xref: /linux-6.15/kernel/fork.c (revision 2decec48)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93 #include <linux/stackleak.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
167 
168 /*
169  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
170  * kmemcache based allocator.
171  */
172 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
173 
174 #ifdef CONFIG_VMAP_STACK
175 /*
176  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
177  * flush.  Try to minimize the number of calls by caching stacks.
178  */
179 #define NR_CACHED_STACKS 2
180 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
181 
182 static int free_vm_stack_cache(unsigned int cpu)
183 {
184 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
185 	int i;
186 
187 	for (i = 0; i < NR_CACHED_STACKS; i++) {
188 		struct vm_struct *vm_stack = cached_vm_stacks[i];
189 
190 		if (!vm_stack)
191 			continue;
192 
193 		vfree(vm_stack->addr);
194 		cached_vm_stacks[i] = NULL;
195 	}
196 
197 	return 0;
198 }
199 #endif
200 
201 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
202 {
203 #ifdef CONFIG_VMAP_STACK
204 	void *stack;
205 	int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		struct vm_struct *s;
209 
210 		s = this_cpu_xchg(cached_stacks[i], NULL);
211 
212 		if (!s)
213 			continue;
214 
215 		/* Clear stale pointers from reused stack. */
216 		memset(s->addr, 0, THREAD_SIZE);
217 
218 		tsk->stack_vm_area = s;
219 		tsk->stack = s->addr;
220 		return s->addr;
221 	}
222 
223 	/*
224 	 * Allocated stacks are cached and later reused by new threads,
225 	 * so memcg accounting is performed manually on assigning/releasing
226 	 * stacks to tasks. Drop __GFP_ACCOUNT.
227 	 */
228 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
229 				     VMALLOC_START, VMALLOC_END,
230 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
231 				     PAGE_KERNEL,
232 				     0, node, __builtin_return_address(0));
233 
234 	/*
235 	 * We can't call find_vm_area() in interrupt context, and
236 	 * free_thread_stack() can be called in interrupt context,
237 	 * so cache the vm_struct.
238 	 */
239 	if (stack) {
240 		tsk->stack_vm_area = find_vm_area(stack);
241 		tsk->stack = stack;
242 	}
243 	return stack;
244 #else
245 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
246 					     THREAD_SIZE_ORDER);
247 
248 	return page ? page_address(page) : NULL;
249 #endif
250 }
251 
252 static inline void free_thread_stack(struct task_struct *tsk)
253 {
254 #ifdef CONFIG_VMAP_STACK
255 	struct vm_struct *vm = task_stack_vm_area(tsk);
256 
257 	if (vm) {
258 		int i;
259 
260 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 			mod_memcg_page_state(vm->pages[i],
262 					     MEMCG_KERNEL_STACK_KB,
263 					     -(int)(PAGE_SIZE / 1024));
264 
265 			memcg_kmem_uncharge(vm->pages[i], 0);
266 		}
267 
268 		for (i = 0; i < NR_CACHED_STACKS; i++) {
269 			if (this_cpu_cmpxchg(cached_stacks[i],
270 					NULL, tsk->stack_vm_area) != NULL)
271 				continue;
272 
273 			return;
274 		}
275 
276 		vfree_atomic(tsk->stack);
277 		return;
278 	}
279 #endif
280 
281 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
282 }
283 # else
284 static struct kmem_cache *thread_stack_cache;
285 
286 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
287 						  int node)
288 {
289 	unsigned long *stack;
290 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
291 	tsk->stack = stack;
292 	return stack;
293 }
294 
295 static void free_thread_stack(struct task_struct *tsk)
296 {
297 	kmem_cache_free(thread_stack_cache, tsk->stack);
298 }
299 
300 void thread_stack_cache_init(void)
301 {
302 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
303 					THREAD_SIZE, THREAD_SIZE, 0, 0,
304 					THREAD_SIZE, NULL);
305 	BUG_ON(thread_stack_cache == NULL);
306 }
307 # endif
308 #endif
309 
310 /* SLAB cache for signal_struct structures (tsk->signal) */
311 static struct kmem_cache *signal_cachep;
312 
313 /* SLAB cache for sighand_struct structures (tsk->sighand) */
314 struct kmem_cache *sighand_cachep;
315 
316 /* SLAB cache for files_struct structures (tsk->files) */
317 struct kmem_cache *files_cachep;
318 
319 /* SLAB cache for fs_struct structures (tsk->fs) */
320 struct kmem_cache *fs_cachep;
321 
322 /* SLAB cache for vm_area_struct structures */
323 static struct kmem_cache *vm_area_cachep;
324 
325 /* SLAB cache for mm_struct structures (tsk->mm) */
326 static struct kmem_cache *mm_cachep;
327 
328 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
329 {
330 	struct vm_area_struct *vma;
331 
332 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
333 	if (vma)
334 		vma_init(vma, mm);
335 	return vma;
336 }
337 
338 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
339 {
340 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
341 
342 	if (new) {
343 		*new = *orig;
344 		INIT_LIST_HEAD(&new->anon_vma_chain);
345 	}
346 	return new;
347 }
348 
349 void vm_area_free(struct vm_area_struct *vma)
350 {
351 	kmem_cache_free(vm_area_cachep, vma);
352 }
353 
354 static void account_kernel_stack(struct task_struct *tsk, int account)
355 {
356 	void *stack = task_stack_page(tsk);
357 	struct vm_struct *vm = task_stack_vm_area(tsk);
358 
359 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
360 
361 	if (vm) {
362 		int i;
363 
364 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
365 
366 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
367 			mod_zone_page_state(page_zone(vm->pages[i]),
368 					    NR_KERNEL_STACK_KB,
369 					    PAGE_SIZE / 1024 * account);
370 		}
371 	} else {
372 		/*
373 		 * All stack pages are in the same zone and belong to the
374 		 * same memcg.
375 		 */
376 		struct page *first_page = virt_to_page(stack);
377 
378 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
379 				    THREAD_SIZE / 1024 * account);
380 
381 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
382 				     account * (THREAD_SIZE / 1024));
383 	}
384 }
385 
386 static int memcg_charge_kernel_stack(struct task_struct *tsk)
387 {
388 #ifdef CONFIG_VMAP_STACK
389 	struct vm_struct *vm = task_stack_vm_area(tsk);
390 	int ret;
391 
392 	if (vm) {
393 		int i;
394 
395 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
396 			/*
397 			 * If memcg_kmem_charge() fails, page->mem_cgroup
398 			 * pointer is NULL, and both memcg_kmem_uncharge()
399 			 * and mod_memcg_page_state() in free_thread_stack()
400 			 * will ignore this page. So it's safe.
401 			 */
402 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
403 			if (ret)
404 				return ret;
405 
406 			mod_memcg_page_state(vm->pages[i],
407 					     MEMCG_KERNEL_STACK_KB,
408 					     PAGE_SIZE / 1024);
409 		}
410 	}
411 #endif
412 	return 0;
413 }
414 
415 static void release_task_stack(struct task_struct *tsk)
416 {
417 	if (WARN_ON(tsk->state != TASK_DEAD))
418 		return;  /* Better to leak the stack than to free prematurely */
419 
420 	account_kernel_stack(tsk, -1);
421 	free_thread_stack(tsk);
422 	tsk->stack = NULL;
423 #ifdef CONFIG_VMAP_STACK
424 	tsk->stack_vm_area = NULL;
425 #endif
426 }
427 
428 #ifdef CONFIG_THREAD_INFO_IN_TASK
429 void put_task_stack(struct task_struct *tsk)
430 {
431 	if (refcount_dec_and_test(&tsk->stack_refcount))
432 		release_task_stack(tsk);
433 }
434 #endif
435 
436 void free_task(struct task_struct *tsk)
437 {
438 #ifndef CONFIG_THREAD_INFO_IN_TASK
439 	/*
440 	 * The task is finally done with both the stack and thread_info,
441 	 * so free both.
442 	 */
443 	release_task_stack(tsk);
444 #else
445 	/*
446 	 * If the task had a separate stack allocation, it should be gone
447 	 * by now.
448 	 */
449 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
450 #endif
451 	rt_mutex_debug_task_free(tsk);
452 	ftrace_graph_exit_task(tsk);
453 	put_seccomp_filter(tsk);
454 	arch_release_task_struct(tsk);
455 	if (tsk->flags & PF_KTHREAD)
456 		free_kthread_struct(tsk);
457 	free_task_struct(tsk);
458 }
459 EXPORT_SYMBOL(free_task);
460 
461 #ifdef CONFIG_MMU
462 static __latent_entropy int dup_mmap(struct mm_struct *mm,
463 					struct mm_struct *oldmm)
464 {
465 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
466 	struct rb_node **rb_link, *rb_parent;
467 	int retval;
468 	unsigned long charge;
469 	LIST_HEAD(uf);
470 
471 	uprobe_start_dup_mmap();
472 	if (down_write_killable(&oldmm->mmap_sem)) {
473 		retval = -EINTR;
474 		goto fail_uprobe_end;
475 	}
476 	flush_cache_dup_mm(oldmm);
477 	uprobe_dup_mmap(oldmm, mm);
478 	/*
479 	 * Not linked in yet - no deadlock potential:
480 	 */
481 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
482 
483 	/* No ordering required: file already has been exposed. */
484 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
485 
486 	mm->total_vm = oldmm->total_vm;
487 	mm->data_vm = oldmm->data_vm;
488 	mm->exec_vm = oldmm->exec_vm;
489 	mm->stack_vm = oldmm->stack_vm;
490 
491 	rb_link = &mm->mm_rb.rb_node;
492 	rb_parent = NULL;
493 	pprev = &mm->mmap;
494 	retval = ksm_fork(mm, oldmm);
495 	if (retval)
496 		goto out;
497 	retval = khugepaged_fork(mm, oldmm);
498 	if (retval)
499 		goto out;
500 
501 	prev = NULL;
502 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
503 		struct file *file;
504 
505 		if (mpnt->vm_flags & VM_DONTCOPY) {
506 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
507 			continue;
508 		}
509 		charge = 0;
510 		/*
511 		 * Don't duplicate many vmas if we've been oom-killed (for
512 		 * example)
513 		 */
514 		if (fatal_signal_pending(current)) {
515 			retval = -EINTR;
516 			goto out;
517 		}
518 		if (mpnt->vm_flags & VM_ACCOUNT) {
519 			unsigned long len = vma_pages(mpnt);
520 
521 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
522 				goto fail_nomem;
523 			charge = len;
524 		}
525 		tmp = vm_area_dup(mpnt);
526 		if (!tmp)
527 			goto fail_nomem;
528 		retval = vma_dup_policy(mpnt, tmp);
529 		if (retval)
530 			goto fail_nomem_policy;
531 		tmp->vm_mm = mm;
532 		retval = dup_userfaultfd(tmp, &uf);
533 		if (retval)
534 			goto fail_nomem_anon_vma_fork;
535 		if (tmp->vm_flags & VM_WIPEONFORK) {
536 			/* VM_WIPEONFORK gets a clean slate in the child. */
537 			tmp->anon_vma = NULL;
538 			if (anon_vma_prepare(tmp))
539 				goto fail_nomem_anon_vma_fork;
540 		} else if (anon_vma_fork(tmp, mpnt))
541 			goto fail_nomem_anon_vma_fork;
542 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
543 		tmp->vm_next = tmp->vm_prev = NULL;
544 		file = tmp->vm_file;
545 		if (file) {
546 			struct inode *inode = file_inode(file);
547 			struct address_space *mapping = file->f_mapping;
548 
549 			get_file(file);
550 			if (tmp->vm_flags & VM_DENYWRITE)
551 				atomic_dec(&inode->i_writecount);
552 			i_mmap_lock_write(mapping);
553 			if (tmp->vm_flags & VM_SHARED)
554 				atomic_inc(&mapping->i_mmap_writable);
555 			flush_dcache_mmap_lock(mapping);
556 			/* insert tmp into the share list, just after mpnt */
557 			vma_interval_tree_insert_after(tmp, mpnt,
558 					&mapping->i_mmap);
559 			flush_dcache_mmap_unlock(mapping);
560 			i_mmap_unlock_write(mapping);
561 		}
562 
563 		/*
564 		 * Clear hugetlb-related page reserves for children. This only
565 		 * affects MAP_PRIVATE mappings. Faults generated by the child
566 		 * are not guaranteed to succeed, even if read-only
567 		 */
568 		if (is_vm_hugetlb_page(tmp))
569 			reset_vma_resv_huge_pages(tmp);
570 
571 		/*
572 		 * Link in the new vma and copy the page table entries.
573 		 */
574 		*pprev = tmp;
575 		pprev = &tmp->vm_next;
576 		tmp->vm_prev = prev;
577 		prev = tmp;
578 
579 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
580 		rb_link = &tmp->vm_rb.rb_right;
581 		rb_parent = &tmp->vm_rb;
582 
583 		mm->map_count++;
584 		if (!(tmp->vm_flags & VM_WIPEONFORK))
585 			retval = copy_page_range(mm, oldmm, mpnt);
586 
587 		if (tmp->vm_ops && tmp->vm_ops->open)
588 			tmp->vm_ops->open(tmp);
589 
590 		if (retval)
591 			goto out;
592 	}
593 	/* a new mm has just been created */
594 	retval = arch_dup_mmap(oldmm, mm);
595 out:
596 	up_write(&mm->mmap_sem);
597 	flush_tlb_mm(oldmm);
598 	up_write(&oldmm->mmap_sem);
599 	dup_userfaultfd_complete(&uf);
600 fail_uprobe_end:
601 	uprobe_end_dup_mmap();
602 	return retval;
603 fail_nomem_anon_vma_fork:
604 	mpol_put(vma_policy(tmp));
605 fail_nomem_policy:
606 	vm_area_free(tmp);
607 fail_nomem:
608 	retval = -ENOMEM;
609 	vm_unacct_memory(charge);
610 	goto out;
611 }
612 
613 static inline int mm_alloc_pgd(struct mm_struct *mm)
614 {
615 	mm->pgd = pgd_alloc(mm);
616 	if (unlikely(!mm->pgd))
617 		return -ENOMEM;
618 	return 0;
619 }
620 
621 static inline void mm_free_pgd(struct mm_struct *mm)
622 {
623 	pgd_free(mm, mm->pgd);
624 }
625 #else
626 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
627 {
628 	down_write(&oldmm->mmap_sem);
629 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
630 	up_write(&oldmm->mmap_sem);
631 	return 0;
632 }
633 #define mm_alloc_pgd(mm)	(0)
634 #define mm_free_pgd(mm)
635 #endif /* CONFIG_MMU */
636 
637 static void check_mm(struct mm_struct *mm)
638 {
639 	int i;
640 
641 	for (i = 0; i < NR_MM_COUNTERS; i++) {
642 		long x = atomic_long_read(&mm->rss_stat.count[i]);
643 
644 		if (unlikely(x))
645 			printk(KERN_ALERT "BUG: Bad rss-counter state "
646 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
647 	}
648 
649 	if (mm_pgtables_bytes(mm))
650 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
651 				mm_pgtables_bytes(mm));
652 
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
655 #endif
656 }
657 
658 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
659 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
660 
661 /*
662  * Called when the last reference to the mm
663  * is dropped: either by a lazy thread or by
664  * mmput. Free the page directory and the mm.
665  */
666 void __mmdrop(struct mm_struct *mm)
667 {
668 	BUG_ON(mm == &init_mm);
669 	WARN_ON_ONCE(mm == current->mm);
670 	WARN_ON_ONCE(mm == current->active_mm);
671 	mm_free_pgd(mm);
672 	destroy_context(mm);
673 	hmm_mm_destroy(mm);
674 	mmu_notifier_mm_destroy(mm);
675 	check_mm(mm);
676 	put_user_ns(mm->user_ns);
677 	free_mm(mm);
678 }
679 EXPORT_SYMBOL_GPL(__mmdrop);
680 
681 static void mmdrop_async_fn(struct work_struct *work)
682 {
683 	struct mm_struct *mm;
684 
685 	mm = container_of(work, struct mm_struct, async_put_work);
686 	__mmdrop(mm);
687 }
688 
689 static void mmdrop_async(struct mm_struct *mm)
690 {
691 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
692 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
693 		schedule_work(&mm->async_put_work);
694 	}
695 }
696 
697 static inline void free_signal_struct(struct signal_struct *sig)
698 {
699 	taskstats_tgid_free(sig);
700 	sched_autogroup_exit(sig);
701 	/*
702 	 * __mmdrop is not safe to call from softirq context on x86 due to
703 	 * pgd_dtor so postpone it to the async context
704 	 */
705 	if (sig->oom_mm)
706 		mmdrop_async(sig->oom_mm);
707 	kmem_cache_free(signal_cachep, sig);
708 }
709 
710 static inline void put_signal_struct(struct signal_struct *sig)
711 {
712 	if (refcount_dec_and_test(&sig->sigcnt))
713 		free_signal_struct(sig);
714 }
715 
716 void __put_task_struct(struct task_struct *tsk)
717 {
718 	WARN_ON(!tsk->exit_state);
719 	WARN_ON(refcount_read(&tsk->usage));
720 	WARN_ON(tsk == current);
721 
722 	cgroup_free(tsk);
723 	task_numa_free(tsk);
724 	security_task_free(tsk);
725 	exit_creds(tsk);
726 	delayacct_tsk_free(tsk);
727 	put_signal_struct(tsk->signal);
728 
729 	if (!profile_handoff_task(tsk))
730 		free_task(tsk);
731 }
732 EXPORT_SYMBOL_GPL(__put_task_struct);
733 
734 void __init __weak arch_task_cache_init(void) { }
735 
736 /*
737  * set_max_threads
738  */
739 static void set_max_threads(unsigned int max_threads_suggested)
740 {
741 	u64 threads;
742 	unsigned long nr_pages = totalram_pages();
743 
744 	/*
745 	 * The number of threads shall be limited such that the thread
746 	 * structures may only consume a small part of the available memory.
747 	 */
748 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
749 		threads = MAX_THREADS;
750 	else
751 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
752 				    (u64) THREAD_SIZE * 8UL);
753 
754 	if (threads > max_threads_suggested)
755 		threads = max_threads_suggested;
756 
757 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
758 }
759 
760 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
761 /* Initialized by the architecture: */
762 int arch_task_struct_size __read_mostly;
763 #endif
764 
765 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
766 {
767 	/* Fetch thread_struct whitelist for the architecture. */
768 	arch_thread_struct_whitelist(offset, size);
769 
770 	/*
771 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
772 	 * adjust offset to position of thread_struct in task_struct.
773 	 */
774 	if (unlikely(*size == 0))
775 		*offset = 0;
776 	else
777 		*offset += offsetof(struct task_struct, thread);
778 }
779 
780 void __init fork_init(void)
781 {
782 	int i;
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 #ifndef ARCH_MIN_TASKALIGN
785 #define ARCH_MIN_TASKALIGN	0
786 #endif
787 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
788 	unsigned long useroffset, usersize;
789 
790 	/* create a slab on which task_structs can be allocated */
791 	task_struct_whitelist(&useroffset, &usersize);
792 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
793 			arch_task_struct_size, align,
794 			SLAB_PANIC|SLAB_ACCOUNT,
795 			useroffset, usersize, NULL);
796 #endif
797 
798 	/* do the arch specific task caches init */
799 	arch_task_cache_init();
800 
801 	set_max_threads(MAX_THREADS);
802 
803 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
804 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
805 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
806 		init_task.signal->rlim[RLIMIT_NPROC];
807 
808 	for (i = 0; i < UCOUNT_COUNTS; i++) {
809 		init_user_ns.ucount_max[i] = max_threads/2;
810 	}
811 
812 #ifdef CONFIG_VMAP_STACK
813 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
814 			  NULL, free_vm_stack_cache);
815 #endif
816 
817 	lockdep_init_task(&init_task);
818 	uprobes_init();
819 }
820 
821 int __weak arch_dup_task_struct(struct task_struct *dst,
822 					       struct task_struct *src)
823 {
824 	*dst = *src;
825 	return 0;
826 }
827 
828 void set_task_stack_end_magic(struct task_struct *tsk)
829 {
830 	unsigned long *stackend;
831 
832 	stackend = end_of_stack(tsk);
833 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
834 }
835 
836 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
837 {
838 	struct task_struct *tsk;
839 	unsigned long *stack;
840 	struct vm_struct *stack_vm_area __maybe_unused;
841 	int err;
842 
843 	if (node == NUMA_NO_NODE)
844 		node = tsk_fork_get_node(orig);
845 	tsk = alloc_task_struct_node(node);
846 	if (!tsk)
847 		return NULL;
848 
849 	stack = alloc_thread_stack_node(tsk, node);
850 	if (!stack)
851 		goto free_tsk;
852 
853 	if (memcg_charge_kernel_stack(tsk))
854 		goto free_stack;
855 
856 	stack_vm_area = task_stack_vm_area(tsk);
857 
858 	err = arch_dup_task_struct(tsk, orig);
859 
860 	/*
861 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
862 	 * sure they're properly initialized before using any stack-related
863 	 * functions again.
864 	 */
865 	tsk->stack = stack;
866 #ifdef CONFIG_VMAP_STACK
867 	tsk->stack_vm_area = stack_vm_area;
868 #endif
869 #ifdef CONFIG_THREAD_INFO_IN_TASK
870 	refcount_set(&tsk->stack_refcount, 1);
871 #endif
872 
873 	if (err)
874 		goto free_stack;
875 
876 #ifdef CONFIG_SECCOMP
877 	/*
878 	 * We must handle setting up seccomp filters once we're under
879 	 * the sighand lock in case orig has changed between now and
880 	 * then. Until then, filter must be NULL to avoid messing up
881 	 * the usage counts on the error path calling free_task.
882 	 */
883 	tsk->seccomp.filter = NULL;
884 #endif
885 
886 	setup_thread_stack(tsk, orig);
887 	clear_user_return_notifier(tsk);
888 	clear_tsk_need_resched(tsk);
889 	set_task_stack_end_magic(tsk);
890 
891 #ifdef CONFIG_STACKPROTECTOR
892 	tsk->stack_canary = get_random_canary();
893 #endif
894 
895 	/*
896 	 * One for us, one for whoever does the "release_task()" (usually
897 	 * parent)
898 	 */
899 	refcount_set(&tsk->usage, 2);
900 #ifdef CONFIG_BLK_DEV_IO_TRACE
901 	tsk->btrace_seq = 0;
902 #endif
903 	tsk->splice_pipe = NULL;
904 	tsk->task_frag.page = NULL;
905 	tsk->wake_q.next = NULL;
906 
907 	account_kernel_stack(tsk, 1);
908 
909 	kcov_task_init(tsk);
910 
911 #ifdef CONFIG_FAULT_INJECTION
912 	tsk->fail_nth = 0;
913 #endif
914 
915 #ifdef CONFIG_BLK_CGROUP
916 	tsk->throttle_queue = NULL;
917 	tsk->use_memdelay = 0;
918 #endif
919 
920 #ifdef CONFIG_MEMCG
921 	tsk->active_memcg = NULL;
922 #endif
923 	return tsk;
924 
925 free_stack:
926 	free_thread_stack(tsk);
927 free_tsk:
928 	free_task_struct(tsk);
929 	return NULL;
930 }
931 
932 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
933 
934 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
935 
936 static int __init coredump_filter_setup(char *s)
937 {
938 	default_dump_filter =
939 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
940 		MMF_DUMP_FILTER_MASK;
941 	return 1;
942 }
943 
944 __setup("coredump_filter=", coredump_filter_setup);
945 
946 #include <linux/init_task.h>
947 
948 static void mm_init_aio(struct mm_struct *mm)
949 {
950 #ifdef CONFIG_AIO
951 	spin_lock_init(&mm->ioctx_lock);
952 	mm->ioctx_table = NULL;
953 #endif
954 }
955 
956 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
957 {
958 #ifdef CONFIG_MEMCG
959 	mm->owner = p;
960 #endif
961 }
962 
963 static void mm_init_uprobes_state(struct mm_struct *mm)
964 {
965 #ifdef CONFIG_UPROBES
966 	mm->uprobes_state.xol_area = NULL;
967 #endif
968 }
969 
970 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
971 	struct user_namespace *user_ns)
972 {
973 	mm->mmap = NULL;
974 	mm->mm_rb = RB_ROOT;
975 	mm->vmacache_seqnum = 0;
976 	atomic_set(&mm->mm_users, 1);
977 	atomic_set(&mm->mm_count, 1);
978 	init_rwsem(&mm->mmap_sem);
979 	INIT_LIST_HEAD(&mm->mmlist);
980 	mm->core_state = NULL;
981 	mm_pgtables_bytes_init(mm);
982 	mm->map_count = 0;
983 	mm->locked_vm = 0;
984 	atomic64_set(&mm->pinned_vm, 0);
985 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
986 	spin_lock_init(&mm->page_table_lock);
987 	spin_lock_init(&mm->arg_lock);
988 	mm_init_cpumask(mm);
989 	mm_init_aio(mm);
990 	mm_init_owner(mm, p);
991 	RCU_INIT_POINTER(mm->exe_file, NULL);
992 	mmu_notifier_mm_init(mm);
993 	hmm_mm_init(mm);
994 	init_tlb_flush_pending(mm);
995 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
996 	mm->pmd_huge_pte = NULL;
997 #endif
998 	mm_init_uprobes_state(mm);
999 
1000 	if (current->mm) {
1001 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1002 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1003 	} else {
1004 		mm->flags = default_dump_filter;
1005 		mm->def_flags = 0;
1006 	}
1007 
1008 	if (mm_alloc_pgd(mm))
1009 		goto fail_nopgd;
1010 
1011 	if (init_new_context(p, mm))
1012 		goto fail_nocontext;
1013 
1014 	mm->user_ns = get_user_ns(user_ns);
1015 	return mm;
1016 
1017 fail_nocontext:
1018 	mm_free_pgd(mm);
1019 fail_nopgd:
1020 	free_mm(mm);
1021 	return NULL;
1022 }
1023 
1024 /*
1025  * Allocate and initialize an mm_struct.
1026  */
1027 struct mm_struct *mm_alloc(void)
1028 {
1029 	struct mm_struct *mm;
1030 
1031 	mm = allocate_mm();
1032 	if (!mm)
1033 		return NULL;
1034 
1035 	memset(mm, 0, sizeof(*mm));
1036 	return mm_init(mm, current, current_user_ns());
1037 }
1038 
1039 static inline void __mmput(struct mm_struct *mm)
1040 {
1041 	VM_BUG_ON(atomic_read(&mm->mm_users));
1042 
1043 	uprobe_clear_state(mm);
1044 	exit_aio(mm);
1045 	ksm_exit(mm);
1046 	khugepaged_exit(mm); /* must run before exit_mmap */
1047 	exit_mmap(mm);
1048 	mm_put_huge_zero_page(mm);
1049 	set_mm_exe_file(mm, NULL);
1050 	if (!list_empty(&mm->mmlist)) {
1051 		spin_lock(&mmlist_lock);
1052 		list_del(&mm->mmlist);
1053 		spin_unlock(&mmlist_lock);
1054 	}
1055 	if (mm->binfmt)
1056 		module_put(mm->binfmt->module);
1057 	mmdrop(mm);
1058 }
1059 
1060 /*
1061  * Decrement the use count and release all resources for an mm.
1062  */
1063 void mmput(struct mm_struct *mm)
1064 {
1065 	might_sleep();
1066 
1067 	if (atomic_dec_and_test(&mm->mm_users))
1068 		__mmput(mm);
1069 }
1070 EXPORT_SYMBOL_GPL(mmput);
1071 
1072 #ifdef CONFIG_MMU
1073 static void mmput_async_fn(struct work_struct *work)
1074 {
1075 	struct mm_struct *mm = container_of(work, struct mm_struct,
1076 					    async_put_work);
1077 
1078 	__mmput(mm);
1079 }
1080 
1081 void mmput_async(struct mm_struct *mm)
1082 {
1083 	if (atomic_dec_and_test(&mm->mm_users)) {
1084 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1085 		schedule_work(&mm->async_put_work);
1086 	}
1087 }
1088 #endif
1089 
1090 /**
1091  * set_mm_exe_file - change a reference to the mm's executable file
1092  *
1093  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1094  *
1095  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1096  * invocations: in mmput() nobody alive left, in execve task is single
1097  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1098  * mm->exe_file, but does so without using set_mm_exe_file() in order
1099  * to do avoid the need for any locks.
1100  */
1101 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1102 {
1103 	struct file *old_exe_file;
1104 
1105 	/*
1106 	 * It is safe to dereference the exe_file without RCU as
1107 	 * this function is only called if nobody else can access
1108 	 * this mm -- see comment above for justification.
1109 	 */
1110 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1111 
1112 	if (new_exe_file)
1113 		get_file(new_exe_file);
1114 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1115 	if (old_exe_file)
1116 		fput(old_exe_file);
1117 }
1118 
1119 /**
1120  * get_mm_exe_file - acquire a reference to the mm's executable file
1121  *
1122  * Returns %NULL if mm has no associated executable file.
1123  * User must release file via fput().
1124  */
1125 struct file *get_mm_exe_file(struct mm_struct *mm)
1126 {
1127 	struct file *exe_file;
1128 
1129 	rcu_read_lock();
1130 	exe_file = rcu_dereference(mm->exe_file);
1131 	if (exe_file && !get_file_rcu(exe_file))
1132 		exe_file = NULL;
1133 	rcu_read_unlock();
1134 	return exe_file;
1135 }
1136 EXPORT_SYMBOL(get_mm_exe_file);
1137 
1138 /**
1139  * get_task_exe_file - acquire a reference to the task's executable file
1140  *
1141  * Returns %NULL if task's mm (if any) has no associated executable file or
1142  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1143  * User must release file via fput().
1144  */
1145 struct file *get_task_exe_file(struct task_struct *task)
1146 {
1147 	struct file *exe_file = NULL;
1148 	struct mm_struct *mm;
1149 
1150 	task_lock(task);
1151 	mm = task->mm;
1152 	if (mm) {
1153 		if (!(task->flags & PF_KTHREAD))
1154 			exe_file = get_mm_exe_file(mm);
1155 	}
1156 	task_unlock(task);
1157 	return exe_file;
1158 }
1159 EXPORT_SYMBOL(get_task_exe_file);
1160 
1161 /**
1162  * get_task_mm - acquire a reference to the task's mm
1163  *
1164  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1165  * this kernel workthread has transiently adopted a user mm with use_mm,
1166  * to do its AIO) is not set and if so returns a reference to it, after
1167  * bumping up the use count.  User must release the mm via mmput()
1168  * after use.  Typically used by /proc and ptrace.
1169  */
1170 struct mm_struct *get_task_mm(struct task_struct *task)
1171 {
1172 	struct mm_struct *mm;
1173 
1174 	task_lock(task);
1175 	mm = task->mm;
1176 	if (mm) {
1177 		if (task->flags & PF_KTHREAD)
1178 			mm = NULL;
1179 		else
1180 			mmget(mm);
1181 	}
1182 	task_unlock(task);
1183 	return mm;
1184 }
1185 EXPORT_SYMBOL_GPL(get_task_mm);
1186 
1187 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1188 {
1189 	struct mm_struct *mm;
1190 	int err;
1191 
1192 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1193 	if (err)
1194 		return ERR_PTR(err);
1195 
1196 	mm = get_task_mm(task);
1197 	if (mm && mm != current->mm &&
1198 			!ptrace_may_access(task, mode)) {
1199 		mmput(mm);
1200 		mm = ERR_PTR(-EACCES);
1201 	}
1202 	mutex_unlock(&task->signal->cred_guard_mutex);
1203 
1204 	return mm;
1205 }
1206 
1207 static void complete_vfork_done(struct task_struct *tsk)
1208 {
1209 	struct completion *vfork;
1210 
1211 	task_lock(tsk);
1212 	vfork = tsk->vfork_done;
1213 	if (likely(vfork)) {
1214 		tsk->vfork_done = NULL;
1215 		complete(vfork);
1216 	}
1217 	task_unlock(tsk);
1218 }
1219 
1220 static int wait_for_vfork_done(struct task_struct *child,
1221 				struct completion *vfork)
1222 {
1223 	int killed;
1224 
1225 	freezer_do_not_count();
1226 	killed = wait_for_completion_killable(vfork);
1227 	freezer_count();
1228 
1229 	if (killed) {
1230 		task_lock(child);
1231 		child->vfork_done = NULL;
1232 		task_unlock(child);
1233 	}
1234 
1235 	put_task_struct(child);
1236 	return killed;
1237 }
1238 
1239 /* Please note the differences between mmput and mm_release.
1240  * mmput is called whenever we stop holding onto a mm_struct,
1241  * error success whatever.
1242  *
1243  * mm_release is called after a mm_struct has been removed
1244  * from the current process.
1245  *
1246  * This difference is important for error handling, when we
1247  * only half set up a mm_struct for a new process and need to restore
1248  * the old one.  Because we mmput the new mm_struct before
1249  * restoring the old one. . .
1250  * Eric Biederman 10 January 1998
1251  */
1252 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1253 {
1254 	/* Get rid of any futexes when releasing the mm */
1255 #ifdef CONFIG_FUTEX
1256 	if (unlikely(tsk->robust_list)) {
1257 		exit_robust_list(tsk);
1258 		tsk->robust_list = NULL;
1259 	}
1260 #ifdef CONFIG_COMPAT
1261 	if (unlikely(tsk->compat_robust_list)) {
1262 		compat_exit_robust_list(tsk);
1263 		tsk->compat_robust_list = NULL;
1264 	}
1265 #endif
1266 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1267 		exit_pi_state_list(tsk);
1268 #endif
1269 
1270 	uprobe_free_utask(tsk);
1271 
1272 	/* Get rid of any cached register state */
1273 	deactivate_mm(tsk, mm);
1274 
1275 	/*
1276 	 * Signal userspace if we're not exiting with a core dump
1277 	 * because we want to leave the value intact for debugging
1278 	 * purposes.
1279 	 */
1280 	if (tsk->clear_child_tid) {
1281 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1282 		    atomic_read(&mm->mm_users) > 1) {
1283 			/*
1284 			 * We don't check the error code - if userspace has
1285 			 * not set up a proper pointer then tough luck.
1286 			 */
1287 			put_user(0, tsk->clear_child_tid);
1288 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1289 					1, NULL, NULL, 0, 0);
1290 		}
1291 		tsk->clear_child_tid = NULL;
1292 	}
1293 
1294 	/*
1295 	 * All done, finally we can wake up parent and return this mm to him.
1296 	 * Also kthread_stop() uses this completion for synchronization.
1297 	 */
1298 	if (tsk->vfork_done)
1299 		complete_vfork_done(tsk);
1300 }
1301 
1302 /**
1303  * dup_mm() - duplicates an existing mm structure
1304  * @tsk: the task_struct with which the new mm will be associated.
1305  * @oldmm: the mm to duplicate.
1306  *
1307  * Allocates a new mm structure and duplicates the provided @oldmm structure
1308  * content into it.
1309  *
1310  * Return: the duplicated mm or NULL on failure.
1311  */
1312 static struct mm_struct *dup_mm(struct task_struct *tsk,
1313 				struct mm_struct *oldmm)
1314 {
1315 	struct mm_struct *mm;
1316 	int err;
1317 
1318 	mm = allocate_mm();
1319 	if (!mm)
1320 		goto fail_nomem;
1321 
1322 	memcpy(mm, oldmm, sizeof(*mm));
1323 
1324 	if (!mm_init(mm, tsk, mm->user_ns))
1325 		goto fail_nomem;
1326 
1327 	err = dup_mmap(mm, oldmm);
1328 	if (err)
1329 		goto free_pt;
1330 
1331 	mm->hiwater_rss = get_mm_rss(mm);
1332 	mm->hiwater_vm = mm->total_vm;
1333 
1334 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1335 		goto free_pt;
1336 
1337 	return mm;
1338 
1339 free_pt:
1340 	/* don't put binfmt in mmput, we haven't got module yet */
1341 	mm->binfmt = NULL;
1342 	mmput(mm);
1343 
1344 fail_nomem:
1345 	return NULL;
1346 }
1347 
1348 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1349 {
1350 	struct mm_struct *mm, *oldmm;
1351 	int retval;
1352 
1353 	tsk->min_flt = tsk->maj_flt = 0;
1354 	tsk->nvcsw = tsk->nivcsw = 0;
1355 #ifdef CONFIG_DETECT_HUNG_TASK
1356 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1357 	tsk->last_switch_time = 0;
1358 #endif
1359 
1360 	tsk->mm = NULL;
1361 	tsk->active_mm = NULL;
1362 
1363 	/*
1364 	 * Are we cloning a kernel thread?
1365 	 *
1366 	 * We need to steal a active VM for that..
1367 	 */
1368 	oldmm = current->mm;
1369 	if (!oldmm)
1370 		return 0;
1371 
1372 	/* initialize the new vmacache entries */
1373 	vmacache_flush(tsk);
1374 
1375 	if (clone_flags & CLONE_VM) {
1376 		mmget(oldmm);
1377 		mm = oldmm;
1378 		goto good_mm;
1379 	}
1380 
1381 	retval = -ENOMEM;
1382 	mm = dup_mm(tsk, current->mm);
1383 	if (!mm)
1384 		goto fail_nomem;
1385 
1386 good_mm:
1387 	tsk->mm = mm;
1388 	tsk->active_mm = mm;
1389 	return 0;
1390 
1391 fail_nomem:
1392 	return retval;
1393 }
1394 
1395 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1396 {
1397 	struct fs_struct *fs = current->fs;
1398 	if (clone_flags & CLONE_FS) {
1399 		/* tsk->fs is already what we want */
1400 		spin_lock(&fs->lock);
1401 		if (fs->in_exec) {
1402 			spin_unlock(&fs->lock);
1403 			return -EAGAIN;
1404 		}
1405 		fs->users++;
1406 		spin_unlock(&fs->lock);
1407 		return 0;
1408 	}
1409 	tsk->fs = copy_fs_struct(fs);
1410 	if (!tsk->fs)
1411 		return -ENOMEM;
1412 	return 0;
1413 }
1414 
1415 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1416 {
1417 	struct files_struct *oldf, *newf;
1418 	int error = 0;
1419 
1420 	/*
1421 	 * A background process may not have any files ...
1422 	 */
1423 	oldf = current->files;
1424 	if (!oldf)
1425 		goto out;
1426 
1427 	if (clone_flags & CLONE_FILES) {
1428 		atomic_inc(&oldf->count);
1429 		goto out;
1430 	}
1431 
1432 	newf = dup_fd(oldf, &error);
1433 	if (!newf)
1434 		goto out;
1435 
1436 	tsk->files = newf;
1437 	error = 0;
1438 out:
1439 	return error;
1440 }
1441 
1442 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1443 {
1444 #ifdef CONFIG_BLOCK
1445 	struct io_context *ioc = current->io_context;
1446 	struct io_context *new_ioc;
1447 
1448 	if (!ioc)
1449 		return 0;
1450 	/*
1451 	 * Share io context with parent, if CLONE_IO is set
1452 	 */
1453 	if (clone_flags & CLONE_IO) {
1454 		ioc_task_link(ioc);
1455 		tsk->io_context = ioc;
1456 	} else if (ioprio_valid(ioc->ioprio)) {
1457 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1458 		if (unlikely(!new_ioc))
1459 			return -ENOMEM;
1460 
1461 		new_ioc->ioprio = ioc->ioprio;
1462 		put_io_context(new_ioc);
1463 	}
1464 #endif
1465 	return 0;
1466 }
1467 
1468 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1469 {
1470 	struct sighand_struct *sig;
1471 
1472 	if (clone_flags & CLONE_SIGHAND) {
1473 		refcount_inc(&current->sighand->count);
1474 		return 0;
1475 	}
1476 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1477 	rcu_assign_pointer(tsk->sighand, sig);
1478 	if (!sig)
1479 		return -ENOMEM;
1480 
1481 	refcount_set(&sig->count, 1);
1482 	spin_lock_irq(&current->sighand->siglock);
1483 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1484 	spin_unlock_irq(&current->sighand->siglock);
1485 	return 0;
1486 }
1487 
1488 void __cleanup_sighand(struct sighand_struct *sighand)
1489 {
1490 	if (refcount_dec_and_test(&sighand->count)) {
1491 		signalfd_cleanup(sighand);
1492 		/*
1493 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1494 		 * without an RCU grace period, see __lock_task_sighand().
1495 		 */
1496 		kmem_cache_free(sighand_cachep, sighand);
1497 	}
1498 }
1499 
1500 #ifdef CONFIG_POSIX_TIMERS
1501 /*
1502  * Initialize POSIX timer handling for a thread group.
1503  */
1504 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1505 {
1506 	unsigned long cpu_limit;
1507 
1508 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1509 	if (cpu_limit != RLIM_INFINITY) {
1510 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1511 		sig->cputimer.running = true;
1512 	}
1513 
1514 	/* The timer lists. */
1515 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1516 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1517 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1518 }
1519 #else
1520 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1521 #endif
1522 
1523 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1524 {
1525 	struct signal_struct *sig;
1526 
1527 	if (clone_flags & CLONE_THREAD)
1528 		return 0;
1529 
1530 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1531 	tsk->signal = sig;
1532 	if (!sig)
1533 		return -ENOMEM;
1534 
1535 	sig->nr_threads = 1;
1536 	atomic_set(&sig->live, 1);
1537 	refcount_set(&sig->sigcnt, 1);
1538 
1539 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1540 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1541 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1542 
1543 	init_waitqueue_head(&sig->wait_chldexit);
1544 	sig->curr_target = tsk;
1545 	init_sigpending(&sig->shared_pending);
1546 	INIT_HLIST_HEAD(&sig->multiprocess);
1547 	seqlock_init(&sig->stats_lock);
1548 	prev_cputime_init(&sig->prev_cputime);
1549 
1550 #ifdef CONFIG_POSIX_TIMERS
1551 	INIT_LIST_HEAD(&sig->posix_timers);
1552 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1553 	sig->real_timer.function = it_real_fn;
1554 #endif
1555 
1556 	task_lock(current->group_leader);
1557 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1558 	task_unlock(current->group_leader);
1559 
1560 	posix_cpu_timers_init_group(sig);
1561 
1562 	tty_audit_fork(sig);
1563 	sched_autogroup_fork(sig);
1564 
1565 	sig->oom_score_adj = current->signal->oom_score_adj;
1566 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1567 
1568 	mutex_init(&sig->cred_guard_mutex);
1569 
1570 	return 0;
1571 }
1572 
1573 static void copy_seccomp(struct task_struct *p)
1574 {
1575 #ifdef CONFIG_SECCOMP
1576 	/*
1577 	 * Must be called with sighand->lock held, which is common to
1578 	 * all threads in the group. Holding cred_guard_mutex is not
1579 	 * needed because this new task is not yet running and cannot
1580 	 * be racing exec.
1581 	 */
1582 	assert_spin_locked(&current->sighand->siglock);
1583 
1584 	/* Ref-count the new filter user, and assign it. */
1585 	get_seccomp_filter(current);
1586 	p->seccomp = current->seccomp;
1587 
1588 	/*
1589 	 * Explicitly enable no_new_privs here in case it got set
1590 	 * between the task_struct being duplicated and holding the
1591 	 * sighand lock. The seccomp state and nnp must be in sync.
1592 	 */
1593 	if (task_no_new_privs(current))
1594 		task_set_no_new_privs(p);
1595 
1596 	/*
1597 	 * If the parent gained a seccomp mode after copying thread
1598 	 * flags and between before we held the sighand lock, we have
1599 	 * to manually enable the seccomp thread flag here.
1600 	 */
1601 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1602 		set_tsk_thread_flag(p, TIF_SECCOMP);
1603 #endif
1604 }
1605 
1606 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1607 {
1608 	current->clear_child_tid = tidptr;
1609 
1610 	return task_pid_vnr(current);
1611 }
1612 
1613 static void rt_mutex_init_task(struct task_struct *p)
1614 {
1615 	raw_spin_lock_init(&p->pi_lock);
1616 #ifdef CONFIG_RT_MUTEXES
1617 	p->pi_waiters = RB_ROOT_CACHED;
1618 	p->pi_top_task = NULL;
1619 	p->pi_blocked_on = NULL;
1620 #endif
1621 }
1622 
1623 #ifdef CONFIG_POSIX_TIMERS
1624 /*
1625  * Initialize POSIX timer handling for a single task.
1626  */
1627 static void posix_cpu_timers_init(struct task_struct *tsk)
1628 {
1629 	tsk->cputime_expires.prof_exp = 0;
1630 	tsk->cputime_expires.virt_exp = 0;
1631 	tsk->cputime_expires.sched_exp = 0;
1632 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1633 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1634 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1635 }
1636 #else
1637 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1638 #endif
1639 
1640 static inline void init_task_pid_links(struct task_struct *task)
1641 {
1642 	enum pid_type type;
1643 
1644 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1645 		INIT_HLIST_NODE(&task->pid_links[type]);
1646 	}
1647 }
1648 
1649 static inline void
1650 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1651 {
1652 	if (type == PIDTYPE_PID)
1653 		task->thread_pid = pid;
1654 	else
1655 		task->signal->pids[type] = pid;
1656 }
1657 
1658 static inline void rcu_copy_process(struct task_struct *p)
1659 {
1660 #ifdef CONFIG_PREEMPT_RCU
1661 	p->rcu_read_lock_nesting = 0;
1662 	p->rcu_read_unlock_special.s = 0;
1663 	p->rcu_blocked_node = NULL;
1664 	INIT_LIST_HEAD(&p->rcu_node_entry);
1665 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1666 #ifdef CONFIG_TASKS_RCU
1667 	p->rcu_tasks_holdout = false;
1668 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1669 	p->rcu_tasks_idle_cpu = -1;
1670 #endif /* #ifdef CONFIG_TASKS_RCU */
1671 }
1672 
1673 /*
1674  * This creates a new process as a copy of the old one,
1675  * but does not actually start it yet.
1676  *
1677  * It copies the registers, and all the appropriate
1678  * parts of the process environment (as per the clone
1679  * flags). The actual kick-off is left to the caller.
1680  */
1681 static __latent_entropy struct task_struct *copy_process(
1682 					unsigned long clone_flags,
1683 					unsigned long stack_start,
1684 					unsigned long stack_size,
1685 					int __user *child_tidptr,
1686 					struct pid *pid,
1687 					int trace,
1688 					unsigned long tls,
1689 					int node)
1690 {
1691 	int retval;
1692 	struct task_struct *p;
1693 	struct multiprocess_signals delayed;
1694 
1695 	/*
1696 	 * Don't allow sharing the root directory with processes in a different
1697 	 * namespace
1698 	 */
1699 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1700 		return ERR_PTR(-EINVAL);
1701 
1702 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1703 		return ERR_PTR(-EINVAL);
1704 
1705 	/*
1706 	 * Thread groups must share signals as well, and detached threads
1707 	 * can only be started up within the thread group.
1708 	 */
1709 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1710 		return ERR_PTR(-EINVAL);
1711 
1712 	/*
1713 	 * Shared signal handlers imply shared VM. By way of the above,
1714 	 * thread groups also imply shared VM. Blocking this case allows
1715 	 * for various simplifications in other code.
1716 	 */
1717 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1718 		return ERR_PTR(-EINVAL);
1719 
1720 	/*
1721 	 * Siblings of global init remain as zombies on exit since they are
1722 	 * not reaped by their parent (swapper). To solve this and to avoid
1723 	 * multi-rooted process trees, prevent global and container-inits
1724 	 * from creating siblings.
1725 	 */
1726 	if ((clone_flags & CLONE_PARENT) &&
1727 				current->signal->flags & SIGNAL_UNKILLABLE)
1728 		return ERR_PTR(-EINVAL);
1729 
1730 	/*
1731 	 * If the new process will be in a different pid or user namespace
1732 	 * do not allow it to share a thread group with the forking task.
1733 	 */
1734 	if (clone_flags & CLONE_THREAD) {
1735 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1736 		    (task_active_pid_ns(current) !=
1737 				current->nsproxy->pid_ns_for_children))
1738 			return ERR_PTR(-EINVAL);
1739 	}
1740 
1741 	/*
1742 	 * Force any signals received before this point to be delivered
1743 	 * before the fork happens.  Collect up signals sent to multiple
1744 	 * processes that happen during the fork and delay them so that
1745 	 * they appear to happen after the fork.
1746 	 */
1747 	sigemptyset(&delayed.signal);
1748 	INIT_HLIST_NODE(&delayed.node);
1749 
1750 	spin_lock_irq(&current->sighand->siglock);
1751 	if (!(clone_flags & CLONE_THREAD))
1752 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1753 	recalc_sigpending();
1754 	spin_unlock_irq(&current->sighand->siglock);
1755 	retval = -ERESTARTNOINTR;
1756 	if (signal_pending(current))
1757 		goto fork_out;
1758 
1759 	retval = -ENOMEM;
1760 	p = dup_task_struct(current, node);
1761 	if (!p)
1762 		goto fork_out;
1763 
1764 	/*
1765 	 * This _must_ happen before we call free_task(), i.e. before we jump
1766 	 * to any of the bad_fork_* labels. This is to avoid freeing
1767 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1768 	 * kernel threads (PF_KTHREAD).
1769 	 */
1770 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1771 	/*
1772 	 * Clear TID on mm_release()?
1773 	 */
1774 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1775 
1776 	ftrace_graph_init_task(p);
1777 
1778 	rt_mutex_init_task(p);
1779 
1780 #ifdef CONFIG_PROVE_LOCKING
1781 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1782 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1783 #endif
1784 	retval = -EAGAIN;
1785 	if (atomic_read(&p->real_cred->user->processes) >=
1786 			task_rlimit(p, RLIMIT_NPROC)) {
1787 		if (p->real_cred->user != INIT_USER &&
1788 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1789 			goto bad_fork_free;
1790 	}
1791 	current->flags &= ~PF_NPROC_EXCEEDED;
1792 
1793 	retval = copy_creds(p, clone_flags);
1794 	if (retval < 0)
1795 		goto bad_fork_free;
1796 
1797 	/*
1798 	 * If multiple threads are within copy_process(), then this check
1799 	 * triggers too late. This doesn't hurt, the check is only there
1800 	 * to stop root fork bombs.
1801 	 */
1802 	retval = -EAGAIN;
1803 	if (nr_threads >= max_threads)
1804 		goto bad_fork_cleanup_count;
1805 
1806 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1807 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1808 	p->flags |= PF_FORKNOEXEC;
1809 	INIT_LIST_HEAD(&p->children);
1810 	INIT_LIST_HEAD(&p->sibling);
1811 	rcu_copy_process(p);
1812 	p->vfork_done = NULL;
1813 	spin_lock_init(&p->alloc_lock);
1814 
1815 	init_sigpending(&p->pending);
1816 
1817 	p->utime = p->stime = p->gtime = 0;
1818 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1819 	p->utimescaled = p->stimescaled = 0;
1820 #endif
1821 	prev_cputime_init(&p->prev_cputime);
1822 
1823 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1824 	seqcount_init(&p->vtime.seqcount);
1825 	p->vtime.starttime = 0;
1826 	p->vtime.state = VTIME_INACTIVE;
1827 #endif
1828 
1829 #if defined(SPLIT_RSS_COUNTING)
1830 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1831 #endif
1832 
1833 	p->default_timer_slack_ns = current->timer_slack_ns;
1834 
1835 #ifdef CONFIG_PSI
1836 	p->psi_flags = 0;
1837 #endif
1838 
1839 	task_io_accounting_init(&p->ioac);
1840 	acct_clear_integrals(p);
1841 
1842 	posix_cpu_timers_init(p);
1843 
1844 	p->io_context = NULL;
1845 	audit_set_context(p, NULL);
1846 	cgroup_fork(p);
1847 #ifdef CONFIG_NUMA
1848 	p->mempolicy = mpol_dup(p->mempolicy);
1849 	if (IS_ERR(p->mempolicy)) {
1850 		retval = PTR_ERR(p->mempolicy);
1851 		p->mempolicy = NULL;
1852 		goto bad_fork_cleanup_threadgroup_lock;
1853 	}
1854 #endif
1855 #ifdef CONFIG_CPUSETS
1856 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1857 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1858 	seqcount_init(&p->mems_allowed_seq);
1859 #endif
1860 #ifdef CONFIG_TRACE_IRQFLAGS
1861 	p->irq_events = 0;
1862 	p->hardirqs_enabled = 0;
1863 	p->hardirq_enable_ip = 0;
1864 	p->hardirq_enable_event = 0;
1865 	p->hardirq_disable_ip = _THIS_IP_;
1866 	p->hardirq_disable_event = 0;
1867 	p->softirqs_enabled = 1;
1868 	p->softirq_enable_ip = _THIS_IP_;
1869 	p->softirq_enable_event = 0;
1870 	p->softirq_disable_ip = 0;
1871 	p->softirq_disable_event = 0;
1872 	p->hardirq_context = 0;
1873 	p->softirq_context = 0;
1874 #endif
1875 
1876 	p->pagefault_disabled = 0;
1877 
1878 #ifdef CONFIG_LOCKDEP
1879 	p->lockdep_depth = 0; /* no locks held yet */
1880 	p->curr_chain_key = 0;
1881 	p->lockdep_recursion = 0;
1882 	lockdep_init_task(p);
1883 #endif
1884 
1885 #ifdef CONFIG_DEBUG_MUTEXES
1886 	p->blocked_on = NULL; /* not blocked yet */
1887 #endif
1888 #ifdef CONFIG_BCACHE
1889 	p->sequential_io	= 0;
1890 	p->sequential_io_avg	= 0;
1891 #endif
1892 
1893 	/* Perform scheduler related setup. Assign this task to a CPU. */
1894 	retval = sched_fork(clone_flags, p);
1895 	if (retval)
1896 		goto bad_fork_cleanup_policy;
1897 
1898 	retval = perf_event_init_task(p);
1899 	if (retval)
1900 		goto bad_fork_cleanup_policy;
1901 	retval = audit_alloc(p);
1902 	if (retval)
1903 		goto bad_fork_cleanup_perf;
1904 	/* copy all the process information */
1905 	shm_init_task(p);
1906 	retval = security_task_alloc(p, clone_flags);
1907 	if (retval)
1908 		goto bad_fork_cleanup_audit;
1909 	retval = copy_semundo(clone_flags, p);
1910 	if (retval)
1911 		goto bad_fork_cleanup_security;
1912 	retval = copy_files(clone_flags, p);
1913 	if (retval)
1914 		goto bad_fork_cleanup_semundo;
1915 	retval = copy_fs(clone_flags, p);
1916 	if (retval)
1917 		goto bad_fork_cleanup_files;
1918 	retval = copy_sighand(clone_flags, p);
1919 	if (retval)
1920 		goto bad_fork_cleanup_fs;
1921 	retval = copy_signal(clone_flags, p);
1922 	if (retval)
1923 		goto bad_fork_cleanup_sighand;
1924 	retval = copy_mm(clone_flags, p);
1925 	if (retval)
1926 		goto bad_fork_cleanup_signal;
1927 	retval = copy_namespaces(clone_flags, p);
1928 	if (retval)
1929 		goto bad_fork_cleanup_mm;
1930 	retval = copy_io(clone_flags, p);
1931 	if (retval)
1932 		goto bad_fork_cleanup_namespaces;
1933 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1934 	if (retval)
1935 		goto bad_fork_cleanup_io;
1936 
1937 	stackleak_task_init(p);
1938 
1939 	if (pid != &init_struct_pid) {
1940 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1941 		if (IS_ERR(pid)) {
1942 			retval = PTR_ERR(pid);
1943 			goto bad_fork_cleanup_thread;
1944 		}
1945 	}
1946 
1947 #ifdef CONFIG_BLOCK
1948 	p->plug = NULL;
1949 #endif
1950 #ifdef CONFIG_FUTEX
1951 	p->robust_list = NULL;
1952 #ifdef CONFIG_COMPAT
1953 	p->compat_robust_list = NULL;
1954 #endif
1955 	INIT_LIST_HEAD(&p->pi_state_list);
1956 	p->pi_state_cache = NULL;
1957 #endif
1958 	/*
1959 	 * sigaltstack should be cleared when sharing the same VM
1960 	 */
1961 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1962 		sas_ss_reset(p);
1963 
1964 	/*
1965 	 * Syscall tracing and stepping should be turned off in the
1966 	 * child regardless of CLONE_PTRACE.
1967 	 */
1968 	user_disable_single_step(p);
1969 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1970 #ifdef TIF_SYSCALL_EMU
1971 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1972 #endif
1973 	clear_all_latency_tracing(p);
1974 
1975 	/* ok, now we should be set up.. */
1976 	p->pid = pid_nr(pid);
1977 	if (clone_flags & CLONE_THREAD) {
1978 		p->exit_signal = -1;
1979 		p->group_leader = current->group_leader;
1980 		p->tgid = current->tgid;
1981 	} else {
1982 		if (clone_flags & CLONE_PARENT)
1983 			p->exit_signal = current->group_leader->exit_signal;
1984 		else
1985 			p->exit_signal = (clone_flags & CSIGNAL);
1986 		p->group_leader = p;
1987 		p->tgid = p->pid;
1988 	}
1989 
1990 	p->nr_dirtied = 0;
1991 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1992 	p->dirty_paused_when = 0;
1993 
1994 	p->pdeath_signal = 0;
1995 	INIT_LIST_HEAD(&p->thread_group);
1996 	p->task_works = NULL;
1997 
1998 	cgroup_threadgroup_change_begin(current);
1999 	/*
2000 	 * Ensure that the cgroup subsystem policies allow the new process to be
2001 	 * forked. It should be noted the the new process's css_set can be changed
2002 	 * between here and cgroup_post_fork() if an organisation operation is in
2003 	 * progress.
2004 	 */
2005 	retval = cgroup_can_fork(p);
2006 	if (retval)
2007 		goto bad_fork_free_pid;
2008 
2009 	/*
2010 	 * From this point on we must avoid any synchronous user-space
2011 	 * communication until we take the tasklist-lock. In particular, we do
2012 	 * not want user-space to be able to predict the process start-time by
2013 	 * stalling fork(2) after we recorded the start_time but before it is
2014 	 * visible to the system.
2015 	 */
2016 
2017 	p->start_time = ktime_get_ns();
2018 	p->real_start_time = ktime_get_boot_ns();
2019 
2020 	/*
2021 	 * Make it visible to the rest of the system, but dont wake it up yet.
2022 	 * Need tasklist lock for parent etc handling!
2023 	 */
2024 	write_lock_irq(&tasklist_lock);
2025 
2026 	/* CLONE_PARENT re-uses the old parent */
2027 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2028 		p->real_parent = current->real_parent;
2029 		p->parent_exec_id = current->parent_exec_id;
2030 	} else {
2031 		p->real_parent = current;
2032 		p->parent_exec_id = current->self_exec_id;
2033 	}
2034 
2035 	klp_copy_process(p);
2036 
2037 	spin_lock(&current->sighand->siglock);
2038 
2039 	/*
2040 	 * Copy seccomp details explicitly here, in case they were changed
2041 	 * before holding sighand lock.
2042 	 */
2043 	copy_seccomp(p);
2044 
2045 	rseq_fork(p, clone_flags);
2046 
2047 	/* Don't start children in a dying pid namespace */
2048 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2049 		retval = -ENOMEM;
2050 		goto bad_fork_cancel_cgroup;
2051 	}
2052 
2053 	/* Let kill terminate clone/fork in the middle */
2054 	if (fatal_signal_pending(current)) {
2055 		retval = -EINTR;
2056 		goto bad_fork_cancel_cgroup;
2057 	}
2058 
2059 
2060 	init_task_pid_links(p);
2061 	if (likely(p->pid)) {
2062 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2063 
2064 		init_task_pid(p, PIDTYPE_PID, pid);
2065 		if (thread_group_leader(p)) {
2066 			init_task_pid(p, PIDTYPE_TGID, pid);
2067 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2068 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2069 
2070 			if (is_child_reaper(pid)) {
2071 				ns_of_pid(pid)->child_reaper = p;
2072 				p->signal->flags |= SIGNAL_UNKILLABLE;
2073 			}
2074 			p->signal->shared_pending.signal = delayed.signal;
2075 			p->signal->tty = tty_kref_get(current->signal->tty);
2076 			/*
2077 			 * Inherit has_child_subreaper flag under the same
2078 			 * tasklist_lock with adding child to the process tree
2079 			 * for propagate_has_child_subreaper optimization.
2080 			 */
2081 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2082 							 p->real_parent->signal->is_child_subreaper;
2083 			list_add_tail(&p->sibling, &p->real_parent->children);
2084 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2085 			attach_pid(p, PIDTYPE_TGID);
2086 			attach_pid(p, PIDTYPE_PGID);
2087 			attach_pid(p, PIDTYPE_SID);
2088 			__this_cpu_inc(process_counts);
2089 		} else {
2090 			current->signal->nr_threads++;
2091 			atomic_inc(&current->signal->live);
2092 			refcount_inc(&current->signal->sigcnt);
2093 			task_join_group_stop(p);
2094 			list_add_tail_rcu(&p->thread_group,
2095 					  &p->group_leader->thread_group);
2096 			list_add_tail_rcu(&p->thread_node,
2097 					  &p->signal->thread_head);
2098 		}
2099 		attach_pid(p, PIDTYPE_PID);
2100 		nr_threads++;
2101 	}
2102 	total_forks++;
2103 	hlist_del_init(&delayed.node);
2104 	spin_unlock(&current->sighand->siglock);
2105 	syscall_tracepoint_update(p);
2106 	write_unlock_irq(&tasklist_lock);
2107 
2108 	proc_fork_connector(p);
2109 	cgroup_post_fork(p);
2110 	cgroup_threadgroup_change_end(current);
2111 	perf_event_fork(p);
2112 
2113 	trace_task_newtask(p, clone_flags);
2114 	uprobe_copy_process(p, clone_flags);
2115 
2116 	return p;
2117 
2118 bad_fork_cancel_cgroup:
2119 	spin_unlock(&current->sighand->siglock);
2120 	write_unlock_irq(&tasklist_lock);
2121 	cgroup_cancel_fork(p);
2122 bad_fork_free_pid:
2123 	cgroup_threadgroup_change_end(current);
2124 	if (pid != &init_struct_pid)
2125 		free_pid(pid);
2126 bad_fork_cleanup_thread:
2127 	exit_thread(p);
2128 bad_fork_cleanup_io:
2129 	if (p->io_context)
2130 		exit_io_context(p);
2131 bad_fork_cleanup_namespaces:
2132 	exit_task_namespaces(p);
2133 bad_fork_cleanup_mm:
2134 	if (p->mm)
2135 		mmput(p->mm);
2136 bad_fork_cleanup_signal:
2137 	if (!(clone_flags & CLONE_THREAD))
2138 		free_signal_struct(p->signal);
2139 bad_fork_cleanup_sighand:
2140 	__cleanup_sighand(p->sighand);
2141 bad_fork_cleanup_fs:
2142 	exit_fs(p); /* blocking */
2143 bad_fork_cleanup_files:
2144 	exit_files(p); /* blocking */
2145 bad_fork_cleanup_semundo:
2146 	exit_sem(p);
2147 bad_fork_cleanup_security:
2148 	security_task_free(p);
2149 bad_fork_cleanup_audit:
2150 	audit_free(p);
2151 bad_fork_cleanup_perf:
2152 	perf_event_free_task(p);
2153 bad_fork_cleanup_policy:
2154 	lockdep_free_task(p);
2155 #ifdef CONFIG_NUMA
2156 	mpol_put(p->mempolicy);
2157 bad_fork_cleanup_threadgroup_lock:
2158 #endif
2159 	delayacct_tsk_free(p);
2160 bad_fork_cleanup_count:
2161 	atomic_dec(&p->cred->user->processes);
2162 	exit_creds(p);
2163 bad_fork_free:
2164 	p->state = TASK_DEAD;
2165 	put_task_stack(p);
2166 	free_task(p);
2167 fork_out:
2168 	spin_lock_irq(&current->sighand->siglock);
2169 	hlist_del_init(&delayed.node);
2170 	spin_unlock_irq(&current->sighand->siglock);
2171 	return ERR_PTR(retval);
2172 }
2173 
2174 static inline void init_idle_pids(struct task_struct *idle)
2175 {
2176 	enum pid_type type;
2177 
2178 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2179 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2180 		init_task_pid(idle, type, &init_struct_pid);
2181 	}
2182 }
2183 
2184 struct task_struct *fork_idle(int cpu)
2185 {
2186 	struct task_struct *task;
2187 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2188 			    cpu_to_node(cpu));
2189 	if (!IS_ERR(task)) {
2190 		init_idle_pids(task);
2191 		init_idle(task, cpu);
2192 	}
2193 
2194 	return task;
2195 }
2196 
2197 struct mm_struct *copy_init_mm(void)
2198 {
2199 	return dup_mm(NULL, &init_mm);
2200 }
2201 
2202 /*
2203  *  Ok, this is the main fork-routine.
2204  *
2205  * It copies the process, and if successful kick-starts
2206  * it and waits for it to finish using the VM if required.
2207  */
2208 long _do_fork(unsigned long clone_flags,
2209 	      unsigned long stack_start,
2210 	      unsigned long stack_size,
2211 	      int __user *parent_tidptr,
2212 	      int __user *child_tidptr,
2213 	      unsigned long tls)
2214 {
2215 	struct completion vfork;
2216 	struct pid *pid;
2217 	struct task_struct *p;
2218 	int trace = 0;
2219 	long nr;
2220 
2221 	/*
2222 	 * Determine whether and which event to report to ptracer.  When
2223 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2224 	 * requested, no event is reported; otherwise, report if the event
2225 	 * for the type of forking is enabled.
2226 	 */
2227 	if (!(clone_flags & CLONE_UNTRACED)) {
2228 		if (clone_flags & CLONE_VFORK)
2229 			trace = PTRACE_EVENT_VFORK;
2230 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2231 			trace = PTRACE_EVENT_CLONE;
2232 		else
2233 			trace = PTRACE_EVENT_FORK;
2234 
2235 		if (likely(!ptrace_event_enabled(current, trace)))
2236 			trace = 0;
2237 	}
2238 
2239 	p = copy_process(clone_flags, stack_start, stack_size,
2240 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2241 	add_latent_entropy();
2242 
2243 	if (IS_ERR(p))
2244 		return PTR_ERR(p);
2245 
2246 	/*
2247 	 * Do this prior waking up the new thread - the thread pointer
2248 	 * might get invalid after that point, if the thread exits quickly.
2249 	 */
2250 	trace_sched_process_fork(current, p);
2251 
2252 	pid = get_task_pid(p, PIDTYPE_PID);
2253 	nr = pid_vnr(pid);
2254 
2255 	if (clone_flags & CLONE_PARENT_SETTID)
2256 		put_user(nr, parent_tidptr);
2257 
2258 	if (clone_flags & CLONE_VFORK) {
2259 		p->vfork_done = &vfork;
2260 		init_completion(&vfork);
2261 		get_task_struct(p);
2262 	}
2263 
2264 	wake_up_new_task(p);
2265 
2266 	/* forking complete and child started to run, tell ptracer */
2267 	if (unlikely(trace))
2268 		ptrace_event_pid(trace, pid);
2269 
2270 	if (clone_flags & CLONE_VFORK) {
2271 		if (!wait_for_vfork_done(p, &vfork))
2272 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2273 	}
2274 
2275 	put_pid(pid);
2276 	return nr;
2277 }
2278 
2279 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2280 /* For compatibility with architectures that call do_fork directly rather than
2281  * using the syscall entry points below. */
2282 long do_fork(unsigned long clone_flags,
2283 	      unsigned long stack_start,
2284 	      unsigned long stack_size,
2285 	      int __user *parent_tidptr,
2286 	      int __user *child_tidptr)
2287 {
2288 	return _do_fork(clone_flags, stack_start, stack_size,
2289 			parent_tidptr, child_tidptr, 0);
2290 }
2291 #endif
2292 
2293 /*
2294  * Create a kernel thread.
2295  */
2296 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2297 {
2298 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2299 		(unsigned long)arg, NULL, NULL, 0);
2300 }
2301 
2302 #ifdef __ARCH_WANT_SYS_FORK
2303 SYSCALL_DEFINE0(fork)
2304 {
2305 #ifdef CONFIG_MMU
2306 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2307 #else
2308 	/* can not support in nommu mode */
2309 	return -EINVAL;
2310 #endif
2311 }
2312 #endif
2313 
2314 #ifdef __ARCH_WANT_SYS_VFORK
2315 SYSCALL_DEFINE0(vfork)
2316 {
2317 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2318 			0, NULL, NULL, 0);
2319 }
2320 #endif
2321 
2322 #ifdef __ARCH_WANT_SYS_CLONE
2323 #ifdef CONFIG_CLONE_BACKWARDS
2324 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2325 		 int __user *, parent_tidptr,
2326 		 unsigned long, tls,
2327 		 int __user *, child_tidptr)
2328 #elif defined(CONFIG_CLONE_BACKWARDS2)
2329 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2330 		 int __user *, parent_tidptr,
2331 		 int __user *, child_tidptr,
2332 		 unsigned long, tls)
2333 #elif defined(CONFIG_CLONE_BACKWARDS3)
2334 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2335 		int, stack_size,
2336 		int __user *, parent_tidptr,
2337 		int __user *, child_tidptr,
2338 		unsigned long, tls)
2339 #else
2340 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2341 		 int __user *, parent_tidptr,
2342 		 int __user *, child_tidptr,
2343 		 unsigned long, tls)
2344 #endif
2345 {
2346 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2347 }
2348 #endif
2349 
2350 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2351 {
2352 	struct task_struct *leader, *parent, *child;
2353 	int res;
2354 
2355 	read_lock(&tasklist_lock);
2356 	leader = top = top->group_leader;
2357 down:
2358 	for_each_thread(leader, parent) {
2359 		list_for_each_entry(child, &parent->children, sibling) {
2360 			res = visitor(child, data);
2361 			if (res) {
2362 				if (res < 0)
2363 					goto out;
2364 				leader = child;
2365 				goto down;
2366 			}
2367 up:
2368 			;
2369 		}
2370 	}
2371 
2372 	if (leader != top) {
2373 		child = leader;
2374 		parent = child->real_parent;
2375 		leader = parent->group_leader;
2376 		goto up;
2377 	}
2378 out:
2379 	read_unlock(&tasklist_lock);
2380 }
2381 
2382 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2383 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2384 #endif
2385 
2386 static void sighand_ctor(void *data)
2387 {
2388 	struct sighand_struct *sighand = data;
2389 
2390 	spin_lock_init(&sighand->siglock);
2391 	init_waitqueue_head(&sighand->signalfd_wqh);
2392 }
2393 
2394 void __init proc_caches_init(void)
2395 {
2396 	unsigned int mm_size;
2397 
2398 	sighand_cachep = kmem_cache_create("sighand_cache",
2399 			sizeof(struct sighand_struct), 0,
2400 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2401 			SLAB_ACCOUNT, sighand_ctor);
2402 	signal_cachep = kmem_cache_create("signal_cache",
2403 			sizeof(struct signal_struct), 0,
2404 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2405 			NULL);
2406 	files_cachep = kmem_cache_create("files_cache",
2407 			sizeof(struct files_struct), 0,
2408 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2409 			NULL);
2410 	fs_cachep = kmem_cache_create("fs_cache",
2411 			sizeof(struct fs_struct), 0,
2412 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2413 			NULL);
2414 
2415 	/*
2416 	 * The mm_cpumask is located at the end of mm_struct, and is
2417 	 * dynamically sized based on the maximum CPU number this system
2418 	 * can have, taking hotplug into account (nr_cpu_ids).
2419 	 */
2420 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2421 
2422 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2423 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2424 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2425 			offsetof(struct mm_struct, saved_auxv),
2426 			sizeof_field(struct mm_struct, saved_auxv),
2427 			NULL);
2428 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2429 	mmap_init();
2430 	nsproxy_cache_init();
2431 }
2432 
2433 /*
2434  * Check constraints on flags passed to the unshare system call.
2435  */
2436 static int check_unshare_flags(unsigned long unshare_flags)
2437 {
2438 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2439 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2440 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2441 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2442 		return -EINVAL;
2443 	/*
2444 	 * Not implemented, but pretend it works if there is nothing
2445 	 * to unshare.  Note that unsharing the address space or the
2446 	 * signal handlers also need to unshare the signal queues (aka
2447 	 * CLONE_THREAD).
2448 	 */
2449 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2450 		if (!thread_group_empty(current))
2451 			return -EINVAL;
2452 	}
2453 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2454 		if (refcount_read(&current->sighand->count) > 1)
2455 			return -EINVAL;
2456 	}
2457 	if (unshare_flags & CLONE_VM) {
2458 		if (!current_is_single_threaded())
2459 			return -EINVAL;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 /*
2466  * Unshare the filesystem structure if it is being shared
2467  */
2468 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2469 {
2470 	struct fs_struct *fs = current->fs;
2471 
2472 	if (!(unshare_flags & CLONE_FS) || !fs)
2473 		return 0;
2474 
2475 	/* don't need lock here; in the worst case we'll do useless copy */
2476 	if (fs->users == 1)
2477 		return 0;
2478 
2479 	*new_fsp = copy_fs_struct(fs);
2480 	if (!*new_fsp)
2481 		return -ENOMEM;
2482 
2483 	return 0;
2484 }
2485 
2486 /*
2487  * Unshare file descriptor table if it is being shared
2488  */
2489 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2490 {
2491 	struct files_struct *fd = current->files;
2492 	int error = 0;
2493 
2494 	if ((unshare_flags & CLONE_FILES) &&
2495 	    (fd && atomic_read(&fd->count) > 1)) {
2496 		*new_fdp = dup_fd(fd, &error);
2497 		if (!*new_fdp)
2498 			return error;
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 /*
2505  * unshare allows a process to 'unshare' part of the process
2506  * context which was originally shared using clone.  copy_*
2507  * functions used by do_fork() cannot be used here directly
2508  * because they modify an inactive task_struct that is being
2509  * constructed. Here we are modifying the current, active,
2510  * task_struct.
2511  */
2512 int ksys_unshare(unsigned long unshare_flags)
2513 {
2514 	struct fs_struct *fs, *new_fs = NULL;
2515 	struct files_struct *fd, *new_fd = NULL;
2516 	struct cred *new_cred = NULL;
2517 	struct nsproxy *new_nsproxy = NULL;
2518 	int do_sysvsem = 0;
2519 	int err;
2520 
2521 	/*
2522 	 * If unsharing a user namespace must also unshare the thread group
2523 	 * and unshare the filesystem root and working directories.
2524 	 */
2525 	if (unshare_flags & CLONE_NEWUSER)
2526 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2527 	/*
2528 	 * If unsharing vm, must also unshare signal handlers.
2529 	 */
2530 	if (unshare_flags & CLONE_VM)
2531 		unshare_flags |= CLONE_SIGHAND;
2532 	/*
2533 	 * If unsharing a signal handlers, must also unshare the signal queues.
2534 	 */
2535 	if (unshare_flags & CLONE_SIGHAND)
2536 		unshare_flags |= CLONE_THREAD;
2537 	/*
2538 	 * If unsharing namespace, must also unshare filesystem information.
2539 	 */
2540 	if (unshare_flags & CLONE_NEWNS)
2541 		unshare_flags |= CLONE_FS;
2542 
2543 	err = check_unshare_flags(unshare_flags);
2544 	if (err)
2545 		goto bad_unshare_out;
2546 	/*
2547 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2548 	 * to a new ipc namespace, the semaphore arrays from the old
2549 	 * namespace are unreachable.
2550 	 */
2551 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2552 		do_sysvsem = 1;
2553 	err = unshare_fs(unshare_flags, &new_fs);
2554 	if (err)
2555 		goto bad_unshare_out;
2556 	err = unshare_fd(unshare_flags, &new_fd);
2557 	if (err)
2558 		goto bad_unshare_cleanup_fs;
2559 	err = unshare_userns(unshare_flags, &new_cred);
2560 	if (err)
2561 		goto bad_unshare_cleanup_fd;
2562 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2563 					 new_cred, new_fs);
2564 	if (err)
2565 		goto bad_unshare_cleanup_cred;
2566 
2567 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2568 		if (do_sysvsem) {
2569 			/*
2570 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2571 			 */
2572 			exit_sem(current);
2573 		}
2574 		if (unshare_flags & CLONE_NEWIPC) {
2575 			/* Orphan segments in old ns (see sem above). */
2576 			exit_shm(current);
2577 			shm_init_task(current);
2578 		}
2579 
2580 		if (new_nsproxy)
2581 			switch_task_namespaces(current, new_nsproxy);
2582 
2583 		task_lock(current);
2584 
2585 		if (new_fs) {
2586 			fs = current->fs;
2587 			spin_lock(&fs->lock);
2588 			current->fs = new_fs;
2589 			if (--fs->users)
2590 				new_fs = NULL;
2591 			else
2592 				new_fs = fs;
2593 			spin_unlock(&fs->lock);
2594 		}
2595 
2596 		if (new_fd) {
2597 			fd = current->files;
2598 			current->files = new_fd;
2599 			new_fd = fd;
2600 		}
2601 
2602 		task_unlock(current);
2603 
2604 		if (new_cred) {
2605 			/* Install the new user namespace */
2606 			commit_creds(new_cred);
2607 			new_cred = NULL;
2608 		}
2609 	}
2610 
2611 	perf_event_namespaces(current);
2612 
2613 bad_unshare_cleanup_cred:
2614 	if (new_cred)
2615 		put_cred(new_cred);
2616 bad_unshare_cleanup_fd:
2617 	if (new_fd)
2618 		put_files_struct(new_fd);
2619 
2620 bad_unshare_cleanup_fs:
2621 	if (new_fs)
2622 		free_fs_struct(new_fs);
2623 
2624 bad_unshare_out:
2625 	return err;
2626 }
2627 
2628 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2629 {
2630 	return ksys_unshare(unshare_flags);
2631 }
2632 
2633 /*
2634  *	Helper to unshare the files of the current task.
2635  *	We don't want to expose copy_files internals to
2636  *	the exec layer of the kernel.
2637  */
2638 
2639 int unshare_files(struct files_struct **displaced)
2640 {
2641 	struct task_struct *task = current;
2642 	struct files_struct *copy = NULL;
2643 	int error;
2644 
2645 	error = unshare_fd(CLONE_FILES, &copy);
2646 	if (error || !copy) {
2647 		*displaced = NULL;
2648 		return error;
2649 	}
2650 	*displaced = task->files;
2651 	task_lock(task);
2652 	task->files = copy;
2653 	task_unlock(task);
2654 	return 0;
2655 }
2656 
2657 int sysctl_max_threads(struct ctl_table *table, int write,
2658 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2659 {
2660 	struct ctl_table t;
2661 	int ret;
2662 	int threads = max_threads;
2663 	int min = MIN_THREADS;
2664 	int max = MAX_THREADS;
2665 
2666 	t = *table;
2667 	t.data = &threads;
2668 	t.extra1 = &min;
2669 	t.extra2 = &max;
2670 
2671 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2672 	if (ret || !write)
2673 		return ret;
2674 
2675 	set_max_threads(threads);
2676 
2677 	return 0;
2678 }
2679