xref: /linux-6.15/kernel/fork.c (revision 40efcb05)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 #include <linux/proc_fs.h>
54 
55 #include <asm/pgtable.h>
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
59 #include <asm/cacheflush.h>
60 #include <asm/tlbflush.h>
61 
62 /*
63  * Protected counters by write_lock_irq(&tasklist_lock)
64  */
65 unsigned long total_forks;	/* Handle normal Linux uptimes. */
66 int nr_threads; 		/* The idle threads do not count.. */
67 
68 int max_threads;		/* tunable limit on nr_threads */
69 
70 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
71 
72 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
73 
74 int nr_processes(void)
75 {
76 	int cpu;
77 	int total = 0;
78 
79 	for_each_online_cpu(cpu)
80 		total += per_cpu(process_counts, cpu);
81 
82 	return total;
83 }
84 
85 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
86 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
87 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
88 static struct kmem_cache *task_struct_cachep;
89 #endif
90 
91 /* SLAB cache for signal_struct structures (tsk->signal) */
92 static struct kmem_cache *signal_cachep;
93 
94 /* SLAB cache for sighand_struct structures (tsk->sighand) */
95 struct kmem_cache *sighand_cachep;
96 
97 /* SLAB cache for files_struct structures (tsk->files) */
98 struct kmem_cache *files_cachep;
99 
100 /* SLAB cache for fs_struct structures (tsk->fs) */
101 struct kmem_cache *fs_cachep;
102 
103 /* SLAB cache for vm_area_struct structures */
104 struct kmem_cache *vm_area_cachep;
105 
106 /* SLAB cache for mm_struct structures (tsk->mm) */
107 static struct kmem_cache *mm_cachep;
108 
109 void free_task(struct task_struct *tsk)
110 {
111 	prop_local_destroy_single(&tsk->dirties);
112 	free_thread_info(tsk->stack);
113 	rt_mutex_debug_task_free(tsk);
114 	free_task_struct(tsk);
115 }
116 EXPORT_SYMBOL(free_task);
117 
118 void __put_task_struct(struct task_struct *tsk)
119 {
120 	WARN_ON(!tsk->exit_state);
121 	WARN_ON(atomic_read(&tsk->usage));
122 	WARN_ON(tsk == current);
123 
124 	security_task_free(tsk);
125 	free_uid(tsk->user);
126 	put_group_info(tsk->group_info);
127 	delayacct_tsk_free(tsk);
128 
129 	if (!profile_handoff_task(tsk))
130 		free_task(tsk);
131 }
132 
133 void __init fork_init(unsigned long mempages)
134 {
135 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
136 #ifndef ARCH_MIN_TASKALIGN
137 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
138 #endif
139 	/* create a slab on which task_structs can be allocated */
140 	task_struct_cachep =
141 		kmem_cache_create("task_struct", sizeof(struct task_struct),
142 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
143 #endif
144 
145 	/*
146 	 * The default maximum number of threads is set to a safe
147 	 * value: the thread structures can take up at most half
148 	 * of memory.
149 	 */
150 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
151 
152 	/*
153 	 * we need to allow at least 20 threads to boot a system
154 	 */
155 	if(max_threads < 20)
156 		max_threads = 20;
157 
158 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
159 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
160 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
161 		init_task.signal->rlim[RLIMIT_NPROC];
162 }
163 
164 static struct task_struct *dup_task_struct(struct task_struct *orig)
165 {
166 	struct task_struct *tsk;
167 	struct thread_info *ti;
168 	int err;
169 
170 	prepare_to_copy(orig);
171 
172 	tsk = alloc_task_struct();
173 	if (!tsk)
174 		return NULL;
175 
176 	ti = alloc_thread_info(tsk);
177 	if (!ti) {
178 		free_task_struct(tsk);
179 		return NULL;
180 	}
181 
182 	*tsk = *orig;
183 	tsk->stack = ti;
184 
185 	err = prop_local_init_single(&tsk->dirties);
186 	if (err) {
187 		free_thread_info(ti);
188 		free_task_struct(tsk);
189 		return NULL;
190 	}
191 
192 	setup_thread_stack(tsk, orig);
193 
194 #ifdef CONFIG_CC_STACKPROTECTOR
195 	tsk->stack_canary = get_random_int();
196 #endif
197 
198 	/* One for us, one for whoever does the "release_task()" (usually parent) */
199 	atomic_set(&tsk->usage,2);
200 	atomic_set(&tsk->fs_excl, 0);
201 #ifdef CONFIG_BLK_DEV_IO_TRACE
202 	tsk->btrace_seq = 0;
203 #endif
204 	tsk->splice_pipe = NULL;
205 	return tsk;
206 }
207 
208 #ifdef CONFIG_MMU
209 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
210 {
211 	struct vm_area_struct *mpnt, *tmp, **pprev;
212 	struct rb_node **rb_link, *rb_parent;
213 	int retval;
214 	unsigned long charge;
215 	struct mempolicy *pol;
216 
217 	down_write(&oldmm->mmap_sem);
218 	flush_cache_dup_mm(oldmm);
219 	/*
220 	 * Not linked in yet - no deadlock potential:
221 	 */
222 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
223 
224 	mm->locked_vm = 0;
225 	mm->mmap = NULL;
226 	mm->mmap_cache = NULL;
227 	mm->free_area_cache = oldmm->mmap_base;
228 	mm->cached_hole_size = ~0UL;
229 	mm->map_count = 0;
230 	cpus_clear(mm->cpu_vm_mask);
231 	mm->mm_rb = RB_ROOT;
232 	rb_link = &mm->mm_rb.rb_node;
233 	rb_parent = NULL;
234 	pprev = &mm->mmap;
235 
236 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
237 		struct file *file;
238 
239 		if (mpnt->vm_flags & VM_DONTCOPY) {
240 			long pages = vma_pages(mpnt);
241 			mm->total_vm -= pages;
242 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
243 								-pages);
244 			continue;
245 		}
246 		charge = 0;
247 		if (mpnt->vm_flags & VM_ACCOUNT) {
248 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
249 			if (security_vm_enough_memory(len))
250 				goto fail_nomem;
251 			charge = len;
252 		}
253 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
254 		if (!tmp)
255 			goto fail_nomem;
256 		*tmp = *mpnt;
257 		pol = mpol_copy(vma_policy(mpnt));
258 		retval = PTR_ERR(pol);
259 		if (IS_ERR(pol))
260 			goto fail_nomem_policy;
261 		vma_set_policy(tmp, pol);
262 		tmp->vm_flags &= ~VM_LOCKED;
263 		tmp->vm_mm = mm;
264 		tmp->vm_next = NULL;
265 		anon_vma_link(tmp);
266 		file = tmp->vm_file;
267 		if (file) {
268 			struct inode *inode = file->f_path.dentry->d_inode;
269 			get_file(file);
270 			if (tmp->vm_flags & VM_DENYWRITE)
271 				atomic_dec(&inode->i_writecount);
272 
273 			/* insert tmp into the share list, just after mpnt */
274 			spin_lock(&file->f_mapping->i_mmap_lock);
275 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
276 			flush_dcache_mmap_lock(file->f_mapping);
277 			vma_prio_tree_add(tmp, mpnt);
278 			flush_dcache_mmap_unlock(file->f_mapping);
279 			spin_unlock(&file->f_mapping->i_mmap_lock);
280 		}
281 
282 		/*
283 		 * Link in the new vma and copy the page table entries.
284 		 */
285 		*pprev = tmp;
286 		pprev = &tmp->vm_next;
287 
288 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
289 		rb_link = &tmp->vm_rb.rb_right;
290 		rb_parent = &tmp->vm_rb;
291 
292 		mm->map_count++;
293 		retval = copy_page_range(mm, oldmm, mpnt);
294 
295 		if (tmp->vm_ops && tmp->vm_ops->open)
296 			tmp->vm_ops->open(tmp);
297 
298 		if (retval)
299 			goto out;
300 	}
301 	/* a new mm has just been created */
302 	arch_dup_mmap(oldmm, mm);
303 	retval = 0;
304 out:
305 	up_write(&mm->mmap_sem);
306 	flush_tlb_mm(oldmm);
307 	up_write(&oldmm->mmap_sem);
308 	return retval;
309 fail_nomem_policy:
310 	kmem_cache_free(vm_area_cachep, tmp);
311 fail_nomem:
312 	retval = -ENOMEM;
313 	vm_unacct_memory(charge);
314 	goto out;
315 }
316 
317 static inline int mm_alloc_pgd(struct mm_struct * mm)
318 {
319 	mm->pgd = pgd_alloc(mm);
320 	if (unlikely(!mm->pgd))
321 		return -ENOMEM;
322 	return 0;
323 }
324 
325 static inline void mm_free_pgd(struct mm_struct * mm)
326 {
327 	pgd_free(mm->pgd);
328 }
329 #else
330 #define dup_mmap(mm, oldmm)	(0)
331 #define mm_alloc_pgd(mm)	(0)
332 #define mm_free_pgd(mm)
333 #endif /* CONFIG_MMU */
334 
335 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
336 
337 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
338 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
339 
340 #include <linux/init_task.h>
341 
342 static struct mm_struct * mm_init(struct mm_struct * mm)
343 {
344 	atomic_set(&mm->mm_users, 1);
345 	atomic_set(&mm->mm_count, 1);
346 	init_rwsem(&mm->mmap_sem);
347 	INIT_LIST_HEAD(&mm->mmlist);
348 	mm->flags = (current->mm) ? current->mm->flags
349 				  : MMF_DUMP_FILTER_DEFAULT;
350 	mm->core_waiters = 0;
351 	mm->nr_ptes = 0;
352 	set_mm_counter(mm, file_rss, 0);
353 	set_mm_counter(mm, anon_rss, 0);
354 	spin_lock_init(&mm->page_table_lock);
355 	rwlock_init(&mm->ioctx_list_lock);
356 	mm->ioctx_list = NULL;
357 	mm->free_area_cache = TASK_UNMAPPED_BASE;
358 	mm->cached_hole_size = ~0UL;
359 
360 	if (likely(!mm_alloc_pgd(mm))) {
361 		mm->def_flags = 0;
362 		return mm;
363 	}
364 	free_mm(mm);
365 	return NULL;
366 }
367 
368 /*
369  * Allocate and initialize an mm_struct.
370  */
371 struct mm_struct * mm_alloc(void)
372 {
373 	struct mm_struct * mm;
374 
375 	mm = allocate_mm();
376 	if (mm) {
377 		memset(mm, 0, sizeof(*mm));
378 		mm = mm_init(mm);
379 	}
380 	return mm;
381 }
382 
383 /*
384  * Called when the last reference to the mm
385  * is dropped: either by a lazy thread or by
386  * mmput. Free the page directory and the mm.
387  */
388 void fastcall __mmdrop(struct mm_struct *mm)
389 {
390 	BUG_ON(mm == &init_mm);
391 	mm_free_pgd(mm);
392 	destroy_context(mm);
393 	free_mm(mm);
394 }
395 
396 /*
397  * Decrement the use count and release all resources for an mm.
398  */
399 void mmput(struct mm_struct *mm)
400 {
401 	might_sleep();
402 
403 	if (atomic_dec_and_test(&mm->mm_users)) {
404 		exit_aio(mm);
405 		exit_mmap(mm);
406 		if (!list_empty(&mm->mmlist)) {
407 			spin_lock(&mmlist_lock);
408 			list_del(&mm->mmlist);
409 			spin_unlock(&mmlist_lock);
410 		}
411 		put_swap_token(mm);
412 		mmdrop(mm);
413 	}
414 }
415 EXPORT_SYMBOL_GPL(mmput);
416 
417 /**
418  * get_task_mm - acquire a reference to the task's mm
419  *
420  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
421  * this kernel workthread has transiently adopted a user mm with use_mm,
422  * to do its AIO) is not set and if so returns a reference to it, after
423  * bumping up the use count.  User must release the mm via mmput()
424  * after use.  Typically used by /proc and ptrace.
425  */
426 struct mm_struct *get_task_mm(struct task_struct *task)
427 {
428 	struct mm_struct *mm;
429 
430 	task_lock(task);
431 	mm = task->mm;
432 	if (mm) {
433 		if (task->flags & PF_BORROWED_MM)
434 			mm = NULL;
435 		else
436 			atomic_inc(&mm->mm_users);
437 	}
438 	task_unlock(task);
439 	return mm;
440 }
441 EXPORT_SYMBOL_GPL(get_task_mm);
442 
443 /* Please note the differences between mmput and mm_release.
444  * mmput is called whenever we stop holding onto a mm_struct,
445  * error success whatever.
446  *
447  * mm_release is called after a mm_struct has been removed
448  * from the current process.
449  *
450  * This difference is important for error handling, when we
451  * only half set up a mm_struct for a new process and need to restore
452  * the old one.  Because we mmput the new mm_struct before
453  * restoring the old one. . .
454  * Eric Biederman 10 January 1998
455  */
456 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
457 {
458 	struct completion *vfork_done = tsk->vfork_done;
459 
460 	/* Get rid of any cached register state */
461 	deactivate_mm(tsk, mm);
462 
463 	/* notify parent sleeping on vfork() */
464 	if (vfork_done) {
465 		tsk->vfork_done = NULL;
466 		complete(vfork_done);
467 	}
468 
469 	/*
470 	 * If we're exiting normally, clear a user-space tid field if
471 	 * requested.  We leave this alone when dying by signal, to leave
472 	 * the value intact in a core dump, and to save the unnecessary
473 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
474 	 */
475 	if (tsk->clear_child_tid
476 	    && !(tsk->flags & PF_SIGNALED)
477 	    && atomic_read(&mm->mm_users) > 1) {
478 		u32 __user * tidptr = tsk->clear_child_tid;
479 		tsk->clear_child_tid = NULL;
480 
481 		/*
482 		 * We don't check the error code - if userspace has
483 		 * not set up a proper pointer then tough luck.
484 		 */
485 		put_user(0, tidptr);
486 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
487 	}
488 }
489 
490 /*
491  * Allocate a new mm structure and copy contents from the
492  * mm structure of the passed in task structure.
493  */
494 static struct mm_struct *dup_mm(struct task_struct *tsk)
495 {
496 	struct mm_struct *mm, *oldmm = current->mm;
497 	int err;
498 
499 	if (!oldmm)
500 		return NULL;
501 
502 	mm = allocate_mm();
503 	if (!mm)
504 		goto fail_nomem;
505 
506 	memcpy(mm, oldmm, sizeof(*mm));
507 
508 	/* Initializing for Swap token stuff */
509 	mm->token_priority = 0;
510 	mm->last_interval = 0;
511 
512 	if (!mm_init(mm))
513 		goto fail_nomem;
514 
515 	if (init_new_context(tsk, mm))
516 		goto fail_nocontext;
517 
518 	err = dup_mmap(mm, oldmm);
519 	if (err)
520 		goto free_pt;
521 
522 	mm->hiwater_rss = get_mm_rss(mm);
523 	mm->hiwater_vm = mm->total_vm;
524 
525 	return mm;
526 
527 free_pt:
528 	mmput(mm);
529 
530 fail_nomem:
531 	return NULL;
532 
533 fail_nocontext:
534 	/*
535 	 * If init_new_context() failed, we cannot use mmput() to free the mm
536 	 * because it calls destroy_context()
537 	 */
538 	mm_free_pgd(mm);
539 	free_mm(mm);
540 	return NULL;
541 }
542 
543 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
544 {
545 	struct mm_struct * mm, *oldmm;
546 	int retval;
547 
548 	tsk->min_flt = tsk->maj_flt = 0;
549 	tsk->nvcsw = tsk->nivcsw = 0;
550 
551 	tsk->mm = NULL;
552 	tsk->active_mm = NULL;
553 
554 	/*
555 	 * Are we cloning a kernel thread?
556 	 *
557 	 * We need to steal a active VM for that..
558 	 */
559 	oldmm = current->mm;
560 	if (!oldmm)
561 		return 0;
562 
563 	if (clone_flags & CLONE_VM) {
564 		atomic_inc(&oldmm->mm_users);
565 		mm = oldmm;
566 		goto good_mm;
567 	}
568 
569 	retval = -ENOMEM;
570 	mm = dup_mm(tsk);
571 	if (!mm)
572 		goto fail_nomem;
573 
574 good_mm:
575 	/* Initializing for Swap token stuff */
576 	mm->token_priority = 0;
577 	mm->last_interval = 0;
578 
579 	tsk->mm = mm;
580 	tsk->active_mm = mm;
581 	return 0;
582 
583 fail_nomem:
584 	return retval;
585 }
586 
587 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
588 {
589 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
590 	/* We don't need to lock fs - think why ;-) */
591 	if (fs) {
592 		atomic_set(&fs->count, 1);
593 		rwlock_init(&fs->lock);
594 		fs->umask = old->umask;
595 		read_lock(&old->lock);
596 		fs->rootmnt = mntget(old->rootmnt);
597 		fs->root = dget(old->root);
598 		fs->pwdmnt = mntget(old->pwdmnt);
599 		fs->pwd = dget(old->pwd);
600 		if (old->altroot) {
601 			fs->altrootmnt = mntget(old->altrootmnt);
602 			fs->altroot = dget(old->altroot);
603 		} else {
604 			fs->altrootmnt = NULL;
605 			fs->altroot = NULL;
606 		}
607 		read_unlock(&old->lock);
608 	}
609 	return fs;
610 }
611 
612 struct fs_struct *copy_fs_struct(struct fs_struct *old)
613 {
614 	return __copy_fs_struct(old);
615 }
616 
617 EXPORT_SYMBOL_GPL(copy_fs_struct);
618 
619 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
620 {
621 	if (clone_flags & CLONE_FS) {
622 		atomic_inc(&current->fs->count);
623 		return 0;
624 	}
625 	tsk->fs = __copy_fs_struct(current->fs);
626 	if (!tsk->fs)
627 		return -ENOMEM;
628 	return 0;
629 }
630 
631 static int count_open_files(struct fdtable *fdt)
632 {
633 	int size = fdt->max_fds;
634 	int i;
635 
636 	/* Find the last open fd */
637 	for (i = size/(8*sizeof(long)); i > 0; ) {
638 		if (fdt->open_fds->fds_bits[--i])
639 			break;
640 	}
641 	i = (i+1) * 8 * sizeof(long);
642 	return i;
643 }
644 
645 static struct files_struct *alloc_files(void)
646 {
647 	struct files_struct *newf;
648 	struct fdtable *fdt;
649 
650 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
651 	if (!newf)
652 		goto out;
653 
654 	atomic_set(&newf->count, 1);
655 
656 	spin_lock_init(&newf->file_lock);
657 	newf->next_fd = 0;
658 	fdt = &newf->fdtab;
659 	fdt->max_fds = NR_OPEN_DEFAULT;
660 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
661 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
662 	fdt->fd = &newf->fd_array[0];
663 	INIT_RCU_HEAD(&fdt->rcu);
664 	fdt->next = NULL;
665 	rcu_assign_pointer(newf->fdt, fdt);
666 out:
667 	return newf;
668 }
669 
670 /*
671  * Allocate a new files structure and copy contents from the
672  * passed in files structure.
673  * errorp will be valid only when the returned files_struct is NULL.
674  */
675 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
676 {
677 	struct files_struct *newf;
678 	struct file **old_fds, **new_fds;
679 	int open_files, size, i;
680 	struct fdtable *old_fdt, *new_fdt;
681 
682 	*errorp = -ENOMEM;
683 	newf = alloc_files();
684 	if (!newf)
685 		goto out;
686 
687 	spin_lock(&oldf->file_lock);
688 	old_fdt = files_fdtable(oldf);
689 	new_fdt = files_fdtable(newf);
690 	open_files = count_open_files(old_fdt);
691 
692 	/*
693 	 * Check whether we need to allocate a larger fd array and fd set.
694 	 * Note: we're not a clone task, so the open count won't change.
695 	 */
696 	if (open_files > new_fdt->max_fds) {
697 		new_fdt->max_fds = 0;
698 		spin_unlock(&oldf->file_lock);
699 		spin_lock(&newf->file_lock);
700 		*errorp = expand_files(newf, open_files-1);
701 		spin_unlock(&newf->file_lock);
702 		if (*errorp < 0)
703 			goto out_release;
704 		new_fdt = files_fdtable(newf);
705 		/*
706 		 * Reacquire the oldf lock and a pointer to its fd table
707 		 * who knows it may have a new bigger fd table. We need
708 		 * the latest pointer.
709 		 */
710 		spin_lock(&oldf->file_lock);
711 		old_fdt = files_fdtable(oldf);
712 	}
713 
714 	old_fds = old_fdt->fd;
715 	new_fds = new_fdt->fd;
716 
717 	memcpy(new_fdt->open_fds->fds_bits,
718 		old_fdt->open_fds->fds_bits, open_files/8);
719 	memcpy(new_fdt->close_on_exec->fds_bits,
720 		old_fdt->close_on_exec->fds_bits, open_files/8);
721 
722 	for (i = open_files; i != 0; i--) {
723 		struct file *f = *old_fds++;
724 		if (f) {
725 			get_file(f);
726 		} else {
727 			/*
728 			 * The fd may be claimed in the fd bitmap but not yet
729 			 * instantiated in the files array if a sibling thread
730 			 * is partway through open().  So make sure that this
731 			 * fd is available to the new process.
732 			 */
733 			FD_CLR(open_files - i, new_fdt->open_fds);
734 		}
735 		rcu_assign_pointer(*new_fds++, f);
736 	}
737 	spin_unlock(&oldf->file_lock);
738 
739 	/* compute the remainder to be cleared */
740 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
741 
742 	/* This is long word aligned thus could use a optimized version */
743 	memset(new_fds, 0, size);
744 
745 	if (new_fdt->max_fds > open_files) {
746 		int left = (new_fdt->max_fds-open_files)/8;
747 		int start = open_files / (8 * sizeof(unsigned long));
748 
749 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
750 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
751 	}
752 
753 	return newf;
754 
755 out_release:
756 	kmem_cache_free(files_cachep, newf);
757 out:
758 	return NULL;
759 }
760 
761 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
762 {
763 	struct files_struct *oldf, *newf;
764 	int error = 0;
765 
766 	/*
767 	 * A background process may not have any files ...
768 	 */
769 	oldf = current->files;
770 	if (!oldf)
771 		goto out;
772 
773 	if (clone_flags & CLONE_FILES) {
774 		atomic_inc(&oldf->count);
775 		goto out;
776 	}
777 
778 	/*
779 	 * Note: we may be using current for both targets (See exec.c)
780 	 * This works because we cache current->files (old) as oldf. Don't
781 	 * break this.
782 	 */
783 	tsk->files = NULL;
784 	newf = dup_fd(oldf, &error);
785 	if (!newf)
786 		goto out;
787 
788 	tsk->files = newf;
789 	error = 0;
790 out:
791 	return error;
792 }
793 
794 /*
795  *	Helper to unshare the files of the current task.
796  *	We don't want to expose copy_files internals to
797  *	the exec layer of the kernel.
798  */
799 
800 int unshare_files(void)
801 {
802 	struct files_struct *files  = current->files;
803 	int rc;
804 
805 	BUG_ON(!files);
806 
807 	/* This can race but the race causes us to copy when we don't
808 	   need to and drop the copy */
809 	if(atomic_read(&files->count) == 1)
810 	{
811 		atomic_inc(&files->count);
812 		return 0;
813 	}
814 	rc = copy_files(0, current);
815 	if(rc)
816 		current->files = files;
817 	return rc;
818 }
819 
820 EXPORT_SYMBOL(unshare_files);
821 
822 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
823 {
824 	struct sighand_struct *sig;
825 
826 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
827 		atomic_inc(&current->sighand->count);
828 		return 0;
829 	}
830 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
831 	rcu_assign_pointer(tsk->sighand, sig);
832 	if (!sig)
833 		return -ENOMEM;
834 	atomic_set(&sig->count, 1);
835 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
836 	return 0;
837 }
838 
839 void __cleanup_sighand(struct sighand_struct *sighand)
840 {
841 	if (atomic_dec_and_test(&sighand->count))
842 		kmem_cache_free(sighand_cachep, sighand);
843 }
844 
845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 	struct signal_struct *sig;
848 	int ret;
849 
850 	if (clone_flags & CLONE_THREAD) {
851 		atomic_inc(&current->signal->count);
852 		atomic_inc(&current->signal->live);
853 		return 0;
854 	}
855 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
856 	tsk->signal = sig;
857 	if (!sig)
858 		return -ENOMEM;
859 
860 	ret = copy_thread_group_keys(tsk);
861 	if (ret < 0) {
862 		kmem_cache_free(signal_cachep, sig);
863 		return ret;
864 	}
865 
866 	atomic_set(&sig->count, 1);
867 	atomic_set(&sig->live, 1);
868 	init_waitqueue_head(&sig->wait_chldexit);
869 	sig->flags = 0;
870 	sig->group_exit_code = 0;
871 	sig->group_exit_task = NULL;
872 	sig->group_stop_count = 0;
873 	sig->curr_target = NULL;
874 	init_sigpending(&sig->shared_pending);
875 	INIT_LIST_HEAD(&sig->posix_timers);
876 
877 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
878 	sig->it_real_incr.tv64 = 0;
879 	sig->real_timer.function = it_real_fn;
880 	sig->tsk = tsk;
881 
882 	sig->it_virt_expires = cputime_zero;
883 	sig->it_virt_incr = cputime_zero;
884 	sig->it_prof_expires = cputime_zero;
885 	sig->it_prof_incr = cputime_zero;
886 
887 	sig->leader = 0;	/* session leadership doesn't inherit */
888 	sig->tty_old_pgrp = NULL;
889 
890 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
891 	sig->gtime = cputime_zero;
892 	sig->cgtime = cputime_zero;
893 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
894 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
895 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
896 	sig->sum_sched_runtime = 0;
897 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
898 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
899 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
900 	taskstats_tgid_init(sig);
901 
902 	task_lock(current->group_leader);
903 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
904 	task_unlock(current->group_leader);
905 
906 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
907 		/*
908 		 * New sole thread in the process gets an expiry time
909 		 * of the whole CPU time limit.
910 		 */
911 		tsk->it_prof_expires =
912 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
913 	}
914 	acct_init_pacct(&sig->pacct);
915 
916 	tty_audit_fork(sig);
917 
918 	return 0;
919 }
920 
921 void __cleanup_signal(struct signal_struct *sig)
922 {
923 	exit_thread_group_keys(sig);
924 	kmem_cache_free(signal_cachep, sig);
925 }
926 
927 static void cleanup_signal(struct task_struct *tsk)
928 {
929 	struct signal_struct *sig = tsk->signal;
930 
931 	atomic_dec(&sig->live);
932 
933 	if (atomic_dec_and_test(&sig->count))
934 		__cleanup_signal(sig);
935 }
936 
937 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
938 {
939 	unsigned long new_flags = p->flags;
940 
941 	new_flags &= ~PF_SUPERPRIV;
942 	new_flags |= PF_FORKNOEXEC;
943 	if (!(clone_flags & CLONE_PTRACE))
944 		p->ptrace = 0;
945 	p->flags = new_flags;
946 	clear_freeze_flag(p);
947 }
948 
949 asmlinkage long sys_set_tid_address(int __user *tidptr)
950 {
951 	current->clear_child_tid = tidptr;
952 
953 	return task_pid_vnr(current);
954 }
955 
956 static void rt_mutex_init_task(struct task_struct *p)
957 {
958 	spin_lock_init(&p->pi_lock);
959 #ifdef CONFIG_RT_MUTEXES
960 	plist_head_init(&p->pi_waiters, &p->pi_lock);
961 	p->pi_blocked_on = NULL;
962 #endif
963 }
964 
965 /*
966  * This creates a new process as a copy of the old one,
967  * but does not actually start it yet.
968  *
969  * It copies the registers, and all the appropriate
970  * parts of the process environment (as per the clone
971  * flags). The actual kick-off is left to the caller.
972  */
973 static struct task_struct *copy_process(unsigned long clone_flags,
974 					unsigned long stack_start,
975 					struct pt_regs *regs,
976 					unsigned long stack_size,
977 					int __user *child_tidptr,
978 					struct pid *pid)
979 {
980 	int retval;
981 	struct task_struct *p;
982 	int cgroup_callbacks_done = 0;
983 
984 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
985 		return ERR_PTR(-EINVAL);
986 
987 	/*
988 	 * Thread groups must share signals as well, and detached threads
989 	 * can only be started up within the thread group.
990 	 */
991 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
992 		return ERR_PTR(-EINVAL);
993 
994 	/*
995 	 * Shared signal handlers imply shared VM. By way of the above,
996 	 * thread groups also imply shared VM. Blocking this case allows
997 	 * for various simplifications in other code.
998 	 */
999 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000 		return ERR_PTR(-EINVAL);
1001 
1002 	retval = security_task_create(clone_flags);
1003 	if (retval)
1004 		goto fork_out;
1005 
1006 	retval = -ENOMEM;
1007 	p = dup_task_struct(current);
1008 	if (!p)
1009 		goto fork_out;
1010 
1011 	rt_mutex_init_task(p);
1012 
1013 #ifdef CONFIG_TRACE_IRQFLAGS
1014 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1015 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1016 #endif
1017 	retval = -EAGAIN;
1018 	if (atomic_read(&p->user->processes) >=
1019 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1020 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1021 		    p->user != current->nsproxy->user_ns->root_user)
1022 			goto bad_fork_free;
1023 	}
1024 
1025 	atomic_inc(&p->user->__count);
1026 	atomic_inc(&p->user->processes);
1027 	get_group_info(p->group_info);
1028 
1029 	/*
1030 	 * If multiple threads are within copy_process(), then this check
1031 	 * triggers too late. This doesn't hurt, the check is only there
1032 	 * to stop root fork bombs.
1033 	 */
1034 	if (nr_threads >= max_threads)
1035 		goto bad_fork_cleanup_count;
1036 
1037 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1038 		goto bad_fork_cleanup_count;
1039 
1040 	if (p->binfmt && !try_module_get(p->binfmt->module))
1041 		goto bad_fork_cleanup_put_domain;
1042 
1043 	p->did_exec = 0;
1044 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1045 	copy_flags(clone_flags, p);
1046 	INIT_LIST_HEAD(&p->children);
1047 	INIT_LIST_HEAD(&p->sibling);
1048 	p->vfork_done = NULL;
1049 	spin_lock_init(&p->alloc_lock);
1050 
1051 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1052 	init_sigpending(&p->pending);
1053 
1054 	p->utime = cputime_zero;
1055 	p->stime = cputime_zero;
1056 	p->gtime = cputime_zero;
1057 	p->utimescaled = cputime_zero;
1058 	p->stimescaled = cputime_zero;
1059 	p->prev_utime = cputime_zero;
1060 	p->prev_stime = cputime_zero;
1061 
1062 #ifdef CONFIG_TASK_XACCT
1063 	p->rchar = 0;		/* I/O counter: bytes read */
1064 	p->wchar = 0;		/* I/O counter: bytes written */
1065 	p->syscr = 0;		/* I/O counter: read syscalls */
1066 	p->syscw = 0;		/* I/O counter: write syscalls */
1067 #endif
1068 	task_io_accounting_init(p);
1069 	acct_clear_integrals(p);
1070 
1071 	p->it_virt_expires = cputime_zero;
1072 	p->it_prof_expires = cputime_zero;
1073 	p->it_sched_expires = 0;
1074 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1075 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1076 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1077 
1078 	p->lock_depth = -1;		/* -1 = no lock */
1079 	do_posix_clock_monotonic_gettime(&p->start_time);
1080 	p->real_start_time = p->start_time;
1081 	monotonic_to_bootbased(&p->real_start_time);
1082 #ifdef CONFIG_SECURITY
1083 	p->security = NULL;
1084 #endif
1085 	p->io_context = NULL;
1086 	p->audit_context = NULL;
1087 	cgroup_fork(p);
1088 #ifdef CONFIG_NUMA
1089  	p->mempolicy = mpol_copy(p->mempolicy);
1090  	if (IS_ERR(p->mempolicy)) {
1091  		retval = PTR_ERR(p->mempolicy);
1092  		p->mempolicy = NULL;
1093  		goto bad_fork_cleanup_cgroup;
1094  	}
1095 	mpol_fix_fork_child_flag(p);
1096 #endif
1097 #ifdef CONFIG_TRACE_IRQFLAGS
1098 	p->irq_events = 0;
1099 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1100 	p->hardirqs_enabled = 1;
1101 #else
1102 	p->hardirqs_enabled = 0;
1103 #endif
1104 	p->hardirq_enable_ip = 0;
1105 	p->hardirq_enable_event = 0;
1106 	p->hardirq_disable_ip = _THIS_IP_;
1107 	p->hardirq_disable_event = 0;
1108 	p->softirqs_enabled = 1;
1109 	p->softirq_enable_ip = _THIS_IP_;
1110 	p->softirq_enable_event = 0;
1111 	p->softirq_disable_ip = 0;
1112 	p->softirq_disable_event = 0;
1113 	p->hardirq_context = 0;
1114 	p->softirq_context = 0;
1115 #endif
1116 #ifdef CONFIG_LOCKDEP
1117 	p->lockdep_depth = 0; /* no locks held yet */
1118 	p->curr_chain_key = 0;
1119 	p->lockdep_recursion = 0;
1120 #endif
1121 
1122 #ifdef CONFIG_DEBUG_MUTEXES
1123 	p->blocked_on = NULL; /* not blocked yet */
1124 #endif
1125 
1126 	/* Perform scheduler related setup. Assign this task to a CPU. */
1127 	sched_fork(p, clone_flags);
1128 
1129 	if ((retval = security_task_alloc(p)))
1130 		goto bad_fork_cleanup_policy;
1131 	if ((retval = audit_alloc(p)))
1132 		goto bad_fork_cleanup_security;
1133 	/* copy all the process information */
1134 	if ((retval = copy_semundo(clone_flags, p)))
1135 		goto bad_fork_cleanup_audit;
1136 	if ((retval = copy_files(clone_flags, p)))
1137 		goto bad_fork_cleanup_semundo;
1138 	if ((retval = copy_fs(clone_flags, p)))
1139 		goto bad_fork_cleanup_files;
1140 	if ((retval = copy_sighand(clone_flags, p)))
1141 		goto bad_fork_cleanup_fs;
1142 	if ((retval = copy_signal(clone_flags, p)))
1143 		goto bad_fork_cleanup_sighand;
1144 	if ((retval = copy_mm(clone_flags, p)))
1145 		goto bad_fork_cleanup_signal;
1146 	if ((retval = copy_keys(clone_flags, p)))
1147 		goto bad_fork_cleanup_mm;
1148 	if ((retval = copy_namespaces(clone_flags, p)))
1149 		goto bad_fork_cleanup_keys;
1150 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1151 	if (retval)
1152 		goto bad_fork_cleanup_namespaces;
1153 
1154 	if (pid != &init_struct_pid) {
1155 		retval = -ENOMEM;
1156 		pid = alloc_pid(task_active_pid_ns(p));
1157 		if (!pid)
1158 			goto bad_fork_cleanup_namespaces;
1159 
1160 		if (clone_flags & CLONE_NEWPID) {
1161 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1162 			if (retval < 0)
1163 				goto bad_fork_free_pid;
1164 		}
1165 	}
1166 
1167 	p->pid = pid_nr(pid);
1168 	p->tgid = p->pid;
1169 	if (clone_flags & CLONE_THREAD)
1170 		p->tgid = current->tgid;
1171 
1172 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1173 	/*
1174 	 * Clear TID on mm_release()?
1175 	 */
1176 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1177 #ifdef CONFIG_FUTEX
1178 	p->robust_list = NULL;
1179 #ifdef CONFIG_COMPAT
1180 	p->compat_robust_list = NULL;
1181 #endif
1182 	INIT_LIST_HEAD(&p->pi_state_list);
1183 	p->pi_state_cache = NULL;
1184 #endif
1185 	/*
1186 	 * sigaltstack should be cleared when sharing the same VM
1187 	 */
1188 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1189 		p->sas_ss_sp = p->sas_ss_size = 0;
1190 
1191 	/*
1192 	 * Syscall tracing should be turned off in the child regardless
1193 	 * of CLONE_PTRACE.
1194 	 */
1195 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1196 #ifdef TIF_SYSCALL_EMU
1197 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1198 #endif
1199 
1200 	/* Our parent execution domain becomes current domain
1201 	   These must match for thread signalling to apply */
1202 	p->parent_exec_id = p->self_exec_id;
1203 
1204 	/* ok, now we should be set up.. */
1205 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1206 	p->pdeath_signal = 0;
1207 	p->exit_state = 0;
1208 
1209 	/*
1210 	 * Ok, make it visible to the rest of the system.
1211 	 * We dont wake it up yet.
1212 	 */
1213 	p->group_leader = p;
1214 	INIT_LIST_HEAD(&p->thread_group);
1215 	INIT_LIST_HEAD(&p->ptrace_children);
1216 	INIT_LIST_HEAD(&p->ptrace_list);
1217 
1218 	/* Now that the task is set up, run cgroup callbacks if
1219 	 * necessary. We need to run them before the task is visible
1220 	 * on the tasklist. */
1221 	cgroup_fork_callbacks(p);
1222 	cgroup_callbacks_done = 1;
1223 
1224 	/* Need tasklist lock for parent etc handling! */
1225 	write_lock_irq(&tasklist_lock);
1226 
1227 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1228 	p->ioprio = current->ioprio;
1229 
1230 	/*
1231 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1232 	 * not be changed, nor will its assigned CPU.
1233 	 *
1234 	 * The cpus_allowed mask of the parent may have changed after it was
1235 	 * copied first time - so re-copy it here, then check the child's CPU
1236 	 * to ensure it is on a valid CPU (and if not, just force it back to
1237 	 * parent's CPU). This avoids alot of nasty races.
1238 	 */
1239 	p->cpus_allowed = current->cpus_allowed;
1240 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1241 			!cpu_online(task_cpu(p))))
1242 		set_task_cpu(p, smp_processor_id());
1243 
1244 	/* CLONE_PARENT re-uses the old parent */
1245 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1246 		p->real_parent = current->real_parent;
1247 	else
1248 		p->real_parent = current;
1249 	p->parent = p->real_parent;
1250 
1251 	spin_lock(&current->sighand->siglock);
1252 
1253 	/*
1254 	 * Process group and session signals need to be delivered to just the
1255 	 * parent before the fork or both the parent and the child after the
1256 	 * fork. Restart if a signal comes in before we add the new process to
1257 	 * it's process group.
1258 	 * A fatal signal pending means that current will exit, so the new
1259 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1260  	 */
1261 	recalc_sigpending();
1262 	if (signal_pending(current)) {
1263 		spin_unlock(&current->sighand->siglock);
1264 		write_unlock_irq(&tasklist_lock);
1265 		retval = -ERESTARTNOINTR;
1266 		goto bad_fork_free_pid;
1267 	}
1268 
1269 	if (clone_flags & CLONE_THREAD) {
1270 		p->group_leader = current->group_leader;
1271 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1272 
1273 		if (!cputime_eq(current->signal->it_virt_expires,
1274 				cputime_zero) ||
1275 		    !cputime_eq(current->signal->it_prof_expires,
1276 				cputime_zero) ||
1277 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1278 		    !list_empty(&current->signal->cpu_timers[0]) ||
1279 		    !list_empty(&current->signal->cpu_timers[1]) ||
1280 		    !list_empty(&current->signal->cpu_timers[2])) {
1281 			/*
1282 			 * Have child wake up on its first tick to check
1283 			 * for process CPU timers.
1284 			 */
1285 			p->it_prof_expires = jiffies_to_cputime(1);
1286 		}
1287 	}
1288 
1289 	if (likely(p->pid)) {
1290 		add_parent(p);
1291 		if (unlikely(p->ptrace & PT_PTRACED))
1292 			__ptrace_link(p, current->parent);
1293 
1294 		if (thread_group_leader(p)) {
1295 			if (clone_flags & CLONE_NEWPID)
1296 				p->nsproxy->pid_ns->child_reaper = p;
1297 
1298 			p->signal->tty = current->signal->tty;
1299 			set_task_pgrp(p, task_pgrp_nr(current));
1300 			set_task_session(p, task_session_nr(current));
1301 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1302 			attach_pid(p, PIDTYPE_SID, task_session(current));
1303 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1304 			__get_cpu_var(process_counts)++;
1305 		}
1306 		attach_pid(p, PIDTYPE_PID, pid);
1307 		nr_threads++;
1308 	}
1309 
1310 	total_forks++;
1311 	spin_unlock(&current->sighand->siglock);
1312 	write_unlock_irq(&tasklist_lock);
1313 	proc_fork_connector(p);
1314 	cgroup_post_fork(p);
1315 	return p;
1316 
1317 bad_fork_free_pid:
1318 	if (pid != &init_struct_pid)
1319 		free_pid(pid);
1320 bad_fork_cleanup_namespaces:
1321 	exit_task_namespaces(p);
1322 bad_fork_cleanup_keys:
1323 	exit_keys(p);
1324 bad_fork_cleanup_mm:
1325 	if (p->mm)
1326 		mmput(p->mm);
1327 bad_fork_cleanup_signal:
1328 	cleanup_signal(p);
1329 bad_fork_cleanup_sighand:
1330 	__cleanup_sighand(p->sighand);
1331 bad_fork_cleanup_fs:
1332 	exit_fs(p); /* blocking */
1333 bad_fork_cleanup_files:
1334 	exit_files(p); /* blocking */
1335 bad_fork_cleanup_semundo:
1336 	exit_sem(p);
1337 bad_fork_cleanup_audit:
1338 	audit_free(p);
1339 bad_fork_cleanup_security:
1340 	security_task_free(p);
1341 bad_fork_cleanup_policy:
1342 #ifdef CONFIG_NUMA
1343 	mpol_free(p->mempolicy);
1344 bad_fork_cleanup_cgroup:
1345 #endif
1346 	cgroup_exit(p, cgroup_callbacks_done);
1347 	delayacct_tsk_free(p);
1348 	if (p->binfmt)
1349 		module_put(p->binfmt->module);
1350 bad_fork_cleanup_put_domain:
1351 	module_put(task_thread_info(p)->exec_domain->module);
1352 bad_fork_cleanup_count:
1353 	put_group_info(p->group_info);
1354 	atomic_dec(&p->user->processes);
1355 	free_uid(p->user);
1356 bad_fork_free:
1357 	free_task(p);
1358 fork_out:
1359 	return ERR_PTR(retval);
1360 }
1361 
1362 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1363 {
1364 	memset(regs, 0, sizeof(struct pt_regs));
1365 	return regs;
1366 }
1367 
1368 struct task_struct * __cpuinit fork_idle(int cpu)
1369 {
1370 	struct task_struct *task;
1371 	struct pt_regs regs;
1372 
1373 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1374 				&init_struct_pid);
1375 	if (!IS_ERR(task))
1376 		init_idle(task, cpu);
1377 
1378 	return task;
1379 }
1380 
1381 static int fork_traceflag(unsigned clone_flags)
1382 {
1383 	if (clone_flags & CLONE_UNTRACED)
1384 		return 0;
1385 	else if (clone_flags & CLONE_VFORK) {
1386 		if (current->ptrace & PT_TRACE_VFORK)
1387 			return PTRACE_EVENT_VFORK;
1388 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1389 		if (current->ptrace & PT_TRACE_CLONE)
1390 			return PTRACE_EVENT_CLONE;
1391 	} else if (current->ptrace & PT_TRACE_FORK)
1392 		return PTRACE_EVENT_FORK;
1393 
1394 	return 0;
1395 }
1396 
1397 /*
1398  *  Ok, this is the main fork-routine.
1399  *
1400  * It copies the process, and if successful kick-starts
1401  * it and waits for it to finish using the VM if required.
1402  */
1403 long do_fork(unsigned long clone_flags,
1404 	      unsigned long stack_start,
1405 	      struct pt_regs *regs,
1406 	      unsigned long stack_size,
1407 	      int __user *parent_tidptr,
1408 	      int __user *child_tidptr)
1409 {
1410 	struct task_struct *p;
1411 	int trace = 0;
1412 	long nr;
1413 
1414 	if (unlikely(current->ptrace)) {
1415 		trace = fork_traceflag (clone_flags);
1416 		if (trace)
1417 			clone_flags |= CLONE_PTRACE;
1418 	}
1419 
1420 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1421 			child_tidptr, NULL);
1422 	/*
1423 	 * Do this prior waking up the new thread - the thread pointer
1424 	 * might get invalid after that point, if the thread exits quickly.
1425 	 */
1426 	if (!IS_ERR(p)) {
1427 		struct completion vfork;
1428 
1429 		/*
1430 		 * this is enough to call pid_nr_ns here, but this if
1431 		 * improves optimisation of regular fork()
1432 		 */
1433 		nr = (clone_flags & CLONE_NEWPID) ?
1434 			task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1435 				task_pid_vnr(p);
1436 
1437 		if (clone_flags & CLONE_PARENT_SETTID)
1438 			put_user(nr, parent_tidptr);
1439 
1440 		if (clone_flags & CLONE_VFORK) {
1441 			p->vfork_done = &vfork;
1442 			init_completion(&vfork);
1443 		}
1444 
1445 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1446 			/*
1447 			 * We'll start up with an immediate SIGSTOP.
1448 			 */
1449 			sigaddset(&p->pending.signal, SIGSTOP);
1450 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1451 		}
1452 
1453 		if (!(clone_flags & CLONE_STOPPED))
1454 			wake_up_new_task(p, clone_flags);
1455 		else
1456 			p->state = TASK_STOPPED;
1457 
1458 		if (unlikely (trace)) {
1459 			current->ptrace_message = nr;
1460 			ptrace_notify ((trace << 8) | SIGTRAP);
1461 		}
1462 
1463 		if (clone_flags & CLONE_VFORK) {
1464 			freezer_do_not_count();
1465 			wait_for_completion(&vfork);
1466 			freezer_count();
1467 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1468 				current->ptrace_message = nr;
1469 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1470 			}
1471 		}
1472 	} else {
1473 		nr = PTR_ERR(p);
1474 	}
1475 	return nr;
1476 }
1477 
1478 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1479 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1480 #endif
1481 
1482 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1483 {
1484 	struct sighand_struct *sighand = data;
1485 
1486 	spin_lock_init(&sighand->siglock);
1487 	init_waitqueue_head(&sighand->signalfd_wqh);
1488 }
1489 
1490 void __init proc_caches_init(void)
1491 {
1492 	sighand_cachep = kmem_cache_create("sighand_cache",
1493 			sizeof(struct sighand_struct), 0,
1494 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1495 			sighand_ctor);
1496 	signal_cachep = kmem_cache_create("signal_cache",
1497 			sizeof(struct signal_struct), 0,
1498 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1499 	files_cachep = kmem_cache_create("files_cache",
1500 			sizeof(struct files_struct), 0,
1501 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1502 	fs_cachep = kmem_cache_create("fs_cache",
1503 			sizeof(struct fs_struct), 0,
1504 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1505 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1506 			sizeof(struct vm_area_struct), 0,
1507 			SLAB_PANIC, NULL);
1508 	mm_cachep = kmem_cache_create("mm_struct",
1509 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1511 }
1512 
1513 /*
1514  * Check constraints on flags passed to the unshare system call and
1515  * force unsharing of additional process context as appropriate.
1516  */
1517 static void check_unshare_flags(unsigned long *flags_ptr)
1518 {
1519 	/*
1520 	 * If unsharing a thread from a thread group, must also
1521 	 * unshare vm.
1522 	 */
1523 	if (*flags_ptr & CLONE_THREAD)
1524 		*flags_ptr |= CLONE_VM;
1525 
1526 	/*
1527 	 * If unsharing vm, must also unshare signal handlers.
1528 	 */
1529 	if (*flags_ptr & CLONE_VM)
1530 		*flags_ptr |= CLONE_SIGHAND;
1531 
1532 	/*
1533 	 * If unsharing signal handlers and the task was created
1534 	 * using CLONE_THREAD, then must unshare the thread
1535 	 */
1536 	if ((*flags_ptr & CLONE_SIGHAND) &&
1537 	    (atomic_read(&current->signal->count) > 1))
1538 		*flags_ptr |= CLONE_THREAD;
1539 
1540 	/*
1541 	 * If unsharing namespace, must also unshare filesystem information.
1542 	 */
1543 	if (*flags_ptr & CLONE_NEWNS)
1544 		*flags_ptr |= CLONE_FS;
1545 }
1546 
1547 /*
1548  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1549  */
1550 static int unshare_thread(unsigned long unshare_flags)
1551 {
1552 	if (unshare_flags & CLONE_THREAD)
1553 		return -EINVAL;
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Unshare the filesystem structure if it is being shared
1560  */
1561 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1562 {
1563 	struct fs_struct *fs = current->fs;
1564 
1565 	if ((unshare_flags & CLONE_FS) &&
1566 	    (fs && atomic_read(&fs->count) > 1)) {
1567 		*new_fsp = __copy_fs_struct(current->fs);
1568 		if (!*new_fsp)
1569 			return -ENOMEM;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Unsharing of sighand is not supported yet
1577  */
1578 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1579 {
1580 	struct sighand_struct *sigh = current->sighand;
1581 
1582 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1583 		return -EINVAL;
1584 	else
1585 		return 0;
1586 }
1587 
1588 /*
1589  * Unshare vm if it is being shared
1590  */
1591 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1592 {
1593 	struct mm_struct *mm = current->mm;
1594 
1595 	if ((unshare_flags & CLONE_VM) &&
1596 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1597 		return -EINVAL;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Unshare file descriptor table if it is being shared
1605  */
1606 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1607 {
1608 	struct files_struct *fd = current->files;
1609 	int error = 0;
1610 
1611 	if ((unshare_flags & CLONE_FILES) &&
1612 	    (fd && atomic_read(&fd->count) > 1)) {
1613 		*new_fdp = dup_fd(fd, &error);
1614 		if (!*new_fdp)
1615 			return error;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1623  * supported yet
1624  */
1625 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1626 {
1627 	if (unshare_flags & CLONE_SYSVSEM)
1628 		return -EINVAL;
1629 
1630 	return 0;
1631 }
1632 
1633 /*
1634  * unshare allows a process to 'unshare' part of the process
1635  * context which was originally shared using clone.  copy_*
1636  * functions used by do_fork() cannot be used here directly
1637  * because they modify an inactive task_struct that is being
1638  * constructed. Here we are modifying the current, active,
1639  * task_struct.
1640  */
1641 asmlinkage long sys_unshare(unsigned long unshare_flags)
1642 {
1643 	int err = 0;
1644 	struct fs_struct *fs, *new_fs = NULL;
1645 	struct sighand_struct *new_sigh = NULL;
1646 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1647 	struct files_struct *fd, *new_fd = NULL;
1648 	struct sem_undo_list *new_ulist = NULL;
1649 	struct nsproxy *new_nsproxy = NULL;
1650 
1651 	check_unshare_flags(&unshare_flags);
1652 
1653 	/* Return -EINVAL for all unsupported flags */
1654 	err = -EINVAL;
1655 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1656 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1657 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1658 				CLONE_NEWNET))
1659 		goto bad_unshare_out;
1660 
1661 	if ((err = unshare_thread(unshare_flags)))
1662 		goto bad_unshare_out;
1663 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1664 		goto bad_unshare_cleanup_thread;
1665 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1666 		goto bad_unshare_cleanup_fs;
1667 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1668 		goto bad_unshare_cleanup_sigh;
1669 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1670 		goto bad_unshare_cleanup_vm;
1671 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1672 		goto bad_unshare_cleanup_fd;
1673 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1674 			new_fs)))
1675 		goto bad_unshare_cleanup_semundo;
1676 
1677 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1678 
1679 		if (new_nsproxy) {
1680 			switch_task_namespaces(current, new_nsproxy);
1681 			new_nsproxy = NULL;
1682 		}
1683 
1684 		task_lock(current);
1685 
1686 		if (new_fs) {
1687 			fs = current->fs;
1688 			current->fs = new_fs;
1689 			new_fs = fs;
1690 		}
1691 
1692 		if (new_mm) {
1693 			mm = current->mm;
1694 			active_mm = current->active_mm;
1695 			current->mm = new_mm;
1696 			current->active_mm = new_mm;
1697 			activate_mm(active_mm, new_mm);
1698 			new_mm = mm;
1699 		}
1700 
1701 		if (new_fd) {
1702 			fd = current->files;
1703 			current->files = new_fd;
1704 			new_fd = fd;
1705 		}
1706 
1707 		task_unlock(current);
1708 	}
1709 
1710 	if (new_nsproxy)
1711 		put_nsproxy(new_nsproxy);
1712 
1713 bad_unshare_cleanup_semundo:
1714 bad_unshare_cleanup_fd:
1715 	if (new_fd)
1716 		put_files_struct(new_fd);
1717 
1718 bad_unshare_cleanup_vm:
1719 	if (new_mm)
1720 		mmput(new_mm);
1721 
1722 bad_unshare_cleanup_sigh:
1723 	if (new_sigh)
1724 		if (atomic_dec_and_test(&new_sigh->count))
1725 			kmem_cache_free(sighand_cachep, new_sigh);
1726 
1727 bad_unshare_cleanup_fs:
1728 	if (new_fs)
1729 		put_fs_struct(new_fs);
1730 
1731 bad_unshare_cleanup_thread:
1732 bad_unshare_out:
1733 	return err;
1734 }
1735