1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 73 #include <asm/pgtable.h> 74 #include <asm/pgalloc.h> 75 #include <asm/uaccess.h> 76 #include <asm/mmu_context.h> 77 #include <asm/cacheflush.h> 78 #include <asm/tlbflush.h> 79 80 #include <trace/events/sched.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/task.h> 84 85 /* 86 * Protected counters by write_lock_irq(&tasklist_lock) 87 */ 88 unsigned long total_forks; /* Handle normal Linux uptimes. */ 89 int nr_threads; /* The idle threads do not count.. */ 90 91 int max_threads; /* tunable limit on nr_threads */ 92 93 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 94 95 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 96 97 #ifdef CONFIG_PROVE_RCU 98 int lockdep_tasklist_lock_is_held(void) 99 { 100 return lockdep_is_held(&tasklist_lock); 101 } 102 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 103 #endif /* #ifdef CONFIG_PROVE_RCU */ 104 105 int nr_processes(void) 106 { 107 int cpu; 108 int total = 0; 109 110 for_each_possible_cpu(cpu) 111 total += per_cpu(process_counts, cpu); 112 113 return total; 114 } 115 116 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 117 static struct kmem_cache *task_struct_cachep; 118 119 static inline struct task_struct *alloc_task_struct_node(int node) 120 { 121 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 122 } 123 124 void __weak arch_release_task_struct(struct task_struct *tsk) { } 125 126 static inline void free_task_struct(struct task_struct *tsk) 127 { 128 arch_release_task_struct(tsk); 129 kmem_cache_free(task_struct_cachep, tsk); 130 } 131 #endif 132 133 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 134 void __weak arch_release_thread_info(struct thread_info *ti) { } 135 136 /* 137 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 138 * kmemcache based allocator. 139 */ 140 # if THREAD_SIZE >= PAGE_SIZE 141 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 142 int node) 143 { 144 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 145 THREAD_SIZE_ORDER); 146 147 return page ? page_address(page) : NULL; 148 } 149 150 static inline void free_thread_info(struct thread_info *ti) 151 { 152 arch_release_thread_info(ti); 153 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 154 } 155 # else 156 static struct kmem_cache *thread_info_cache; 157 158 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 159 int node) 160 { 161 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 162 } 163 164 static void free_thread_info(struct thread_info *ti) 165 { 166 arch_release_thread_info(ti); 167 kmem_cache_free(thread_info_cache, ti); 168 } 169 170 void thread_info_cache_init(void) 171 { 172 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 173 THREAD_SIZE, 0, NULL); 174 BUG_ON(thread_info_cache == NULL); 175 } 176 # endif 177 #endif 178 179 /* SLAB cache for signal_struct structures (tsk->signal) */ 180 static struct kmem_cache *signal_cachep; 181 182 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 183 struct kmem_cache *sighand_cachep; 184 185 /* SLAB cache for files_struct structures (tsk->files) */ 186 struct kmem_cache *files_cachep; 187 188 /* SLAB cache for fs_struct structures (tsk->fs) */ 189 struct kmem_cache *fs_cachep; 190 191 /* SLAB cache for vm_area_struct structures */ 192 struct kmem_cache *vm_area_cachep; 193 194 /* SLAB cache for mm_struct structures (tsk->mm) */ 195 static struct kmem_cache *mm_cachep; 196 197 static void account_kernel_stack(struct thread_info *ti, int account) 198 { 199 struct zone *zone = page_zone(virt_to_page(ti)); 200 201 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 202 } 203 204 void free_task(struct task_struct *tsk) 205 { 206 account_kernel_stack(tsk->stack, -1); 207 free_thread_info(tsk->stack); 208 rt_mutex_debug_task_free(tsk); 209 ftrace_graph_exit_task(tsk); 210 put_seccomp_filter(tsk); 211 free_task_struct(tsk); 212 } 213 EXPORT_SYMBOL(free_task); 214 215 static inline void free_signal_struct(struct signal_struct *sig) 216 { 217 taskstats_tgid_free(sig); 218 sched_autogroup_exit(sig); 219 kmem_cache_free(signal_cachep, sig); 220 } 221 222 static inline void put_signal_struct(struct signal_struct *sig) 223 { 224 if (atomic_dec_and_test(&sig->sigcnt)) 225 free_signal_struct(sig); 226 } 227 228 void __put_task_struct(struct task_struct *tsk) 229 { 230 WARN_ON(!tsk->exit_state); 231 WARN_ON(atomic_read(&tsk->usage)); 232 WARN_ON(tsk == current); 233 234 security_task_free(tsk); 235 exit_creds(tsk); 236 delayacct_tsk_free(tsk); 237 put_signal_struct(tsk->signal); 238 239 if (!profile_handoff_task(tsk)) 240 free_task(tsk); 241 } 242 EXPORT_SYMBOL_GPL(__put_task_struct); 243 244 void __init __weak arch_task_cache_init(void) { } 245 246 void __init fork_init(unsigned long mempages) 247 { 248 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 249 #ifndef ARCH_MIN_TASKALIGN 250 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 251 #endif 252 /* create a slab on which task_structs can be allocated */ 253 task_struct_cachep = 254 kmem_cache_create("task_struct", sizeof(struct task_struct), 255 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 256 #endif 257 258 /* do the arch specific task caches init */ 259 arch_task_cache_init(); 260 261 /* 262 * The default maximum number of threads is set to a safe 263 * value: the thread structures can take up at most half 264 * of memory. 265 */ 266 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 267 268 /* 269 * we need to allow at least 20 threads to boot a system 270 */ 271 if (max_threads < 20) 272 max_threads = 20; 273 274 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 275 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 276 init_task.signal->rlim[RLIMIT_SIGPENDING] = 277 init_task.signal->rlim[RLIMIT_NPROC]; 278 } 279 280 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 281 struct task_struct *src) 282 { 283 *dst = *src; 284 return 0; 285 } 286 287 static struct task_struct *dup_task_struct(struct task_struct *orig) 288 { 289 struct task_struct *tsk; 290 struct thread_info *ti; 291 unsigned long *stackend; 292 int node = tsk_fork_get_node(orig); 293 int err; 294 295 prepare_to_copy(orig); 296 297 tsk = alloc_task_struct_node(node); 298 if (!tsk) 299 return NULL; 300 301 ti = alloc_thread_info_node(tsk, node); 302 if (!ti) { 303 free_task_struct(tsk); 304 return NULL; 305 } 306 307 err = arch_dup_task_struct(tsk, orig); 308 if (err) 309 goto out; 310 311 tsk->stack = ti; 312 313 setup_thread_stack(tsk, orig); 314 clear_user_return_notifier(tsk); 315 clear_tsk_need_resched(tsk); 316 stackend = end_of_stack(tsk); 317 *stackend = STACK_END_MAGIC; /* for overflow detection */ 318 319 #ifdef CONFIG_CC_STACKPROTECTOR 320 tsk->stack_canary = get_random_int(); 321 #endif 322 323 /* 324 * One for us, one for whoever does the "release_task()" (usually 325 * parent) 326 */ 327 atomic_set(&tsk->usage, 2); 328 #ifdef CONFIG_BLK_DEV_IO_TRACE 329 tsk->btrace_seq = 0; 330 #endif 331 tsk->splice_pipe = NULL; 332 333 account_kernel_stack(ti, 1); 334 335 return tsk; 336 337 out: 338 free_thread_info(ti); 339 free_task_struct(tsk); 340 return NULL; 341 } 342 343 #ifdef CONFIG_MMU 344 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 345 { 346 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 347 struct rb_node **rb_link, *rb_parent; 348 int retval; 349 unsigned long charge; 350 struct mempolicy *pol; 351 352 down_write(&oldmm->mmap_sem); 353 flush_cache_dup_mm(oldmm); 354 /* 355 * Not linked in yet - no deadlock potential: 356 */ 357 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 358 359 mm->locked_vm = 0; 360 mm->mmap = NULL; 361 mm->mmap_cache = NULL; 362 mm->free_area_cache = oldmm->mmap_base; 363 mm->cached_hole_size = ~0UL; 364 mm->map_count = 0; 365 cpumask_clear(mm_cpumask(mm)); 366 mm->mm_rb = RB_ROOT; 367 rb_link = &mm->mm_rb.rb_node; 368 rb_parent = NULL; 369 pprev = &mm->mmap; 370 retval = ksm_fork(mm, oldmm); 371 if (retval) 372 goto out; 373 retval = khugepaged_fork(mm, oldmm); 374 if (retval) 375 goto out; 376 377 prev = NULL; 378 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 379 struct file *file; 380 381 if (mpnt->vm_flags & VM_DONTCOPY) { 382 long pages = vma_pages(mpnt); 383 mm->total_vm -= pages; 384 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 385 -pages); 386 continue; 387 } 388 charge = 0; 389 if (mpnt->vm_flags & VM_ACCOUNT) { 390 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 391 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 392 goto fail_nomem; 393 charge = len; 394 } 395 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 396 if (!tmp) 397 goto fail_nomem; 398 *tmp = *mpnt; 399 INIT_LIST_HEAD(&tmp->anon_vma_chain); 400 pol = mpol_dup(vma_policy(mpnt)); 401 retval = PTR_ERR(pol); 402 if (IS_ERR(pol)) 403 goto fail_nomem_policy; 404 vma_set_policy(tmp, pol); 405 tmp->vm_mm = mm; 406 if (anon_vma_fork(tmp, mpnt)) 407 goto fail_nomem_anon_vma_fork; 408 tmp->vm_flags &= ~VM_LOCKED; 409 tmp->vm_next = tmp->vm_prev = NULL; 410 file = tmp->vm_file; 411 if (file) { 412 struct inode *inode = file->f_path.dentry->d_inode; 413 struct address_space *mapping = file->f_mapping; 414 415 get_file(file); 416 if (tmp->vm_flags & VM_DENYWRITE) 417 atomic_dec(&inode->i_writecount); 418 mutex_lock(&mapping->i_mmap_mutex); 419 if (tmp->vm_flags & VM_SHARED) 420 mapping->i_mmap_writable++; 421 flush_dcache_mmap_lock(mapping); 422 /* insert tmp into the share list, just after mpnt */ 423 vma_prio_tree_add(tmp, mpnt); 424 flush_dcache_mmap_unlock(mapping); 425 mutex_unlock(&mapping->i_mmap_mutex); 426 } 427 428 /* 429 * Clear hugetlb-related page reserves for children. This only 430 * affects MAP_PRIVATE mappings. Faults generated by the child 431 * are not guaranteed to succeed, even if read-only 432 */ 433 if (is_vm_hugetlb_page(tmp)) 434 reset_vma_resv_huge_pages(tmp); 435 436 /* 437 * Link in the new vma and copy the page table entries. 438 */ 439 *pprev = tmp; 440 pprev = &tmp->vm_next; 441 tmp->vm_prev = prev; 442 prev = tmp; 443 444 __vma_link_rb(mm, tmp, rb_link, rb_parent); 445 rb_link = &tmp->vm_rb.rb_right; 446 rb_parent = &tmp->vm_rb; 447 448 mm->map_count++; 449 retval = copy_page_range(mm, oldmm, mpnt); 450 451 if (tmp->vm_ops && tmp->vm_ops->open) 452 tmp->vm_ops->open(tmp); 453 454 if (retval) 455 goto out; 456 } 457 /* a new mm has just been created */ 458 arch_dup_mmap(oldmm, mm); 459 retval = 0; 460 out: 461 up_write(&mm->mmap_sem); 462 flush_tlb_mm(oldmm); 463 up_write(&oldmm->mmap_sem); 464 return retval; 465 fail_nomem_anon_vma_fork: 466 mpol_put(pol); 467 fail_nomem_policy: 468 kmem_cache_free(vm_area_cachep, tmp); 469 fail_nomem: 470 retval = -ENOMEM; 471 vm_unacct_memory(charge); 472 goto out; 473 } 474 475 static inline int mm_alloc_pgd(struct mm_struct *mm) 476 { 477 mm->pgd = pgd_alloc(mm); 478 if (unlikely(!mm->pgd)) 479 return -ENOMEM; 480 return 0; 481 } 482 483 static inline void mm_free_pgd(struct mm_struct *mm) 484 { 485 pgd_free(mm, mm->pgd); 486 } 487 #else 488 #define dup_mmap(mm, oldmm) (0) 489 #define mm_alloc_pgd(mm) (0) 490 #define mm_free_pgd(mm) 491 #endif /* CONFIG_MMU */ 492 493 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 494 495 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 496 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 497 498 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 499 500 static int __init coredump_filter_setup(char *s) 501 { 502 default_dump_filter = 503 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 504 MMF_DUMP_FILTER_MASK; 505 return 1; 506 } 507 508 __setup("coredump_filter=", coredump_filter_setup); 509 510 #include <linux/init_task.h> 511 512 static void mm_init_aio(struct mm_struct *mm) 513 { 514 #ifdef CONFIG_AIO 515 spin_lock_init(&mm->ioctx_lock); 516 INIT_HLIST_HEAD(&mm->ioctx_list); 517 #endif 518 } 519 520 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 521 { 522 atomic_set(&mm->mm_users, 1); 523 atomic_set(&mm->mm_count, 1); 524 init_rwsem(&mm->mmap_sem); 525 INIT_LIST_HEAD(&mm->mmlist); 526 mm->flags = (current->mm) ? 527 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 528 mm->core_state = NULL; 529 mm->nr_ptes = 0; 530 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 531 spin_lock_init(&mm->page_table_lock); 532 mm->free_area_cache = TASK_UNMAPPED_BASE; 533 mm->cached_hole_size = ~0UL; 534 mm_init_aio(mm); 535 mm_init_owner(mm, p); 536 537 if (likely(!mm_alloc_pgd(mm))) { 538 mm->def_flags = 0; 539 mmu_notifier_mm_init(mm); 540 return mm; 541 } 542 543 free_mm(mm); 544 return NULL; 545 } 546 547 static void check_mm(struct mm_struct *mm) 548 { 549 int i; 550 551 for (i = 0; i < NR_MM_COUNTERS; i++) { 552 long x = atomic_long_read(&mm->rss_stat.count[i]); 553 554 if (unlikely(x)) 555 printk(KERN_ALERT "BUG: Bad rss-counter state " 556 "mm:%p idx:%d val:%ld\n", mm, i, x); 557 } 558 559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 560 VM_BUG_ON(mm->pmd_huge_pte); 561 #endif 562 } 563 564 /* 565 * Allocate and initialize an mm_struct. 566 */ 567 struct mm_struct *mm_alloc(void) 568 { 569 struct mm_struct *mm; 570 571 mm = allocate_mm(); 572 if (!mm) 573 return NULL; 574 575 memset(mm, 0, sizeof(*mm)); 576 mm_init_cpumask(mm); 577 return mm_init(mm, current); 578 } 579 580 /* 581 * Called when the last reference to the mm 582 * is dropped: either by a lazy thread or by 583 * mmput. Free the page directory and the mm. 584 */ 585 void __mmdrop(struct mm_struct *mm) 586 { 587 BUG_ON(mm == &init_mm); 588 mm_free_pgd(mm); 589 destroy_context(mm); 590 mmu_notifier_mm_destroy(mm); 591 check_mm(mm); 592 free_mm(mm); 593 } 594 EXPORT_SYMBOL_GPL(__mmdrop); 595 596 /* 597 * Decrement the use count and release all resources for an mm. 598 */ 599 void mmput(struct mm_struct *mm) 600 { 601 might_sleep(); 602 603 if (atomic_dec_and_test(&mm->mm_users)) { 604 exit_aio(mm); 605 ksm_exit(mm); 606 khugepaged_exit(mm); /* must run before exit_mmap */ 607 exit_mmap(mm); 608 set_mm_exe_file(mm, NULL); 609 if (!list_empty(&mm->mmlist)) { 610 spin_lock(&mmlist_lock); 611 list_del(&mm->mmlist); 612 spin_unlock(&mmlist_lock); 613 } 614 put_swap_token(mm); 615 if (mm->binfmt) 616 module_put(mm->binfmt->module); 617 mmdrop(mm); 618 } 619 } 620 EXPORT_SYMBOL_GPL(mmput); 621 622 /* 623 * We added or removed a vma mapping the executable. The vmas are only mapped 624 * during exec and are not mapped with the mmap system call. 625 * Callers must hold down_write() on the mm's mmap_sem for these 626 */ 627 void added_exe_file_vma(struct mm_struct *mm) 628 { 629 mm->num_exe_file_vmas++; 630 } 631 632 void removed_exe_file_vma(struct mm_struct *mm) 633 { 634 mm->num_exe_file_vmas--; 635 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) { 636 fput(mm->exe_file); 637 mm->exe_file = NULL; 638 } 639 640 } 641 642 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 643 { 644 if (new_exe_file) 645 get_file(new_exe_file); 646 if (mm->exe_file) 647 fput(mm->exe_file); 648 mm->exe_file = new_exe_file; 649 mm->num_exe_file_vmas = 0; 650 } 651 652 struct file *get_mm_exe_file(struct mm_struct *mm) 653 { 654 struct file *exe_file; 655 656 /* We need mmap_sem to protect against races with removal of 657 * VM_EXECUTABLE vmas */ 658 down_read(&mm->mmap_sem); 659 exe_file = mm->exe_file; 660 if (exe_file) 661 get_file(exe_file); 662 up_read(&mm->mmap_sem); 663 return exe_file; 664 } 665 666 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 667 { 668 /* It's safe to write the exe_file pointer without exe_file_lock because 669 * this is called during fork when the task is not yet in /proc */ 670 newmm->exe_file = get_mm_exe_file(oldmm); 671 } 672 673 /** 674 * get_task_mm - acquire a reference to the task's mm 675 * 676 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 677 * this kernel workthread has transiently adopted a user mm with use_mm, 678 * to do its AIO) is not set and if so returns a reference to it, after 679 * bumping up the use count. User must release the mm via mmput() 680 * after use. Typically used by /proc and ptrace. 681 */ 682 struct mm_struct *get_task_mm(struct task_struct *task) 683 { 684 struct mm_struct *mm; 685 686 task_lock(task); 687 mm = task->mm; 688 if (mm) { 689 if (task->flags & PF_KTHREAD) 690 mm = NULL; 691 else 692 atomic_inc(&mm->mm_users); 693 } 694 task_unlock(task); 695 return mm; 696 } 697 EXPORT_SYMBOL_GPL(get_task_mm); 698 699 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 700 { 701 struct mm_struct *mm; 702 int err; 703 704 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 705 if (err) 706 return ERR_PTR(err); 707 708 mm = get_task_mm(task); 709 if (mm && mm != current->mm && 710 !ptrace_may_access(task, mode)) { 711 mmput(mm); 712 mm = ERR_PTR(-EACCES); 713 } 714 mutex_unlock(&task->signal->cred_guard_mutex); 715 716 return mm; 717 } 718 719 static void complete_vfork_done(struct task_struct *tsk) 720 { 721 struct completion *vfork; 722 723 task_lock(tsk); 724 vfork = tsk->vfork_done; 725 if (likely(vfork)) { 726 tsk->vfork_done = NULL; 727 complete(vfork); 728 } 729 task_unlock(tsk); 730 } 731 732 static int wait_for_vfork_done(struct task_struct *child, 733 struct completion *vfork) 734 { 735 int killed; 736 737 freezer_do_not_count(); 738 killed = wait_for_completion_killable(vfork); 739 freezer_count(); 740 741 if (killed) { 742 task_lock(child); 743 child->vfork_done = NULL; 744 task_unlock(child); 745 } 746 747 put_task_struct(child); 748 return killed; 749 } 750 751 /* Please note the differences between mmput and mm_release. 752 * mmput is called whenever we stop holding onto a mm_struct, 753 * error success whatever. 754 * 755 * mm_release is called after a mm_struct has been removed 756 * from the current process. 757 * 758 * This difference is important for error handling, when we 759 * only half set up a mm_struct for a new process and need to restore 760 * the old one. Because we mmput the new mm_struct before 761 * restoring the old one. . . 762 * Eric Biederman 10 January 1998 763 */ 764 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 765 { 766 /* Get rid of any futexes when releasing the mm */ 767 #ifdef CONFIG_FUTEX 768 if (unlikely(tsk->robust_list)) { 769 exit_robust_list(tsk); 770 tsk->robust_list = NULL; 771 } 772 #ifdef CONFIG_COMPAT 773 if (unlikely(tsk->compat_robust_list)) { 774 compat_exit_robust_list(tsk); 775 tsk->compat_robust_list = NULL; 776 } 777 #endif 778 if (unlikely(!list_empty(&tsk->pi_state_list))) 779 exit_pi_state_list(tsk); 780 #endif 781 782 /* Get rid of any cached register state */ 783 deactivate_mm(tsk, mm); 784 785 if (tsk->vfork_done) 786 complete_vfork_done(tsk); 787 788 /* 789 * If we're exiting normally, clear a user-space tid field if 790 * requested. We leave this alone when dying by signal, to leave 791 * the value intact in a core dump, and to save the unnecessary 792 * trouble, say, a killed vfork parent shouldn't touch this mm. 793 * Userland only wants this done for a sys_exit. 794 */ 795 if (tsk->clear_child_tid) { 796 if (!(tsk->flags & PF_SIGNALED) && 797 atomic_read(&mm->mm_users) > 1) { 798 /* 799 * We don't check the error code - if userspace has 800 * not set up a proper pointer then tough luck. 801 */ 802 put_user(0, tsk->clear_child_tid); 803 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 804 1, NULL, NULL, 0); 805 } 806 tsk->clear_child_tid = NULL; 807 } 808 } 809 810 /* 811 * Allocate a new mm structure and copy contents from the 812 * mm structure of the passed in task structure. 813 */ 814 struct mm_struct *dup_mm(struct task_struct *tsk) 815 { 816 struct mm_struct *mm, *oldmm = current->mm; 817 int err; 818 819 if (!oldmm) 820 return NULL; 821 822 mm = allocate_mm(); 823 if (!mm) 824 goto fail_nomem; 825 826 memcpy(mm, oldmm, sizeof(*mm)); 827 mm_init_cpumask(mm); 828 829 /* Initializing for Swap token stuff */ 830 mm->token_priority = 0; 831 mm->last_interval = 0; 832 833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 834 mm->pmd_huge_pte = NULL; 835 #endif 836 837 if (!mm_init(mm, tsk)) 838 goto fail_nomem; 839 840 if (init_new_context(tsk, mm)) 841 goto fail_nocontext; 842 843 dup_mm_exe_file(oldmm, mm); 844 845 err = dup_mmap(mm, oldmm); 846 if (err) 847 goto free_pt; 848 849 mm->hiwater_rss = get_mm_rss(mm); 850 mm->hiwater_vm = mm->total_vm; 851 852 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 853 goto free_pt; 854 855 return mm; 856 857 free_pt: 858 /* don't put binfmt in mmput, we haven't got module yet */ 859 mm->binfmt = NULL; 860 mmput(mm); 861 862 fail_nomem: 863 return NULL; 864 865 fail_nocontext: 866 /* 867 * If init_new_context() failed, we cannot use mmput() to free the mm 868 * because it calls destroy_context() 869 */ 870 mm_free_pgd(mm); 871 free_mm(mm); 872 return NULL; 873 } 874 875 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 876 { 877 struct mm_struct *mm, *oldmm; 878 int retval; 879 880 tsk->min_flt = tsk->maj_flt = 0; 881 tsk->nvcsw = tsk->nivcsw = 0; 882 #ifdef CONFIG_DETECT_HUNG_TASK 883 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 884 #endif 885 886 tsk->mm = NULL; 887 tsk->active_mm = NULL; 888 889 /* 890 * Are we cloning a kernel thread? 891 * 892 * We need to steal a active VM for that.. 893 */ 894 oldmm = current->mm; 895 if (!oldmm) 896 return 0; 897 898 if (clone_flags & CLONE_VM) { 899 atomic_inc(&oldmm->mm_users); 900 mm = oldmm; 901 goto good_mm; 902 } 903 904 retval = -ENOMEM; 905 mm = dup_mm(tsk); 906 if (!mm) 907 goto fail_nomem; 908 909 good_mm: 910 /* Initializing for Swap token stuff */ 911 mm->token_priority = 0; 912 mm->last_interval = 0; 913 914 tsk->mm = mm; 915 tsk->active_mm = mm; 916 return 0; 917 918 fail_nomem: 919 return retval; 920 } 921 922 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 923 { 924 struct fs_struct *fs = current->fs; 925 if (clone_flags & CLONE_FS) { 926 /* tsk->fs is already what we want */ 927 spin_lock(&fs->lock); 928 if (fs->in_exec) { 929 spin_unlock(&fs->lock); 930 return -EAGAIN; 931 } 932 fs->users++; 933 spin_unlock(&fs->lock); 934 return 0; 935 } 936 tsk->fs = copy_fs_struct(fs); 937 if (!tsk->fs) 938 return -ENOMEM; 939 return 0; 940 } 941 942 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 943 { 944 struct files_struct *oldf, *newf; 945 int error = 0; 946 947 /* 948 * A background process may not have any files ... 949 */ 950 oldf = current->files; 951 if (!oldf) 952 goto out; 953 954 if (clone_flags & CLONE_FILES) { 955 atomic_inc(&oldf->count); 956 goto out; 957 } 958 959 newf = dup_fd(oldf, &error); 960 if (!newf) 961 goto out; 962 963 tsk->files = newf; 964 error = 0; 965 out: 966 return error; 967 } 968 969 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 970 { 971 #ifdef CONFIG_BLOCK 972 struct io_context *ioc = current->io_context; 973 struct io_context *new_ioc; 974 975 if (!ioc) 976 return 0; 977 /* 978 * Share io context with parent, if CLONE_IO is set 979 */ 980 if (clone_flags & CLONE_IO) { 981 tsk->io_context = ioc_task_link(ioc); 982 if (unlikely(!tsk->io_context)) 983 return -ENOMEM; 984 } else if (ioprio_valid(ioc->ioprio)) { 985 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 986 if (unlikely(!new_ioc)) 987 return -ENOMEM; 988 989 new_ioc->ioprio = ioc->ioprio; 990 put_io_context(new_ioc); 991 } 992 #endif 993 return 0; 994 } 995 996 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 997 { 998 struct sighand_struct *sig; 999 1000 if (clone_flags & CLONE_SIGHAND) { 1001 atomic_inc(¤t->sighand->count); 1002 return 0; 1003 } 1004 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1005 rcu_assign_pointer(tsk->sighand, sig); 1006 if (!sig) 1007 return -ENOMEM; 1008 atomic_set(&sig->count, 1); 1009 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1010 return 0; 1011 } 1012 1013 void __cleanup_sighand(struct sighand_struct *sighand) 1014 { 1015 if (atomic_dec_and_test(&sighand->count)) { 1016 signalfd_cleanup(sighand); 1017 kmem_cache_free(sighand_cachep, sighand); 1018 } 1019 } 1020 1021 1022 /* 1023 * Initialize POSIX timer handling for a thread group. 1024 */ 1025 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1026 { 1027 unsigned long cpu_limit; 1028 1029 /* Thread group counters. */ 1030 thread_group_cputime_init(sig); 1031 1032 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1033 if (cpu_limit != RLIM_INFINITY) { 1034 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1035 sig->cputimer.running = 1; 1036 } 1037 1038 /* The timer lists. */ 1039 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1040 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1041 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1042 } 1043 1044 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1045 { 1046 struct signal_struct *sig; 1047 1048 if (clone_flags & CLONE_THREAD) 1049 return 0; 1050 1051 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1052 tsk->signal = sig; 1053 if (!sig) 1054 return -ENOMEM; 1055 1056 sig->nr_threads = 1; 1057 atomic_set(&sig->live, 1); 1058 atomic_set(&sig->sigcnt, 1); 1059 init_waitqueue_head(&sig->wait_chldexit); 1060 if (clone_flags & CLONE_NEWPID) 1061 sig->flags |= SIGNAL_UNKILLABLE; 1062 sig->curr_target = tsk; 1063 init_sigpending(&sig->shared_pending); 1064 INIT_LIST_HEAD(&sig->posix_timers); 1065 1066 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1067 sig->real_timer.function = it_real_fn; 1068 1069 task_lock(current->group_leader); 1070 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1071 task_unlock(current->group_leader); 1072 1073 posix_cpu_timers_init_group(sig); 1074 1075 tty_audit_fork(sig); 1076 sched_autogroup_fork(sig); 1077 1078 #ifdef CONFIG_CGROUPS 1079 init_rwsem(&sig->group_rwsem); 1080 #endif 1081 1082 sig->oom_adj = current->signal->oom_adj; 1083 sig->oom_score_adj = current->signal->oom_score_adj; 1084 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1085 1086 sig->has_child_subreaper = current->signal->has_child_subreaper || 1087 current->signal->is_child_subreaper; 1088 1089 mutex_init(&sig->cred_guard_mutex); 1090 1091 return 0; 1092 } 1093 1094 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1095 { 1096 unsigned long new_flags = p->flags; 1097 1098 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1099 new_flags |= PF_FORKNOEXEC; 1100 p->flags = new_flags; 1101 } 1102 1103 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1104 { 1105 current->clear_child_tid = tidptr; 1106 1107 return task_pid_vnr(current); 1108 } 1109 1110 static void rt_mutex_init_task(struct task_struct *p) 1111 { 1112 raw_spin_lock_init(&p->pi_lock); 1113 #ifdef CONFIG_RT_MUTEXES 1114 plist_head_init(&p->pi_waiters); 1115 p->pi_blocked_on = NULL; 1116 #endif 1117 } 1118 1119 #ifdef CONFIG_MM_OWNER 1120 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1121 { 1122 mm->owner = p; 1123 } 1124 #endif /* CONFIG_MM_OWNER */ 1125 1126 /* 1127 * Initialize POSIX timer handling for a single task. 1128 */ 1129 static void posix_cpu_timers_init(struct task_struct *tsk) 1130 { 1131 tsk->cputime_expires.prof_exp = 0; 1132 tsk->cputime_expires.virt_exp = 0; 1133 tsk->cputime_expires.sched_exp = 0; 1134 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1135 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1136 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1137 } 1138 1139 /* 1140 * This creates a new process as a copy of the old one, 1141 * but does not actually start it yet. 1142 * 1143 * It copies the registers, and all the appropriate 1144 * parts of the process environment (as per the clone 1145 * flags). The actual kick-off is left to the caller. 1146 */ 1147 static struct task_struct *copy_process(unsigned long clone_flags, 1148 unsigned long stack_start, 1149 struct pt_regs *regs, 1150 unsigned long stack_size, 1151 int __user *child_tidptr, 1152 struct pid *pid, 1153 int trace) 1154 { 1155 int retval; 1156 struct task_struct *p; 1157 int cgroup_callbacks_done = 0; 1158 1159 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1160 return ERR_PTR(-EINVAL); 1161 1162 /* 1163 * Thread groups must share signals as well, and detached threads 1164 * can only be started up within the thread group. 1165 */ 1166 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1167 return ERR_PTR(-EINVAL); 1168 1169 /* 1170 * Shared signal handlers imply shared VM. By way of the above, 1171 * thread groups also imply shared VM. Blocking this case allows 1172 * for various simplifications in other code. 1173 */ 1174 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1175 return ERR_PTR(-EINVAL); 1176 1177 /* 1178 * Siblings of global init remain as zombies on exit since they are 1179 * not reaped by their parent (swapper). To solve this and to avoid 1180 * multi-rooted process trees, prevent global and container-inits 1181 * from creating siblings. 1182 */ 1183 if ((clone_flags & CLONE_PARENT) && 1184 current->signal->flags & SIGNAL_UNKILLABLE) 1185 return ERR_PTR(-EINVAL); 1186 1187 retval = security_task_create(clone_flags); 1188 if (retval) 1189 goto fork_out; 1190 1191 retval = -ENOMEM; 1192 p = dup_task_struct(current); 1193 if (!p) 1194 goto fork_out; 1195 1196 ftrace_graph_init_task(p); 1197 get_seccomp_filter(p); 1198 1199 rt_mutex_init_task(p); 1200 1201 #ifdef CONFIG_PROVE_LOCKING 1202 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1203 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1204 #endif 1205 retval = -EAGAIN; 1206 if (atomic_read(&p->real_cred->user->processes) >= 1207 task_rlimit(p, RLIMIT_NPROC)) { 1208 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1209 p->real_cred->user != INIT_USER) 1210 goto bad_fork_free; 1211 } 1212 current->flags &= ~PF_NPROC_EXCEEDED; 1213 1214 retval = copy_creds(p, clone_flags); 1215 if (retval < 0) 1216 goto bad_fork_free; 1217 1218 /* 1219 * If multiple threads are within copy_process(), then this check 1220 * triggers too late. This doesn't hurt, the check is only there 1221 * to stop root fork bombs. 1222 */ 1223 retval = -EAGAIN; 1224 if (nr_threads >= max_threads) 1225 goto bad_fork_cleanup_count; 1226 1227 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1228 goto bad_fork_cleanup_count; 1229 1230 p->did_exec = 0; 1231 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1232 copy_flags(clone_flags, p); 1233 INIT_LIST_HEAD(&p->children); 1234 INIT_LIST_HEAD(&p->sibling); 1235 rcu_copy_process(p); 1236 p->vfork_done = NULL; 1237 spin_lock_init(&p->alloc_lock); 1238 1239 init_sigpending(&p->pending); 1240 1241 p->utime = p->stime = p->gtime = 0; 1242 p->utimescaled = p->stimescaled = 0; 1243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1244 p->prev_utime = p->prev_stime = 0; 1245 #endif 1246 #if defined(SPLIT_RSS_COUNTING) 1247 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1248 #endif 1249 1250 p->default_timer_slack_ns = current->timer_slack_ns; 1251 1252 task_io_accounting_init(&p->ioac); 1253 acct_clear_integrals(p); 1254 1255 posix_cpu_timers_init(p); 1256 1257 do_posix_clock_monotonic_gettime(&p->start_time); 1258 p->real_start_time = p->start_time; 1259 monotonic_to_bootbased(&p->real_start_time); 1260 p->io_context = NULL; 1261 p->audit_context = NULL; 1262 if (clone_flags & CLONE_THREAD) 1263 threadgroup_change_begin(current); 1264 cgroup_fork(p); 1265 #ifdef CONFIG_NUMA 1266 p->mempolicy = mpol_dup(p->mempolicy); 1267 if (IS_ERR(p->mempolicy)) { 1268 retval = PTR_ERR(p->mempolicy); 1269 p->mempolicy = NULL; 1270 goto bad_fork_cleanup_cgroup; 1271 } 1272 mpol_fix_fork_child_flag(p); 1273 #endif 1274 #ifdef CONFIG_CPUSETS 1275 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1276 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1277 seqcount_init(&p->mems_allowed_seq); 1278 #endif 1279 #ifdef CONFIG_TRACE_IRQFLAGS 1280 p->irq_events = 0; 1281 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1282 p->hardirqs_enabled = 1; 1283 #else 1284 p->hardirqs_enabled = 0; 1285 #endif 1286 p->hardirq_enable_ip = 0; 1287 p->hardirq_enable_event = 0; 1288 p->hardirq_disable_ip = _THIS_IP_; 1289 p->hardirq_disable_event = 0; 1290 p->softirqs_enabled = 1; 1291 p->softirq_enable_ip = _THIS_IP_; 1292 p->softirq_enable_event = 0; 1293 p->softirq_disable_ip = 0; 1294 p->softirq_disable_event = 0; 1295 p->hardirq_context = 0; 1296 p->softirq_context = 0; 1297 #endif 1298 #ifdef CONFIG_LOCKDEP 1299 p->lockdep_depth = 0; /* no locks held yet */ 1300 p->curr_chain_key = 0; 1301 p->lockdep_recursion = 0; 1302 #endif 1303 1304 #ifdef CONFIG_DEBUG_MUTEXES 1305 p->blocked_on = NULL; /* not blocked yet */ 1306 #endif 1307 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1308 p->memcg_batch.do_batch = 0; 1309 p->memcg_batch.memcg = NULL; 1310 #endif 1311 1312 /* Perform scheduler related setup. Assign this task to a CPU. */ 1313 sched_fork(p); 1314 1315 retval = perf_event_init_task(p); 1316 if (retval) 1317 goto bad_fork_cleanup_policy; 1318 retval = audit_alloc(p); 1319 if (retval) 1320 goto bad_fork_cleanup_policy; 1321 /* copy all the process information */ 1322 retval = copy_semundo(clone_flags, p); 1323 if (retval) 1324 goto bad_fork_cleanup_audit; 1325 retval = copy_files(clone_flags, p); 1326 if (retval) 1327 goto bad_fork_cleanup_semundo; 1328 retval = copy_fs(clone_flags, p); 1329 if (retval) 1330 goto bad_fork_cleanup_files; 1331 retval = copy_sighand(clone_flags, p); 1332 if (retval) 1333 goto bad_fork_cleanup_fs; 1334 retval = copy_signal(clone_flags, p); 1335 if (retval) 1336 goto bad_fork_cleanup_sighand; 1337 retval = copy_mm(clone_flags, p); 1338 if (retval) 1339 goto bad_fork_cleanup_signal; 1340 retval = copy_namespaces(clone_flags, p); 1341 if (retval) 1342 goto bad_fork_cleanup_mm; 1343 retval = copy_io(clone_flags, p); 1344 if (retval) 1345 goto bad_fork_cleanup_namespaces; 1346 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1347 if (retval) 1348 goto bad_fork_cleanup_io; 1349 1350 if (pid != &init_struct_pid) { 1351 retval = -ENOMEM; 1352 pid = alloc_pid(p->nsproxy->pid_ns); 1353 if (!pid) 1354 goto bad_fork_cleanup_io; 1355 } 1356 1357 p->pid = pid_nr(pid); 1358 p->tgid = p->pid; 1359 if (clone_flags & CLONE_THREAD) 1360 p->tgid = current->tgid; 1361 1362 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1363 /* 1364 * Clear TID on mm_release()? 1365 */ 1366 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1367 #ifdef CONFIG_BLOCK 1368 p->plug = NULL; 1369 #endif 1370 #ifdef CONFIG_FUTEX 1371 p->robust_list = NULL; 1372 #ifdef CONFIG_COMPAT 1373 p->compat_robust_list = NULL; 1374 #endif 1375 INIT_LIST_HEAD(&p->pi_state_list); 1376 p->pi_state_cache = NULL; 1377 #endif 1378 /* 1379 * sigaltstack should be cleared when sharing the same VM 1380 */ 1381 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1382 p->sas_ss_sp = p->sas_ss_size = 0; 1383 1384 /* 1385 * Syscall tracing and stepping should be turned off in the 1386 * child regardless of CLONE_PTRACE. 1387 */ 1388 user_disable_single_step(p); 1389 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1390 #ifdef TIF_SYSCALL_EMU 1391 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1392 #endif 1393 clear_all_latency_tracing(p); 1394 1395 /* ok, now we should be set up.. */ 1396 if (clone_flags & CLONE_THREAD) 1397 p->exit_signal = -1; 1398 else if (clone_flags & CLONE_PARENT) 1399 p->exit_signal = current->group_leader->exit_signal; 1400 else 1401 p->exit_signal = (clone_flags & CSIGNAL); 1402 1403 p->pdeath_signal = 0; 1404 p->exit_state = 0; 1405 1406 p->nr_dirtied = 0; 1407 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1408 p->dirty_paused_when = 0; 1409 1410 /* 1411 * Ok, make it visible to the rest of the system. 1412 * We dont wake it up yet. 1413 */ 1414 p->group_leader = p; 1415 INIT_LIST_HEAD(&p->thread_group); 1416 1417 /* Now that the task is set up, run cgroup callbacks if 1418 * necessary. We need to run them before the task is visible 1419 * on the tasklist. */ 1420 cgroup_fork_callbacks(p); 1421 cgroup_callbacks_done = 1; 1422 1423 /* Need tasklist lock for parent etc handling! */ 1424 write_lock_irq(&tasklist_lock); 1425 1426 /* CLONE_PARENT re-uses the old parent */ 1427 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1428 p->real_parent = current->real_parent; 1429 p->parent_exec_id = current->parent_exec_id; 1430 } else { 1431 p->real_parent = current; 1432 p->parent_exec_id = current->self_exec_id; 1433 } 1434 1435 spin_lock(¤t->sighand->siglock); 1436 1437 /* 1438 * Process group and session signals need to be delivered to just the 1439 * parent before the fork or both the parent and the child after the 1440 * fork. Restart if a signal comes in before we add the new process to 1441 * it's process group. 1442 * A fatal signal pending means that current will exit, so the new 1443 * thread can't slip out of an OOM kill (or normal SIGKILL). 1444 */ 1445 recalc_sigpending(); 1446 if (signal_pending(current)) { 1447 spin_unlock(¤t->sighand->siglock); 1448 write_unlock_irq(&tasklist_lock); 1449 retval = -ERESTARTNOINTR; 1450 goto bad_fork_free_pid; 1451 } 1452 1453 if (clone_flags & CLONE_THREAD) { 1454 current->signal->nr_threads++; 1455 atomic_inc(¤t->signal->live); 1456 atomic_inc(¤t->signal->sigcnt); 1457 p->group_leader = current->group_leader; 1458 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1459 } 1460 1461 if (likely(p->pid)) { 1462 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1463 1464 if (thread_group_leader(p)) { 1465 if (is_child_reaper(pid)) 1466 p->nsproxy->pid_ns->child_reaper = p; 1467 1468 p->signal->leader_pid = pid; 1469 p->signal->tty = tty_kref_get(current->signal->tty); 1470 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1471 attach_pid(p, PIDTYPE_SID, task_session(current)); 1472 list_add_tail(&p->sibling, &p->real_parent->children); 1473 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1474 __this_cpu_inc(process_counts); 1475 } 1476 attach_pid(p, PIDTYPE_PID, pid); 1477 nr_threads++; 1478 } 1479 1480 total_forks++; 1481 spin_unlock(¤t->sighand->siglock); 1482 write_unlock_irq(&tasklist_lock); 1483 proc_fork_connector(p); 1484 cgroup_post_fork(p); 1485 if (clone_flags & CLONE_THREAD) 1486 threadgroup_change_end(current); 1487 perf_event_fork(p); 1488 1489 trace_task_newtask(p, clone_flags); 1490 1491 return p; 1492 1493 bad_fork_free_pid: 1494 if (pid != &init_struct_pid) 1495 free_pid(pid); 1496 bad_fork_cleanup_io: 1497 if (p->io_context) 1498 exit_io_context(p); 1499 bad_fork_cleanup_namespaces: 1500 if (unlikely(clone_flags & CLONE_NEWPID)) 1501 pid_ns_release_proc(p->nsproxy->pid_ns); 1502 exit_task_namespaces(p); 1503 bad_fork_cleanup_mm: 1504 if (p->mm) 1505 mmput(p->mm); 1506 bad_fork_cleanup_signal: 1507 if (!(clone_flags & CLONE_THREAD)) 1508 free_signal_struct(p->signal); 1509 bad_fork_cleanup_sighand: 1510 __cleanup_sighand(p->sighand); 1511 bad_fork_cleanup_fs: 1512 exit_fs(p); /* blocking */ 1513 bad_fork_cleanup_files: 1514 exit_files(p); /* blocking */ 1515 bad_fork_cleanup_semundo: 1516 exit_sem(p); 1517 bad_fork_cleanup_audit: 1518 audit_free(p); 1519 bad_fork_cleanup_policy: 1520 perf_event_free_task(p); 1521 #ifdef CONFIG_NUMA 1522 mpol_put(p->mempolicy); 1523 bad_fork_cleanup_cgroup: 1524 #endif 1525 if (clone_flags & CLONE_THREAD) 1526 threadgroup_change_end(current); 1527 cgroup_exit(p, cgroup_callbacks_done); 1528 delayacct_tsk_free(p); 1529 module_put(task_thread_info(p)->exec_domain->module); 1530 bad_fork_cleanup_count: 1531 atomic_dec(&p->cred->user->processes); 1532 exit_creds(p); 1533 bad_fork_free: 1534 free_task(p); 1535 fork_out: 1536 return ERR_PTR(retval); 1537 } 1538 1539 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1540 { 1541 memset(regs, 0, sizeof(struct pt_regs)); 1542 return regs; 1543 } 1544 1545 static inline void init_idle_pids(struct pid_link *links) 1546 { 1547 enum pid_type type; 1548 1549 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1550 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1551 links[type].pid = &init_struct_pid; 1552 } 1553 } 1554 1555 struct task_struct * __cpuinit fork_idle(int cpu) 1556 { 1557 struct task_struct *task; 1558 struct pt_regs regs; 1559 1560 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1561 &init_struct_pid, 0); 1562 if (!IS_ERR(task)) { 1563 init_idle_pids(task->pids); 1564 init_idle(task, cpu); 1565 } 1566 1567 return task; 1568 } 1569 1570 /* 1571 * Ok, this is the main fork-routine. 1572 * 1573 * It copies the process, and if successful kick-starts 1574 * it and waits for it to finish using the VM if required. 1575 */ 1576 long do_fork(unsigned long clone_flags, 1577 unsigned long stack_start, 1578 struct pt_regs *regs, 1579 unsigned long stack_size, 1580 int __user *parent_tidptr, 1581 int __user *child_tidptr) 1582 { 1583 struct task_struct *p; 1584 int trace = 0; 1585 long nr; 1586 1587 /* 1588 * Do some preliminary argument and permissions checking before we 1589 * actually start allocating stuff 1590 */ 1591 if (clone_flags & CLONE_NEWUSER) { 1592 if (clone_flags & CLONE_THREAD) 1593 return -EINVAL; 1594 /* hopefully this check will go away when userns support is 1595 * complete 1596 */ 1597 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1598 !capable(CAP_SETGID)) 1599 return -EPERM; 1600 } 1601 1602 /* 1603 * Determine whether and which event to report to ptracer. When 1604 * called from kernel_thread or CLONE_UNTRACED is explicitly 1605 * requested, no event is reported; otherwise, report if the event 1606 * for the type of forking is enabled. 1607 */ 1608 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) { 1609 if (clone_flags & CLONE_VFORK) 1610 trace = PTRACE_EVENT_VFORK; 1611 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1612 trace = PTRACE_EVENT_CLONE; 1613 else 1614 trace = PTRACE_EVENT_FORK; 1615 1616 if (likely(!ptrace_event_enabled(current, trace))) 1617 trace = 0; 1618 } 1619 1620 p = copy_process(clone_flags, stack_start, regs, stack_size, 1621 child_tidptr, NULL, trace); 1622 /* 1623 * Do this prior waking up the new thread - the thread pointer 1624 * might get invalid after that point, if the thread exits quickly. 1625 */ 1626 if (!IS_ERR(p)) { 1627 struct completion vfork; 1628 1629 trace_sched_process_fork(current, p); 1630 1631 nr = task_pid_vnr(p); 1632 1633 if (clone_flags & CLONE_PARENT_SETTID) 1634 put_user(nr, parent_tidptr); 1635 1636 if (clone_flags & CLONE_VFORK) { 1637 p->vfork_done = &vfork; 1638 init_completion(&vfork); 1639 get_task_struct(p); 1640 } 1641 1642 wake_up_new_task(p); 1643 1644 /* forking complete and child started to run, tell ptracer */ 1645 if (unlikely(trace)) 1646 ptrace_event(trace, nr); 1647 1648 if (clone_flags & CLONE_VFORK) { 1649 if (!wait_for_vfork_done(p, &vfork)) 1650 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1651 } 1652 } else { 1653 nr = PTR_ERR(p); 1654 } 1655 return nr; 1656 } 1657 1658 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1659 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1660 #endif 1661 1662 static void sighand_ctor(void *data) 1663 { 1664 struct sighand_struct *sighand = data; 1665 1666 spin_lock_init(&sighand->siglock); 1667 init_waitqueue_head(&sighand->signalfd_wqh); 1668 } 1669 1670 void __init proc_caches_init(void) 1671 { 1672 sighand_cachep = kmem_cache_create("sighand_cache", 1673 sizeof(struct sighand_struct), 0, 1674 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1675 SLAB_NOTRACK, sighand_ctor); 1676 signal_cachep = kmem_cache_create("signal_cache", 1677 sizeof(struct signal_struct), 0, 1678 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1679 files_cachep = kmem_cache_create("files_cache", 1680 sizeof(struct files_struct), 0, 1681 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1682 fs_cachep = kmem_cache_create("fs_cache", 1683 sizeof(struct fs_struct), 0, 1684 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1685 /* 1686 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1687 * whole struct cpumask for the OFFSTACK case. We could change 1688 * this to *only* allocate as much of it as required by the 1689 * maximum number of CPU's we can ever have. The cpumask_allocation 1690 * is at the end of the structure, exactly for that reason. 1691 */ 1692 mm_cachep = kmem_cache_create("mm_struct", 1693 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1694 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1695 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1696 mmap_init(); 1697 nsproxy_cache_init(); 1698 } 1699 1700 /* 1701 * Check constraints on flags passed to the unshare system call. 1702 */ 1703 static int check_unshare_flags(unsigned long unshare_flags) 1704 { 1705 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1706 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1707 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1708 return -EINVAL; 1709 /* 1710 * Not implemented, but pretend it works if there is nothing to 1711 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1712 * needs to unshare vm. 1713 */ 1714 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1715 /* FIXME: get_task_mm() increments ->mm_users */ 1716 if (atomic_read(¤t->mm->mm_users) > 1) 1717 return -EINVAL; 1718 } 1719 1720 return 0; 1721 } 1722 1723 /* 1724 * Unshare the filesystem structure if it is being shared 1725 */ 1726 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1727 { 1728 struct fs_struct *fs = current->fs; 1729 1730 if (!(unshare_flags & CLONE_FS) || !fs) 1731 return 0; 1732 1733 /* don't need lock here; in the worst case we'll do useless copy */ 1734 if (fs->users == 1) 1735 return 0; 1736 1737 *new_fsp = copy_fs_struct(fs); 1738 if (!*new_fsp) 1739 return -ENOMEM; 1740 1741 return 0; 1742 } 1743 1744 /* 1745 * Unshare file descriptor table if it is being shared 1746 */ 1747 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1748 { 1749 struct files_struct *fd = current->files; 1750 int error = 0; 1751 1752 if ((unshare_flags & CLONE_FILES) && 1753 (fd && atomic_read(&fd->count) > 1)) { 1754 *new_fdp = dup_fd(fd, &error); 1755 if (!*new_fdp) 1756 return error; 1757 } 1758 1759 return 0; 1760 } 1761 1762 /* 1763 * unshare allows a process to 'unshare' part of the process 1764 * context which was originally shared using clone. copy_* 1765 * functions used by do_fork() cannot be used here directly 1766 * because they modify an inactive task_struct that is being 1767 * constructed. Here we are modifying the current, active, 1768 * task_struct. 1769 */ 1770 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1771 { 1772 struct fs_struct *fs, *new_fs = NULL; 1773 struct files_struct *fd, *new_fd = NULL; 1774 struct nsproxy *new_nsproxy = NULL; 1775 int do_sysvsem = 0; 1776 int err; 1777 1778 err = check_unshare_flags(unshare_flags); 1779 if (err) 1780 goto bad_unshare_out; 1781 1782 /* 1783 * If unsharing namespace, must also unshare filesystem information. 1784 */ 1785 if (unshare_flags & CLONE_NEWNS) 1786 unshare_flags |= CLONE_FS; 1787 /* 1788 * CLONE_NEWIPC must also detach from the undolist: after switching 1789 * to a new ipc namespace, the semaphore arrays from the old 1790 * namespace are unreachable. 1791 */ 1792 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1793 do_sysvsem = 1; 1794 err = unshare_fs(unshare_flags, &new_fs); 1795 if (err) 1796 goto bad_unshare_out; 1797 err = unshare_fd(unshare_flags, &new_fd); 1798 if (err) 1799 goto bad_unshare_cleanup_fs; 1800 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs); 1801 if (err) 1802 goto bad_unshare_cleanup_fd; 1803 1804 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1805 if (do_sysvsem) { 1806 /* 1807 * CLONE_SYSVSEM is equivalent to sys_exit(). 1808 */ 1809 exit_sem(current); 1810 } 1811 1812 if (new_nsproxy) { 1813 switch_task_namespaces(current, new_nsproxy); 1814 new_nsproxy = NULL; 1815 } 1816 1817 task_lock(current); 1818 1819 if (new_fs) { 1820 fs = current->fs; 1821 spin_lock(&fs->lock); 1822 current->fs = new_fs; 1823 if (--fs->users) 1824 new_fs = NULL; 1825 else 1826 new_fs = fs; 1827 spin_unlock(&fs->lock); 1828 } 1829 1830 if (new_fd) { 1831 fd = current->files; 1832 current->files = new_fd; 1833 new_fd = fd; 1834 } 1835 1836 task_unlock(current); 1837 } 1838 1839 if (new_nsproxy) 1840 put_nsproxy(new_nsproxy); 1841 1842 bad_unshare_cleanup_fd: 1843 if (new_fd) 1844 put_files_struct(new_fd); 1845 1846 bad_unshare_cleanup_fs: 1847 if (new_fs) 1848 free_fs_struct(new_fs); 1849 1850 bad_unshare_out: 1851 return err; 1852 } 1853 1854 /* 1855 * Helper to unshare the files of the current task. 1856 * We don't want to expose copy_files internals to 1857 * the exec layer of the kernel. 1858 */ 1859 1860 int unshare_files(struct files_struct **displaced) 1861 { 1862 struct task_struct *task = current; 1863 struct files_struct *copy = NULL; 1864 int error; 1865 1866 error = unshare_fd(CLONE_FILES, ©); 1867 if (error || !copy) { 1868 *displaced = NULL; 1869 return error; 1870 } 1871 *displaced = task->files; 1872 task_lock(task); 1873 task->files = copy; 1874 task_unlock(task); 1875 return 0; 1876 } 1877