task_struct_node(int node)
120 {
121 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
122 }
123 
124 void __weak arch_release_task_struct(struct task_struct *tsk) { }
125 
126 static inline void free_task_struct(struct task_struct *tsk)
127 {
128 	arch_release_task_struct(tsk);
129 	kmem_cache_free(task_struct_cachep, tsk);
130 }
131 #endif
132 
133 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
134 void __weak arch_release_thread_info(struct thread_info *ti) { }
135 
136 /*
137  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
138  * kmemcache based allocator.
139  */
140 # if THREAD_SIZE >= PAGE_SIZE
141 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
142 						  int node)
143 {
144 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
145 					     THREAD_SIZE_ORDER);
146 
147 	return page ? page_address(page) : NULL;
148 }
149 
150 static inline void free_thread_info(struct thread_info *ti)
151 {
152 	arch_release_thread_info(ti);
153 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
154 }
155 # else
156 static struct kmem_cache *thread_info_cache;
157 
158 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
159 						  int node)
160 {
161 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
162 }
163 
164 static void free_thread_info(struct thread_info *ti)
165 {
166 	arch_release_thread_info(ti);
167 	kmem_cache_free(thread_info_cache, ti);
168 }
169 
170 void thread_info_cache_init(void)
171 {
172 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
173 					      THREAD_SIZE, 0, NULL);
174 	BUG_ON(thread_info_cache == NULL);
175 }
176 # endif
177 #endif
178 
179 /* SLAB cache for signal_struct structures (tsk->signal) */
180 static struct kmem_cache *signal_cachep;
181 
182 /* SLAB cache for sighand_struct structures (tsk->sighand) */
183 struct kmem_cache *sighand_cachep;
184 
185 /* SLAB cache for files_struct structures (tsk->files) */
186 struct kmem_cache *files_cachep;
187 
188 /* SLAB cache for fs_struct structures (tsk->fs) */
189 struct kmem_cache *fs_cachep;
190 
191 /* SLAB cache for vm_area_struct structures */
192 struct kmem_cache *vm_area_cachep;
193 
194 /* SLAB cache for mm_struct structures (tsk->mm) */
195 static struct kmem_cache *mm_cachep;
196 
197 static void account_kernel_stack(struct thread_info *ti, int account)
198 {
199 	struct zone *zone = page_zone(virt_to_page(ti));
200 
201 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
202 }
203 
204 void free_task(struct task_struct *tsk)
205 {
206 	account_kernel_stack(tsk->stack, -1);
207 	free_thread_info(tsk->stack);
208 	rt_mutex_debug_task_free(tsk);
209 	ftrace_graph_exit_task(tsk);
210 	put_seccomp_filter(tsk);
211 	free_task_struct(tsk);
212 }
213 EXPORT_SYMBOL(free_task);
214 
215 static inline void free_signal_struct(struct signal_struct *sig)
216 {
217 	taskstats_tgid_free(sig);
218 	sched_autogroup_exit(sig);
219 	kmem_cache_free(signal_cachep, sig);
220 }
221 
222 static inline void put_signal_struct(struct signal_struct *sig)
223 {
224 	if (atomic_dec_and_test(&sig->sigcnt))
225 		free_signal_struct(sig);
226 }
227 
228 void __put_task_struct(struct task_struct *tsk)
229 {
230 	WARN_ON(!tsk->exit_state);
231 	WARN_ON(atomic_read(&tsk->usage));
232 	WARN_ON(tsk == current);
233 
234 	security_task_free(tsk);
235 	exit_creds(tsk);
236 	delayacct_tsk_free(tsk);
237 	put_signal_struct(tsk->signal);
238 
239 	if (!profile_handoff_task(tsk))
240 		free_task(tsk);
241 }
242 EXPORT_SYMBOL_GPL(__put_task_struct);
243 
244 void __init __weak arch_task_cache_init(void) { }
245 
246 void __init fork_init(unsigned long mempages)
247 {
248 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
249 #ifndef ARCH_MIN_TASKALIGN
250 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
251 #endif
252 	/* create a slab on which task_structs can be allocated */
253 	task_struct_cachep =
254 		kmem_cache_create("task_struct", sizeof(struct task_struct),
255 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
256 #endif
257 
258 	/* do the arch specific task caches init */
259 	arch_task_cache_init();
260 
261 	/*
262 	 * The default maximum number of threads is set to a safe
263 	 * value: the thread structures can take up at most half
264 	 * of memory.
265 	 */
266 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
267 
268 	/*
269 	 * we need to allow at least 20 threads to boot a system
270 	 */
271 	if (max_threads < 20)
272 		max_threads = 20;
273 
274 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
275 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
276 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
277 		init_task.signal->rlim[RLIMIT_NPROC];
278 }
279 
280 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
281 					       struct task_struct *src)
282 {
283 	*dst = *src;
284 	return 0;
285 }
286 
287 static struct task_struct *dup_task_struct(struct task_struct *orig)
288 {
289 	struct task_struct *tsk;
290 	struct thread_info *ti;
291 	unsigned long *stackend;
292 	int node = tsk_fork_get_node(orig);
293 	int err;
294 
295 	prepare_to_copy(orig);
296 
297 	tsk = alloc_task_struct_node(node);
298 	if (!tsk)
299 		return NULL;
300 
301 	ti = alloc_thread_info_node(tsk, node);
302 	if (!ti) {
303 		free_task_struct(tsk);
304 		return NULL;
305 	}
306 
307 	err = arch_dup_task_struct(tsk, orig);
308 	if (err)
309 		goto out;
310 
311 	tsk->stack = ti;
312 
313 	setup_thread_stack(tsk, orig);
314 	clear_user_return_notifier(tsk);
315 	clear_tsk_need_resched(tsk);
316 	stackend = end_of_stack(tsk);
317 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
318 
319 #ifdef CONFIG_CC_STACKPROTECTOR
320 	tsk->stack_canary = get_random_int();
321 #endif
322 
323 	/*
324 	 * One for us, one for whoever does the "release_task()" (usually
325 	 * parent)
326 	 */
327 	atomic_set(&tsk->usage, 2);
328 #ifdef CONFIG_BLK_DEV_IO_TRACE
329 	tsk->btrace_seq = 0;
330 #endif
331 	tsk->splice_pipe = NULL;
332 
333 	account_kernel_stack(ti, 1);
334 
335 	return tsk;
336 
337 out:
338 	free_thread_info(ti);
339 	free_task_struct(tsk);
340 	return NULL;
341 }
342 
343 #ifdef CONFIG_MMU
344 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
345 {
346 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
347 	struct rb_node **rb_link, *rb_parent;
348 	int retval;
349 	unsigned long charge;
350 	struct mempolicy *pol;
351 
352 	down_write(&oldmm->mmap_sem);
353 	flush_cache_dup_mm(oldmm);
354 	/*
355 	 * Not linked in yet - no deadlock potential:
356 	 */
357 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
358 
359 	mm->locked_vm = 0;
360 	mm->mmap = NULL;
361 	mm->mmap_cache = NULL;
362 	mm->free_area_cache = oldmm->mmap_base;
363 	mm->cached_hole_size = ~0UL;
364 	mm->map_count = 0;
365 	cpumask_clear(mm_cpumask(mm));
366 	mm->mm_rb = RB_ROOT;
367 	rb_link = &mm->mm_rb.rb_node;
368 	rb_parent = NULL;
369 	pprev = &mm->mmap;
370 	retval = ksm_fork(mm, oldmm);
371 	if (retval)
372 		goto out;
373 	retval = khugepaged_fork(mm, oldmm);
374 	if (retval)
375 		goto out;
376 
377 	prev = NULL;
378 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
379 		struct file *file;
380 
381 		if (mpnt->vm_flags & VM_DONTCOPY) {
382 			long pages = vma_pages(mpnt);
383 			mm->total_vm -= pages;
384 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
385 								-pages);
386 			continue;
387 		}
388 		charge = 0;
389 		if (mpnt->vm_flags & VM_ACCOUNT) {
390 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
391 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
392 				goto fail_nomem;
393 			charge = len;
394 		}
395 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
396 		if (!tmp)
397 			goto fail_nomem;
398 		*tmp = *mpnt;
399 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
400 		pol = mpol_dup(vma_policy(mpnt));
401 		retval = PTR_ERR(pol);
402 		if (IS_ERR(pol))
403 			goto fail_nomem_policy;
404 		vma_set_policy(tmp, pol);
405 		tmp->vm_mm = mm;
406 		if (anon_vma_fork(tmp, mpnt))
407 			goto fail_nomem_anon_vma_fork;
408 		tmp->vm_flags &= ~VM_LOCKED;
409 		tmp->vm_next = tmp->vm_prev = NULL;
410 		file = tmp->vm_file;
411 		if (file) {
412 			struct inode *inode = file->f_path.dentry->d_inode;
413 			struct address_space *mapping = file->f_mapping;
414 
415 			get_file(file);
416 			if (tmp->vm_flags & VM_DENYWRITE)
417 				atomic_dec(&inode->i_writecount);
418 			mutex_lock(&mapping->i_mmap_mutex);
419 			if (tmp->vm_flags & VM_SHARED)
420 				mapping->i_mmap_writable++;
421 			flush_dcache_mmap_lock(mapping);
422 			/* insert tmp into the share list, just after mpnt */
423 			vma_prio_tree_add(tmp, mpnt);
424 			flush_dcache_mmap_unlock(mapping);
425 			mutex_unlock(&mapping->i_mmap_mutex);
426 		}
427 
428 		/*
429 		 * Clear hugetlb-related page reserves for children. This only
430 		 * affects MAP_PRIVATE mappings. Faults generated by the child
431 		 * are not guaranteed to succeed, even if read-only
432 		 */
433 		if (is_vm_hugetlb_page(tmp))
434 			reset_vma_resv_huge_pages(tmp);
435 
436 		/*
437 		 * Link in the new vma and copy the page table entries.
438 		 */
439 		*pprev = tmp;
440 		pprev = &tmp->vm_next;
441 		tmp->vm_prev = prev;
442 		prev = tmp;
443 
444 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
445 		rb_link = &tmp->vm_rb.rb_right;
446 		rb_parent = &tmp->vm_rb;
447 
448 		mm->map_count++;
449 		retval = copy_page_range(mm, oldmm, mpnt);
450 
451 		if (tmp->vm_ops && tmp->vm_ops->open)
452 			tmp->vm_ops->open(tmp);
453 
454 		if (retval)
455 			goto out;
456 	}
457 	/* a new mm has just been created */
458 	arch_dup_mmap(oldmm, mm);
459 	retval = 0;
460 out:
461 	up_write(&mm->mmap_sem);
462 	flush_tlb_mm(oldmm);
463 	up_write(&oldmm->mmap_sem);
464 	return retval;
465 fail_nomem_anon_vma_fork:
466 	mpol_put(pol);
467 fail_nomem_policy:
468 	kmem_cache_free(vm_area_cachep, tmp);
469 fail_nomem:
470 	retval = -ENOMEM;
471 	vm_unacct_memory(charge);
472 	goto out;
473 }
474 
475 static inline int mm_alloc_pgd(struct mm_struct *mm)
476 {
477 	mm->pgd = pgd_alloc(mm);
478 	if (unlikely(!mm->pgd))
479 		return -ENOMEM;
480 	return 0;
481 }
482 
483 static inline void mm_free_pgd(struct mm_struct *mm)
484 {
485 	pgd_free(mm, mm->pgd);
486 }
487 #else
488 #define dup_mmap(mm, oldmm)	(0)
489 #define mm_alloc_pgd(mm)	(0)
490 #define mm_free_pgd(mm)
491 #endif /* CONFIG_MMU */
492 
493 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
494 
495 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
496 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
497 
498 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
499 
500 static int __init coredump_filter_setup(char *s)
501 {
502 	default_dump_filter =
503 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
504 		MMF_DUMP_FILTER_MASK;
505 	return 1;
506 }
507 
508 __setup("coredump_filter=", coredump_filter_setup);
509 
510 #include <linux/init_task.h>
511 
512 static void mm_init_aio(struct mm_struct *mm)
513 {
514 #ifdef CONFIG_AIO
515 	spin_lock_init(&mm->ioctx_lock);
516 	INIT_HLIST_HEAD(&mm->ioctx_list);
517 #endif
518 }
519 
520 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
521 {
522 	atomic_set(&mm->mm_users, 1);
523 	atomic_set(&mm->mm_count, 1);
524 	init_rwsem(&mm->mmap_sem);
525 	INIT_LIST_HEAD(&mm->mmlist);
526 	mm->flags = (current->mm) ?
527 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
528 	mm->core_state = NULL;
529 	mm->nr_ptes = 0;
530 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
531 	spin_lock_init(&mm->page_table_lock);
532 	mm->free_area_cache = TASK_UNMAPPED_BASE;
533 	mm->cached_hole_size = ~0UL;
534 	mm_init_aio(mm);
535 	mm_init_owner(mm, p);
536 
537 	if (likely(!mm_alloc_pgd(mm))) {
538 		mm->def_flags = 0;
539 		mmu_notifier_mm_init(mm);
540 		return mm;
541 	}
542 
543 	free_mm(mm);
544 	return NULL;
545 }
546 
547 static void check_mm(struct mm_struct *mm)
548 {
549 	int i;
550 
551 	for (i = 0; i < NR_MM_COUNTERS; i++) {
552 		long x = atomic_long_read(&mm->rss_stat.count[i]);
553 
554 		if (unlikely(x))
555 			printk(KERN_ALERT "BUG: Bad rss-counter state "
556 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
557 	}
558 
559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
560 	VM_BUG_ON(mm->pmd_huge_pte);
561 #endif
562 }
563 
564 /*
565  * Allocate and initialize an mm_struct.
566  */
567 struct mm_struct *mm_alloc(void)
568 {
569 	struct mm_struct *mm;
570 
571 	mm = allocate_mm();
572 	if (!mm)
573 		return NULL;
574 
575 	memset(mm, 0, sizeof(*mm));
576 	mm_init_cpumask(mm);
577 	return mm_init(mm, current);
578 }
579 
580 /*
581  * Called when the last reference to the mm
582  * is dropped: either by a lazy thread or by
583  * mmput. Free the page directory and the mm.
584  */
585 void __mmdrop(struct mm_struct *mm)
586 {
587 	BUG_ON(mm == &init_mm);
588 	mm_free_pgd(mm);
589 	destroy_context(mm);
590 	mmu_notifier_mm_destroy(mm);
591 	check_mm(mm);
592 	free_mm(mm);
593 }
594 EXPORT_SYMBOL_GPL(__mmdrop);
595 
596 /*
597  * Decrement the use count and release all resources for an mm.
598  */
599 void mmput(struct mm_struct *mm)
600 {
601 	might_sleep();
602 
603 	if (atomic_dec_and_test(&mm->mm_users)) {
604 		exit_aio(mm);
605 		ksm_exit(mm);
606 		khugepaged_exit(mm); /* must run before exit_mmap */
607 		exit_mmap(mm);
608 		set_mm_exe_file(mm, NULL);
609 		if (!list_empty(&mm->mmlist)) {
610 			spin_lock(&mmlist_lock);
611 			list_del(&mm->mmlist);
612 			spin_unlock(&mmlist_lock);
613 		}
614 		put_swap_token(mm);
615 		if (mm->binfmt)
616 			module_put(mm->binfmt->module);
617 		mmdrop(mm);
618 	}
619 }
620 EXPORT_SYMBOL_GPL(mmput);
621 
622 /*
623  * We added or removed a vma mapping the executable. The vmas are only mapped
624  * during exec and are not mapped with the mmap system call.
625  * Callers must hold down_write() on the mm's mmap_sem for these
626  */
627 void added_exe_file_vma(struct mm_struct *mm)
628 {
629 	mm->num_exe_file_vmas++;
630 }
631 
632 void removed_exe_file_vma(struct mm_struct *mm)
633 {
634 	mm->num_exe_file_vmas--;
635 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
636 		fput(mm->exe_file);
637 		mm->exe_file = NULL;
638 	}
639 
640 }
641 
642 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
643 {
644 	if (new_exe_file)
645 		get_file(new_exe_file);
646 	if (mm->exe_file)
647 		fput(mm->exe_file);
648 	mm->exe_file = new_exe_file;
649 	mm->num_exe_file_vmas = 0;
650 }
651 
652 struct file *get_mm_exe_file(struct mm_struct *mm)
653 {
654 	struct file *exe_file;
655 
656 	/* We need mmap_sem to protect against races with removal of
657 	 * VM_EXECUTABLE vmas */
658 	down_read(&mm->mmap_sem);
659 	exe_file = mm->exe_file;
660 	if (exe_file)
661 		get_file(exe_file);
662 	up_read(&mm->mmap_sem);
663 	return exe_file;
664 }
665 
666 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
667 {
668 	/* It's safe to write the exe_file pointer without exe_file_lock because
669 	 * this is called during fork when the task is not yet in /proc */
670 	newmm->exe_file = get_mm_exe_file(oldmm);
671 }
672 
673 /**
674  * get_task_mm - acquire a reference to the task's mm
675  *
676  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
677  * this kernel workthread has transiently adopted a user mm with use_mm,
678  * to do its AIO) is not set and if so returns a reference to it, after
679  * bumping up the use count.  User must release the mm via mmput()
680  * after use.  Typically used by /proc and ptrace.
681  */
682 struct mm_struct *get_task_mm(struct task_struct *task)
683 {
684 	struct mm_struct *mm;
685 
686 	task_lock(task);
687 	mm = task->mm;
688 	if (mm) {
689 		if (task->flags & PF_KTHREAD)
690 			mm = NULL;
691 		else
692 			atomic_inc(&mm->mm_users);
693 	}
694 	task_unlock(task);
695 	return mm;
696 }
697 EXPORT_SYMBOL_GPL(get_task_mm);
698 
699 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
700 {
701 	struct mm_struct *mm;
702 	int err;
703 
704 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
705 	if (err)
706 		return ERR_PTR(err);
707 
708 	mm = get_task_mm(task);
709 	if (mm && mm != current->mm &&
710 			!ptrace_may_access(task, mode)) {
711 		mmput(mm);
712 		mm = ERR_PTR(-EACCES);
713 	}
714 	mutex_unlock(&task->signal->cred_guard_mutex);
715 
716 	return mm;
717 }
718 
719 static void complete_vfork_done(struct task_struct *tsk)
720 {
721 	struct completion *vfork;
722 
723 	task_lock(tsk);
724 	vfork = tsk->vfork_done;
725 	if (likely(vfork)) {
726 		tsk->vfork_done = NULL;
727 		complete(vfork);
728 	}
729 	task_unlock(tsk);
730 }
731 
732 static int wait_for_vfork_done(struct task_struct *child,
733 				struct completion *vfork)
734 {
735 	int killed;
736 
737 	freezer_do_not_count();
738 	killed = wait_for_completion_killable(vfork);
739 	freezer_count();
740 
741 	if (killed) {
742 		task_lock(child);
743 		child->vfork_done = NULL;
744 		task_unlock(child);
745 	}
746 
747 	put_task_struct(child);
748 	return killed;
749 }
750 
751 /* Please note the differences between mmput and mm_release.
752  * mmput is called whenever we stop holding onto a mm_struct,
753  * error success whatever.
754  *
755  * mm_release is called after a mm_struct has been removed
756  * from the current process.
757  *
758  * This difference is important for error handling, when we
759  * only half set up a mm_struct for a new process and need to restore
760  * the old one.  Because we mmput the new mm_struct before
761  * restoring the old one. . .
762  * Eric Biederman 10 January 1998
763  */
764 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
765 {
766 	/* Get rid of any futexes when releasing the mm */
767 #ifdef CONFIG_FUTEX
768 	if (unlikely(tsk->robust_list)) {
769 		exit_robust_list(tsk);
770 		tsk->robust_list = NULL;
771 	}
772 #ifdef CONFIG_COMPAT
773 	if (unlikely(tsk->compat_robust_list)) {
774 		compat_exit_robust_list(tsk);
775 		tsk->compat_robust_list = NULL;
776 	}
777 #endif
778 	if (unlikely(!list_empty(&tsk->pi_state_list)))
779 		exit_pi_state_list(tsk);
780 #endif
781 
782 	/* Get rid of any cached register state */
783 	deactivate_mm(tsk, mm);
784 
785 	if (tsk->vfork_done)
786 		complete_vfork_done(tsk);
787 
788 	/*
789 	 * If we're exiting normally, clear a user-space tid field if
790 	 * requested.  We leave this alone when dying by signal, to leave
791 	 * the value intact in a core dump, and to save the unnecessary
792 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
793 	 * Userland only wants this done for a sys_exit.
794 	 */
795 	if (tsk->clear_child_tid) {
796 		if (!(tsk->flags & PF_SIGNALED) &&
797 		    atomic_read(&mm->mm_users) > 1) {
798 			/*
799 			 * We don't check the error code - if userspace has
800 			 * not set up a proper pointer then tough luck.
801 			 */
802 			put_user(0, tsk->clear_child_tid);
803 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
804 					1, NULL, NULL, 0);
805 		}
806 		tsk->clear_child_tid = NULL;
807 	}
808 }
809 
810 /*
811  * Allocate a new mm structure and copy contents from the
812  * mm structure of the passed in task structure.
813  */
814 struct mm_struct *dup_mm(struct task_struct *tsk)
815 {
816 	struct mm_struct *mm, *oldmm = current->mm;
817 	int err;
818 
819 	if (!oldmm)
820 		return NULL;
821 
822 	mm = allocate_mm();
823 	if (!mm)
824 		goto fail_nomem;
825 
826 	memcpy(mm, oldmm, sizeof(*mm));
827 	mm_init_cpumask(mm);
828 
829 	/* Initializing for Swap token stuff */
830 	mm->token_priority = 0;
831 	mm->last_interval = 0;
832 
833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
834 	mm->pmd_huge_pte = NULL;
835 #endif
836 
837 	if (!mm_init(mm, tsk))
838 		goto fail_nomem;
839 
840 	if (init_new_context(tsk, mm))
841 		goto fail_nocontext;
842 
843 	dup_mm_exe_file(oldmm, mm);
844 
845 	err = dup_mmap(mm, oldmm);
846 	if (err)
847 		goto free_pt;
848 
849 	mm->hiwater_rss = get_mm_rss(mm);
850 	mm->hiwater_vm = mm->total_vm;
851 
852 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
853 		goto free_pt;
854 
855 	return mm;
856 
857 free_pt:
858 	/* don't put binfmt in mmput, we haven't got module yet */
859 	mm->binfmt = NULL;
860 	mmput(mm);
861 
862 fail_nomem:
863 	return NULL;
864 
865 fail_nocontext:
866 	/*
867 	 * If init_new_context() failed, we cannot use mmput() to free the mm
868 	 * because it calls destroy_context()
869 	 */
870 	mm_free_pgd(mm);
871 	free_mm(mm);
872 	return NULL;
873 }
874 
875 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
876 {
877 	struct mm_struct *mm, *oldmm;
878 	int retval;
879 
880 	tsk->min_flt = tsk->maj_flt = 0;
881 	tsk->nvcsw = tsk->nivcsw = 0;
882 #ifdef CONFIG_DETECT_HUNG_TASK
883 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
884 #endif
885 
886 	tsk->mm = NULL;
887 	tsk->active_mm = NULL;
888 
889 	/*
890 	 * Are we cloning a kernel thread?
891 	 *
892 	 * We need to steal a active VM for that..
893 	 */
894 	oldmm = current->mm;
895 	if (!oldmm)
896 		return 0;
897 
898 	if (clone_flags & CLONE_VM) {
899 		atomic_inc(&oldmm->mm_users);
900 		mm = oldmm;
901 		goto good_mm;
902 	}
903 
904 	retval = -ENOMEM;
905 	mm = dup_mm(tsk);
906 	if (!mm)
907 		goto fail_nomem;
908 
909 good_mm:
910 	/* Initializing for Swap token stuff */
911 	mm->token_priority = 0;
912 	mm->last_interval = 0;
913 
914 	tsk->mm = mm;
915 	tsk->active_mm = mm;
916 	return 0;
917 
918 fail_nomem:
919 	return retval;
920 }
921 
922 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
923 {
924 	struct fs_struct *fs = current->fs;
925 	if (clone_flags & CLONE_FS) {
926 		/* tsk->fs is already what we want */
927 		spin_lock(&fs->lock);
928 		if (fs->in_exec) {
929 			spin_unlock(&fs->lock);
930 			return -EAGAIN;
931 		}
932 		fs->users++;
933 		spin_unlock(&fs->lock);
934 		return 0;
935 	}
936 	tsk->fs = copy_fs_struct(fs);
937 	if (!tsk->fs)
938 		return -ENOMEM;
939 	return 0;
940 }
941 
942 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
943 {
944 	struct files_struct *oldf, *newf;
945 	int error = 0;
946 
947 	/*
948 	 * A background process may not have any files ...
949 	 */
950 	oldf = current->files;
951 	if (!oldf)
952 		goto out;
953 
954 	if (clone_flags & CLONE_FILES) {
955 		atomic_inc(&oldf->count);
956 		goto out;
957 	}
958 
959 	newf = dup_fd(oldf, &error);
960 	if (!newf)
961 		goto out;
962 
963 	tsk->files = newf;
964 	error = 0;
965 out:
966 	return error;
967 }
968 
969 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
970 {
971 #ifdef CONFIG_BLOCK
972 	struct io_context *ioc = current->io_context;
973 	struct io_context *new_ioc;
974 
975 	if (!ioc)
976 		return 0;
977 	/*
978 	 * Share io context with parent, if CLONE_IO is set
979 	 */
980 	if (clone_flags & CLONE_IO) {
981 		tsk->io_context = ioc_task_link(ioc);
982 		if (unlikely(!tsk->io_context))
983 			return -ENOMEM;
984 	} else if (ioprio_valid(ioc->ioprio)) {
985 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
986 		if (unlikely(!new_ioc))
987 			return -ENOMEM;
988 
989 		new_ioc->ioprio = ioc->ioprio;
990 		put_io_context(new_ioc);
991 	}
992 #endif
993 	return 0;
994 }
995 
996 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
997 {
998 	struct sighand_struct *sig;
999 
1000 	if (clone_flags & CLONE_SIGHAND) {
1001 		atomic_inc(&current->sighand->count);
1002 		return 0;
1003 	}
1004 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1005 	rcu_assign_pointer(tsk->sighand, sig);
1006 	if (!sig)
1007 		return -ENOMEM;
1008 	atomic_set(&sig->count, 1);
1009 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1010 	return 0;
1011 }
1012 
1013 void __cleanup_sighand(struct sighand_struct *sighand)
1014 {
1015 	if (atomic_dec_and_test(&sighand->count)) {
1016 		signalfd_cleanup(sighand);
1017 		kmem_cache_free(sighand_cachep, sighand);
1018 	}
1019 }
1020 
1021 
1022 /*
1023  * Initialize POSIX timer handling for a thread group.
1024  */
1025 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1026 {
1027 	unsigned long cpu_limit;
1028 
1029 	/* Thread group counters. */
1030 	thread_group_cputime_init(sig);
1031 
1032 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1033 	if (cpu_limit != RLIM_INFINITY) {
1034 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1035 		sig->cputimer.running = 1;
1036 	}
1037 
1038 	/* The timer lists. */
1039 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1040 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1041 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1042 }
1043 
1044 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1045 {
1046 	struct signal_struct *sig;
1047 
1048 	if (clone_flags & CLONE_THREAD)
1049 		return 0;
1050 
1051 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1052 	tsk->signal = sig;
1053 	if (!sig)
1054 		return -ENOMEM;
1055 
1056 	sig->nr_threads = 1;
1057 	atomic_set(&sig->live, 1);
1058 	atomic_set(&sig->sigcnt, 1);
1059 	init_waitqueue_head(&sig->wait_chldexit);
1060 	if (clone_flags & CLONE_NEWPID)
1061 		sig->flags |= SIGNAL_UNKILLABLE;
1062 	sig->curr_target = tsk;
1063 	init_sigpending(&sig->shared_pending);
1064 	INIT_LIST_HEAD(&sig->posix_timers);
1065 
1066 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067 	sig->real_timer.function = it_real_fn;
1068 
1069 	task_lock(current->group_leader);
1070 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1071 	task_unlock(current->group_leader);
1072 
1073 	posix_cpu_timers_init_group(sig);
1074 
1075 	tty_audit_fork(sig);
1076 	sched_autogroup_fork(sig);
1077 
1078 #ifdef CONFIG_CGROUPS
1079 	init_rwsem(&sig->group_rwsem);
1080 #endif
1081 
1082 	sig->oom_adj = current->signal->oom_adj;
1083 	sig->oom_score_adj = current->signal->oom_score_adj;
1084 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1085 
1086 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1087 				   current->signal->is_child_subreaper;
1088 
1089 	mutex_init(&sig->cred_guard_mutex);
1090 
1091 	return 0;
1092 }
1093 
1094 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1095 {
1096 	unsigned long new_flags = p->flags;
1097 
1098 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1099 	new_flags |= PF_FORKNOEXEC;
1100 	p->flags = new_flags;
1101 }
1102 
1103 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1104 {
1105 	current->clear_child_tid = tidptr;
1106 
1107 	return task_pid_vnr(current);
1108 }
1109 
1110 static void rt_mutex_init_task(struct task_struct *p)
1111 {
1112 	raw_spin_lock_init(&p->pi_lock);
1113 #ifdef CONFIG_RT_MUTEXES
1114 	plist_head_init(&p->pi_waiters);
1115 	p->pi_blocked_on = NULL;
1116 #endif
1117 }
1118 
1119 #ifdef CONFIG_MM_OWNER
1120 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1121 {
1122 	mm->owner = p;
1123 }
1124 #endif /* CONFIG_MM_OWNER */
1125 
1126 /*
1127  * Initialize POSIX timer handling for a single task.
1128  */
1129 static void posix_cpu_timers_init(struct task_struct *tsk)
1130 {
1131 	tsk->cputime_expires.prof_exp = 0;
1132 	tsk->cputime_expires.virt_exp = 0;
1133 	tsk->cputime_expires.sched_exp = 0;
1134 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1135 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1136 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1137 }
1138 
1139 /*
1140  * This creates a new process as a copy of the old one,
1141  * but does not actually start it yet.
1142  *
1143  * It copies the registers, and all the appropriate
1144  * parts of the process environment (as per the clone
1145  * flags). The actual kick-off is left to the caller.
1146  */
1147 static struct task_struct *copy_process(unsigned long clone_flags,
1148 					unsigned long stack_start,
1149 					struct pt_regs *regs,
1150 					unsigned long stack_size,
1151 					int __user *child_tidptr,
1152 					struct pid *pid,
1153 					int trace)
1154 {
1155 	int retval;
1156 	struct task_struct *p;
1157 	int cgroup_callbacks_done = 0;
1158 
1159 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1160 		return ERR_PTR(-EINVAL);
1161 
1162 	/*
1163 	 * Thread groups must share signals as well, and detached threads
1164 	 * can only be started up within the thread group.
1165 	 */
1166 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1167 		return ERR_PTR(-EINVAL);
1168 
1169 	/*
1170 	 * Shared signal handlers imply shared VM. By way of the above,
1171 	 * thread groups also imply shared VM. Blocking this case allows
1172 	 * for various simplifications in other code.
1173 	 */
1174 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1175 		return ERR_PTR(-EINVAL);
1176 
1177 	/*
1178 	 * Siblings of global init remain as zombies on exit since they are
1179 	 * not reaped by their parent (swapper). To solve this and to avoid
1180 	 * multi-rooted process trees, prevent global and container-inits
1181 	 * from creating siblings.
1182 	 */
1183 	if ((clone_flags & CLONE_PARENT) &&
1184 				current->signal->flags & SIGNAL_UNKILLABLE)
1185 		return ERR_PTR(-EINVAL);
1186 
1187 	retval = security_task_create(clone_flags);
1188 	if (retval)
1189 		goto fork_out;
1190 
1191 	retval = -ENOMEM;
1192 	p = dup_task_struct(current);
1193 	if (!p)
1194 		goto fork_out;
1195 
1196 	ftrace_graph_init_task(p);
1197 	get_seccomp_filter(p);
1198 
1199 	rt_mutex_init_task(p);
1200 
1201 #ifdef CONFIG_PROVE_LOCKING
1202 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1203 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1204 #endif
1205 	retval = -EAGAIN;
1206 	if (atomic_read(&p->real_cred->user->processes) >=
1207 			task_rlimit(p, RLIMIT_NPROC)) {
1208 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1209 		    p->real_cred->user != INIT_USER)
1210 			goto bad_fork_free;
1211 	}
1212 	current->flags &= ~PF_NPROC_EXCEEDED;
1213 
1214 	retval = copy_creds(p, clone_flags);
1215 	if (retval < 0)
1216 		goto bad_fork_free;
1217 
1218 	/*
1219 	 * If multiple threads are within copy_process(), then this check
1220 	 * triggers too late. This doesn't hurt, the check is only there
1221 	 * to stop root fork bombs.
1222 	 */
1223 	retval = -EAGAIN;
1224 	if (nr_threads >= max_threads)
1225 		goto bad_fork_cleanup_count;
1226 
1227 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1228 		goto bad_fork_cleanup_count;
1229 
1230 	p->did_exec = 0;
1231 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1232 	copy_flags(clone_flags, p);
1233 	INIT_LIST_HEAD(&p->children);
1234 	INIT_LIST_HEAD(&p->sibling);
1235 	rcu_copy_process(p);
1236 	p->vfork_done = NULL;
1237 	spin_lock_init(&p->alloc_lock);
1238 
1239 	init_sigpending(&p->pending);
1240 
1241 	p->utime = p->stime = p->gtime = 0;
1242 	p->utimescaled = p->stimescaled = 0;
1243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1244 	p->prev_utime = p->prev_stime = 0;
1245 #endif
1246 #if defined(SPLIT_RSS_COUNTING)
1247 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1248 #endif
1249 
1250 	p->default_timer_slack_ns = current->timer_slack_ns;
1251 
1252 	task_io_accounting_init(&p->ioac);
1253 	acct_clear_integrals(p);
1254 
1255 	posix_cpu_timers_init(p);
1256 
1257 	do_posix_clock_monotonic_gettime(&p->start_time);
1258 	p->real_start_time = p->start_time;
1259 	monotonic_to_bootbased(&p->real_start_time);
1260 	p->io_context = NULL;
1261 	p->audit_context = NULL;
1262 	if (clone_flags & CLONE_THREAD)
1263 		threadgroup_change_begin(current);
1264 	cgroup_fork(p);
1265 #ifdef CONFIG_NUMA
1266 	p->mempolicy = mpol_dup(p->mempolicy);
1267 	if (IS_ERR(p->mempolicy)) {
1268 		retval = PTR_ERR(p->mempolicy);
1269 		p->mempolicy = NULL;
1270 		goto bad_fork_cleanup_cgroup;
1271 	}
1272 	mpol_fix_fork_child_flag(p);
1273 #endif
1274 #ifdef CONFIG_CPUSETS
1275 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1276 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1277 	seqcount_init(&p->mems_allowed_seq);
1278 #endif
1279 #ifdef CONFIG_TRACE_IRQFLAGS
1280 	p->irq_events = 0;
1281 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1282 	p->hardirqs_enabled = 1;
1283 #else
1284 	p->hardirqs_enabled = 0;
1285 #endif
1286 	p->hardirq_enable_ip = 0;
1287 	p->hardirq_enable_event = 0;
1288 	p->hardirq_disable_ip = _THIS_IP_;
1289 	p->hardirq_disable_event = 0;
1290 	p->softirqs_enabled = 1;
1291 	p->softirq_enable_ip = _THIS_IP_;
1292 	p->softirq_enable_event = 0;
1293 	p->softirq_disable_ip = 0;
1294 	p->softirq_disable_event = 0;
1295 	p->hardirq_context = 0;
1296 	p->softirq_context = 0;
1297 #endif
1298 #ifdef CONFIG_LOCKDEP
1299 	p->lockdep_depth = 0; /* no locks held yet */
1300 	p->curr_chain_key = 0;
1301 	p->lockdep_recursion = 0;
1302 #endif
1303 
1304 #ifdef CONFIG_DEBUG_MUTEXES
1305 	p->blocked_on = NULL; /* not blocked yet */
1306 #endif
1307 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1308 	p->memcg_batch.do_batch = 0;
1309 	p->memcg_batch.memcg = NULL;
1310 #endif
1311 
1312 	/* Perform scheduler related setup. Assign this task to a CPU. */
1313 	sched_fork(p);
1314 
1315 	retval = perf_event_init_task(p);
1316 	if (retval)
1317 		goto bad_fork_cleanup_policy;
1318 	retval = audit_alloc(p);
1319 	if (retval)
1320 		goto bad_fork_cleanup_policy;
1321 	/* copy all the process information */
1322 	retval = copy_semundo(clone_flags, p);
1323 	if (retval)
1324 		goto bad_fork_cleanup_audit;
1325 	retval = copy_files(clone_flags, p);
1326 	if (retval)
1327 		goto bad_fork_cleanup_semundo;
1328 	retval = copy_fs(clone_flags, p);
1329 	if (retval)
1330 		goto bad_fork_cleanup_files;
1331 	retval = copy_sighand(clone_flags, p);
1332 	if (retval)
1333 		goto bad_fork_cleanup_fs;
1334 	retval = copy_signal(clone_flags, p);
1335 	if (retval)
1336 		goto bad_fork_cleanup_sighand;
1337 	retval = copy_mm(clone_flags, p);
1338 	if (retval)
1339 		goto bad_fork_cleanup_signal;
1340 	retval = copy_namespaces(clone_flags, p);
1341 	if (retval)
1342 		goto bad_fork_cleanup_mm;
1343 	retval = copy_io(clone_flags, p);
1344 	if (retval)
1345 		goto bad_fork_cleanup_namespaces;
1346 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1347 	if (retval)
1348 		goto bad_fork_cleanup_io;
1349 
1350 	if (pid != &init_struct_pid) {
1351 		retval = -ENOMEM;
1352 		pid = alloc_pid(p->nsproxy->pid_ns);
1353 		if (!pid)
1354 			goto bad_fork_cleanup_io;
1355 	}
1356 
1357 	p->pid = pid_nr(pid);
1358 	p->tgid = p->pid;
1359 	if (clone_flags & CLONE_THREAD)
1360 		p->tgid = current->tgid;
1361 
1362 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1363 	/*
1364 	 * Clear TID on mm_release()?
1365 	 */
1366 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1367 #ifdef CONFIG_BLOCK
1368 	p->plug = NULL;
1369 #endif
1370 #ifdef CONFIG_FUTEX
1371 	p->robust_list = NULL;
1372 #ifdef CONFIG_COMPAT
1373 	p->compat_robust_list = NULL;
1374 #endif
1375 	INIT_LIST_HEAD(&p->pi_state_list);
1376 	p->pi_state_cache = NULL;
1377 #endif
1378 	/*
1379 	 * sigaltstack should be cleared when sharing the same VM
1380 	 */
1381 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1382 		p->sas_ss_sp = p->sas_ss_size = 0;
1383 
1384 	/*
1385 	 * Syscall tracing and stepping should be turned off in the
1386 	 * child regardless of CLONE_PTRACE.
1387 	 */
1388 	user_disable_single_step(p);
1389 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1390 #ifdef TIF_SYSCALL_EMU
1391 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1392 #endif
1393 	clear_all_latency_tracing(p);
1394 
1395 	/* ok, now we should be set up.. */
1396 	if (clone_flags & CLONE_THREAD)
1397 		p->exit_signal = -1;
1398 	else if (clone_flags & CLONE_PARENT)
1399 		p->exit_signal = current->group_leader->exit_signal;
1400 	else
1401 		p->exit_signal = (clone_flags & CSIGNAL);
1402 
1403 	p->pdeath_signal = 0;
1404 	p->exit_state = 0;
1405 
1406 	p->nr_dirtied = 0;
1407 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1408 	p->dirty_paused_when = 0;
1409 
1410 	/*
1411 	 * Ok, make it visible to the rest of the system.
1412 	 * We dont wake it up yet.
1413 	 */
1414 	p->group_leader = p;
1415 	INIT_LIST_HEAD(&p->thread_group);
1416 
1417 	/* Now that the task is set up, run cgroup callbacks if
1418 	 * necessary. We need to run them before the task is visible
1419 	 * on the tasklist. */
1420 	cgroup_fork_callbacks(p);
1421 	cgroup_callbacks_done = 1;
1422 
1423 	/* Need tasklist lock for parent etc handling! */
1424 	write_lock_irq(&tasklist_lock);
1425 
1426 	/* CLONE_PARENT re-uses the old parent */
1427 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1428 		p->real_parent = current->real_parent;
1429 		p->parent_exec_id = current->parent_exec_id;
1430 	} else {
1431 		p->real_parent = current;
1432 		p->parent_exec_id = current->self_exec_id;
1433 	}
1434 
1435 	spin_lock(&current->sighand->siglock);
1436 
1437 	/*
1438 	 * Process group and session signals need to be delivered to just the
1439 	 * parent before the fork or both the parent and the child after the
1440 	 * fork. Restart if a signal comes in before we add the new process to
1441 	 * it's process group.
1442 	 * A fatal signal pending means that current will exit, so the new
1443 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1444 	*/
1445 	recalc_sigpending();
1446 	if (signal_pending(current)) {
1447 		spin_unlock(&current->sighand->siglock);
1448 		write_unlock_irq(&tasklist_lock);
1449 		retval = -ERESTARTNOINTR;
1450 		goto bad_fork_free_pid;
1451 	}
1452 
1453 	if (clone_flags & CLONE_THREAD) {
1454 		current->signal->nr_threads++;
1455 		atomic_inc(&current->signal->live);
1456 		atomic_inc(&current->signal->sigcnt);
1457 		p->group_leader = current->group_leader;
1458 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1459 	}
1460 
1461 	if (likely(p->pid)) {
1462 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1463 
1464 		if (thread_group_leader(p)) {
1465 			if (is_child_reaper(pid))
1466 				p->nsproxy->pid_ns->child_reaper = p;
1467 
1468 			p->signal->leader_pid = pid;
1469 			p->signal->tty = tty_kref_get(current->signal->tty);
1470 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1471 			attach_pid(p, PIDTYPE_SID, task_session(current));
1472 			list_add_tail(&p->sibling, &p->real_parent->children);
1473 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1474 			__this_cpu_inc(process_counts);
1475 		}
1476 		attach_pid(p, PIDTYPE_PID, pid);
1477 		nr_threads++;
1478 	}
1479 
1480 	total_forks++;
1481 	spin_unlock(&current->sighand->siglock);
1482 	write_unlock_irq(&tasklist_lock);
1483 	proc_fork_connector(p);
1484 	cgroup_post_fork(p);
1485 	if (clone_flags & CLONE_THREAD)
1486 		threadgroup_change_end(current);
1487 	perf_event_fork(p);
1488 
1489 	trace_task_newtask(p, clone_flags);
1490 
1491 	return p;
1492 
1493 bad_fork_free_pid:
1494 	if (pid != &init_struct_pid)
1495 		free_pid(pid);
1496 bad_fork_cleanup_io:
1497 	if (p->io_context)
1498 		exit_io_context(p);
1499 bad_fork_cleanup_namespaces:
1500 	if (unlikely(clone_flags & CLONE_NEWPID))
1501 		pid_ns_release_proc(p->nsproxy->pid_ns);
1502 	exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504 	if (p->mm)
1505 		mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507 	if (!(clone_flags & CLONE_THREAD))
1508 		free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510 	__cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512 	exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514 	exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516 	exit_sem(p);
1517 bad_fork_cleanup_audit:
1518 	audit_free(p);
1519 bad_fork_cleanup_policy:
1520 	perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522 	mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525 	if (clone_flags & CLONE_THREAD)
1526 		threadgroup_change_end(current);
1527 	cgroup_exit(p, cgroup_callbacks_done);
1528 	delayacct_tsk_free(p);
1529 	module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531 	atomic_dec(&p->cred->user->processes);
1532 	exit_creds(p);
1533 bad_fork_free:
1534 	free_task(p);
1535 fork_out:
1536 	return ERR_PTR(retval);
1537 }
1538 
1539 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1540 {
1541 	memset(regs, 0, sizeof(struct pt_regs));
1542 	return regs;
1543 }
1544 
1545 static inline void init_idle_pids(struct pid_link *links)
1546 {
1547 	enum pid_type type;
1548 
1549 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1550 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1551 		links[type].pid = &init_struct_pid;
1552 	}
1553 }
1554 
1555 struct task_struct * __cpuinit fork_idle(int cpu)
1556 {
1557 	struct task_struct *task;
1558 	struct pt_regs regs;
1559 
1560 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1561 			    &init_struct_pid, 0);
1562 	if (!IS_ERR(task)) {
1563 		init_idle_pids(task->pids);
1564 		init_idle(task, cpu);
1565 	}
1566 
1567 	return task;
1568 }
1569 
1570 /*
1571  *  Ok, this is the main fork-routine.
1572  *
1573  * It copies the process, and if successful kick-starts
1574  * it and waits for it to finish using the VM if required.
1575  */
1576 long do_fork(unsigned long clone_flags,
1577 	      unsigned long stack_start,
1578 	      struct pt_regs *regs,
1579 	      unsigned long stack_size,
1580 	      int __user *parent_tidptr,
1581 	      int __user *child_tidptr)
1582 {
1583 	struct task_struct *p;
1584 	int trace = 0;
1585 	long nr;
1586 
1587 	/*
1588 	 * Do some preliminary argument and permissions checking before we
1589 	 * actually start allocating stuff
1590 	 */
1591 	if (clone_flags & CLONE_NEWUSER) {
1592 		if (clone_flags & CLONE_THREAD)
1593 			return -EINVAL;
1594 		/* hopefully this check will go away when userns support is
1595 		 * complete
1596 		 */
1597 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1598 				!capable(CAP_SETGID))
1599 			return -EPERM;
1600 	}
1601 
1602 	/*
1603 	 * Determine whether and which event to report to ptracer.  When
1604 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1605 	 * requested, no event is reported; otherwise, report if the event
1606 	 * for the type of forking is enabled.
1607 	 */
1608 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1609 		if (clone_flags & CLONE_VFORK)
1610 			trace = PTRACE_EVENT_VFORK;
1611 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1612 			trace = PTRACE_EVENT_CLONE;
1613 		else
1614 			trace = PTRACE_EVENT_FORK;
1615 
1616 		if (likely(!ptrace_event_enabled(current, trace)))
1617 			trace = 0;
1618 	}
1619 
1620 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1621 			 child_tidptr, NULL, trace);
1622 	/*
1623 	 * Do this prior waking up the new thread - the thread pointer
1624 	 * might get invalid after that point, if the thread exits quickly.
1625 	 */
1626 	if (!IS_ERR(p)) {
1627 		struct completion vfork;
1628 
1629 		trace_sched_process_fork(current, p);
1630 
1631 		nr = task_pid_vnr(p);
1632 
1633 		if (clone_flags & CLONE_PARENT_SETTID)
1634 			put_user(nr, parent_tidptr);
1635 
1636 		if (clone_flags & CLONE_VFORK) {
1637 			p->vfork_done = &vfork;
1638 			init_completion(&vfork);
1639 			get_task_struct(p);
1640 		}
1641 
1642 		wake_up_new_task(p);
1643 
1644 		/* forking complete and child started to run, tell ptracer */
1645 		if (unlikely(trace))
1646 			ptrace_event(trace, nr);
1647 
1648 		if (clone_flags & CLONE_VFORK) {
1649 			if (!wait_for_vfork_done(p, &vfork))
1650 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1651 		}
1652 	} else {
1653 		nr = PTR_ERR(p);
1654 	}
1655 	return nr;
1656 }
1657 
1658 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1659 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1660 #endif
1661 
1662 static void sighand_ctor(void *data)
1663 {
1664 	struct sighand_struct *sighand = data;
1665 
1666 	spin_lock_init(&sighand->siglock);
1667 	init_waitqueue_head(&sighand->signalfd_wqh);
1668 }
1669 
1670 void __init proc_caches_init(void)
1671 {
1672 	sighand_cachep = kmem_cache_create("sighand_cache",
1673 			sizeof(struct sighand_struct), 0,
1674 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1675 			SLAB_NOTRACK, sighand_ctor);
1676 	signal_cachep = kmem_cache_create("signal_cache",
1677 			sizeof(struct signal_struct), 0,
1678 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1679 	files_cachep = kmem_cache_create("files_cache",
1680 			sizeof(struct files_struct), 0,
1681 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1682 	fs_cachep = kmem_cache_create("fs_cache",
1683 			sizeof(struct fs_struct), 0,
1684 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685 	/*
1686 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1687 	 * whole struct cpumask for the OFFSTACK case. We could change
1688 	 * this to *only* allocate as much of it as required by the
1689 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1690 	 * is at the end of the structure, exactly for that reason.
1691 	 */
1692 	mm_cachep = kmem_cache_create("mm_struct",
1693 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1694 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1695 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1696 	mmap_init();
1697 	nsproxy_cache_init();
1698 }
1699 
1700 /*
1701  * Check constraints on flags passed to the unshare system call.
1702  */
1703 static int check_unshare_flags(unsigned long unshare_flags)
1704 {
1705 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1706 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1707 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1708 		return -EINVAL;
1709 	/*
1710 	 * Not implemented, but pretend it works if there is nothing to
1711 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1712 	 * needs to unshare vm.
1713 	 */
1714 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1715 		/* FIXME: get_task_mm() increments ->mm_users */
1716 		if (atomic_read(&current->mm->mm_users) > 1)
1717 			return -EINVAL;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 /*
1724  * Unshare the filesystem structure if it is being shared
1725  */
1726 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1727 {
1728 	struct fs_struct *fs = current->fs;
1729 
1730 	if (!(unshare_flags & CLONE_FS) || !fs)
1731 		return 0;
1732 
1733 	/* don't need lock here; in the worst case we'll do useless copy */
1734 	if (fs->users == 1)
1735 		return 0;
1736 
1737 	*new_fsp = copy_fs_struct(fs);
1738 	if (!*new_fsp)
1739 		return -ENOMEM;
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * Unshare file descriptor table if it is being shared
1746  */
1747 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1748 {
1749 	struct files_struct *fd = current->files;
1750 	int error = 0;
1751 
1752 	if ((unshare_flags & CLONE_FILES) &&
1753 	    (fd && atomic_read(&fd->count) > 1)) {
1754 		*new_fdp = dup_fd(fd, &error);
1755 		if (!*new_fdp)
1756 			return error;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * unshare allows a process to 'unshare' part of the process
1764  * context which was originally shared using clone.  copy_*
1765  * functions used by do_fork() cannot be used here directly
1766  * because they modify an inactive task_struct that is being
1767  * constructed. Here we are modifying the current, active,
1768  * task_struct.
1769  */
1770 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1771 {
1772 	struct fs_struct *fs, *new_fs = NULL;
1773 	struct files_struct *fd, *new_fd = NULL;
1774 	struct nsproxy *new_nsproxy = NULL;
1775 	int do_sysvsem = 0;
1776 	int err;
1777 
1778 	err = check_unshare_flags(unshare_flags);
1779 	if (err)
1780 		goto bad_unshare_out;
1781 
1782 	/*
1783 	 * If unsharing namespace, must also unshare filesystem information.
1784 	 */
1785 	if (unshare_flags & CLONE_NEWNS)
1786 		unshare_flags |= CLONE_FS;
1787 	/*
1788 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1789 	 * to a new ipc namespace, the semaphore arrays from the old
1790 	 * namespace are unreachable.
1791 	 */
1792 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1793 		do_sysvsem = 1;
1794 	err = unshare_fs(unshare_flags, &new_fs);
1795 	if (err)
1796 		goto bad_unshare_out;
1797 	err = unshare_fd(unshare_flags, &new_fd);
1798 	if (err)
1799 		goto bad_unshare_cleanup_fs;
1800 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1801 	if (err)
1802 		goto bad_unshare_cleanup_fd;
1803 
1804 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1805 		if (do_sysvsem) {
1806 			/*
1807 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1808 			 */
1809 			exit_sem(current);
1810 		}
1811 
1812 		if (new_nsproxy) {
1813 			switch_task_namespaces(current, new_nsproxy);
1814 			new_nsproxy = NULL;
1815 		}
1816 
1817 		task_lock(current);
1818 
1819 		if (new_fs) {
1820 			fs = current->fs;
1821 			spin_lock(&fs->lock);
1822 			current->fs = new_fs;
1823 			if (--fs->users)
1824 				new_fs = NULL;
1825 			else
1826 				new_fs = fs;
1827 			spin_unlock(&fs->lock);
1828 		}
1829 
1830 		if (new_fd) {
1831 			fd = current->files;
1832 			current->files = new_fd;
1833 			new_fd = fd;
1834 		}
1835 
1836 		task_unlock(current);
1837 	}
1838 
1839 	if (new_nsproxy)
1840 		put_nsproxy(new_nsproxy);
1841 
1842 bad_unshare_cleanup_fd:
1843 	if (new_fd)
1844 		put_files_struct(new_fd);
1845 
1846 bad_unshare_cleanup_fs:
1847 	if (new_fs)
1848 		free_fs_struct(new_fs);
1849 
1850 bad_unshare_out:
1851 	return err;
1852 }
1853 
1854 /*
1855  *	Helper to unshare the files of the current task.
1856  *	We don't want to expose copy_files internals to
1857  *	the exec layer of the kernel.
1858  */
1859 
1860 int unshare_files(struct files_struct **displaced)
1861 {
1862 	struct task_struct *task = current;
1863 	struct files_struct *copy = NULL;
1864 	int error;
1865 
1866 	error = unshare_fd(CLONE_FILES, &copy);
1867 	if (error || !copy) {
1868 		*displaced = NULL;
1869 		return error;
1870 	}
1871 	*displaced = task->files;
1872 	task_lock(task);
1873 	task->files = copy;
1874 	task_unlock(task);
1875 	return 0;
1876 }
1877