xref: /linux-6.15/kernel/fork.c (revision 43c6afee)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/anon_inodes.h>
15 #include <linux/slab.h>
16 #include <linux/sched/autogroup.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/seq_file.h>
26 #include <linux/rtmutex.h>
27 #include <linux/init.h>
28 #include <linux/unistd.h>
29 #include <linux/module.h>
30 #include <linux/vmalloc.h>
31 #include <linux/completion.h>
32 #include <linux/personality.h>
33 #include <linux/mempolicy.h>
34 #include <linux/sem.h>
35 #include <linux/file.h>
36 #include <linux/fdtable.h>
37 #include <linux/iocontext.h>
38 #include <linux/key.h>
39 #include <linux/binfmts.h>
40 #include <linux/mman.h>
41 #include <linux/mmu_notifier.h>
42 #include <linux/hmm.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 
97 #include <asm/pgtable.h>
98 #include <asm/pgalloc.h>
99 #include <linux/uaccess.h>
100 #include <asm/mmu_context.h>
101 #include <asm/cacheflush.h>
102 #include <asm/tlbflush.h>
103 
104 #include <trace/events/sched.h>
105 
106 #define CREATE_TRACE_POINTS
107 #include <trace/events/task.h>
108 
109 /*
110  * Minimum number of threads to boot the kernel
111  */
112 #define MIN_THREADS 20
113 
114 /*
115  * Maximum number of threads
116  */
117 #define MAX_THREADS FUTEX_TID_MASK
118 
119 /*
120  * Protected counters by write_lock_irq(&tasklist_lock)
121  */
122 unsigned long total_forks;	/* Handle normal Linux uptimes. */
123 int nr_threads;			/* The idle threads do not count.. */
124 
125 int max_threads;		/* tunable limit on nr_threads */
126 
127 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
128 
129 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
130 
131 #ifdef CONFIG_PROVE_RCU
132 int lockdep_tasklist_lock_is_held(void)
133 {
134 	return lockdep_is_held(&tasklist_lock);
135 }
136 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
137 #endif /* #ifdef CONFIG_PROVE_RCU */
138 
139 int nr_processes(void)
140 {
141 	int cpu;
142 	int total = 0;
143 
144 	for_each_possible_cpu(cpu)
145 		total += per_cpu(process_counts, cpu);
146 
147 	return total;
148 }
149 
150 void __weak arch_release_task_struct(struct task_struct *tsk)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
155 static struct kmem_cache *task_struct_cachep;
156 
157 static inline struct task_struct *alloc_task_struct_node(int node)
158 {
159 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
160 }
161 
162 static inline void free_task_struct(struct task_struct *tsk)
163 {
164 	kmem_cache_free(task_struct_cachep, tsk);
165 }
166 #endif
167 
168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
169 
170 /*
171  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
172  * kmemcache based allocator.
173  */
174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
175 
176 #ifdef CONFIG_VMAP_STACK
177 /*
178  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
179  * flush.  Try to minimize the number of calls by caching stacks.
180  */
181 #define NR_CACHED_STACKS 2
182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
183 
184 static int free_vm_stack_cache(unsigned int cpu)
185 {
186 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
187 	int i;
188 
189 	for (i = 0; i < NR_CACHED_STACKS; i++) {
190 		struct vm_struct *vm_stack = cached_vm_stacks[i];
191 
192 		if (!vm_stack)
193 			continue;
194 
195 		vfree(vm_stack->addr);
196 		cached_vm_stacks[i] = NULL;
197 	}
198 
199 	return 0;
200 }
201 #endif
202 
203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
204 {
205 #ifdef CONFIG_VMAP_STACK
206 	void *stack;
207 	int i;
208 
209 	for (i = 0; i < NR_CACHED_STACKS; i++) {
210 		struct vm_struct *s;
211 
212 		s = this_cpu_xchg(cached_stacks[i], NULL);
213 
214 		if (!s)
215 			continue;
216 
217 		/* Clear stale pointers from reused stack. */
218 		memset(s->addr, 0, THREAD_SIZE);
219 
220 		tsk->stack_vm_area = s;
221 		tsk->stack = s->addr;
222 		return s->addr;
223 	}
224 
225 	/*
226 	 * Allocated stacks are cached and later reused by new threads,
227 	 * so memcg accounting is performed manually on assigning/releasing
228 	 * stacks to tasks. Drop __GFP_ACCOUNT.
229 	 */
230 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
231 				     VMALLOC_START, VMALLOC_END,
232 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
233 				     PAGE_KERNEL,
234 				     0, node, __builtin_return_address(0));
235 
236 	/*
237 	 * We can't call find_vm_area() in interrupt context, and
238 	 * free_thread_stack() can be called in interrupt context,
239 	 * so cache the vm_struct.
240 	 */
241 	if (stack) {
242 		tsk->stack_vm_area = find_vm_area(stack);
243 		tsk->stack = stack;
244 	}
245 	return stack;
246 #else
247 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
248 					     THREAD_SIZE_ORDER);
249 
250 	return page ? page_address(page) : NULL;
251 #endif
252 }
253 
254 static inline void free_thread_stack(struct task_struct *tsk)
255 {
256 #ifdef CONFIG_VMAP_STACK
257 	struct vm_struct *vm = task_stack_vm_area(tsk);
258 
259 	if (vm) {
260 		int i;
261 
262 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
263 			mod_memcg_page_state(vm->pages[i],
264 					     MEMCG_KERNEL_STACK_KB,
265 					     -(int)(PAGE_SIZE / 1024));
266 
267 			memcg_kmem_uncharge(vm->pages[i], 0);
268 		}
269 
270 		for (i = 0; i < NR_CACHED_STACKS; i++) {
271 			if (this_cpu_cmpxchg(cached_stacks[i],
272 					NULL, tsk->stack_vm_area) != NULL)
273 				continue;
274 
275 			return;
276 		}
277 
278 		vfree_atomic(tsk->stack);
279 		return;
280 	}
281 #endif
282 
283 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
284 }
285 # else
286 static struct kmem_cache *thread_stack_cache;
287 
288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
289 						  int node)
290 {
291 	unsigned long *stack;
292 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
293 	tsk->stack = stack;
294 	return stack;
295 }
296 
297 static void free_thread_stack(struct task_struct *tsk)
298 {
299 	kmem_cache_free(thread_stack_cache, tsk->stack);
300 }
301 
302 void thread_stack_cache_init(void)
303 {
304 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
305 					THREAD_SIZE, THREAD_SIZE, 0, 0,
306 					THREAD_SIZE, NULL);
307 	BUG_ON(thread_stack_cache == NULL);
308 }
309 # endif
310 #endif
311 
312 /* SLAB cache for signal_struct structures (tsk->signal) */
313 static struct kmem_cache *signal_cachep;
314 
315 /* SLAB cache for sighand_struct structures (tsk->sighand) */
316 struct kmem_cache *sighand_cachep;
317 
318 /* SLAB cache for files_struct structures (tsk->files) */
319 struct kmem_cache *files_cachep;
320 
321 /* SLAB cache for fs_struct structures (tsk->fs) */
322 struct kmem_cache *fs_cachep;
323 
324 /* SLAB cache for vm_area_struct structures */
325 static struct kmem_cache *vm_area_cachep;
326 
327 /* SLAB cache for mm_struct structures (tsk->mm) */
328 static struct kmem_cache *mm_cachep;
329 
330 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
331 {
332 	struct vm_area_struct *vma;
333 
334 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
335 	if (vma)
336 		vma_init(vma, mm);
337 	return vma;
338 }
339 
340 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
341 {
342 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
343 
344 	if (new) {
345 		*new = *orig;
346 		INIT_LIST_HEAD(&new->anon_vma_chain);
347 	}
348 	return new;
349 }
350 
351 void vm_area_free(struct vm_area_struct *vma)
352 {
353 	kmem_cache_free(vm_area_cachep, vma);
354 }
355 
356 static void account_kernel_stack(struct task_struct *tsk, int account)
357 {
358 	void *stack = task_stack_page(tsk);
359 	struct vm_struct *vm = task_stack_vm_area(tsk);
360 
361 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
362 
363 	if (vm) {
364 		int i;
365 
366 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
367 
368 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
369 			mod_zone_page_state(page_zone(vm->pages[i]),
370 					    NR_KERNEL_STACK_KB,
371 					    PAGE_SIZE / 1024 * account);
372 		}
373 	} else {
374 		/*
375 		 * All stack pages are in the same zone and belong to the
376 		 * same memcg.
377 		 */
378 		struct page *first_page = virt_to_page(stack);
379 
380 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
381 				    THREAD_SIZE / 1024 * account);
382 
383 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
384 				     account * (THREAD_SIZE / 1024));
385 	}
386 }
387 
388 static int memcg_charge_kernel_stack(struct task_struct *tsk)
389 {
390 #ifdef CONFIG_VMAP_STACK
391 	struct vm_struct *vm = task_stack_vm_area(tsk);
392 	int ret;
393 
394 	if (vm) {
395 		int i;
396 
397 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
398 			/*
399 			 * If memcg_kmem_charge() fails, page->mem_cgroup
400 			 * pointer is NULL, and both memcg_kmem_uncharge()
401 			 * and mod_memcg_page_state() in free_thread_stack()
402 			 * will ignore this page. So it's safe.
403 			 */
404 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
405 			if (ret)
406 				return ret;
407 
408 			mod_memcg_page_state(vm->pages[i],
409 					     MEMCG_KERNEL_STACK_KB,
410 					     PAGE_SIZE / 1024);
411 		}
412 	}
413 #endif
414 	return 0;
415 }
416 
417 static void release_task_stack(struct task_struct *tsk)
418 {
419 	if (WARN_ON(tsk->state != TASK_DEAD))
420 		return;  /* Better to leak the stack than to free prematurely */
421 
422 	account_kernel_stack(tsk, -1);
423 	free_thread_stack(tsk);
424 	tsk->stack = NULL;
425 #ifdef CONFIG_VMAP_STACK
426 	tsk->stack_vm_area = NULL;
427 #endif
428 }
429 
430 #ifdef CONFIG_THREAD_INFO_IN_TASK
431 void put_task_stack(struct task_struct *tsk)
432 {
433 	if (refcount_dec_and_test(&tsk->stack_refcount))
434 		release_task_stack(tsk);
435 }
436 #endif
437 
438 void free_task(struct task_struct *tsk)
439 {
440 #ifndef CONFIG_THREAD_INFO_IN_TASK
441 	/*
442 	 * The task is finally done with both the stack and thread_info,
443 	 * so free both.
444 	 */
445 	release_task_stack(tsk);
446 #else
447 	/*
448 	 * If the task had a separate stack allocation, it should be gone
449 	 * by now.
450 	 */
451 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
452 #endif
453 	rt_mutex_debug_task_free(tsk);
454 	ftrace_graph_exit_task(tsk);
455 	put_seccomp_filter(tsk);
456 	arch_release_task_struct(tsk);
457 	if (tsk->flags & PF_KTHREAD)
458 		free_kthread_struct(tsk);
459 	free_task_struct(tsk);
460 }
461 EXPORT_SYMBOL(free_task);
462 
463 #ifdef CONFIG_MMU
464 static __latent_entropy int dup_mmap(struct mm_struct *mm,
465 					struct mm_struct *oldmm)
466 {
467 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
468 	struct rb_node **rb_link, *rb_parent;
469 	int retval;
470 	unsigned long charge;
471 	LIST_HEAD(uf);
472 
473 	uprobe_start_dup_mmap();
474 	if (down_write_killable(&oldmm->mmap_sem)) {
475 		retval = -EINTR;
476 		goto fail_uprobe_end;
477 	}
478 	flush_cache_dup_mm(oldmm);
479 	uprobe_dup_mmap(oldmm, mm);
480 	/*
481 	 * Not linked in yet - no deadlock potential:
482 	 */
483 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
484 
485 	/* No ordering required: file already has been exposed. */
486 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
487 
488 	mm->total_vm = oldmm->total_vm;
489 	mm->data_vm = oldmm->data_vm;
490 	mm->exec_vm = oldmm->exec_vm;
491 	mm->stack_vm = oldmm->stack_vm;
492 
493 	rb_link = &mm->mm_rb.rb_node;
494 	rb_parent = NULL;
495 	pprev = &mm->mmap;
496 	retval = ksm_fork(mm, oldmm);
497 	if (retval)
498 		goto out;
499 	retval = khugepaged_fork(mm, oldmm);
500 	if (retval)
501 		goto out;
502 
503 	prev = NULL;
504 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
505 		struct file *file;
506 
507 		if (mpnt->vm_flags & VM_DONTCOPY) {
508 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
509 			continue;
510 		}
511 		charge = 0;
512 		/*
513 		 * Don't duplicate many vmas if we've been oom-killed (for
514 		 * example)
515 		 */
516 		if (fatal_signal_pending(current)) {
517 			retval = -EINTR;
518 			goto out;
519 		}
520 		if (mpnt->vm_flags & VM_ACCOUNT) {
521 			unsigned long len = vma_pages(mpnt);
522 
523 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
524 				goto fail_nomem;
525 			charge = len;
526 		}
527 		tmp = vm_area_dup(mpnt);
528 		if (!tmp)
529 			goto fail_nomem;
530 		retval = vma_dup_policy(mpnt, tmp);
531 		if (retval)
532 			goto fail_nomem_policy;
533 		tmp->vm_mm = mm;
534 		retval = dup_userfaultfd(tmp, &uf);
535 		if (retval)
536 			goto fail_nomem_anon_vma_fork;
537 		if (tmp->vm_flags & VM_WIPEONFORK) {
538 			/* VM_WIPEONFORK gets a clean slate in the child. */
539 			tmp->anon_vma = NULL;
540 			if (anon_vma_prepare(tmp))
541 				goto fail_nomem_anon_vma_fork;
542 		} else if (anon_vma_fork(tmp, mpnt))
543 			goto fail_nomem_anon_vma_fork;
544 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
545 		tmp->vm_next = tmp->vm_prev = NULL;
546 		file = tmp->vm_file;
547 		if (file) {
548 			struct inode *inode = file_inode(file);
549 			struct address_space *mapping = file->f_mapping;
550 
551 			get_file(file);
552 			if (tmp->vm_flags & VM_DENYWRITE)
553 				atomic_dec(&inode->i_writecount);
554 			i_mmap_lock_write(mapping);
555 			if (tmp->vm_flags & VM_SHARED)
556 				atomic_inc(&mapping->i_mmap_writable);
557 			flush_dcache_mmap_lock(mapping);
558 			/* insert tmp into the share list, just after mpnt */
559 			vma_interval_tree_insert_after(tmp, mpnt,
560 					&mapping->i_mmap);
561 			flush_dcache_mmap_unlock(mapping);
562 			i_mmap_unlock_write(mapping);
563 		}
564 
565 		/*
566 		 * Clear hugetlb-related page reserves for children. This only
567 		 * affects MAP_PRIVATE mappings. Faults generated by the child
568 		 * are not guaranteed to succeed, even if read-only
569 		 */
570 		if (is_vm_hugetlb_page(tmp))
571 			reset_vma_resv_huge_pages(tmp);
572 
573 		/*
574 		 * Link in the new vma and copy the page table entries.
575 		 */
576 		*pprev = tmp;
577 		pprev = &tmp->vm_next;
578 		tmp->vm_prev = prev;
579 		prev = tmp;
580 
581 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
582 		rb_link = &tmp->vm_rb.rb_right;
583 		rb_parent = &tmp->vm_rb;
584 
585 		mm->map_count++;
586 		if (!(tmp->vm_flags & VM_WIPEONFORK))
587 			retval = copy_page_range(mm, oldmm, mpnt);
588 
589 		if (tmp->vm_ops && tmp->vm_ops->open)
590 			tmp->vm_ops->open(tmp);
591 
592 		if (retval)
593 			goto out;
594 	}
595 	/* a new mm has just been created */
596 	retval = arch_dup_mmap(oldmm, mm);
597 out:
598 	up_write(&mm->mmap_sem);
599 	flush_tlb_mm(oldmm);
600 	up_write(&oldmm->mmap_sem);
601 	dup_userfaultfd_complete(&uf);
602 fail_uprobe_end:
603 	uprobe_end_dup_mmap();
604 	return retval;
605 fail_nomem_anon_vma_fork:
606 	mpol_put(vma_policy(tmp));
607 fail_nomem_policy:
608 	vm_area_free(tmp);
609 fail_nomem:
610 	retval = -ENOMEM;
611 	vm_unacct_memory(charge);
612 	goto out;
613 }
614 
615 static inline int mm_alloc_pgd(struct mm_struct *mm)
616 {
617 	mm->pgd = pgd_alloc(mm);
618 	if (unlikely(!mm->pgd))
619 		return -ENOMEM;
620 	return 0;
621 }
622 
623 static inline void mm_free_pgd(struct mm_struct *mm)
624 {
625 	pgd_free(mm, mm->pgd);
626 }
627 #else
628 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
629 {
630 	down_write(&oldmm->mmap_sem);
631 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
632 	up_write(&oldmm->mmap_sem);
633 	return 0;
634 }
635 #define mm_alloc_pgd(mm)	(0)
636 #define mm_free_pgd(mm)
637 #endif /* CONFIG_MMU */
638 
639 static void check_mm(struct mm_struct *mm)
640 {
641 	int i;
642 
643 	for (i = 0; i < NR_MM_COUNTERS; i++) {
644 		long x = atomic_long_read(&mm->rss_stat.count[i]);
645 
646 		if (unlikely(x))
647 			printk(KERN_ALERT "BUG: Bad rss-counter state "
648 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
649 	}
650 
651 	if (mm_pgtables_bytes(mm))
652 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
653 				mm_pgtables_bytes(mm));
654 
655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
656 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
657 #endif
658 }
659 
660 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
661 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
662 
663 /*
664  * Called when the last reference to the mm
665  * is dropped: either by a lazy thread or by
666  * mmput. Free the page directory and the mm.
667  */
668 void __mmdrop(struct mm_struct *mm)
669 {
670 	BUG_ON(mm == &init_mm);
671 	WARN_ON_ONCE(mm == current->mm);
672 	WARN_ON_ONCE(mm == current->active_mm);
673 	mm_free_pgd(mm);
674 	destroy_context(mm);
675 	hmm_mm_destroy(mm);
676 	mmu_notifier_mm_destroy(mm);
677 	check_mm(mm);
678 	put_user_ns(mm->user_ns);
679 	free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682 
683 static void mmdrop_async_fn(struct work_struct *work)
684 {
685 	struct mm_struct *mm;
686 
687 	mm = container_of(work, struct mm_struct, async_put_work);
688 	__mmdrop(mm);
689 }
690 
691 static void mmdrop_async(struct mm_struct *mm)
692 {
693 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
694 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
695 		schedule_work(&mm->async_put_work);
696 	}
697 }
698 
699 static inline void free_signal_struct(struct signal_struct *sig)
700 {
701 	taskstats_tgid_free(sig);
702 	sched_autogroup_exit(sig);
703 	/*
704 	 * __mmdrop is not safe to call from softirq context on x86 due to
705 	 * pgd_dtor so postpone it to the async context
706 	 */
707 	if (sig->oom_mm)
708 		mmdrop_async(sig->oom_mm);
709 	kmem_cache_free(signal_cachep, sig);
710 }
711 
712 static inline void put_signal_struct(struct signal_struct *sig)
713 {
714 	if (refcount_dec_and_test(&sig->sigcnt))
715 		free_signal_struct(sig);
716 }
717 
718 void __put_task_struct(struct task_struct *tsk)
719 {
720 	WARN_ON(!tsk->exit_state);
721 	WARN_ON(refcount_read(&tsk->usage));
722 	WARN_ON(tsk == current);
723 
724 	cgroup_free(tsk);
725 	task_numa_free(tsk);
726 	security_task_free(tsk);
727 	exit_creds(tsk);
728 	delayacct_tsk_free(tsk);
729 	put_signal_struct(tsk->signal);
730 
731 	if (!profile_handoff_task(tsk))
732 		free_task(tsk);
733 }
734 EXPORT_SYMBOL_GPL(__put_task_struct);
735 
736 void __init __weak arch_task_cache_init(void) { }
737 
738 /*
739  * set_max_threads
740  */
741 static void set_max_threads(unsigned int max_threads_suggested)
742 {
743 	u64 threads;
744 	unsigned long nr_pages = totalram_pages();
745 
746 	/*
747 	 * The number of threads shall be limited such that the thread
748 	 * structures may only consume a small part of the available memory.
749 	 */
750 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
751 		threads = MAX_THREADS;
752 	else
753 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
754 				    (u64) THREAD_SIZE * 8UL);
755 
756 	if (threads > max_threads_suggested)
757 		threads = max_threads_suggested;
758 
759 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
760 }
761 
762 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
763 /* Initialized by the architecture: */
764 int arch_task_struct_size __read_mostly;
765 #endif
766 
767 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
768 {
769 	/* Fetch thread_struct whitelist for the architecture. */
770 	arch_thread_struct_whitelist(offset, size);
771 
772 	/*
773 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
774 	 * adjust offset to position of thread_struct in task_struct.
775 	 */
776 	if (unlikely(*size == 0))
777 		*offset = 0;
778 	else
779 		*offset += offsetof(struct task_struct, thread);
780 }
781 
782 void __init fork_init(void)
783 {
784 	int i;
785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
786 #ifndef ARCH_MIN_TASKALIGN
787 #define ARCH_MIN_TASKALIGN	0
788 #endif
789 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
790 	unsigned long useroffset, usersize;
791 
792 	/* create a slab on which task_structs can be allocated */
793 	task_struct_whitelist(&useroffset, &usersize);
794 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
795 			arch_task_struct_size, align,
796 			SLAB_PANIC|SLAB_ACCOUNT,
797 			useroffset, usersize, NULL);
798 #endif
799 
800 	/* do the arch specific task caches init */
801 	arch_task_cache_init();
802 
803 	set_max_threads(MAX_THREADS);
804 
805 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
806 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
807 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
808 		init_task.signal->rlim[RLIMIT_NPROC];
809 
810 	for (i = 0; i < UCOUNT_COUNTS; i++) {
811 		init_user_ns.ucount_max[i] = max_threads/2;
812 	}
813 
814 #ifdef CONFIG_VMAP_STACK
815 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
816 			  NULL, free_vm_stack_cache);
817 #endif
818 
819 	lockdep_init_task(&init_task);
820 }
821 
822 int __weak arch_dup_task_struct(struct task_struct *dst,
823 					       struct task_struct *src)
824 {
825 	*dst = *src;
826 	return 0;
827 }
828 
829 void set_task_stack_end_magic(struct task_struct *tsk)
830 {
831 	unsigned long *stackend;
832 
833 	stackend = end_of_stack(tsk);
834 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
835 }
836 
837 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
838 {
839 	struct task_struct *tsk;
840 	unsigned long *stack;
841 	struct vm_struct *stack_vm_area __maybe_unused;
842 	int err;
843 
844 	if (node == NUMA_NO_NODE)
845 		node = tsk_fork_get_node(orig);
846 	tsk = alloc_task_struct_node(node);
847 	if (!tsk)
848 		return NULL;
849 
850 	stack = alloc_thread_stack_node(tsk, node);
851 	if (!stack)
852 		goto free_tsk;
853 
854 	if (memcg_charge_kernel_stack(tsk))
855 		goto free_stack;
856 
857 	stack_vm_area = task_stack_vm_area(tsk);
858 
859 	err = arch_dup_task_struct(tsk, orig);
860 
861 	/*
862 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
863 	 * sure they're properly initialized before using any stack-related
864 	 * functions again.
865 	 */
866 	tsk->stack = stack;
867 #ifdef CONFIG_VMAP_STACK
868 	tsk->stack_vm_area = stack_vm_area;
869 #endif
870 #ifdef CONFIG_THREAD_INFO_IN_TASK
871 	refcount_set(&tsk->stack_refcount, 1);
872 #endif
873 
874 	if (err)
875 		goto free_stack;
876 
877 #ifdef CONFIG_SECCOMP
878 	/*
879 	 * We must handle setting up seccomp filters once we're under
880 	 * the sighand lock in case orig has changed between now and
881 	 * then. Until then, filter must be NULL to avoid messing up
882 	 * the usage counts on the error path calling free_task.
883 	 */
884 	tsk->seccomp.filter = NULL;
885 #endif
886 
887 	setup_thread_stack(tsk, orig);
888 	clear_user_return_notifier(tsk);
889 	clear_tsk_need_resched(tsk);
890 	set_task_stack_end_magic(tsk);
891 
892 #ifdef CONFIG_STACKPROTECTOR
893 	tsk->stack_canary = get_random_canary();
894 #endif
895 
896 	/*
897 	 * One for us, one for whoever does the "release_task()" (usually
898 	 * parent)
899 	 */
900 	refcount_set(&tsk->usage, 2);
901 #ifdef CONFIG_BLK_DEV_IO_TRACE
902 	tsk->btrace_seq = 0;
903 #endif
904 	tsk->splice_pipe = NULL;
905 	tsk->task_frag.page = NULL;
906 	tsk->wake_q.next = NULL;
907 
908 	account_kernel_stack(tsk, 1);
909 
910 	kcov_task_init(tsk);
911 
912 #ifdef CONFIG_FAULT_INJECTION
913 	tsk->fail_nth = 0;
914 #endif
915 
916 #ifdef CONFIG_BLK_CGROUP
917 	tsk->throttle_queue = NULL;
918 	tsk->use_memdelay = 0;
919 #endif
920 
921 #ifdef CONFIG_MEMCG
922 	tsk->active_memcg = NULL;
923 #endif
924 	return tsk;
925 
926 free_stack:
927 	free_thread_stack(tsk);
928 free_tsk:
929 	free_task_struct(tsk);
930 	return NULL;
931 }
932 
933 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
934 
935 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
936 
937 static int __init coredump_filter_setup(char *s)
938 {
939 	default_dump_filter =
940 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
941 		MMF_DUMP_FILTER_MASK;
942 	return 1;
943 }
944 
945 __setup("coredump_filter=", coredump_filter_setup);
946 
947 #include <linux/init_task.h>
948 
949 static void mm_init_aio(struct mm_struct *mm)
950 {
951 #ifdef CONFIG_AIO
952 	spin_lock_init(&mm->ioctx_lock);
953 	mm->ioctx_table = NULL;
954 #endif
955 }
956 
957 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
958 {
959 #ifdef CONFIG_MEMCG
960 	mm->owner = p;
961 #endif
962 }
963 
964 static void mm_init_uprobes_state(struct mm_struct *mm)
965 {
966 #ifdef CONFIG_UPROBES
967 	mm->uprobes_state.xol_area = NULL;
968 #endif
969 }
970 
971 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
972 	struct user_namespace *user_ns)
973 {
974 	mm->mmap = NULL;
975 	mm->mm_rb = RB_ROOT;
976 	mm->vmacache_seqnum = 0;
977 	atomic_set(&mm->mm_users, 1);
978 	atomic_set(&mm->mm_count, 1);
979 	init_rwsem(&mm->mmap_sem);
980 	INIT_LIST_HEAD(&mm->mmlist);
981 	mm->core_state = NULL;
982 	mm_pgtables_bytes_init(mm);
983 	mm->map_count = 0;
984 	mm->locked_vm = 0;
985 	atomic64_set(&mm->pinned_vm, 0);
986 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
987 	spin_lock_init(&mm->page_table_lock);
988 	spin_lock_init(&mm->arg_lock);
989 	mm_init_cpumask(mm);
990 	mm_init_aio(mm);
991 	mm_init_owner(mm, p);
992 	RCU_INIT_POINTER(mm->exe_file, NULL);
993 	mmu_notifier_mm_init(mm);
994 	hmm_mm_init(mm);
995 	init_tlb_flush_pending(mm);
996 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
997 	mm->pmd_huge_pte = NULL;
998 #endif
999 	mm_init_uprobes_state(mm);
1000 
1001 	if (current->mm) {
1002 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1003 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1004 	} else {
1005 		mm->flags = default_dump_filter;
1006 		mm->def_flags = 0;
1007 	}
1008 
1009 	if (mm_alloc_pgd(mm))
1010 		goto fail_nopgd;
1011 
1012 	if (init_new_context(p, mm))
1013 		goto fail_nocontext;
1014 
1015 	mm->user_ns = get_user_ns(user_ns);
1016 	return mm;
1017 
1018 fail_nocontext:
1019 	mm_free_pgd(mm);
1020 fail_nopgd:
1021 	free_mm(mm);
1022 	return NULL;
1023 }
1024 
1025 /*
1026  * Allocate and initialize an mm_struct.
1027  */
1028 struct mm_struct *mm_alloc(void)
1029 {
1030 	struct mm_struct *mm;
1031 
1032 	mm = allocate_mm();
1033 	if (!mm)
1034 		return NULL;
1035 
1036 	memset(mm, 0, sizeof(*mm));
1037 	return mm_init(mm, current, current_user_ns());
1038 }
1039 
1040 static inline void __mmput(struct mm_struct *mm)
1041 {
1042 	VM_BUG_ON(atomic_read(&mm->mm_users));
1043 
1044 	uprobe_clear_state(mm);
1045 	exit_aio(mm);
1046 	ksm_exit(mm);
1047 	khugepaged_exit(mm); /* must run before exit_mmap */
1048 	exit_mmap(mm);
1049 	mm_put_huge_zero_page(mm);
1050 	set_mm_exe_file(mm, NULL);
1051 	if (!list_empty(&mm->mmlist)) {
1052 		spin_lock(&mmlist_lock);
1053 		list_del(&mm->mmlist);
1054 		spin_unlock(&mmlist_lock);
1055 	}
1056 	if (mm->binfmt)
1057 		module_put(mm->binfmt->module);
1058 	mmdrop(mm);
1059 }
1060 
1061 /*
1062  * Decrement the use count and release all resources for an mm.
1063  */
1064 void mmput(struct mm_struct *mm)
1065 {
1066 	might_sleep();
1067 
1068 	if (atomic_dec_and_test(&mm->mm_users))
1069 		__mmput(mm);
1070 }
1071 EXPORT_SYMBOL_GPL(mmput);
1072 
1073 #ifdef CONFIG_MMU
1074 static void mmput_async_fn(struct work_struct *work)
1075 {
1076 	struct mm_struct *mm = container_of(work, struct mm_struct,
1077 					    async_put_work);
1078 
1079 	__mmput(mm);
1080 }
1081 
1082 void mmput_async(struct mm_struct *mm)
1083 {
1084 	if (atomic_dec_and_test(&mm->mm_users)) {
1085 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1086 		schedule_work(&mm->async_put_work);
1087 	}
1088 }
1089 #endif
1090 
1091 /**
1092  * set_mm_exe_file - change a reference to the mm's executable file
1093  *
1094  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1095  *
1096  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1097  * invocations: in mmput() nobody alive left, in execve task is single
1098  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1099  * mm->exe_file, but does so without using set_mm_exe_file() in order
1100  * to do avoid the need for any locks.
1101  */
1102 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1103 {
1104 	struct file *old_exe_file;
1105 
1106 	/*
1107 	 * It is safe to dereference the exe_file without RCU as
1108 	 * this function is only called if nobody else can access
1109 	 * this mm -- see comment above for justification.
1110 	 */
1111 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1112 
1113 	if (new_exe_file)
1114 		get_file(new_exe_file);
1115 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1116 	if (old_exe_file)
1117 		fput(old_exe_file);
1118 }
1119 
1120 /**
1121  * get_mm_exe_file - acquire a reference to the mm's executable file
1122  *
1123  * Returns %NULL if mm has no associated executable file.
1124  * User must release file via fput().
1125  */
1126 struct file *get_mm_exe_file(struct mm_struct *mm)
1127 {
1128 	struct file *exe_file;
1129 
1130 	rcu_read_lock();
1131 	exe_file = rcu_dereference(mm->exe_file);
1132 	if (exe_file && !get_file_rcu(exe_file))
1133 		exe_file = NULL;
1134 	rcu_read_unlock();
1135 	return exe_file;
1136 }
1137 EXPORT_SYMBOL(get_mm_exe_file);
1138 
1139 /**
1140  * get_task_exe_file - acquire a reference to the task's executable file
1141  *
1142  * Returns %NULL if task's mm (if any) has no associated executable file or
1143  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1144  * User must release file via fput().
1145  */
1146 struct file *get_task_exe_file(struct task_struct *task)
1147 {
1148 	struct file *exe_file = NULL;
1149 	struct mm_struct *mm;
1150 
1151 	task_lock(task);
1152 	mm = task->mm;
1153 	if (mm) {
1154 		if (!(task->flags & PF_KTHREAD))
1155 			exe_file = get_mm_exe_file(mm);
1156 	}
1157 	task_unlock(task);
1158 	return exe_file;
1159 }
1160 EXPORT_SYMBOL(get_task_exe_file);
1161 
1162 /**
1163  * get_task_mm - acquire a reference to the task's mm
1164  *
1165  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1166  * this kernel workthread has transiently adopted a user mm with use_mm,
1167  * to do its AIO) is not set and if so returns a reference to it, after
1168  * bumping up the use count.  User must release the mm via mmput()
1169  * after use.  Typically used by /proc and ptrace.
1170  */
1171 struct mm_struct *get_task_mm(struct task_struct *task)
1172 {
1173 	struct mm_struct *mm;
1174 
1175 	task_lock(task);
1176 	mm = task->mm;
1177 	if (mm) {
1178 		if (task->flags & PF_KTHREAD)
1179 			mm = NULL;
1180 		else
1181 			mmget(mm);
1182 	}
1183 	task_unlock(task);
1184 	return mm;
1185 }
1186 EXPORT_SYMBOL_GPL(get_task_mm);
1187 
1188 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1189 {
1190 	struct mm_struct *mm;
1191 	int err;
1192 
1193 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1194 	if (err)
1195 		return ERR_PTR(err);
1196 
1197 	mm = get_task_mm(task);
1198 	if (mm && mm != current->mm &&
1199 			!ptrace_may_access(task, mode)) {
1200 		mmput(mm);
1201 		mm = ERR_PTR(-EACCES);
1202 	}
1203 	mutex_unlock(&task->signal->cred_guard_mutex);
1204 
1205 	return mm;
1206 }
1207 
1208 static void complete_vfork_done(struct task_struct *tsk)
1209 {
1210 	struct completion *vfork;
1211 
1212 	task_lock(tsk);
1213 	vfork = tsk->vfork_done;
1214 	if (likely(vfork)) {
1215 		tsk->vfork_done = NULL;
1216 		complete(vfork);
1217 	}
1218 	task_unlock(tsk);
1219 }
1220 
1221 static int wait_for_vfork_done(struct task_struct *child,
1222 				struct completion *vfork)
1223 {
1224 	int killed;
1225 
1226 	freezer_do_not_count();
1227 	killed = wait_for_completion_killable(vfork);
1228 	freezer_count();
1229 
1230 	if (killed) {
1231 		task_lock(child);
1232 		child->vfork_done = NULL;
1233 		task_unlock(child);
1234 	}
1235 
1236 	put_task_struct(child);
1237 	return killed;
1238 }
1239 
1240 /* Please note the differences between mmput and mm_release.
1241  * mmput is called whenever we stop holding onto a mm_struct,
1242  * error success whatever.
1243  *
1244  * mm_release is called after a mm_struct has been removed
1245  * from the current process.
1246  *
1247  * This difference is important for error handling, when we
1248  * only half set up a mm_struct for a new process and need to restore
1249  * the old one.  Because we mmput the new mm_struct before
1250  * restoring the old one. . .
1251  * Eric Biederman 10 January 1998
1252  */
1253 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1254 {
1255 	/* Get rid of any futexes when releasing the mm */
1256 #ifdef CONFIG_FUTEX
1257 	if (unlikely(tsk->robust_list)) {
1258 		exit_robust_list(tsk);
1259 		tsk->robust_list = NULL;
1260 	}
1261 #ifdef CONFIG_COMPAT
1262 	if (unlikely(tsk->compat_robust_list)) {
1263 		compat_exit_robust_list(tsk);
1264 		tsk->compat_robust_list = NULL;
1265 	}
1266 #endif
1267 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1268 		exit_pi_state_list(tsk);
1269 #endif
1270 
1271 	uprobe_free_utask(tsk);
1272 
1273 	/* Get rid of any cached register state */
1274 	deactivate_mm(tsk, mm);
1275 
1276 	/*
1277 	 * Signal userspace if we're not exiting with a core dump
1278 	 * because we want to leave the value intact for debugging
1279 	 * purposes.
1280 	 */
1281 	if (tsk->clear_child_tid) {
1282 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1283 		    atomic_read(&mm->mm_users) > 1) {
1284 			/*
1285 			 * We don't check the error code - if userspace has
1286 			 * not set up a proper pointer then tough luck.
1287 			 */
1288 			put_user(0, tsk->clear_child_tid);
1289 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1290 					1, NULL, NULL, 0, 0);
1291 		}
1292 		tsk->clear_child_tid = NULL;
1293 	}
1294 
1295 	/*
1296 	 * All done, finally we can wake up parent and return this mm to him.
1297 	 * Also kthread_stop() uses this completion for synchronization.
1298 	 */
1299 	if (tsk->vfork_done)
1300 		complete_vfork_done(tsk);
1301 }
1302 
1303 /*
1304  * Allocate a new mm structure and copy contents from the
1305  * mm structure of the passed in task structure.
1306  */
1307 static struct mm_struct *dup_mm(struct task_struct *tsk)
1308 {
1309 	struct mm_struct *mm, *oldmm = current->mm;
1310 	int err;
1311 
1312 	mm = allocate_mm();
1313 	if (!mm)
1314 		goto fail_nomem;
1315 
1316 	memcpy(mm, oldmm, sizeof(*mm));
1317 
1318 	if (!mm_init(mm, tsk, mm->user_ns))
1319 		goto fail_nomem;
1320 
1321 	err = dup_mmap(mm, oldmm);
1322 	if (err)
1323 		goto free_pt;
1324 
1325 	mm->hiwater_rss = get_mm_rss(mm);
1326 	mm->hiwater_vm = mm->total_vm;
1327 
1328 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1329 		goto free_pt;
1330 
1331 	return mm;
1332 
1333 free_pt:
1334 	/* don't put binfmt in mmput, we haven't got module yet */
1335 	mm->binfmt = NULL;
1336 	mmput(mm);
1337 
1338 fail_nomem:
1339 	return NULL;
1340 }
1341 
1342 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1343 {
1344 	struct mm_struct *mm, *oldmm;
1345 	int retval;
1346 
1347 	tsk->min_flt = tsk->maj_flt = 0;
1348 	tsk->nvcsw = tsk->nivcsw = 0;
1349 #ifdef CONFIG_DETECT_HUNG_TASK
1350 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1351 	tsk->last_switch_time = 0;
1352 #endif
1353 
1354 	tsk->mm = NULL;
1355 	tsk->active_mm = NULL;
1356 
1357 	/*
1358 	 * Are we cloning a kernel thread?
1359 	 *
1360 	 * We need to steal a active VM for that..
1361 	 */
1362 	oldmm = current->mm;
1363 	if (!oldmm)
1364 		return 0;
1365 
1366 	/* initialize the new vmacache entries */
1367 	vmacache_flush(tsk);
1368 
1369 	if (clone_flags & CLONE_VM) {
1370 		mmget(oldmm);
1371 		mm = oldmm;
1372 		goto good_mm;
1373 	}
1374 
1375 	retval = -ENOMEM;
1376 	mm = dup_mm(tsk);
1377 	if (!mm)
1378 		goto fail_nomem;
1379 
1380 good_mm:
1381 	tsk->mm = mm;
1382 	tsk->active_mm = mm;
1383 	return 0;
1384 
1385 fail_nomem:
1386 	return retval;
1387 }
1388 
1389 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1390 {
1391 	struct fs_struct *fs = current->fs;
1392 	if (clone_flags & CLONE_FS) {
1393 		/* tsk->fs is already what we want */
1394 		spin_lock(&fs->lock);
1395 		if (fs->in_exec) {
1396 			spin_unlock(&fs->lock);
1397 			return -EAGAIN;
1398 		}
1399 		fs->users++;
1400 		spin_unlock(&fs->lock);
1401 		return 0;
1402 	}
1403 	tsk->fs = copy_fs_struct(fs);
1404 	if (!tsk->fs)
1405 		return -ENOMEM;
1406 	return 0;
1407 }
1408 
1409 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1410 {
1411 	struct files_struct *oldf, *newf;
1412 	int error = 0;
1413 
1414 	/*
1415 	 * A background process may not have any files ...
1416 	 */
1417 	oldf = current->files;
1418 	if (!oldf)
1419 		goto out;
1420 
1421 	if (clone_flags & CLONE_FILES) {
1422 		atomic_inc(&oldf->count);
1423 		goto out;
1424 	}
1425 
1426 	newf = dup_fd(oldf, &error);
1427 	if (!newf)
1428 		goto out;
1429 
1430 	tsk->files = newf;
1431 	error = 0;
1432 out:
1433 	return error;
1434 }
1435 
1436 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1437 {
1438 #ifdef CONFIG_BLOCK
1439 	struct io_context *ioc = current->io_context;
1440 	struct io_context *new_ioc;
1441 
1442 	if (!ioc)
1443 		return 0;
1444 	/*
1445 	 * Share io context with parent, if CLONE_IO is set
1446 	 */
1447 	if (clone_flags & CLONE_IO) {
1448 		ioc_task_link(ioc);
1449 		tsk->io_context = ioc;
1450 	} else if (ioprio_valid(ioc->ioprio)) {
1451 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1452 		if (unlikely(!new_ioc))
1453 			return -ENOMEM;
1454 
1455 		new_ioc->ioprio = ioc->ioprio;
1456 		put_io_context(new_ioc);
1457 	}
1458 #endif
1459 	return 0;
1460 }
1461 
1462 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1463 {
1464 	struct sighand_struct *sig;
1465 
1466 	if (clone_flags & CLONE_SIGHAND) {
1467 		refcount_inc(&current->sighand->count);
1468 		return 0;
1469 	}
1470 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1471 	rcu_assign_pointer(tsk->sighand, sig);
1472 	if (!sig)
1473 		return -ENOMEM;
1474 
1475 	refcount_set(&sig->count, 1);
1476 	spin_lock_irq(&current->sighand->siglock);
1477 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1478 	spin_unlock_irq(&current->sighand->siglock);
1479 	return 0;
1480 }
1481 
1482 void __cleanup_sighand(struct sighand_struct *sighand)
1483 {
1484 	if (refcount_dec_and_test(&sighand->count)) {
1485 		signalfd_cleanup(sighand);
1486 		/*
1487 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1488 		 * without an RCU grace period, see __lock_task_sighand().
1489 		 */
1490 		kmem_cache_free(sighand_cachep, sighand);
1491 	}
1492 }
1493 
1494 #ifdef CONFIG_POSIX_TIMERS
1495 /*
1496  * Initialize POSIX timer handling for a thread group.
1497  */
1498 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1499 {
1500 	unsigned long cpu_limit;
1501 
1502 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1503 	if (cpu_limit != RLIM_INFINITY) {
1504 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1505 		sig->cputimer.running = true;
1506 	}
1507 
1508 	/* The timer lists. */
1509 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1510 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1511 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1512 }
1513 #else
1514 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1515 #endif
1516 
1517 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1518 {
1519 	struct signal_struct *sig;
1520 
1521 	if (clone_flags & CLONE_THREAD)
1522 		return 0;
1523 
1524 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1525 	tsk->signal = sig;
1526 	if (!sig)
1527 		return -ENOMEM;
1528 
1529 	sig->nr_threads = 1;
1530 	atomic_set(&sig->live, 1);
1531 	refcount_set(&sig->sigcnt, 1);
1532 
1533 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1534 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1535 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1536 
1537 	init_waitqueue_head(&sig->wait_chldexit);
1538 	sig->curr_target = tsk;
1539 	init_sigpending(&sig->shared_pending);
1540 	INIT_HLIST_HEAD(&sig->multiprocess);
1541 	seqlock_init(&sig->stats_lock);
1542 	prev_cputime_init(&sig->prev_cputime);
1543 
1544 #ifdef CONFIG_POSIX_TIMERS
1545 	INIT_LIST_HEAD(&sig->posix_timers);
1546 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1547 	sig->real_timer.function = it_real_fn;
1548 #endif
1549 
1550 	task_lock(current->group_leader);
1551 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1552 	task_unlock(current->group_leader);
1553 
1554 	posix_cpu_timers_init_group(sig);
1555 
1556 	tty_audit_fork(sig);
1557 	sched_autogroup_fork(sig);
1558 
1559 	sig->oom_score_adj = current->signal->oom_score_adj;
1560 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1561 
1562 	mutex_init(&sig->cred_guard_mutex);
1563 
1564 	return 0;
1565 }
1566 
1567 static void copy_seccomp(struct task_struct *p)
1568 {
1569 #ifdef CONFIG_SECCOMP
1570 	/*
1571 	 * Must be called with sighand->lock held, which is common to
1572 	 * all threads in the group. Holding cred_guard_mutex is not
1573 	 * needed because this new task is not yet running and cannot
1574 	 * be racing exec.
1575 	 */
1576 	assert_spin_locked(&current->sighand->siglock);
1577 
1578 	/* Ref-count the new filter user, and assign it. */
1579 	get_seccomp_filter(current);
1580 	p->seccomp = current->seccomp;
1581 
1582 	/*
1583 	 * Explicitly enable no_new_privs here in case it got set
1584 	 * between the task_struct being duplicated and holding the
1585 	 * sighand lock. The seccomp state and nnp must be in sync.
1586 	 */
1587 	if (task_no_new_privs(current))
1588 		task_set_no_new_privs(p);
1589 
1590 	/*
1591 	 * If the parent gained a seccomp mode after copying thread
1592 	 * flags and between before we held the sighand lock, we have
1593 	 * to manually enable the seccomp thread flag here.
1594 	 */
1595 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1596 		set_tsk_thread_flag(p, TIF_SECCOMP);
1597 #endif
1598 }
1599 
1600 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1601 {
1602 	current->clear_child_tid = tidptr;
1603 
1604 	return task_pid_vnr(current);
1605 }
1606 
1607 static void rt_mutex_init_task(struct task_struct *p)
1608 {
1609 	raw_spin_lock_init(&p->pi_lock);
1610 #ifdef CONFIG_RT_MUTEXES
1611 	p->pi_waiters = RB_ROOT_CACHED;
1612 	p->pi_top_task = NULL;
1613 	p->pi_blocked_on = NULL;
1614 #endif
1615 }
1616 
1617 #ifdef CONFIG_POSIX_TIMERS
1618 /*
1619  * Initialize POSIX timer handling for a single task.
1620  */
1621 static void posix_cpu_timers_init(struct task_struct *tsk)
1622 {
1623 	tsk->cputime_expires.prof_exp = 0;
1624 	tsk->cputime_expires.virt_exp = 0;
1625 	tsk->cputime_expires.sched_exp = 0;
1626 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1627 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1628 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1629 }
1630 #else
1631 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1632 #endif
1633 
1634 static inline void init_task_pid_links(struct task_struct *task)
1635 {
1636 	enum pid_type type;
1637 
1638 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1639 		INIT_HLIST_NODE(&task->pid_links[type]);
1640 	}
1641 }
1642 
1643 static inline void
1644 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1645 {
1646 	if (type == PIDTYPE_PID)
1647 		task->thread_pid = pid;
1648 	else
1649 		task->signal->pids[type] = pid;
1650 }
1651 
1652 static inline void rcu_copy_process(struct task_struct *p)
1653 {
1654 #ifdef CONFIG_PREEMPT_RCU
1655 	p->rcu_read_lock_nesting = 0;
1656 	p->rcu_read_unlock_special.s = 0;
1657 	p->rcu_blocked_node = NULL;
1658 	INIT_LIST_HEAD(&p->rcu_node_entry);
1659 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1660 #ifdef CONFIG_TASKS_RCU
1661 	p->rcu_tasks_holdout = false;
1662 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1663 	p->rcu_tasks_idle_cpu = -1;
1664 #endif /* #ifdef CONFIG_TASKS_RCU */
1665 }
1666 
1667 static int pidfd_release(struct inode *inode, struct file *file)
1668 {
1669 	struct pid *pid = file->private_data;
1670 
1671 	file->private_data = NULL;
1672 	put_pid(pid);
1673 	return 0;
1674 }
1675 
1676 #ifdef CONFIG_PROC_FS
1677 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1678 {
1679 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1680 	struct pid *pid = f->private_data;
1681 
1682 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1683 	seq_putc(m, '\n');
1684 }
1685 #endif
1686 
1687 const struct file_operations pidfd_fops = {
1688 	.release = pidfd_release,
1689 #ifdef CONFIG_PROC_FS
1690 	.show_fdinfo = pidfd_show_fdinfo,
1691 #endif
1692 };
1693 
1694 /**
1695  * pidfd_create() - Create a new pid file descriptor.
1696  *
1697  * @pid:  struct pid that the pidfd will reference
1698  *
1699  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1700  *
1701  * Note, that this function can only be called after the fd table has
1702  * been unshared to avoid leaking the pidfd to the new process.
1703  *
1704  * Return: On success, a cloexec pidfd is returned.
1705  *         On error, a negative errno number will be returned.
1706  */
1707 static int pidfd_create(struct pid *pid)
1708 {
1709 	int fd;
1710 
1711 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1712 			      O_RDWR | O_CLOEXEC);
1713 	if (fd < 0)
1714 		put_pid(pid);
1715 
1716 	return fd;
1717 }
1718 
1719 /*
1720  * This creates a new process as a copy of the old one,
1721  * but does not actually start it yet.
1722  *
1723  * It copies the registers, and all the appropriate
1724  * parts of the process environment (as per the clone
1725  * flags). The actual kick-off is left to the caller.
1726  */
1727 static __latent_entropy struct task_struct *copy_process(
1728 					unsigned long clone_flags,
1729 					unsigned long stack_start,
1730 					unsigned long stack_size,
1731 					int __user *parent_tidptr,
1732 					int __user *child_tidptr,
1733 					struct pid *pid,
1734 					int trace,
1735 					unsigned long tls,
1736 					int node)
1737 {
1738 	int pidfd = -1, retval;
1739 	struct task_struct *p;
1740 	struct multiprocess_signals delayed;
1741 
1742 	/*
1743 	 * Don't allow sharing the root directory with processes in a different
1744 	 * namespace
1745 	 */
1746 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1747 		return ERR_PTR(-EINVAL);
1748 
1749 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1750 		return ERR_PTR(-EINVAL);
1751 
1752 	/*
1753 	 * Thread groups must share signals as well, and detached threads
1754 	 * can only be started up within the thread group.
1755 	 */
1756 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1757 		return ERR_PTR(-EINVAL);
1758 
1759 	/*
1760 	 * Shared signal handlers imply shared VM. By way of the above,
1761 	 * thread groups also imply shared VM. Blocking this case allows
1762 	 * for various simplifications in other code.
1763 	 */
1764 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1765 		return ERR_PTR(-EINVAL);
1766 
1767 	/*
1768 	 * Siblings of global init remain as zombies on exit since they are
1769 	 * not reaped by their parent (swapper). To solve this and to avoid
1770 	 * multi-rooted process trees, prevent global and container-inits
1771 	 * from creating siblings.
1772 	 */
1773 	if ((clone_flags & CLONE_PARENT) &&
1774 				current->signal->flags & SIGNAL_UNKILLABLE)
1775 		return ERR_PTR(-EINVAL);
1776 
1777 	/*
1778 	 * If the new process will be in a different pid or user namespace
1779 	 * do not allow it to share a thread group with the forking task.
1780 	 */
1781 	if (clone_flags & CLONE_THREAD) {
1782 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1783 		    (task_active_pid_ns(current) !=
1784 				current->nsproxy->pid_ns_for_children))
1785 			return ERR_PTR(-EINVAL);
1786 	}
1787 
1788 	if (clone_flags & CLONE_PIDFD) {
1789 		int reserved;
1790 
1791 		/*
1792 		 * - CLONE_PARENT_SETTID is useless for pidfds and also
1793 		 *   parent_tidptr is used to return pidfds.
1794 		 * - CLONE_DETACHED is blocked so that we can potentially
1795 		 *   reuse it later for CLONE_PIDFD.
1796 		 * - CLONE_THREAD is blocked until someone really needs it.
1797 		 */
1798 		if (clone_flags &
1799 		    (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1800 			return ERR_PTR(-EINVAL);
1801 
1802 		/*
1803 		 * Verify that parent_tidptr is sane so we can potentially
1804 		 * reuse it later.
1805 		 */
1806 		if (get_user(reserved, parent_tidptr))
1807 			return ERR_PTR(-EFAULT);
1808 
1809 		if (reserved != 0)
1810 			return ERR_PTR(-EINVAL);
1811 	}
1812 
1813 	/*
1814 	 * Force any signals received before this point to be delivered
1815 	 * before the fork happens.  Collect up signals sent to multiple
1816 	 * processes that happen during the fork and delay them so that
1817 	 * they appear to happen after the fork.
1818 	 */
1819 	sigemptyset(&delayed.signal);
1820 	INIT_HLIST_NODE(&delayed.node);
1821 
1822 	spin_lock_irq(&current->sighand->siglock);
1823 	if (!(clone_flags & CLONE_THREAD))
1824 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1825 	recalc_sigpending();
1826 	spin_unlock_irq(&current->sighand->siglock);
1827 	retval = -ERESTARTNOINTR;
1828 	if (signal_pending(current))
1829 		goto fork_out;
1830 
1831 	retval = -ENOMEM;
1832 	p = dup_task_struct(current, node);
1833 	if (!p)
1834 		goto fork_out;
1835 
1836 	/*
1837 	 * This _must_ happen before we call free_task(), i.e. before we jump
1838 	 * to any of the bad_fork_* labels. This is to avoid freeing
1839 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1840 	 * kernel threads (PF_KTHREAD).
1841 	 */
1842 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1843 	/*
1844 	 * Clear TID on mm_release()?
1845 	 */
1846 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1847 
1848 	ftrace_graph_init_task(p);
1849 
1850 	rt_mutex_init_task(p);
1851 
1852 #ifdef CONFIG_PROVE_LOCKING
1853 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1854 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1855 #endif
1856 	retval = -EAGAIN;
1857 	if (atomic_read(&p->real_cred->user->processes) >=
1858 			task_rlimit(p, RLIMIT_NPROC)) {
1859 		if (p->real_cred->user != INIT_USER &&
1860 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1861 			goto bad_fork_free;
1862 	}
1863 	current->flags &= ~PF_NPROC_EXCEEDED;
1864 
1865 	retval = copy_creds(p, clone_flags);
1866 	if (retval < 0)
1867 		goto bad_fork_free;
1868 
1869 	/*
1870 	 * If multiple threads are within copy_process(), then this check
1871 	 * triggers too late. This doesn't hurt, the check is only there
1872 	 * to stop root fork bombs.
1873 	 */
1874 	retval = -EAGAIN;
1875 	if (nr_threads >= max_threads)
1876 		goto bad_fork_cleanup_count;
1877 
1878 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1879 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1880 	p->flags |= PF_FORKNOEXEC;
1881 	INIT_LIST_HEAD(&p->children);
1882 	INIT_LIST_HEAD(&p->sibling);
1883 	rcu_copy_process(p);
1884 	p->vfork_done = NULL;
1885 	spin_lock_init(&p->alloc_lock);
1886 
1887 	init_sigpending(&p->pending);
1888 
1889 	p->utime = p->stime = p->gtime = 0;
1890 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1891 	p->utimescaled = p->stimescaled = 0;
1892 #endif
1893 	prev_cputime_init(&p->prev_cputime);
1894 
1895 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1896 	seqcount_init(&p->vtime.seqcount);
1897 	p->vtime.starttime = 0;
1898 	p->vtime.state = VTIME_INACTIVE;
1899 #endif
1900 
1901 #if defined(SPLIT_RSS_COUNTING)
1902 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1903 #endif
1904 
1905 	p->default_timer_slack_ns = current->timer_slack_ns;
1906 
1907 #ifdef CONFIG_PSI
1908 	p->psi_flags = 0;
1909 #endif
1910 
1911 	task_io_accounting_init(&p->ioac);
1912 	acct_clear_integrals(p);
1913 
1914 	posix_cpu_timers_init(p);
1915 
1916 	p->io_context = NULL;
1917 	audit_set_context(p, NULL);
1918 	cgroup_fork(p);
1919 #ifdef CONFIG_NUMA
1920 	p->mempolicy = mpol_dup(p->mempolicy);
1921 	if (IS_ERR(p->mempolicy)) {
1922 		retval = PTR_ERR(p->mempolicy);
1923 		p->mempolicy = NULL;
1924 		goto bad_fork_cleanup_threadgroup_lock;
1925 	}
1926 #endif
1927 #ifdef CONFIG_CPUSETS
1928 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1929 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1930 	seqcount_init(&p->mems_allowed_seq);
1931 #endif
1932 #ifdef CONFIG_TRACE_IRQFLAGS
1933 	p->irq_events = 0;
1934 	p->hardirqs_enabled = 0;
1935 	p->hardirq_enable_ip = 0;
1936 	p->hardirq_enable_event = 0;
1937 	p->hardirq_disable_ip = _THIS_IP_;
1938 	p->hardirq_disable_event = 0;
1939 	p->softirqs_enabled = 1;
1940 	p->softirq_enable_ip = _THIS_IP_;
1941 	p->softirq_enable_event = 0;
1942 	p->softirq_disable_ip = 0;
1943 	p->softirq_disable_event = 0;
1944 	p->hardirq_context = 0;
1945 	p->softirq_context = 0;
1946 #endif
1947 
1948 	p->pagefault_disabled = 0;
1949 
1950 #ifdef CONFIG_LOCKDEP
1951 	p->lockdep_depth = 0; /* no locks held yet */
1952 	p->curr_chain_key = 0;
1953 	p->lockdep_recursion = 0;
1954 	lockdep_init_task(p);
1955 #endif
1956 
1957 #ifdef CONFIG_DEBUG_MUTEXES
1958 	p->blocked_on = NULL; /* not blocked yet */
1959 #endif
1960 #ifdef CONFIG_BCACHE
1961 	p->sequential_io	= 0;
1962 	p->sequential_io_avg	= 0;
1963 #endif
1964 
1965 	/* Perform scheduler related setup. Assign this task to a CPU. */
1966 	retval = sched_fork(clone_flags, p);
1967 	if (retval)
1968 		goto bad_fork_cleanup_policy;
1969 
1970 	retval = perf_event_init_task(p);
1971 	if (retval)
1972 		goto bad_fork_cleanup_policy;
1973 	retval = audit_alloc(p);
1974 	if (retval)
1975 		goto bad_fork_cleanup_perf;
1976 	/* copy all the process information */
1977 	shm_init_task(p);
1978 	retval = security_task_alloc(p, clone_flags);
1979 	if (retval)
1980 		goto bad_fork_cleanup_audit;
1981 	retval = copy_semundo(clone_flags, p);
1982 	if (retval)
1983 		goto bad_fork_cleanup_security;
1984 	retval = copy_files(clone_flags, p);
1985 	if (retval)
1986 		goto bad_fork_cleanup_semundo;
1987 	retval = copy_fs(clone_flags, p);
1988 	if (retval)
1989 		goto bad_fork_cleanup_files;
1990 	retval = copy_sighand(clone_flags, p);
1991 	if (retval)
1992 		goto bad_fork_cleanup_fs;
1993 	retval = copy_signal(clone_flags, p);
1994 	if (retval)
1995 		goto bad_fork_cleanup_sighand;
1996 	retval = copy_mm(clone_flags, p);
1997 	if (retval)
1998 		goto bad_fork_cleanup_signal;
1999 	retval = copy_namespaces(clone_flags, p);
2000 	if (retval)
2001 		goto bad_fork_cleanup_mm;
2002 	retval = copy_io(clone_flags, p);
2003 	if (retval)
2004 		goto bad_fork_cleanup_namespaces;
2005 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2006 	if (retval)
2007 		goto bad_fork_cleanup_io;
2008 
2009 	stackleak_task_init(p);
2010 
2011 	if (pid != &init_struct_pid) {
2012 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2013 		if (IS_ERR(pid)) {
2014 			retval = PTR_ERR(pid);
2015 			goto bad_fork_cleanup_thread;
2016 		}
2017 	}
2018 
2019 	/*
2020 	 * This has to happen after we've potentially unshared the file
2021 	 * descriptor table (so that the pidfd doesn't leak into the child
2022 	 * if the fd table isn't shared).
2023 	 */
2024 	if (clone_flags & CLONE_PIDFD) {
2025 		retval = pidfd_create(pid);
2026 		if (retval < 0)
2027 			goto bad_fork_free_pid;
2028 
2029 		pidfd = retval;
2030 		retval = put_user(pidfd, parent_tidptr);
2031 		if (retval)
2032 			goto bad_fork_put_pidfd;
2033 	}
2034 
2035 #ifdef CONFIG_BLOCK
2036 	p->plug = NULL;
2037 #endif
2038 #ifdef CONFIG_FUTEX
2039 	p->robust_list = NULL;
2040 #ifdef CONFIG_COMPAT
2041 	p->compat_robust_list = NULL;
2042 #endif
2043 	INIT_LIST_HEAD(&p->pi_state_list);
2044 	p->pi_state_cache = NULL;
2045 #endif
2046 	/*
2047 	 * sigaltstack should be cleared when sharing the same VM
2048 	 */
2049 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2050 		sas_ss_reset(p);
2051 
2052 	/*
2053 	 * Syscall tracing and stepping should be turned off in the
2054 	 * child regardless of CLONE_PTRACE.
2055 	 */
2056 	user_disable_single_step(p);
2057 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2058 #ifdef TIF_SYSCALL_EMU
2059 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2060 #endif
2061 	clear_all_latency_tracing(p);
2062 
2063 	/* ok, now we should be set up.. */
2064 	p->pid = pid_nr(pid);
2065 	if (clone_flags & CLONE_THREAD) {
2066 		p->exit_signal = -1;
2067 		p->group_leader = current->group_leader;
2068 		p->tgid = current->tgid;
2069 	} else {
2070 		if (clone_flags & CLONE_PARENT)
2071 			p->exit_signal = current->group_leader->exit_signal;
2072 		else
2073 			p->exit_signal = (clone_flags & CSIGNAL);
2074 		p->group_leader = p;
2075 		p->tgid = p->pid;
2076 	}
2077 
2078 	p->nr_dirtied = 0;
2079 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2080 	p->dirty_paused_when = 0;
2081 
2082 	p->pdeath_signal = 0;
2083 	INIT_LIST_HEAD(&p->thread_group);
2084 	p->task_works = NULL;
2085 
2086 	cgroup_threadgroup_change_begin(current);
2087 	/*
2088 	 * Ensure that the cgroup subsystem policies allow the new process to be
2089 	 * forked. It should be noted the the new process's css_set can be changed
2090 	 * between here and cgroup_post_fork() if an organisation operation is in
2091 	 * progress.
2092 	 */
2093 	retval = cgroup_can_fork(p);
2094 	if (retval)
2095 		goto bad_fork_put_pidfd;
2096 
2097 	/*
2098 	 * From this point on we must avoid any synchronous user-space
2099 	 * communication until we take the tasklist-lock. In particular, we do
2100 	 * not want user-space to be able to predict the process start-time by
2101 	 * stalling fork(2) after we recorded the start_time but before it is
2102 	 * visible to the system.
2103 	 */
2104 
2105 	p->start_time = ktime_get_ns();
2106 	p->real_start_time = ktime_get_boot_ns();
2107 
2108 	/*
2109 	 * Make it visible to the rest of the system, but dont wake it up yet.
2110 	 * Need tasklist lock for parent etc handling!
2111 	 */
2112 	write_lock_irq(&tasklist_lock);
2113 
2114 	/* CLONE_PARENT re-uses the old parent */
2115 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2116 		p->real_parent = current->real_parent;
2117 		p->parent_exec_id = current->parent_exec_id;
2118 	} else {
2119 		p->real_parent = current;
2120 		p->parent_exec_id = current->self_exec_id;
2121 	}
2122 
2123 	klp_copy_process(p);
2124 
2125 	spin_lock(&current->sighand->siglock);
2126 
2127 	/*
2128 	 * Copy seccomp details explicitly here, in case they were changed
2129 	 * before holding sighand lock.
2130 	 */
2131 	copy_seccomp(p);
2132 
2133 	rseq_fork(p, clone_flags);
2134 
2135 	/* Don't start children in a dying pid namespace */
2136 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2137 		retval = -ENOMEM;
2138 		goto bad_fork_cancel_cgroup;
2139 	}
2140 
2141 	/* Let kill terminate clone/fork in the middle */
2142 	if (fatal_signal_pending(current)) {
2143 		retval = -EINTR;
2144 		goto bad_fork_cancel_cgroup;
2145 	}
2146 
2147 
2148 	init_task_pid_links(p);
2149 	if (likely(p->pid)) {
2150 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2151 
2152 		init_task_pid(p, PIDTYPE_PID, pid);
2153 		if (thread_group_leader(p)) {
2154 			init_task_pid(p, PIDTYPE_TGID, pid);
2155 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2156 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2157 
2158 			if (is_child_reaper(pid)) {
2159 				ns_of_pid(pid)->child_reaper = p;
2160 				p->signal->flags |= SIGNAL_UNKILLABLE;
2161 			}
2162 			p->signal->shared_pending.signal = delayed.signal;
2163 			p->signal->tty = tty_kref_get(current->signal->tty);
2164 			/*
2165 			 * Inherit has_child_subreaper flag under the same
2166 			 * tasklist_lock with adding child to the process tree
2167 			 * for propagate_has_child_subreaper optimization.
2168 			 */
2169 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2170 							 p->real_parent->signal->is_child_subreaper;
2171 			list_add_tail(&p->sibling, &p->real_parent->children);
2172 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2173 			attach_pid(p, PIDTYPE_TGID);
2174 			attach_pid(p, PIDTYPE_PGID);
2175 			attach_pid(p, PIDTYPE_SID);
2176 			__this_cpu_inc(process_counts);
2177 		} else {
2178 			current->signal->nr_threads++;
2179 			atomic_inc(&current->signal->live);
2180 			refcount_inc(&current->signal->sigcnt);
2181 			task_join_group_stop(p);
2182 			list_add_tail_rcu(&p->thread_group,
2183 					  &p->group_leader->thread_group);
2184 			list_add_tail_rcu(&p->thread_node,
2185 					  &p->signal->thread_head);
2186 		}
2187 		attach_pid(p, PIDTYPE_PID);
2188 		nr_threads++;
2189 	}
2190 	total_forks++;
2191 	hlist_del_init(&delayed.node);
2192 	spin_unlock(&current->sighand->siglock);
2193 	syscall_tracepoint_update(p);
2194 	write_unlock_irq(&tasklist_lock);
2195 
2196 	proc_fork_connector(p);
2197 	cgroup_post_fork(p);
2198 	cgroup_threadgroup_change_end(current);
2199 	perf_event_fork(p);
2200 
2201 	trace_task_newtask(p, clone_flags);
2202 	uprobe_copy_process(p, clone_flags);
2203 
2204 	return p;
2205 
2206 bad_fork_cancel_cgroup:
2207 	spin_unlock(&current->sighand->siglock);
2208 	write_unlock_irq(&tasklist_lock);
2209 	cgroup_cancel_fork(p);
2210 bad_fork_put_pidfd:
2211 	if (clone_flags & CLONE_PIDFD)
2212 		ksys_close(pidfd);
2213 bad_fork_free_pid:
2214 	cgroup_threadgroup_change_end(current);
2215 	if (pid != &init_struct_pid)
2216 		free_pid(pid);
2217 bad_fork_cleanup_thread:
2218 	exit_thread(p);
2219 bad_fork_cleanup_io:
2220 	if (p->io_context)
2221 		exit_io_context(p);
2222 bad_fork_cleanup_namespaces:
2223 	exit_task_namespaces(p);
2224 bad_fork_cleanup_mm:
2225 	if (p->mm)
2226 		mmput(p->mm);
2227 bad_fork_cleanup_signal:
2228 	if (!(clone_flags & CLONE_THREAD))
2229 		free_signal_struct(p->signal);
2230 bad_fork_cleanup_sighand:
2231 	__cleanup_sighand(p->sighand);
2232 bad_fork_cleanup_fs:
2233 	exit_fs(p); /* blocking */
2234 bad_fork_cleanup_files:
2235 	exit_files(p); /* blocking */
2236 bad_fork_cleanup_semundo:
2237 	exit_sem(p);
2238 bad_fork_cleanup_security:
2239 	security_task_free(p);
2240 bad_fork_cleanup_audit:
2241 	audit_free(p);
2242 bad_fork_cleanup_perf:
2243 	perf_event_free_task(p);
2244 bad_fork_cleanup_policy:
2245 	lockdep_free_task(p);
2246 #ifdef CONFIG_NUMA
2247 	mpol_put(p->mempolicy);
2248 bad_fork_cleanup_threadgroup_lock:
2249 #endif
2250 	delayacct_tsk_free(p);
2251 bad_fork_cleanup_count:
2252 	atomic_dec(&p->cred->user->processes);
2253 	exit_creds(p);
2254 bad_fork_free:
2255 	p->state = TASK_DEAD;
2256 	put_task_stack(p);
2257 	free_task(p);
2258 fork_out:
2259 	spin_lock_irq(&current->sighand->siglock);
2260 	hlist_del_init(&delayed.node);
2261 	spin_unlock_irq(&current->sighand->siglock);
2262 	return ERR_PTR(retval);
2263 }
2264 
2265 static inline void init_idle_pids(struct task_struct *idle)
2266 {
2267 	enum pid_type type;
2268 
2269 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2270 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2271 		init_task_pid(idle, type, &init_struct_pid);
2272 	}
2273 }
2274 
2275 struct task_struct *fork_idle(int cpu)
2276 {
2277 	struct task_struct *task;
2278 	task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2279 			    cpu_to_node(cpu));
2280 	if (!IS_ERR(task)) {
2281 		init_idle_pids(task);
2282 		init_idle(task, cpu);
2283 	}
2284 
2285 	return task;
2286 }
2287 
2288 /*
2289  *  Ok, this is the main fork-routine.
2290  *
2291  * It copies the process, and if successful kick-starts
2292  * it and waits for it to finish using the VM if required.
2293  */
2294 long _do_fork(unsigned long clone_flags,
2295 	      unsigned long stack_start,
2296 	      unsigned long stack_size,
2297 	      int __user *parent_tidptr,
2298 	      int __user *child_tidptr,
2299 	      unsigned long tls)
2300 {
2301 	struct completion vfork;
2302 	struct pid *pid;
2303 	struct task_struct *p;
2304 	int trace = 0;
2305 	long nr;
2306 
2307 	/*
2308 	 * Determine whether and which event to report to ptracer.  When
2309 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2310 	 * requested, no event is reported; otherwise, report if the event
2311 	 * for the type of forking is enabled.
2312 	 */
2313 	if (!(clone_flags & CLONE_UNTRACED)) {
2314 		if (clone_flags & CLONE_VFORK)
2315 			trace = PTRACE_EVENT_VFORK;
2316 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2317 			trace = PTRACE_EVENT_CLONE;
2318 		else
2319 			trace = PTRACE_EVENT_FORK;
2320 
2321 		if (likely(!ptrace_event_enabled(current, trace)))
2322 			trace = 0;
2323 	}
2324 
2325 	p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2326 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2327 	add_latent_entropy();
2328 
2329 	if (IS_ERR(p))
2330 		return PTR_ERR(p);
2331 
2332 	/*
2333 	 * Do this prior waking up the new thread - the thread pointer
2334 	 * might get invalid after that point, if the thread exits quickly.
2335 	 */
2336 	trace_sched_process_fork(current, p);
2337 
2338 	pid = get_task_pid(p, PIDTYPE_PID);
2339 	nr = pid_vnr(pid);
2340 
2341 	if (clone_flags & CLONE_PARENT_SETTID)
2342 		put_user(nr, parent_tidptr);
2343 
2344 	if (clone_flags & CLONE_VFORK) {
2345 		p->vfork_done = &vfork;
2346 		init_completion(&vfork);
2347 		get_task_struct(p);
2348 	}
2349 
2350 	wake_up_new_task(p);
2351 
2352 	/* forking complete and child started to run, tell ptracer */
2353 	if (unlikely(trace))
2354 		ptrace_event_pid(trace, pid);
2355 
2356 	if (clone_flags & CLONE_VFORK) {
2357 		if (!wait_for_vfork_done(p, &vfork))
2358 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2359 	}
2360 
2361 	put_pid(pid);
2362 	return nr;
2363 }
2364 
2365 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2366 /* For compatibility with architectures that call do_fork directly rather than
2367  * using the syscall entry points below. */
2368 long do_fork(unsigned long clone_flags,
2369 	      unsigned long stack_start,
2370 	      unsigned long stack_size,
2371 	      int __user *parent_tidptr,
2372 	      int __user *child_tidptr)
2373 {
2374 	return _do_fork(clone_flags, stack_start, stack_size,
2375 			parent_tidptr, child_tidptr, 0);
2376 }
2377 #endif
2378 
2379 /*
2380  * Create a kernel thread.
2381  */
2382 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2383 {
2384 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2385 		(unsigned long)arg, NULL, NULL, 0);
2386 }
2387 
2388 #ifdef __ARCH_WANT_SYS_FORK
2389 SYSCALL_DEFINE0(fork)
2390 {
2391 #ifdef CONFIG_MMU
2392 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2393 #else
2394 	/* can not support in nommu mode */
2395 	return -EINVAL;
2396 #endif
2397 }
2398 #endif
2399 
2400 #ifdef __ARCH_WANT_SYS_VFORK
2401 SYSCALL_DEFINE0(vfork)
2402 {
2403 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2404 			0, NULL, NULL, 0);
2405 }
2406 #endif
2407 
2408 #ifdef __ARCH_WANT_SYS_CLONE
2409 #ifdef CONFIG_CLONE_BACKWARDS
2410 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2411 		 int __user *, parent_tidptr,
2412 		 unsigned long, tls,
2413 		 int __user *, child_tidptr)
2414 #elif defined(CONFIG_CLONE_BACKWARDS2)
2415 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2416 		 int __user *, parent_tidptr,
2417 		 int __user *, child_tidptr,
2418 		 unsigned long, tls)
2419 #elif defined(CONFIG_CLONE_BACKWARDS3)
2420 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2421 		int, stack_size,
2422 		int __user *, parent_tidptr,
2423 		int __user *, child_tidptr,
2424 		unsigned long, tls)
2425 #else
2426 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2427 		 int __user *, parent_tidptr,
2428 		 int __user *, child_tidptr,
2429 		 unsigned long, tls)
2430 #endif
2431 {
2432 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2433 }
2434 #endif
2435 
2436 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2437 {
2438 	struct task_struct *leader, *parent, *child;
2439 	int res;
2440 
2441 	read_lock(&tasklist_lock);
2442 	leader = top = top->group_leader;
2443 down:
2444 	for_each_thread(leader, parent) {
2445 		list_for_each_entry(child, &parent->children, sibling) {
2446 			res = visitor(child, data);
2447 			if (res) {
2448 				if (res < 0)
2449 					goto out;
2450 				leader = child;
2451 				goto down;
2452 			}
2453 up:
2454 			;
2455 		}
2456 	}
2457 
2458 	if (leader != top) {
2459 		child = leader;
2460 		parent = child->real_parent;
2461 		leader = parent->group_leader;
2462 		goto up;
2463 	}
2464 out:
2465 	read_unlock(&tasklist_lock);
2466 }
2467 
2468 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2469 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2470 #endif
2471 
2472 static void sighand_ctor(void *data)
2473 {
2474 	struct sighand_struct *sighand = data;
2475 
2476 	spin_lock_init(&sighand->siglock);
2477 	init_waitqueue_head(&sighand->signalfd_wqh);
2478 }
2479 
2480 void __init proc_caches_init(void)
2481 {
2482 	unsigned int mm_size;
2483 
2484 	sighand_cachep = kmem_cache_create("sighand_cache",
2485 			sizeof(struct sighand_struct), 0,
2486 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2487 			SLAB_ACCOUNT, sighand_ctor);
2488 	signal_cachep = kmem_cache_create("signal_cache",
2489 			sizeof(struct signal_struct), 0,
2490 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2491 			NULL);
2492 	files_cachep = kmem_cache_create("files_cache",
2493 			sizeof(struct files_struct), 0,
2494 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2495 			NULL);
2496 	fs_cachep = kmem_cache_create("fs_cache",
2497 			sizeof(struct fs_struct), 0,
2498 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2499 			NULL);
2500 
2501 	/*
2502 	 * The mm_cpumask is located at the end of mm_struct, and is
2503 	 * dynamically sized based on the maximum CPU number this system
2504 	 * can have, taking hotplug into account (nr_cpu_ids).
2505 	 */
2506 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2507 
2508 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2509 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2510 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2511 			offsetof(struct mm_struct, saved_auxv),
2512 			sizeof_field(struct mm_struct, saved_auxv),
2513 			NULL);
2514 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2515 	mmap_init();
2516 	nsproxy_cache_init();
2517 }
2518 
2519 /*
2520  * Check constraints on flags passed to the unshare system call.
2521  */
2522 static int check_unshare_flags(unsigned long unshare_flags)
2523 {
2524 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2525 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2526 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2527 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2528 		return -EINVAL;
2529 	/*
2530 	 * Not implemented, but pretend it works if there is nothing
2531 	 * to unshare.  Note that unsharing the address space or the
2532 	 * signal handlers also need to unshare the signal queues (aka
2533 	 * CLONE_THREAD).
2534 	 */
2535 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2536 		if (!thread_group_empty(current))
2537 			return -EINVAL;
2538 	}
2539 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2540 		if (refcount_read(&current->sighand->count) > 1)
2541 			return -EINVAL;
2542 	}
2543 	if (unshare_flags & CLONE_VM) {
2544 		if (!current_is_single_threaded())
2545 			return -EINVAL;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 /*
2552  * Unshare the filesystem structure if it is being shared
2553  */
2554 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2555 {
2556 	struct fs_struct *fs = current->fs;
2557 
2558 	if (!(unshare_flags & CLONE_FS) || !fs)
2559 		return 0;
2560 
2561 	/* don't need lock here; in the worst case we'll do useless copy */
2562 	if (fs->users == 1)
2563 		return 0;
2564 
2565 	*new_fsp = copy_fs_struct(fs);
2566 	if (!*new_fsp)
2567 		return -ENOMEM;
2568 
2569 	return 0;
2570 }
2571 
2572 /*
2573  * Unshare file descriptor table if it is being shared
2574  */
2575 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2576 {
2577 	struct files_struct *fd = current->files;
2578 	int error = 0;
2579 
2580 	if ((unshare_flags & CLONE_FILES) &&
2581 	    (fd && atomic_read(&fd->count) > 1)) {
2582 		*new_fdp = dup_fd(fd, &error);
2583 		if (!*new_fdp)
2584 			return error;
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 /*
2591  * unshare allows a process to 'unshare' part of the process
2592  * context which was originally shared using clone.  copy_*
2593  * functions used by do_fork() cannot be used here directly
2594  * because they modify an inactive task_struct that is being
2595  * constructed. Here we are modifying the current, active,
2596  * task_struct.
2597  */
2598 int ksys_unshare(unsigned long unshare_flags)
2599 {
2600 	struct fs_struct *fs, *new_fs = NULL;
2601 	struct files_struct *fd, *new_fd = NULL;
2602 	struct cred *new_cred = NULL;
2603 	struct nsproxy *new_nsproxy = NULL;
2604 	int do_sysvsem = 0;
2605 	int err;
2606 
2607 	/*
2608 	 * If unsharing a user namespace must also unshare the thread group
2609 	 * and unshare the filesystem root and working directories.
2610 	 */
2611 	if (unshare_flags & CLONE_NEWUSER)
2612 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2613 	/*
2614 	 * If unsharing vm, must also unshare signal handlers.
2615 	 */
2616 	if (unshare_flags & CLONE_VM)
2617 		unshare_flags |= CLONE_SIGHAND;
2618 	/*
2619 	 * If unsharing a signal handlers, must also unshare the signal queues.
2620 	 */
2621 	if (unshare_flags & CLONE_SIGHAND)
2622 		unshare_flags |= CLONE_THREAD;
2623 	/*
2624 	 * If unsharing namespace, must also unshare filesystem information.
2625 	 */
2626 	if (unshare_flags & CLONE_NEWNS)
2627 		unshare_flags |= CLONE_FS;
2628 
2629 	err = check_unshare_flags(unshare_flags);
2630 	if (err)
2631 		goto bad_unshare_out;
2632 	/*
2633 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2634 	 * to a new ipc namespace, the semaphore arrays from the old
2635 	 * namespace are unreachable.
2636 	 */
2637 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2638 		do_sysvsem = 1;
2639 	err = unshare_fs(unshare_flags, &new_fs);
2640 	if (err)
2641 		goto bad_unshare_out;
2642 	err = unshare_fd(unshare_flags, &new_fd);
2643 	if (err)
2644 		goto bad_unshare_cleanup_fs;
2645 	err = unshare_userns(unshare_flags, &new_cred);
2646 	if (err)
2647 		goto bad_unshare_cleanup_fd;
2648 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2649 					 new_cred, new_fs);
2650 	if (err)
2651 		goto bad_unshare_cleanup_cred;
2652 
2653 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2654 		if (do_sysvsem) {
2655 			/*
2656 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2657 			 */
2658 			exit_sem(current);
2659 		}
2660 		if (unshare_flags & CLONE_NEWIPC) {
2661 			/* Orphan segments in old ns (see sem above). */
2662 			exit_shm(current);
2663 			shm_init_task(current);
2664 		}
2665 
2666 		if (new_nsproxy)
2667 			switch_task_namespaces(current, new_nsproxy);
2668 
2669 		task_lock(current);
2670 
2671 		if (new_fs) {
2672 			fs = current->fs;
2673 			spin_lock(&fs->lock);
2674 			current->fs = new_fs;
2675 			if (--fs->users)
2676 				new_fs = NULL;
2677 			else
2678 				new_fs = fs;
2679 			spin_unlock(&fs->lock);
2680 		}
2681 
2682 		if (new_fd) {
2683 			fd = current->files;
2684 			current->files = new_fd;
2685 			new_fd = fd;
2686 		}
2687 
2688 		task_unlock(current);
2689 
2690 		if (new_cred) {
2691 			/* Install the new user namespace */
2692 			commit_creds(new_cred);
2693 			new_cred = NULL;
2694 		}
2695 	}
2696 
2697 	perf_event_namespaces(current);
2698 
2699 bad_unshare_cleanup_cred:
2700 	if (new_cred)
2701 		put_cred(new_cred);
2702 bad_unshare_cleanup_fd:
2703 	if (new_fd)
2704 		put_files_struct(new_fd);
2705 
2706 bad_unshare_cleanup_fs:
2707 	if (new_fs)
2708 		free_fs_struct(new_fs);
2709 
2710 bad_unshare_out:
2711 	return err;
2712 }
2713 
2714 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2715 {
2716 	return ksys_unshare(unshare_flags);
2717 }
2718 
2719 /*
2720  *	Helper to unshare the files of the current task.
2721  *	We don't want to expose copy_files internals to
2722  *	the exec layer of the kernel.
2723  */
2724 
2725 int unshare_files(struct files_struct **displaced)
2726 {
2727 	struct task_struct *task = current;
2728 	struct files_struct *copy = NULL;
2729 	int error;
2730 
2731 	error = unshare_fd(CLONE_FILES, &copy);
2732 	if (error || !copy) {
2733 		*displaced = NULL;
2734 		return error;
2735 	}
2736 	*displaced = task->files;
2737 	task_lock(task);
2738 	task->files = copy;
2739 	task_unlock(task);
2740 	return 0;
2741 }
2742 
2743 int sysctl_max_threads(struct ctl_table *table, int write,
2744 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2745 {
2746 	struct ctl_table t;
2747 	int ret;
2748 	int threads = max_threads;
2749 	int min = MIN_THREADS;
2750 	int max = MAX_THREADS;
2751 
2752 	t = *table;
2753 	t.data = &threads;
2754 	t.extra1 = &min;
2755 	t.extra2 = &max;
2756 
2757 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2758 	if (ret || !write)
2759 		return ret;
2760 
2761 	set_max_threads(threads);
2762 
2763 	return 0;
2764 }
2765