1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/anon_inodes.h> 15 #include <linux/slab.h> 16 #include <linux/sched/autogroup.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/seq_file.h> 26 #include <linux/rtmutex.h> 27 #include <linux/init.h> 28 #include <linux/unistd.h> 29 #include <linux/module.h> 30 #include <linux/vmalloc.h> 31 #include <linux/completion.h> 32 #include <linux/personality.h> 33 #include <linux/mempolicy.h> 34 #include <linux/sem.h> 35 #include <linux/file.h> 36 #include <linux/fdtable.h> 37 #include <linux/iocontext.h> 38 #include <linux/key.h> 39 #include <linux/binfmts.h> 40 #include <linux/mman.h> 41 #include <linux/mmu_notifier.h> 42 #include <linux/hmm.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 97 #include <asm/pgtable.h> 98 #include <asm/pgalloc.h> 99 #include <linux/uaccess.h> 100 #include <asm/mmu_context.h> 101 #include <asm/cacheflush.h> 102 #include <asm/tlbflush.h> 103 104 #include <trace/events/sched.h> 105 106 #define CREATE_TRACE_POINTS 107 #include <trace/events/task.h> 108 109 /* 110 * Minimum number of threads to boot the kernel 111 */ 112 #define MIN_THREADS 20 113 114 /* 115 * Maximum number of threads 116 */ 117 #define MAX_THREADS FUTEX_TID_MASK 118 119 /* 120 * Protected counters by write_lock_irq(&tasklist_lock) 121 */ 122 unsigned long total_forks; /* Handle normal Linux uptimes. */ 123 int nr_threads; /* The idle threads do not count.. */ 124 125 int max_threads; /* tunable limit on nr_threads */ 126 127 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 128 129 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 130 131 #ifdef CONFIG_PROVE_RCU 132 int lockdep_tasklist_lock_is_held(void) 133 { 134 return lockdep_is_held(&tasklist_lock); 135 } 136 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 137 #endif /* #ifdef CONFIG_PROVE_RCU */ 138 139 int nr_processes(void) 140 { 141 int cpu; 142 int total = 0; 143 144 for_each_possible_cpu(cpu) 145 total += per_cpu(process_counts, cpu); 146 147 return total; 148 } 149 150 void __weak arch_release_task_struct(struct task_struct *tsk) 151 { 152 } 153 154 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 155 static struct kmem_cache *task_struct_cachep; 156 157 static inline struct task_struct *alloc_task_struct_node(int node) 158 { 159 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 160 } 161 162 static inline void free_task_struct(struct task_struct *tsk) 163 { 164 kmem_cache_free(task_struct_cachep, tsk); 165 } 166 #endif 167 168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 169 170 /* 171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 172 * kmemcache based allocator. 173 */ 174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 175 176 #ifdef CONFIG_VMAP_STACK 177 /* 178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 179 * flush. Try to minimize the number of calls by caching stacks. 180 */ 181 #define NR_CACHED_STACKS 2 182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 183 184 static int free_vm_stack_cache(unsigned int cpu) 185 { 186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 187 int i; 188 189 for (i = 0; i < NR_CACHED_STACKS; i++) { 190 struct vm_struct *vm_stack = cached_vm_stacks[i]; 191 192 if (!vm_stack) 193 continue; 194 195 vfree(vm_stack->addr); 196 cached_vm_stacks[i] = NULL; 197 } 198 199 return 0; 200 } 201 #endif 202 203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 204 { 205 #ifdef CONFIG_VMAP_STACK 206 void *stack; 207 int i; 208 209 for (i = 0; i < NR_CACHED_STACKS; i++) { 210 struct vm_struct *s; 211 212 s = this_cpu_xchg(cached_stacks[i], NULL); 213 214 if (!s) 215 continue; 216 217 /* Clear stale pointers from reused stack. */ 218 memset(s->addr, 0, THREAD_SIZE); 219 220 tsk->stack_vm_area = s; 221 tsk->stack = s->addr; 222 return s->addr; 223 } 224 225 /* 226 * Allocated stacks are cached and later reused by new threads, 227 * so memcg accounting is performed manually on assigning/releasing 228 * stacks to tasks. Drop __GFP_ACCOUNT. 229 */ 230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 231 VMALLOC_START, VMALLOC_END, 232 THREADINFO_GFP & ~__GFP_ACCOUNT, 233 PAGE_KERNEL, 234 0, node, __builtin_return_address(0)); 235 236 /* 237 * We can't call find_vm_area() in interrupt context, and 238 * free_thread_stack() can be called in interrupt context, 239 * so cache the vm_struct. 240 */ 241 if (stack) { 242 tsk->stack_vm_area = find_vm_area(stack); 243 tsk->stack = stack; 244 } 245 return stack; 246 #else 247 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 248 THREAD_SIZE_ORDER); 249 250 return page ? page_address(page) : NULL; 251 #endif 252 } 253 254 static inline void free_thread_stack(struct task_struct *tsk) 255 { 256 #ifdef CONFIG_VMAP_STACK 257 struct vm_struct *vm = task_stack_vm_area(tsk); 258 259 if (vm) { 260 int i; 261 262 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 263 mod_memcg_page_state(vm->pages[i], 264 MEMCG_KERNEL_STACK_KB, 265 -(int)(PAGE_SIZE / 1024)); 266 267 memcg_kmem_uncharge(vm->pages[i], 0); 268 } 269 270 for (i = 0; i < NR_CACHED_STACKS; i++) { 271 if (this_cpu_cmpxchg(cached_stacks[i], 272 NULL, tsk->stack_vm_area) != NULL) 273 continue; 274 275 return; 276 } 277 278 vfree_atomic(tsk->stack); 279 return; 280 } 281 #endif 282 283 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 284 } 285 # else 286 static struct kmem_cache *thread_stack_cache; 287 288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 289 int node) 290 { 291 unsigned long *stack; 292 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 293 tsk->stack = stack; 294 return stack; 295 } 296 297 static void free_thread_stack(struct task_struct *tsk) 298 { 299 kmem_cache_free(thread_stack_cache, tsk->stack); 300 } 301 302 void thread_stack_cache_init(void) 303 { 304 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 305 THREAD_SIZE, THREAD_SIZE, 0, 0, 306 THREAD_SIZE, NULL); 307 BUG_ON(thread_stack_cache == NULL); 308 } 309 # endif 310 #endif 311 312 /* SLAB cache for signal_struct structures (tsk->signal) */ 313 static struct kmem_cache *signal_cachep; 314 315 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 316 struct kmem_cache *sighand_cachep; 317 318 /* SLAB cache for files_struct structures (tsk->files) */ 319 struct kmem_cache *files_cachep; 320 321 /* SLAB cache for fs_struct structures (tsk->fs) */ 322 struct kmem_cache *fs_cachep; 323 324 /* SLAB cache for vm_area_struct structures */ 325 static struct kmem_cache *vm_area_cachep; 326 327 /* SLAB cache for mm_struct structures (tsk->mm) */ 328 static struct kmem_cache *mm_cachep; 329 330 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 331 { 332 struct vm_area_struct *vma; 333 334 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 335 if (vma) 336 vma_init(vma, mm); 337 return vma; 338 } 339 340 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 341 { 342 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 343 344 if (new) { 345 *new = *orig; 346 INIT_LIST_HEAD(&new->anon_vma_chain); 347 } 348 return new; 349 } 350 351 void vm_area_free(struct vm_area_struct *vma) 352 { 353 kmem_cache_free(vm_area_cachep, vma); 354 } 355 356 static void account_kernel_stack(struct task_struct *tsk, int account) 357 { 358 void *stack = task_stack_page(tsk); 359 struct vm_struct *vm = task_stack_vm_area(tsk); 360 361 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 362 363 if (vm) { 364 int i; 365 366 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 367 368 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 369 mod_zone_page_state(page_zone(vm->pages[i]), 370 NR_KERNEL_STACK_KB, 371 PAGE_SIZE / 1024 * account); 372 } 373 } else { 374 /* 375 * All stack pages are in the same zone and belong to the 376 * same memcg. 377 */ 378 struct page *first_page = virt_to_page(stack); 379 380 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 381 THREAD_SIZE / 1024 * account); 382 383 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 384 account * (THREAD_SIZE / 1024)); 385 } 386 } 387 388 static int memcg_charge_kernel_stack(struct task_struct *tsk) 389 { 390 #ifdef CONFIG_VMAP_STACK 391 struct vm_struct *vm = task_stack_vm_area(tsk); 392 int ret; 393 394 if (vm) { 395 int i; 396 397 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 398 /* 399 * If memcg_kmem_charge() fails, page->mem_cgroup 400 * pointer is NULL, and both memcg_kmem_uncharge() 401 * and mod_memcg_page_state() in free_thread_stack() 402 * will ignore this page. So it's safe. 403 */ 404 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 405 if (ret) 406 return ret; 407 408 mod_memcg_page_state(vm->pages[i], 409 MEMCG_KERNEL_STACK_KB, 410 PAGE_SIZE / 1024); 411 } 412 } 413 #endif 414 return 0; 415 } 416 417 static void release_task_stack(struct task_struct *tsk) 418 { 419 if (WARN_ON(tsk->state != TASK_DEAD)) 420 return; /* Better to leak the stack than to free prematurely */ 421 422 account_kernel_stack(tsk, -1); 423 free_thread_stack(tsk); 424 tsk->stack = NULL; 425 #ifdef CONFIG_VMAP_STACK 426 tsk->stack_vm_area = NULL; 427 #endif 428 } 429 430 #ifdef CONFIG_THREAD_INFO_IN_TASK 431 void put_task_stack(struct task_struct *tsk) 432 { 433 if (refcount_dec_and_test(&tsk->stack_refcount)) 434 release_task_stack(tsk); 435 } 436 #endif 437 438 void free_task(struct task_struct *tsk) 439 { 440 #ifndef CONFIG_THREAD_INFO_IN_TASK 441 /* 442 * The task is finally done with both the stack and thread_info, 443 * so free both. 444 */ 445 release_task_stack(tsk); 446 #else 447 /* 448 * If the task had a separate stack allocation, it should be gone 449 * by now. 450 */ 451 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 452 #endif 453 rt_mutex_debug_task_free(tsk); 454 ftrace_graph_exit_task(tsk); 455 put_seccomp_filter(tsk); 456 arch_release_task_struct(tsk); 457 if (tsk->flags & PF_KTHREAD) 458 free_kthread_struct(tsk); 459 free_task_struct(tsk); 460 } 461 EXPORT_SYMBOL(free_task); 462 463 #ifdef CONFIG_MMU 464 static __latent_entropy int dup_mmap(struct mm_struct *mm, 465 struct mm_struct *oldmm) 466 { 467 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 468 struct rb_node **rb_link, *rb_parent; 469 int retval; 470 unsigned long charge; 471 LIST_HEAD(uf); 472 473 uprobe_start_dup_mmap(); 474 if (down_write_killable(&oldmm->mmap_sem)) { 475 retval = -EINTR; 476 goto fail_uprobe_end; 477 } 478 flush_cache_dup_mm(oldmm); 479 uprobe_dup_mmap(oldmm, mm); 480 /* 481 * Not linked in yet - no deadlock potential: 482 */ 483 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 484 485 /* No ordering required: file already has been exposed. */ 486 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 487 488 mm->total_vm = oldmm->total_vm; 489 mm->data_vm = oldmm->data_vm; 490 mm->exec_vm = oldmm->exec_vm; 491 mm->stack_vm = oldmm->stack_vm; 492 493 rb_link = &mm->mm_rb.rb_node; 494 rb_parent = NULL; 495 pprev = &mm->mmap; 496 retval = ksm_fork(mm, oldmm); 497 if (retval) 498 goto out; 499 retval = khugepaged_fork(mm, oldmm); 500 if (retval) 501 goto out; 502 503 prev = NULL; 504 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 505 struct file *file; 506 507 if (mpnt->vm_flags & VM_DONTCOPY) { 508 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 509 continue; 510 } 511 charge = 0; 512 /* 513 * Don't duplicate many vmas if we've been oom-killed (for 514 * example) 515 */ 516 if (fatal_signal_pending(current)) { 517 retval = -EINTR; 518 goto out; 519 } 520 if (mpnt->vm_flags & VM_ACCOUNT) { 521 unsigned long len = vma_pages(mpnt); 522 523 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 524 goto fail_nomem; 525 charge = len; 526 } 527 tmp = vm_area_dup(mpnt); 528 if (!tmp) 529 goto fail_nomem; 530 retval = vma_dup_policy(mpnt, tmp); 531 if (retval) 532 goto fail_nomem_policy; 533 tmp->vm_mm = mm; 534 retval = dup_userfaultfd(tmp, &uf); 535 if (retval) 536 goto fail_nomem_anon_vma_fork; 537 if (tmp->vm_flags & VM_WIPEONFORK) { 538 /* VM_WIPEONFORK gets a clean slate in the child. */ 539 tmp->anon_vma = NULL; 540 if (anon_vma_prepare(tmp)) 541 goto fail_nomem_anon_vma_fork; 542 } else if (anon_vma_fork(tmp, mpnt)) 543 goto fail_nomem_anon_vma_fork; 544 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 545 tmp->vm_next = tmp->vm_prev = NULL; 546 file = tmp->vm_file; 547 if (file) { 548 struct inode *inode = file_inode(file); 549 struct address_space *mapping = file->f_mapping; 550 551 get_file(file); 552 if (tmp->vm_flags & VM_DENYWRITE) 553 atomic_dec(&inode->i_writecount); 554 i_mmap_lock_write(mapping); 555 if (tmp->vm_flags & VM_SHARED) 556 atomic_inc(&mapping->i_mmap_writable); 557 flush_dcache_mmap_lock(mapping); 558 /* insert tmp into the share list, just after mpnt */ 559 vma_interval_tree_insert_after(tmp, mpnt, 560 &mapping->i_mmap); 561 flush_dcache_mmap_unlock(mapping); 562 i_mmap_unlock_write(mapping); 563 } 564 565 /* 566 * Clear hugetlb-related page reserves for children. This only 567 * affects MAP_PRIVATE mappings. Faults generated by the child 568 * are not guaranteed to succeed, even if read-only 569 */ 570 if (is_vm_hugetlb_page(tmp)) 571 reset_vma_resv_huge_pages(tmp); 572 573 /* 574 * Link in the new vma and copy the page table entries. 575 */ 576 *pprev = tmp; 577 pprev = &tmp->vm_next; 578 tmp->vm_prev = prev; 579 prev = tmp; 580 581 __vma_link_rb(mm, tmp, rb_link, rb_parent); 582 rb_link = &tmp->vm_rb.rb_right; 583 rb_parent = &tmp->vm_rb; 584 585 mm->map_count++; 586 if (!(tmp->vm_flags & VM_WIPEONFORK)) 587 retval = copy_page_range(mm, oldmm, mpnt); 588 589 if (tmp->vm_ops && tmp->vm_ops->open) 590 tmp->vm_ops->open(tmp); 591 592 if (retval) 593 goto out; 594 } 595 /* a new mm has just been created */ 596 retval = arch_dup_mmap(oldmm, mm); 597 out: 598 up_write(&mm->mmap_sem); 599 flush_tlb_mm(oldmm); 600 up_write(&oldmm->mmap_sem); 601 dup_userfaultfd_complete(&uf); 602 fail_uprobe_end: 603 uprobe_end_dup_mmap(); 604 return retval; 605 fail_nomem_anon_vma_fork: 606 mpol_put(vma_policy(tmp)); 607 fail_nomem_policy: 608 vm_area_free(tmp); 609 fail_nomem: 610 retval = -ENOMEM; 611 vm_unacct_memory(charge); 612 goto out; 613 } 614 615 static inline int mm_alloc_pgd(struct mm_struct *mm) 616 { 617 mm->pgd = pgd_alloc(mm); 618 if (unlikely(!mm->pgd)) 619 return -ENOMEM; 620 return 0; 621 } 622 623 static inline void mm_free_pgd(struct mm_struct *mm) 624 { 625 pgd_free(mm, mm->pgd); 626 } 627 #else 628 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 629 { 630 down_write(&oldmm->mmap_sem); 631 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 632 up_write(&oldmm->mmap_sem); 633 return 0; 634 } 635 #define mm_alloc_pgd(mm) (0) 636 #define mm_free_pgd(mm) 637 #endif /* CONFIG_MMU */ 638 639 static void check_mm(struct mm_struct *mm) 640 { 641 int i; 642 643 for (i = 0; i < NR_MM_COUNTERS; i++) { 644 long x = atomic_long_read(&mm->rss_stat.count[i]); 645 646 if (unlikely(x)) 647 printk(KERN_ALERT "BUG: Bad rss-counter state " 648 "mm:%p idx:%d val:%ld\n", mm, i, x); 649 } 650 651 if (mm_pgtables_bytes(mm)) 652 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 653 mm_pgtables_bytes(mm)); 654 655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 656 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 657 #endif 658 } 659 660 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 661 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 662 663 /* 664 * Called when the last reference to the mm 665 * is dropped: either by a lazy thread or by 666 * mmput. Free the page directory and the mm. 667 */ 668 void __mmdrop(struct mm_struct *mm) 669 { 670 BUG_ON(mm == &init_mm); 671 WARN_ON_ONCE(mm == current->mm); 672 WARN_ON_ONCE(mm == current->active_mm); 673 mm_free_pgd(mm); 674 destroy_context(mm); 675 hmm_mm_destroy(mm); 676 mmu_notifier_mm_destroy(mm); 677 check_mm(mm); 678 put_user_ns(mm->user_ns); 679 free_mm(mm); 680 } 681 EXPORT_SYMBOL_GPL(__mmdrop); 682 683 static void mmdrop_async_fn(struct work_struct *work) 684 { 685 struct mm_struct *mm; 686 687 mm = container_of(work, struct mm_struct, async_put_work); 688 __mmdrop(mm); 689 } 690 691 static void mmdrop_async(struct mm_struct *mm) 692 { 693 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 694 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 695 schedule_work(&mm->async_put_work); 696 } 697 } 698 699 static inline void free_signal_struct(struct signal_struct *sig) 700 { 701 taskstats_tgid_free(sig); 702 sched_autogroup_exit(sig); 703 /* 704 * __mmdrop is not safe to call from softirq context on x86 due to 705 * pgd_dtor so postpone it to the async context 706 */ 707 if (sig->oom_mm) 708 mmdrop_async(sig->oom_mm); 709 kmem_cache_free(signal_cachep, sig); 710 } 711 712 static inline void put_signal_struct(struct signal_struct *sig) 713 { 714 if (refcount_dec_and_test(&sig->sigcnt)) 715 free_signal_struct(sig); 716 } 717 718 void __put_task_struct(struct task_struct *tsk) 719 { 720 WARN_ON(!tsk->exit_state); 721 WARN_ON(refcount_read(&tsk->usage)); 722 WARN_ON(tsk == current); 723 724 cgroup_free(tsk); 725 task_numa_free(tsk); 726 security_task_free(tsk); 727 exit_creds(tsk); 728 delayacct_tsk_free(tsk); 729 put_signal_struct(tsk->signal); 730 731 if (!profile_handoff_task(tsk)) 732 free_task(tsk); 733 } 734 EXPORT_SYMBOL_GPL(__put_task_struct); 735 736 void __init __weak arch_task_cache_init(void) { } 737 738 /* 739 * set_max_threads 740 */ 741 static void set_max_threads(unsigned int max_threads_suggested) 742 { 743 u64 threads; 744 unsigned long nr_pages = totalram_pages(); 745 746 /* 747 * The number of threads shall be limited such that the thread 748 * structures may only consume a small part of the available memory. 749 */ 750 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 751 threads = MAX_THREADS; 752 else 753 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 754 (u64) THREAD_SIZE * 8UL); 755 756 if (threads > max_threads_suggested) 757 threads = max_threads_suggested; 758 759 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 760 } 761 762 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 763 /* Initialized by the architecture: */ 764 int arch_task_struct_size __read_mostly; 765 #endif 766 767 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 768 { 769 /* Fetch thread_struct whitelist for the architecture. */ 770 arch_thread_struct_whitelist(offset, size); 771 772 /* 773 * Handle zero-sized whitelist or empty thread_struct, otherwise 774 * adjust offset to position of thread_struct in task_struct. 775 */ 776 if (unlikely(*size == 0)) 777 *offset = 0; 778 else 779 *offset += offsetof(struct task_struct, thread); 780 } 781 782 void __init fork_init(void) 783 { 784 int i; 785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 786 #ifndef ARCH_MIN_TASKALIGN 787 #define ARCH_MIN_TASKALIGN 0 788 #endif 789 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 790 unsigned long useroffset, usersize; 791 792 /* create a slab on which task_structs can be allocated */ 793 task_struct_whitelist(&useroffset, &usersize); 794 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 795 arch_task_struct_size, align, 796 SLAB_PANIC|SLAB_ACCOUNT, 797 useroffset, usersize, NULL); 798 #endif 799 800 /* do the arch specific task caches init */ 801 arch_task_cache_init(); 802 803 set_max_threads(MAX_THREADS); 804 805 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 806 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 807 init_task.signal->rlim[RLIMIT_SIGPENDING] = 808 init_task.signal->rlim[RLIMIT_NPROC]; 809 810 for (i = 0; i < UCOUNT_COUNTS; i++) { 811 init_user_ns.ucount_max[i] = max_threads/2; 812 } 813 814 #ifdef CONFIG_VMAP_STACK 815 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 816 NULL, free_vm_stack_cache); 817 #endif 818 819 lockdep_init_task(&init_task); 820 } 821 822 int __weak arch_dup_task_struct(struct task_struct *dst, 823 struct task_struct *src) 824 { 825 *dst = *src; 826 return 0; 827 } 828 829 void set_task_stack_end_magic(struct task_struct *tsk) 830 { 831 unsigned long *stackend; 832 833 stackend = end_of_stack(tsk); 834 *stackend = STACK_END_MAGIC; /* for overflow detection */ 835 } 836 837 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 838 { 839 struct task_struct *tsk; 840 unsigned long *stack; 841 struct vm_struct *stack_vm_area __maybe_unused; 842 int err; 843 844 if (node == NUMA_NO_NODE) 845 node = tsk_fork_get_node(orig); 846 tsk = alloc_task_struct_node(node); 847 if (!tsk) 848 return NULL; 849 850 stack = alloc_thread_stack_node(tsk, node); 851 if (!stack) 852 goto free_tsk; 853 854 if (memcg_charge_kernel_stack(tsk)) 855 goto free_stack; 856 857 stack_vm_area = task_stack_vm_area(tsk); 858 859 err = arch_dup_task_struct(tsk, orig); 860 861 /* 862 * arch_dup_task_struct() clobbers the stack-related fields. Make 863 * sure they're properly initialized before using any stack-related 864 * functions again. 865 */ 866 tsk->stack = stack; 867 #ifdef CONFIG_VMAP_STACK 868 tsk->stack_vm_area = stack_vm_area; 869 #endif 870 #ifdef CONFIG_THREAD_INFO_IN_TASK 871 refcount_set(&tsk->stack_refcount, 1); 872 #endif 873 874 if (err) 875 goto free_stack; 876 877 #ifdef CONFIG_SECCOMP 878 /* 879 * We must handle setting up seccomp filters once we're under 880 * the sighand lock in case orig has changed between now and 881 * then. Until then, filter must be NULL to avoid messing up 882 * the usage counts on the error path calling free_task. 883 */ 884 tsk->seccomp.filter = NULL; 885 #endif 886 887 setup_thread_stack(tsk, orig); 888 clear_user_return_notifier(tsk); 889 clear_tsk_need_resched(tsk); 890 set_task_stack_end_magic(tsk); 891 892 #ifdef CONFIG_STACKPROTECTOR 893 tsk->stack_canary = get_random_canary(); 894 #endif 895 896 /* 897 * One for us, one for whoever does the "release_task()" (usually 898 * parent) 899 */ 900 refcount_set(&tsk->usage, 2); 901 #ifdef CONFIG_BLK_DEV_IO_TRACE 902 tsk->btrace_seq = 0; 903 #endif 904 tsk->splice_pipe = NULL; 905 tsk->task_frag.page = NULL; 906 tsk->wake_q.next = NULL; 907 908 account_kernel_stack(tsk, 1); 909 910 kcov_task_init(tsk); 911 912 #ifdef CONFIG_FAULT_INJECTION 913 tsk->fail_nth = 0; 914 #endif 915 916 #ifdef CONFIG_BLK_CGROUP 917 tsk->throttle_queue = NULL; 918 tsk->use_memdelay = 0; 919 #endif 920 921 #ifdef CONFIG_MEMCG 922 tsk->active_memcg = NULL; 923 #endif 924 return tsk; 925 926 free_stack: 927 free_thread_stack(tsk); 928 free_tsk: 929 free_task_struct(tsk); 930 return NULL; 931 } 932 933 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 934 935 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 936 937 static int __init coredump_filter_setup(char *s) 938 { 939 default_dump_filter = 940 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 941 MMF_DUMP_FILTER_MASK; 942 return 1; 943 } 944 945 __setup("coredump_filter=", coredump_filter_setup); 946 947 #include <linux/init_task.h> 948 949 static void mm_init_aio(struct mm_struct *mm) 950 { 951 #ifdef CONFIG_AIO 952 spin_lock_init(&mm->ioctx_lock); 953 mm->ioctx_table = NULL; 954 #endif 955 } 956 957 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 958 { 959 #ifdef CONFIG_MEMCG 960 mm->owner = p; 961 #endif 962 } 963 964 static void mm_init_uprobes_state(struct mm_struct *mm) 965 { 966 #ifdef CONFIG_UPROBES 967 mm->uprobes_state.xol_area = NULL; 968 #endif 969 } 970 971 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 972 struct user_namespace *user_ns) 973 { 974 mm->mmap = NULL; 975 mm->mm_rb = RB_ROOT; 976 mm->vmacache_seqnum = 0; 977 atomic_set(&mm->mm_users, 1); 978 atomic_set(&mm->mm_count, 1); 979 init_rwsem(&mm->mmap_sem); 980 INIT_LIST_HEAD(&mm->mmlist); 981 mm->core_state = NULL; 982 mm_pgtables_bytes_init(mm); 983 mm->map_count = 0; 984 mm->locked_vm = 0; 985 atomic64_set(&mm->pinned_vm, 0); 986 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 987 spin_lock_init(&mm->page_table_lock); 988 spin_lock_init(&mm->arg_lock); 989 mm_init_cpumask(mm); 990 mm_init_aio(mm); 991 mm_init_owner(mm, p); 992 RCU_INIT_POINTER(mm->exe_file, NULL); 993 mmu_notifier_mm_init(mm); 994 hmm_mm_init(mm); 995 init_tlb_flush_pending(mm); 996 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 997 mm->pmd_huge_pte = NULL; 998 #endif 999 mm_init_uprobes_state(mm); 1000 1001 if (current->mm) { 1002 mm->flags = current->mm->flags & MMF_INIT_MASK; 1003 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1004 } else { 1005 mm->flags = default_dump_filter; 1006 mm->def_flags = 0; 1007 } 1008 1009 if (mm_alloc_pgd(mm)) 1010 goto fail_nopgd; 1011 1012 if (init_new_context(p, mm)) 1013 goto fail_nocontext; 1014 1015 mm->user_ns = get_user_ns(user_ns); 1016 return mm; 1017 1018 fail_nocontext: 1019 mm_free_pgd(mm); 1020 fail_nopgd: 1021 free_mm(mm); 1022 return NULL; 1023 } 1024 1025 /* 1026 * Allocate and initialize an mm_struct. 1027 */ 1028 struct mm_struct *mm_alloc(void) 1029 { 1030 struct mm_struct *mm; 1031 1032 mm = allocate_mm(); 1033 if (!mm) 1034 return NULL; 1035 1036 memset(mm, 0, sizeof(*mm)); 1037 return mm_init(mm, current, current_user_ns()); 1038 } 1039 1040 static inline void __mmput(struct mm_struct *mm) 1041 { 1042 VM_BUG_ON(atomic_read(&mm->mm_users)); 1043 1044 uprobe_clear_state(mm); 1045 exit_aio(mm); 1046 ksm_exit(mm); 1047 khugepaged_exit(mm); /* must run before exit_mmap */ 1048 exit_mmap(mm); 1049 mm_put_huge_zero_page(mm); 1050 set_mm_exe_file(mm, NULL); 1051 if (!list_empty(&mm->mmlist)) { 1052 spin_lock(&mmlist_lock); 1053 list_del(&mm->mmlist); 1054 spin_unlock(&mmlist_lock); 1055 } 1056 if (mm->binfmt) 1057 module_put(mm->binfmt->module); 1058 mmdrop(mm); 1059 } 1060 1061 /* 1062 * Decrement the use count and release all resources for an mm. 1063 */ 1064 void mmput(struct mm_struct *mm) 1065 { 1066 might_sleep(); 1067 1068 if (atomic_dec_and_test(&mm->mm_users)) 1069 __mmput(mm); 1070 } 1071 EXPORT_SYMBOL_GPL(mmput); 1072 1073 #ifdef CONFIG_MMU 1074 static void mmput_async_fn(struct work_struct *work) 1075 { 1076 struct mm_struct *mm = container_of(work, struct mm_struct, 1077 async_put_work); 1078 1079 __mmput(mm); 1080 } 1081 1082 void mmput_async(struct mm_struct *mm) 1083 { 1084 if (atomic_dec_and_test(&mm->mm_users)) { 1085 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1086 schedule_work(&mm->async_put_work); 1087 } 1088 } 1089 #endif 1090 1091 /** 1092 * set_mm_exe_file - change a reference to the mm's executable file 1093 * 1094 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1095 * 1096 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1097 * invocations: in mmput() nobody alive left, in execve task is single 1098 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1099 * mm->exe_file, but does so without using set_mm_exe_file() in order 1100 * to do avoid the need for any locks. 1101 */ 1102 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1103 { 1104 struct file *old_exe_file; 1105 1106 /* 1107 * It is safe to dereference the exe_file without RCU as 1108 * this function is only called if nobody else can access 1109 * this mm -- see comment above for justification. 1110 */ 1111 old_exe_file = rcu_dereference_raw(mm->exe_file); 1112 1113 if (new_exe_file) 1114 get_file(new_exe_file); 1115 rcu_assign_pointer(mm->exe_file, new_exe_file); 1116 if (old_exe_file) 1117 fput(old_exe_file); 1118 } 1119 1120 /** 1121 * get_mm_exe_file - acquire a reference to the mm's executable file 1122 * 1123 * Returns %NULL if mm has no associated executable file. 1124 * User must release file via fput(). 1125 */ 1126 struct file *get_mm_exe_file(struct mm_struct *mm) 1127 { 1128 struct file *exe_file; 1129 1130 rcu_read_lock(); 1131 exe_file = rcu_dereference(mm->exe_file); 1132 if (exe_file && !get_file_rcu(exe_file)) 1133 exe_file = NULL; 1134 rcu_read_unlock(); 1135 return exe_file; 1136 } 1137 EXPORT_SYMBOL(get_mm_exe_file); 1138 1139 /** 1140 * get_task_exe_file - acquire a reference to the task's executable file 1141 * 1142 * Returns %NULL if task's mm (if any) has no associated executable file or 1143 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1144 * User must release file via fput(). 1145 */ 1146 struct file *get_task_exe_file(struct task_struct *task) 1147 { 1148 struct file *exe_file = NULL; 1149 struct mm_struct *mm; 1150 1151 task_lock(task); 1152 mm = task->mm; 1153 if (mm) { 1154 if (!(task->flags & PF_KTHREAD)) 1155 exe_file = get_mm_exe_file(mm); 1156 } 1157 task_unlock(task); 1158 return exe_file; 1159 } 1160 EXPORT_SYMBOL(get_task_exe_file); 1161 1162 /** 1163 * get_task_mm - acquire a reference to the task's mm 1164 * 1165 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1166 * this kernel workthread has transiently adopted a user mm with use_mm, 1167 * to do its AIO) is not set and if so returns a reference to it, after 1168 * bumping up the use count. User must release the mm via mmput() 1169 * after use. Typically used by /proc and ptrace. 1170 */ 1171 struct mm_struct *get_task_mm(struct task_struct *task) 1172 { 1173 struct mm_struct *mm; 1174 1175 task_lock(task); 1176 mm = task->mm; 1177 if (mm) { 1178 if (task->flags & PF_KTHREAD) 1179 mm = NULL; 1180 else 1181 mmget(mm); 1182 } 1183 task_unlock(task); 1184 return mm; 1185 } 1186 EXPORT_SYMBOL_GPL(get_task_mm); 1187 1188 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1189 { 1190 struct mm_struct *mm; 1191 int err; 1192 1193 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1194 if (err) 1195 return ERR_PTR(err); 1196 1197 mm = get_task_mm(task); 1198 if (mm && mm != current->mm && 1199 !ptrace_may_access(task, mode)) { 1200 mmput(mm); 1201 mm = ERR_PTR(-EACCES); 1202 } 1203 mutex_unlock(&task->signal->cred_guard_mutex); 1204 1205 return mm; 1206 } 1207 1208 static void complete_vfork_done(struct task_struct *tsk) 1209 { 1210 struct completion *vfork; 1211 1212 task_lock(tsk); 1213 vfork = tsk->vfork_done; 1214 if (likely(vfork)) { 1215 tsk->vfork_done = NULL; 1216 complete(vfork); 1217 } 1218 task_unlock(tsk); 1219 } 1220 1221 static int wait_for_vfork_done(struct task_struct *child, 1222 struct completion *vfork) 1223 { 1224 int killed; 1225 1226 freezer_do_not_count(); 1227 killed = wait_for_completion_killable(vfork); 1228 freezer_count(); 1229 1230 if (killed) { 1231 task_lock(child); 1232 child->vfork_done = NULL; 1233 task_unlock(child); 1234 } 1235 1236 put_task_struct(child); 1237 return killed; 1238 } 1239 1240 /* Please note the differences between mmput and mm_release. 1241 * mmput is called whenever we stop holding onto a mm_struct, 1242 * error success whatever. 1243 * 1244 * mm_release is called after a mm_struct has been removed 1245 * from the current process. 1246 * 1247 * This difference is important for error handling, when we 1248 * only half set up a mm_struct for a new process and need to restore 1249 * the old one. Because we mmput the new mm_struct before 1250 * restoring the old one. . . 1251 * Eric Biederman 10 January 1998 1252 */ 1253 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1254 { 1255 /* Get rid of any futexes when releasing the mm */ 1256 #ifdef CONFIG_FUTEX 1257 if (unlikely(tsk->robust_list)) { 1258 exit_robust_list(tsk); 1259 tsk->robust_list = NULL; 1260 } 1261 #ifdef CONFIG_COMPAT 1262 if (unlikely(tsk->compat_robust_list)) { 1263 compat_exit_robust_list(tsk); 1264 tsk->compat_robust_list = NULL; 1265 } 1266 #endif 1267 if (unlikely(!list_empty(&tsk->pi_state_list))) 1268 exit_pi_state_list(tsk); 1269 #endif 1270 1271 uprobe_free_utask(tsk); 1272 1273 /* Get rid of any cached register state */ 1274 deactivate_mm(tsk, mm); 1275 1276 /* 1277 * Signal userspace if we're not exiting with a core dump 1278 * because we want to leave the value intact for debugging 1279 * purposes. 1280 */ 1281 if (tsk->clear_child_tid) { 1282 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1283 atomic_read(&mm->mm_users) > 1) { 1284 /* 1285 * We don't check the error code - if userspace has 1286 * not set up a proper pointer then tough luck. 1287 */ 1288 put_user(0, tsk->clear_child_tid); 1289 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1290 1, NULL, NULL, 0, 0); 1291 } 1292 tsk->clear_child_tid = NULL; 1293 } 1294 1295 /* 1296 * All done, finally we can wake up parent and return this mm to him. 1297 * Also kthread_stop() uses this completion for synchronization. 1298 */ 1299 if (tsk->vfork_done) 1300 complete_vfork_done(tsk); 1301 } 1302 1303 /* 1304 * Allocate a new mm structure and copy contents from the 1305 * mm structure of the passed in task structure. 1306 */ 1307 static struct mm_struct *dup_mm(struct task_struct *tsk) 1308 { 1309 struct mm_struct *mm, *oldmm = current->mm; 1310 int err; 1311 1312 mm = allocate_mm(); 1313 if (!mm) 1314 goto fail_nomem; 1315 1316 memcpy(mm, oldmm, sizeof(*mm)); 1317 1318 if (!mm_init(mm, tsk, mm->user_ns)) 1319 goto fail_nomem; 1320 1321 err = dup_mmap(mm, oldmm); 1322 if (err) 1323 goto free_pt; 1324 1325 mm->hiwater_rss = get_mm_rss(mm); 1326 mm->hiwater_vm = mm->total_vm; 1327 1328 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1329 goto free_pt; 1330 1331 return mm; 1332 1333 free_pt: 1334 /* don't put binfmt in mmput, we haven't got module yet */ 1335 mm->binfmt = NULL; 1336 mmput(mm); 1337 1338 fail_nomem: 1339 return NULL; 1340 } 1341 1342 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1343 { 1344 struct mm_struct *mm, *oldmm; 1345 int retval; 1346 1347 tsk->min_flt = tsk->maj_flt = 0; 1348 tsk->nvcsw = tsk->nivcsw = 0; 1349 #ifdef CONFIG_DETECT_HUNG_TASK 1350 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1351 tsk->last_switch_time = 0; 1352 #endif 1353 1354 tsk->mm = NULL; 1355 tsk->active_mm = NULL; 1356 1357 /* 1358 * Are we cloning a kernel thread? 1359 * 1360 * We need to steal a active VM for that.. 1361 */ 1362 oldmm = current->mm; 1363 if (!oldmm) 1364 return 0; 1365 1366 /* initialize the new vmacache entries */ 1367 vmacache_flush(tsk); 1368 1369 if (clone_flags & CLONE_VM) { 1370 mmget(oldmm); 1371 mm = oldmm; 1372 goto good_mm; 1373 } 1374 1375 retval = -ENOMEM; 1376 mm = dup_mm(tsk); 1377 if (!mm) 1378 goto fail_nomem; 1379 1380 good_mm: 1381 tsk->mm = mm; 1382 tsk->active_mm = mm; 1383 return 0; 1384 1385 fail_nomem: 1386 return retval; 1387 } 1388 1389 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1390 { 1391 struct fs_struct *fs = current->fs; 1392 if (clone_flags & CLONE_FS) { 1393 /* tsk->fs is already what we want */ 1394 spin_lock(&fs->lock); 1395 if (fs->in_exec) { 1396 spin_unlock(&fs->lock); 1397 return -EAGAIN; 1398 } 1399 fs->users++; 1400 spin_unlock(&fs->lock); 1401 return 0; 1402 } 1403 tsk->fs = copy_fs_struct(fs); 1404 if (!tsk->fs) 1405 return -ENOMEM; 1406 return 0; 1407 } 1408 1409 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1410 { 1411 struct files_struct *oldf, *newf; 1412 int error = 0; 1413 1414 /* 1415 * A background process may not have any files ... 1416 */ 1417 oldf = current->files; 1418 if (!oldf) 1419 goto out; 1420 1421 if (clone_flags & CLONE_FILES) { 1422 atomic_inc(&oldf->count); 1423 goto out; 1424 } 1425 1426 newf = dup_fd(oldf, &error); 1427 if (!newf) 1428 goto out; 1429 1430 tsk->files = newf; 1431 error = 0; 1432 out: 1433 return error; 1434 } 1435 1436 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1437 { 1438 #ifdef CONFIG_BLOCK 1439 struct io_context *ioc = current->io_context; 1440 struct io_context *new_ioc; 1441 1442 if (!ioc) 1443 return 0; 1444 /* 1445 * Share io context with parent, if CLONE_IO is set 1446 */ 1447 if (clone_flags & CLONE_IO) { 1448 ioc_task_link(ioc); 1449 tsk->io_context = ioc; 1450 } else if (ioprio_valid(ioc->ioprio)) { 1451 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1452 if (unlikely(!new_ioc)) 1453 return -ENOMEM; 1454 1455 new_ioc->ioprio = ioc->ioprio; 1456 put_io_context(new_ioc); 1457 } 1458 #endif 1459 return 0; 1460 } 1461 1462 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1463 { 1464 struct sighand_struct *sig; 1465 1466 if (clone_flags & CLONE_SIGHAND) { 1467 refcount_inc(¤t->sighand->count); 1468 return 0; 1469 } 1470 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1471 rcu_assign_pointer(tsk->sighand, sig); 1472 if (!sig) 1473 return -ENOMEM; 1474 1475 refcount_set(&sig->count, 1); 1476 spin_lock_irq(¤t->sighand->siglock); 1477 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1478 spin_unlock_irq(¤t->sighand->siglock); 1479 return 0; 1480 } 1481 1482 void __cleanup_sighand(struct sighand_struct *sighand) 1483 { 1484 if (refcount_dec_and_test(&sighand->count)) { 1485 signalfd_cleanup(sighand); 1486 /* 1487 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1488 * without an RCU grace period, see __lock_task_sighand(). 1489 */ 1490 kmem_cache_free(sighand_cachep, sighand); 1491 } 1492 } 1493 1494 #ifdef CONFIG_POSIX_TIMERS 1495 /* 1496 * Initialize POSIX timer handling for a thread group. 1497 */ 1498 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1499 { 1500 unsigned long cpu_limit; 1501 1502 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1503 if (cpu_limit != RLIM_INFINITY) { 1504 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1505 sig->cputimer.running = true; 1506 } 1507 1508 /* The timer lists. */ 1509 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1510 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1511 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1512 } 1513 #else 1514 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1515 #endif 1516 1517 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1518 { 1519 struct signal_struct *sig; 1520 1521 if (clone_flags & CLONE_THREAD) 1522 return 0; 1523 1524 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1525 tsk->signal = sig; 1526 if (!sig) 1527 return -ENOMEM; 1528 1529 sig->nr_threads = 1; 1530 atomic_set(&sig->live, 1); 1531 refcount_set(&sig->sigcnt, 1); 1532 1533 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1534 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1535 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1536 1537 init_waitqueue_head(&sig->wait_chldexit); 1538 sig->curr_target = tsk; 1539 init_sigpending(&sig->shared_pending); 1540 INIT_HLIST_HEAD(&sig->multiprocess); 1541 seqlock_init(&sig->stats_lock); 1542 prev_cputime_init(&sig->prev_cputime); 1543 1544 #ifdef CONFIG_POSIX_TIMERS 1545 INIT_LIST_HEAD(&sig->posix_timers); 1546 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1547 sig->real_timer.function = it_real_fn; 1548 #endif 1549 1550 task_lock(current->group_leader); 1551 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1552 task_unlock(current->group_leader); 1553 1554 posix_cpu_timers_init_group(sig); 1555 1556 tty_audit_fork(sig); 1557 sched_autogroup_fork(sig); 1558 1559 sig->oom_score_adj = current->signal->oom_score_adj; 1560 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1561 1562 mutex_init(&sig->cred_guard_mutex); 1563 1564 return 0; 1565 } 1566 1567 static void copy_seccomp(struct task_struct *p) 1568 { 1569 #ifdef CONFIG_SECCOMP 1570 /* 1571 * Must be called with sighand->lock held, which is common to 1572 * all threads in the group. Holding cred_guard_mutex is not 1573 * needed because this new task is not yet running and cannot 1574 * be racing exec. 1575 */ 1576 assert_spin_locked(¤t->sighand->siglock); 1577 1578 /* Ref-count the new filter user, and assign it. */ 1579 get_seccomp_filter(current); 1580 p->seccomp = current->seccomp; 1581 1582 /* 1583 * Explicitly enable no_new_privs here in case it got set 1584 * between the task_struct being duplicated and holding the 1585 * sighand lock. The seccomp state and nnp must be in sync. 1586 */ 1587 if (task_no_new_privs(current)) 1588 task_set_no_new_privs(p); 1589 1590 /* 1591 * If the parent gained a seccomp mode after copying thread 1592 * flags and between before we held the sighand lock, we have 1593 * to manually enable the seccomp thread flag here. 1594 */ 1595 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1596 set_tsk_thread_flag(p, TIF_SECCOMP); 1597 #endif 1598 } 1599 1600 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1601 { 1602 current->clear_child_tid = tidptr; 1603 1604 return task_pid_vnr(current); 1605 } 1606 1607 static void rt_mutex_init_task(struct task_struct *p) 1608 { 1609 raw_spin_lock_init(&p->pi_lock); 1610 #ifdef CONFIG_RT_MUTEXES 1611 p->pi_waiters = RB_ROOT_CACHED; 1612 p->pi_top_task = NULL; 1613 p->pi_blocked_on = NULL; 1614 #endif 1615 } 1616 1617 #ifdef CONFIG_POSIX_TIMERS 1618 /* 1619 * Initialize POSIX timer handling for a single task. 1620 */ 1621 static void posix_cpu_timers_init(struct task_struct *tsk) 1622 { 1623 tsk->cputime_expires.prof_exp = 0; 1624 tsk->cputime_expires.virt_exp = 0; 1625 tsk->cputime_expires.sched_exp = 0; 1626 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1627 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1628 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1629 } 1630 #else 1631 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1632 #endif 1633 1634 static inline void init_task_pid_links(struct task_struct *task) 1635 { 1636 enum pid_type type; 1637 1638 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1639 INIT_HLIST_NODE(&task->pid_links[type]); 1640 } 1641 } 1642 1643 static inline void 1644 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1645 { 1646 if (type == PIDTYPE_PID) 1647 task->thread_pid = pid; 1648 else 1649 task->signal->pids[type] = pid; 1650 } 1651 1652 static inline void rcu_copy_process(struct task_struct *p) 1653 { 1654 #ifdef CONFIG_PREEMPT_RCU 1655 p->rcu_read_lock_nesting = 0; 1656 p->rcu_read_unlock_special.s = 0; 1657 p->rcu_blocked_node = NULL; 1658 INIT_LIST_HEAD(&p->rcu_node_entry); 1659 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1660 #ifdef CONFIG_TASKS_RCU 1661 p->rcu_tasks_holdout = false; 1662 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1663 p->rcu_tasks_idle_cpu = -1; 1664 #endif /* #ifdef CONFIG_TASKS_RCU */ 1665 } 1666 1667 static int pidfd_release(struct inode *inode, struct file *file) 1668 { 1669 struct pid *pid = file->private_data; 1670 1671 file->private_data = NULL; 1672 put_pid(pid); 1673 return 0; 1674 } 1675 1676 #ifdef CONFIG_PROC_FS 1677 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1678 { 1679 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1680 struct pid *pid = f->private_data; 1681 1682 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1683 seq_putc(m, '\n'); 1684 } 1685 #endif 1686 1687 const struct file_operations pidfd_fops = { 1688 .release = pidfd_release, 1689 #ifdef CONFIG_PROC_FS 1690 .show_fdinfo = pidfd_show_fdinfo, 1691 #endif 1692 }; 1693 1694 /** 1695 * pidfd_create() - Create a new pid file descriptor. 1696 * 1697 * @pid: struct pid that the pidfd will reference 1698 * 1699 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 1700 * 1701 * Note, that this function can only be called after the fd table has 1702 * been unshared to avoid leaking the pidfd to the new process. 1703 * 1704 * Return: On success, a cloexec pidfd is returned. 1705 * On error, a negative errno number will be returned. 1706 */ 1707 static int pidfd_create(struct pid *pid) 1708 { 1709 int fd; 1710 1711 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 1712 O_RDWR | O_CLOEXEC); 1713 if (fd < 0) 1714 put_pid(pid); 1715 1716 return fd; 1717 } 1718 1719 /* 1720 * This creates a new process as a copy of the old one, 1721 * but does not actually start it yet. 1722 * 1723 * It copies the registers, and all the appropriate 1724 * parts of the process environment (as per the clone 1725 * flags). The actual kick-off is left to the caller. 1726 */ 1727 static __latent_entropy struct task_struct *copy_process( 1728 unsigned long clone_flags, 1729 unsigned long stack_start, 1730 unsigned long stack_size, 1731 int __user *parent_tidptr, 1732 int __user *child_tidptr, 1733 struct pid *pid, 1734 int trace, 1735 unsigned long tls, 1736 int node) 1737 { 1738 int pidfd = -1, retval; 1739 struct task_struct *p; 1740 struct multiprocess_signals delayed; 1741 1742 /* 1743 * Don't allow sharing the root directory with processes in a different 1744 * namespace 1745 */ 1746 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1747 return ERR_PTR(-EINVAL); 1748 1749 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1750 return ERR_PTR(-EINVAL); 1751 1752 /* 1753 * Thread groups must share signals as well, and detached threads 1754 * can only be started up within the thread group. 1755 */ 1756 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1757 return ERR_PTR(-EINVAL); 1758 1759 /* 1760 * Shared signal handlers imply shared VM. By way of the above, 1761 * thread groups also imply shared VM. Blocking this case allows 1762 * for various simplifications in other code. 1763 */ 1764 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1765 return ERR_PTR(-EINVAL); 1766 1767 /* 1768 * Siblings of global init remain as zombies on exit since they are 1769 * not reaped by their parent (swapper). To solve this and to avoid 1770 * multi-rooted process trees, prevent global and container-inits 1771 * from creating siblings. 1772 */ 1773 if ((clone_flags & CLONE_PARENT) && 1774 current->signal->flags & SIGNAL_UNKILLABLE) 1775 return ERR_PTR(-EINVAL); 1776 1777 /* 1778 * If the new process will be in a different pid or user namespace 1779 * do not allow it to share a thread group with the forking task. 1780 */ 1781 if (clone_flags & CLONE_THREAD) { 1782 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1783 (task_active_pid_ns(current) != 1784 current->nsproxy->pid_ns_for_children)) 1785 return ERR_PTR(-EINVAL); 1786 } 1787 1788 if (clone_flags & CLONE_PIDFD) { 1789 int reserved; 1790 1791 /* 1792 * - CLONE_PARENT_SETTID is useless for pidfds and also 1793 * parent_tidptr is used to return pidfds. 1794 * - CLONE_DETACHED is blocked so that we can potentially 1795 * reuse it later for CLONE_PIDFD. 1796 * - CLONE_THREAD is blocked until someone really needs it. 1797 */ 1798 if (clone_flags & 1799 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD)) 1800 return ERR_PTR(-EINVAL); 1801 1802 /* 1803 * Verify that parent_tidptr is sane so we can potentially 1804 * reuse it later. 1805 */ 1806 if (get_user(reserved, parent_tidptr)) 1807 return ERR_PTR(-EFAULT); 1808 1809 if (reserved != 0) 1810 return ERR_PTR(-EINVAL); 1811 } 1812 1813 /* 1814 * Force any signals received before this point to be delivered 1815 * before the fork happens. Collect up signals sent to multiple 1816 * processes that happen during the fork and delay them so that 1817 * they appear to happen after the fork. 1818 */ 1819 sigemptyset(&delayed.signal); 1820 INIT_HLIST_NODE(&delayed.node); 1821 1822 spin_lock_irq(¤t->sighand->siglock); 1823 if (!(clone_flags & CLONE_THREAD)) 1824 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1825 recalc_sigpending(); 1826 spin_unlock_irq(¤t->sighand->siglock); 1827 retval = -ERESTARTNOINTR; 1828 if (signal_pending(current)) 1829 goto fork_out; 1830 1831 retval = -ENOMEM; 1832 p = dup_task_struct(current, node); 1833 if (!p) 1834 goto fork_out; 1835 1836 /* 1837 * This _must_ happen before we call free_task(), i.e. before we jump 1838 * to any of the bad_fork_* labels. This is to avoid freeing 1839 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1840 * kernel threads (PF_KTHREAD). 1841 */ 1842 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1843 /* 1844 * Clear TID on mm_release()? 1845 */ 1846 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1847 1848 ftrace_graph_init_task(p); 1849 1850 rt_mutex_init_task(p); 1851 1852 #ifdef CONFIG_PROVE_LOCKING 1853 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1854 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1855 #endif 1856 retval = -EAGAIN; 1857 if (atomic_read(&p->real_cred->user->processes) >= 1858 task_rlimit(p, RLIMIT_NPROC)) { 1859 if (p->real_cred->user != INIT_USER && 1860 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1861 goto bad_fork_free; 1862 } 1863 current->flags &= ~PF_NPROC_EXCEEDED; 1864 1865 retval = copy_creds(p, clone_flags); 1866 if (retval < 0) 1867 goto bad_fork_free; 1868 1869 /* 1870 * If multiple threads are within copy_process(), then this check 1871 * triggers too late. This doesn't hurt, the check is only there 1872 * to stop root fork bombs. 1873 */ 1874 retval = -EAGAIN; 1875 if (nr_threads >= max_threads) 1876 goto bad_fork_cleanup_count; 1877 1878 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1879 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1880 p->flags |= PF_FORKNOEXEC; 1881 INIT_LIST_HEAD(&p->children); 1882 INIT_LIST_HEAD(&p->sibling); 1883 rcu_copy_process(p); 1884 p->vfork_done = NULL; 1885 spin_lock_init(&p->alloc_lock); 1886 1887 init_sigpending(&p->pending); 1888 1889 p->utime = p->stime = p->gtime = 0; 1890 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1891 p->utimescaled = p->stimescaled = 0; 1892 #endif 1893 prev_cputime_init(&p->prev_cputime); 1894 1895 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1896 seqcount_init(&p->vtime.seqcount); 1897 p->vtime.starttime = 0; 1898 p->vtime.state = VTIME_INACTIVE; 1899 #endif 1900 1901 #if defined(SPLIT_RSS_COUNTING) 1902 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1903 #endif 1904 1905 p->default_timer_slack_ns = current->timer_slack_ns; 1906 1907 #ifdef CONFIG_PSI 1908 p->psi_flags = 0; 1909 #endif 1910 1911 task_io_accounting_init(&p->ioac); 1912 acct_clear_integrals(p); 1913 1914 posix_cpu_timers_init(p); 1915 1916 p->io_context = NULL; 1917 audit_set_context(p, NULL); 1918 cgroup_fork(p); 1919 #ifdef CONFIG_NUMA 1920 p->mempolicy = mpol_dup(p->mempolicy); 1921 if (IS_ERR(p->mempolicy)) { 1922 retval = PTR_ERR(p->mempolicy); 1923 p->mempolicy = NULL; 1924 goto bad_fork_cleanup_threadgroup_lock; 1925 } 1926 #endif 1927 #ifdef CONFIG_CPUSETS 1928 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1929 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1930 seqcount_init(&p->mems_allowed_seq); 1931 #endif 1932 #ifdef CONFIG_TRACE_IRQFLAGS 1933 p->irq_events = 0; 1934 p->hardirqs_enabled = 0; 1935 p->hardirq_enable_ip = 0; 1936 p->hardirq_enable_event = 0; 1937 p->hardirq_disable_ip = _THIS_IP_; 1938 p->hardirq_disable_event = 0; 1939 p->softirqs_enabled = 1; 1940 p->softirq_enable_ip = _THIS_IP_; 1941 p->softirq_enable_event = 0; 1942 p->softirq_disable_ip = 0; 1943 p->softirq_disable_event = 0; 1944 p->hardirq_context = 0; 1945 p->softirq_context = 0; 1946 #endif 1947 1948 p->pagefault_disabled = 0; 1949 1950 #ifdef CONFIG_LOCKDEP 1951 p->lockdep_depth = 0; /* no locks held yet */ 1952 p->curr_chain_key = 0; 1953 p->lockdep_recursion = 0; 1954 lockdep_init_task(p); 1955 #endif 1956 1957 #ifdef CONFIG_DEBUG_MUTEXES 1958 p->blocked_on = NULL; /* not blocked yet */ 1959 #endif 1960 #ifdef CONFIG_BCACHE 1961 p->sequential_io = 0; 1962 p->sequential_io_avg = 0; 1963 #endif 1964 1965 /* Perform scheduler related setup. Assign this task to a CPU. */ 1966 retval = sched_fork(clone_flags, p); 1967 if (retval) 1968 goto bad_fork_cleanup_policy; 1969 1970 retval = perf_event_init_task(p); 1971 if (retval) 1972 goto bad_fork_cleanup_policy; 1973 retval = audit_alloc(p); 1974 if (retval) 1975 goto bad_fork_cleanup_perf; 1976 /* copy all the process information */ 1977 shm_init_task(p); 1978 retval = security_task_alloc(p, clone_flags); 1979 if (retval) 1980 goto bad_fork_cleanup_audit; 1981 retval = copy_semundo(clone_flags, p); 1982 if (retval) 1983 goto bad_fork_cleanup_security; 1984 retval = copy_files(clone_flags, p); 1985 if (retval) 1986 goto bad_fork_cleanup_semundo; 1987 retval = copy_fs(clone_flags, p); 1988 if (retval) 1989 goto bad_fork_cleanup_files; 1990 retval = copy_sighand(clone_flags, p); 1991 if (retval) 1992 goto bad_fork_cleanup_fs; 1993 retval = copy_signal(clone_flags, p); 1994 if (retval) 1995 goto bad_fork_cleanup_sighand; 1996 retval = copy_mm(clone_flags, p); 1997 if (retval) 1998 goto bad_fork_cleanup_signal; 1999 retval = copy_namespaces(clone_flags, p); 2000 if (retval) 2001 goto bad_fork_cleanup_mm; 2002 retval = copy_io(clone_flags, p); 2003 if (retval) 2004 goto bad_fork_cleanup_namespaces; 2005 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 2006 if (retval) 2007 goto bad_fork_cleanup_io; 2008 2009 stackleak_task_init(p); 2010 2011 if (pid != &init_struct_pid) { 2012 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2013 if (IS_ERR(pid)) { 2014 retval = PTR_ERR(pid); 2015 goto bad_fork_cleanup_thread; 2016 } 2017 } 2018 2019 /* 2020 * This has to happen after we've potentially unshared the file 2021 * descriptor table (so that the pidfd doesn't leak into the child 2022 * if the fd table isn't shared). 2023 */ 2024 if (clone_flags & CLONE_PIDFD) { 2025 retval = pidfd_create(pid); 2026 if (retval < 0) 2027 goto bad_fork_free_pid; 2028 2029 pidfd = retval; 2030 retval = put_user(pidfd, parent_tidptr); 2031 if (retval) 2032 goto bad_fork_put_pidfd; 2033 } 2034 2035 #ifdef CONFIG_BLOCK 2036 p->plug = NULL; 2037 #endif 2038 #ifdef CONFIG_FUTEX 2039 p->robust_list = NULL; 2040 #ifdef CONFIG_COMPAT 2041 p->compat_robust_list = NULL; 2042 #endif 2043 INIT_LIST_HEAD(&p->pi_state_list); 2044 p->pi_state_cache = NULL; 2045 #endif 2046 /* 2047 * sigaltstack should be cleared when sharing the same VM 2048 */ 2049 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2050 sas_ss_reset(p); 2051 2052 /* 2053 * Syscall tracing and stepping should be turned off in the 2054 * child regardless of CLONE_PTRACE. 2055 */ 2056 user_disable_single_step(p); 2057 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2058 #ifdef TIF_SYSCALL_EMU 2059 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2060 #endif 2061 clear_all_latency_tracing(p); 2062 2063 /* ok, now we should be set up.. */ 2064 p->pid = pid_nr(pid); 2065 if (clone_flags & CLONE_THREAD) { 2066 p->exit_signal = -1; 2067 p->group_leader = current->group_leader; 2068 p->tgid = current->tgid; 2069 } else { 2070 if (clone_flags & CLONE_PARENT) 2071 p->exit_signal = current->group_leader->exit_signal; 2072 else 2073 p->exit_signal = (clone_flags & CSIGNAL); 2074 p->group_leader = p; 2075 p->tgid = p->pid; 2076 } 2077 2078 p->nr_dirtied = 0; 2079 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2080 p->dirty_paused_when = 0; 2081 2082 p->pdeath_signal = 0; 2083 INIT_LIST_HEAD(&p->thread_group); 2084 p->task_works = NULL; 2085 2086 cgroup_threadgroup_change_begin(current); 2087 /* 2088 * Ensure that the cgroup subsystem policies allow the new process to be 2089 * forked. It should be noted the the new process's css_set can be changed 2090 * between here and cgroup_post_fork() if an organisation operation is in 2091 * progress. 2092 */ 2093 retval = cgroup_can_fork(p); 2094 if (retval) 2095 goto bad_fork_put_pidfd; 2096 2097 /* 2098 * From this point on we must avoid any synchronous user-space 2099 * communication until we take the tasklist-lock. In particular, we do 2100 * not want user-space to be able to predict the process start-time by 2101 * stalling fork(2) after we recorded the start_time but before it is 2102 * visible to the system. 2103 */ 2104 2105 p->start_time = ktime_get_ns(); 2106 p->real_start_time = ktime_get_boot_ns(); 2107 2108 /* 2109 * Make it visible to the rest of the system, but dont wake it up yet. 2110 * Need tasklist lock for parent etc handling! 2111 */ 2112 write_lock_irq(&tasklist_lock); 2113 2114 /* CLONE_PARENT re-uses the old parent */ 2115 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2116 p->real_parent = current->real_parent; 2117 p->parent_exec_id = current->parent_exec_id; 2118 } else { 2119 p->real_parent = current; 2120 p->parent_exec_id = current->self_exec_id; 2121 } 2122 2123 klp_copy_process(p); 2124 2125 spin_lock(¤t->sighand->siglock); 2126 2127 /* 2128 * Copy seccomp details explicitly here, in case they were changed 2129 * before holding sighand lock. 2130 */ 2131 copy_seccomp(p); 2132 2133 rseq_fork(p, clone_flags); 2134 2135 /* Don't start children in a dying pid namespace */ 2136 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2137 retval = -ENOMEM; 2138 goto bad_fork_cancel_cgroup; 2139 } 2140 2141 /* Let kill terminate clone/fork in the middle */ 2142 if (fatal_signal_pending(current)) { 2143 retval = -EINTR; 2144 goto bad_fork_cancel_cgroup; 2145 } 2146 2147 2148 init_task_pid_links(p); 2149 if (likely(p->pid)) { 2150 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2151 2152 init_task_pid(p, PIDTYPE_PID, pid); 2153 if (thread_group_leader(p)) { 2154 init_task_pid(p, PIDTYPE_TGID, pid); 2155 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2156 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2157 2158 if (is_child_reaper(pid)) { 2159 ns_of_pid(pid)->child_reaper = p; 2160 p->signal->flags |= SIGNAL_UNKILLABLE; 2161 } 2162 p->signal->shared_pending.signal = delayed.signal; 2163 p->signal->tty = tty_kref_get(current->signal->tty); 2164 /* 2165 * Inherit has_child_subreaper flag under the same 2166 * tasklist_lock with adding child to the process tree 2167 * for propagate_has_child_subreaper optimization. 2168 */ 2169 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2170 p->real_parent->signal->is_child_subreaper; 2171 list_add_tail(&p->sibling, &p->real_parent->children); 2172 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2173 attach_pid(p, PIDTYPE_TGID); 2174 attach_pid(p, PIDTYPE_PGID); 2175 attach_pid(p, PIDTYPE_SID); 2176 __this_cpu_inc(process_counts); 2177 } else { 2178 current->signal->nr_threads++; 2179 atomic_inc(¤t->signal->live); 2180 refcount_inc(¤t->signal->sigcnt); 2181 task_join_group_stop(p); 2182 list_add_tail_rcu(&p->thread_group, 2183 &p->group_leader->thread_group); 2184 list_add_tail_rcu(&p->thread_node, 2185 &p->signal->thread_head); 2186 } 2187 attach_pid(p, PIDTYPE_PID); 2188 nr_threads++; 2189 } 2190 total_forks++; 2191 hlist_del_init(&delayed.node); 2192 spin_unlock(¤t->sighand->siglock); 2193 syscall_tracepoint_update(p); 2194 write_unlock_irq(&tasklist_lock); 2195 2196 proc_fork_connector(p); 2197 cgroup_post_fork(p); 2198 cgroup_threadgroup_change_end(current); 2199 perf_event_fork(p); 2200 2201 trace_task_newtask(p, clone_flags); 2202 uprobe_copy_process(p, clone_flags); 2203 2204 return p; 2205 2206 bad_fork_cancel_cgroup: 2207 spin_unlock(¤t->sighand->siglock); 2208 write_unlock_irq(&tasklist_lock); 2209 cgroup_cancel_fork(p); 2210 bad_fork_put_pidfd: 2211 if (clone_flags & CLONE_PIDFD) 2212 ksys_close(pidfd); 2213 bad_fork_free_pid: 2214 cgroup_threadgroup_change_end(current); 2215 if (pid != &init_struct_pid) 2216 free_pid(pid); 2217 bad_fork_cleanup_thread: 2218 exit_thread(p); 2219 bad_fork_cleanup_io: 2220 if (p->io_context) 2221 exit_io_context(p); 2222 bad_fork_cleanup_namespaces: 2223 exit_task_namespaces(p); 2224 bad_fork_cleanup_mm: 2225 if (p->mm) 2226 mmput(p->mm); 2227 bad_fork_cleanup_signal: 2228 if (!(clone_flags & CLONE_THREAD)) 2229 free_signal_struct(p->signal); 2230 bad_fork_cleanup_sighand: 2231 __cleanup_sighand(p->sighand); 2232 bad_fork_cleanup_fs: 2233 exit_fs(p); /* blocking */ 2234 bad_fork_cleanup_files: 2235 exit_files(p); /* blocking */ 2236 bad_fork_cleanup_semundo: 2237 exit_sem(p); 2238 bad_fork_cleanup_security: 2239 security_task_free(p); 2240 bad_fork_cleanup_audit: 2241 audit_free(p); 2242 bad_fork_cleanup_perf: 2243 perf_event_free_task(p); 2244 bad_fork_cleanup_policy: 2245 lockdep_free_task(p); 2246 #ifdef CONFIG_NUMA 2247 mpol_put(p->mempolicy); 2248 bad_fork_cleanup_threadgroup_lock: 2249 #endif 2250 delayacct_tsk_free(p); 2251 bad_fork_cleanup_count: 2252 atomic_dec(&p->cred->user->processes); 2253 exit_creds(p); 2254 bad_fork_free: 2255 p->state = TASK_DEAD; 2256 put_task_stack(p); 2257 free_task(p); 2258 fork_out: 2259 spin_lock_irq(¤t->sighand->siglock); 2260 hlist_del_init(&delayed.node); 2261 spin_unlock_irq(¤t->sighand->siglock); 2262 return ERR_PTR(retval); 2263 } 2264 2265 static inline void init_idle_pids(struct task_struct *idle) 2266 { 2267 enum pid_type type; 2268 2269 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2270 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2271 init_task_pid(idle, type, &init_struct_pid); 2272 } 2273 } 2274 2275 struct task_struct *fork_idle(int cpu) 2276 { 2277 struct task_struct *task; 2278 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0, 2279 cpu_to_node(cpu)); 2280 if (!IS_ERR(task)) { 2281 init_idle_pids(task); 2282 init_idle(task, cpu); 2283 } 2284 2285 return task; 2286 } 2287 2288 /* 2289 * Ok, this is the main fork-routine. 2290 * 2291 * It copies the process, and if successful kick-starts 2292 * it and waits for it to finish using the VM if required. 2293 */ 2294 long _do_fork(unsigned long clone_flags, 2295 unsigned long stack_start, 2296 unsigned long stack_size, 2297 int __user *parent_tidptr, 2298 int __user *child_tidptr, 2299 unsigned long tls) 2300 { 2301 struct completion vfork; 2302 struct pid *pid; 2303 struct task_struct *p; 2304 int trace = 0; 2305 long nr; 2306 2307 /* 2308 * Determine whether and which event to report to ptracer. When 2309 * called from kernel_thread or CLONE_UNTRACED is explicitly 2310 * requested, no event is reported; otherwise, report if the event 2311 * for the type of forking is enabled. 2312 */ 2313 if (!(clone_flags & CLONE_UNTRACED)) { 2314 if (clone_flags & CLONE_VFORK) 2315 trace = PTRACE_EVENT_VFORK; 2316 else if ((clone_flags & CSIGNAL) != SIGCHLD) 2317 trace = PTRACE_EVENT_CLONE; 2318 else 2319 trace = PTRACE_EVENT_FORK; 2320 2321 if (likely(!ptrace_event_enabled(current, trace))) 2322 trace = 0; 2323 } 2324 2325 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr, 2326 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 2327 add_latent_entropy(); 2328 2329 if (IS_ERR(p)) 2330 return PTR_ERR(p); 2331 2332 /* 2333 * Do this prior waking up the new thread - the thread pointer 2334 * might get invalid after that point, if the thread exits quickly. 2335 */ 2336 trace_sched_process_fork(current, p); 2337 2338 pid = get_task_pid(p, PIDTYPE_PID); 2339 nr = pid_vnr(pid); 2340 2341 if (clone_flags & CLONE_PARENT_SETTID) 2342 put_user(nr, parent_tidptr); 2343 2344 if (clone_flags & CLONE_VFORK) { 2345 p->vfork_done = &vfork; 2346 init_completion(&vfork); 2347 get_task_struct(p); 2348 } 2349 2350 wake_up_new_task(p); 2351 2352 /* forking complete and child started to run, tell ptracer */ 2353 if (unlikely(trace)) 2354 ptrace_event_pid(trace, pid); 2355 2356 if (clone_flags & CLONE_VFORK) { 2357 if (!wait_for_vfork_done(p, &vfork)) 2358 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2359 } 2360 2361 put_pid(pid); 2362 return nr; 2363 } 2364 2365 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2366 /* For compatibility with architectures that call do_fork directly rather than 2367 * using the syscall entry points below. */ 2368 long do_fork(unsigned long clone_flags, 2369 unsigned long stack_start, 2370 unsigned long stack_size, 2371 int __user *parent_tidptr, 2372 int __user *child_tidptr) 2373 { 2374 return _do_fork(clone_flags, stack_start, stack_size, 2375 parent_tidptr, child_tidptr, 0); 2376 } 2377 #endif 2378 2379 /* 2380 * Create a kernel thread. 2381 */ 2382 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2383 { 2384 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 2385 (unsigned long)arg, NULL, NULL, 0); 2386 } 2387 2388 #ifdef __ARCH_WANT_SYS_FORK 2389 SYSCALL_DEFINE0(fork) 2390 { 2391 #ifdef CONFIG_MMU 2392 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 2393 #else 2394 /* can not support in nommu mode */ 2395 return -EINVAL; 2396 #endif 2397 } 2398 #endif 2399 2400 #ifdef __ARCH_WANT_SYS_VFORK 2401 SYSCALL_DEFINE0(vfork) 2402 { 2403 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 2404 0, NULL, NULL, 0); 2405 } 2406 #endif 2407 2408 #ifdef __ARCH_WANT_SYS_CLONE 2409 #ifdef CONFIG_CLONE_BACKWARDS 2410 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2411 int __user *, parent_tidptr, 2412 unsigned long, tls, 2413 int __user *, child_tidptr) 2414 #elif defined(CONFIG_CLONE_BACKWARDS2) 2415 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2416 int __user *, parent_tidptr, 2417 int __user *, child_tidptr, 2418 unsigned long, tls) 2419 #elif defined(CONFIG_CLONE_BACKWARDS3) 2420 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2421 int, stack_size, 2422 int __user *, parent_tidptr, 2423 int __user *, child_tidptr, 2424 unsigned long, tls) 2425 #else 2426 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2427 int __user *, parent_tidptr, 2428 int __user *, child_tidptr, 2429 unsigned long, tls) 2430 #endif 2431 { 2432 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 2433 } 2434 #endif 2435 2436 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2437 { 2438 struct task_struct *leader, *parent, *child; 2439 int res; 2440 2441 read_lock(&tasklist_lock); 2442 leader = top = top->group_leader; 2443 down: 2444 for_each_thread(leader, parent) { 2445 list_for_each_entry(child, &parent->children, sibling) { 2446 res = visitor(child, data); 2447 if (res) { 2448 if (res < 0) 2449 goto out; 2450 leader = child; 2451 goto down; 2452 } 2453 up: 2454 ; 2455 } 2456 } 2457 2458 if (leader != top) { 2459 child = leader; 2460 parent = child->real_parent; 2461 leader = parent->group_leader; 2462 goto up; 2463 } 2464 out: 2465 read_unlock(&tasklist_lock); 2466 } 2467 2468 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2469 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2470 #endif 2471 2472 static void sighand_ctor(void *data) 2473 { 2474 struct sighand_struct *sighand = data; 2475 2476 spin_lock_init(&sighand->siglock); 2477 init_waitqueue_head(&sighand->signalfd_wqh); 2478 } 2479 2480 void __init proc_caches_init(void) 2481 { 2482 unsigned int mm_size; 2483 2484 sighand_cachep = kmem_cache_create("sighand_cache", 2485 sizeof(struct sighand_struct), 0, 2486 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2487 SLAB_ACCOUNT, sighand_ctor); 2488 signal_cachep = kmem_cache_create("signal_cache", 2489 sizeof(struct signal_struct), 0, 2490 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2491 NULL); 2492 files_cachep = kmem_cache_create("files_cache", 2493 sizeof(struct files_struct), 0, 2494 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2495 NULL); 2496 fs_cachep = kmem_cache_create("fs_cache", 2497 sizeof(struct fs_struct), 0, 2498 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2499 NULL); 2500 2501 /* 2502 * The mm_cpumask is located at the end of mm_struct, and is 2503 * dynamically sized based on the maximum CPU number this system 2504 * can have, taking hotplug into account (nr_cpu_ids). 2505 */ 2506 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2507 2508 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2509 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2511 offsetof(struct mm_struct, saved_auxv), 2512 sizeof_field(struct mm_struct, saved_auxv), 2513 NULL); 2514 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2515 mmap_init(); 2516 nsproxy_cache_init(); 2517 } 2518 2519 /* 2520 * Check constraints on flags passed to the unshare system call. 2521 */ 2522 static int check_unshare_flags(unsigned long unshare_flags) 2523 { 2524 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2525 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2526 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2527 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2528 return -EINVAL; 2529 /* 2530 * Not implemented, but pretend it works if there is nothing 2531 * to unshare. Note that unsharing the address space or the 2532 * signal handlers also need to unshare the signal queues (aka 2533 * CLONE_THREAD). 2534 */ 2535 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2536 if (!thread_group_empty(current)) 2537 return -EINVAL; 2538 } 2539 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2540 if (refcount_read(¤t->sighand->count) > 1) 2541 return -EINVAL; 2542 } 2543 if (unshare_flags & CLONE_VM) { 2544 if (!current_is_single_threaded()) 2545 return -EINVAL; 2546 } 2547 2548 return 0; 2549 } 2550 2551 /* 2552 * Unshare the filesystem structure if it is being shared 2553 */ 2554 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2555 { 2556 struct fs_struct *fs = current->fs; 2557 2558 if (!(unshare_flags & CLONE_FS) || !fs) 2559 return 0; 2560 2561 /* don't need lock here; in the worst case we'll do useless copy */ 2562 if (fs->users == 1) 2563 return 0; 2564 2565 *new_fsp = copy_fs_struct(fs); 2566 if (!*new_fsp) 2567 return -ENOMEM; 2568 2569 return 0; 2570 } 2571 2572 /* 2573 * Unshare file descriptor table if it is being shared 2574 */ 2575 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2576 { 2577 struct files_struct *fd = current->files; 2578 int error = 0; 2579 2580 if ((unshare_flags & CLONE_FILES) && 2581 (fd && atomic_read(&fd->count) > 1)) { 2582 *new_fdp = dup_fd(fd, &error); 2583 if (!*new_fdp) 2584 return error; 2585 } 2586 2587 return 0; 2588 } 2589 2590 /* 2591 * unshare allows a process to 'unshare' part of the process 2592 * context which was originally shared using clone. copy_* 2593 * functions used by do_fork() cannot be used here directly 2594 * because they modify an inactive task_struct that is being 2595 * constructed. Here we are modifying the current, active, 2596 * task_struct. 2597 */ 2598 int ksys_unshare(unsigned long unshare_flags) 2599 { 2600 struct fs_struct *fs, *new_fs = NULL; 2601 struct files_struct *fd, *new_fd = NULL; 2602 struct cred *new_cred = NULL; 2603 struct nsproxy *new_nsproxy = NULL; 2604 int do_sysvsem = 0; 2605 int err; 2606 2607 /* 2608 * If unsharing a user namespace must also unshare the thread group 2609 * and unshare the filesystem root and working directories. 2610 */ 2611 if (unshare_flags & CLONE_NEWUSER) 2612 unshare_flags |= CLONE_THREAD | CLONE_FS; 2613 /* 2614 * If unsharing vm, must also unshare signal handlers. 2615 */ 2616 if (unshare_flags & CLONE_VM) 2617 unshare_flags |= CLONE_SIGHAND; 2618 /* 2619 * If unsharing a signal handlers, must also unshare the signal queues. 2620 */ 2621 if (unshare_flags & CLONE_SIGHAND) 2622 unshare_flags |= CLONE_THREAD; 2623 /* 2624 * If unsharing namespace, must also unshare filesystem information. 2625 */ 2626 if (unshare_flags & CLONE_NEWNS) 2627 unshare_flags |= CLONE_FS; 2628 2629 err = check_unshare_flags(unshare_flags); 2630 if (err) 2631 goto bad_unshare_out; 2632 /* 2633 * CLONE_NEWIPC must also detach from the undolist: after switching 2634 * to a new ipc namespace, the semaphore arrays from the old 2635 * namespace are unreachable. 2636 */ 2637 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2638 do_sysvsem = 1; 2639 err = unshare_fs(unshare_flags, &new_fs); 2640 if (err) 2641 goto bad_unshare_out; 2642 err = unshare_fd(unshare_flags, &new_fd); 2643 if (err) 2644 goto bad_unshare_cleanup_fs; 2645 err = unshare_userns(unshare_flags, &new_cred); 2646 if (err) 2647 goto bad_unshare_cleanup_fd; 2648 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2649 new_cred, new_fs); 2650 if (err) 2651 goto bad_unshare_cleanup_cred; 2652 2653 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2654 if (do_sysvsem) { 2655 /* 2656 * CLONE_SYSVSEM is equivalent to sys_exit(). 2657 */ 2658 exit_sem(current); 2659 } 2660 if (unshare_flags & CLONE_NEWIPC) { 2661 /* Orphan segments in old ns (see sem above). */ 2662 exit_shm(current); 2663 shm_init_task(current); 2664 } 2665 2666 if (new_nsproxy) 2667 switch_task_namespaces(current, new_nsproxy); 2668 2669 task_lock(current); 2670 2671 if (new_fs) { 2672 fs = current->fs; 2673 spin_lock(&fs->lock); 2674 current->fs = new_fs; 2675 if (--fs->users) 2676 new_fs = NULL; 2677 else 2678 new_fs = fs; 2679 spin_unlock(&fs->lock); 2680 } 2681 2682 if (new_fd) { 2683 fd = current->files; 2684 current->files = new_fd; 2685 new_fd = fd; 2686 } 2687 2688 task_unlock(current); 2689 2690 if (new_cred) { 2691 /* Install the new user namespace */ 2692 commit_creds(new_cred); 2693 new_cred = NULL; 2694 } 2695 } 2696 2697 perf_event_namespaces(current); 2698 2699 bad_unshare_cleanup_cred: 2700 if (new_cred) 2701 put_cred(new_cred); 2702 bad_unshare_cleanup_fd: 2703 if (new_fd) 2704 put_files_struct(new_fd); 2705 2706 bad_unshare_cleanup_fs: 2707 if (new_fs) 2708 free_fs_struct(new_fs); 2709 2710 bad_unshare_out: 2711 return err; 2712 } 2713 2714 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2715 { 2716 return ksys_unshare(unshare_flags); 2717 } 2718 2719 /* 2720 * Helper to unshare the files of the current task. 2721 * We don't want to expose copy_files internals to 2722 * the exec layer of the kernel. 2723 */ 2724 2725 int unshare_files(struct files_struct **displaced) 2726 { 2727 struct task_struct *task = current; 2728 struct files_struct *copy = NULL; 2729 int error; 2730 2731 error = unshare_fd(CLONE_FILES, ©); 2732 if (error || !copy) { 2733 *displaced = NULL; 2734 return error; 2735 } 2736 *displaced = task->files; 2737 task_lock(task); 2738 task->files = copy; 2739 task_unlock(task); 2740 return 0; 2741 } 2742 2743 int sysctl_max_threads(struct ctl_table *table, int write, 2744 void __user *buffer, size_t *lenp, loff_t *ppos) 2745 { 2746 struct ctl_table t; 2747 int ret; 2748 int threads = max_threads; 2749 int min = MIN_THREADS; 2750 int max = MAX_THREADS; 2751 2752 t = *table; 2753 t.data = &threads; 2754 t.extra1 = &min; 2755 t.extra2 = &max; 2756 2757 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2758 if (ret || !write) 2759 return ret; 2760 2761 set_max_threads(threads); 2762 2763 return 0; 2764 } 2765