xref: /linux-6.15/kernel/fork.c (revision 2b0b2111)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 
163 #ifdef CONFIG_VMAP_STACK
164 /*
165  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166  * flush.  Try to minimize the number of calls by caching stacks.
167  */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171 
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 	void *stack;
176 	int i;
177 
178 	local_irq_disable();
179 	for (i = 0; i < NR_CACHED_STACKS; i++) {
180 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181 
182 		if (!s)
183 			continue;
184 		this_cpu_write(cached_stacks[i], NULL);
185 
186 		tsk->stack_vm_area = s;
187 		local_irq_enable();
188 		return s->addr;
189 	}
190 	local_irq_enable();
191 
192 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 				     VMALLOC_START, VMALLOC_END,
194 				     THREADINFO_GFP | __GFP_HIGHMEM,
195 				     PAGE_KERNEL,
196 				     0, node, __builtin_return_address(0));
197 
198 	/*
199 	 * We can't call find_vm_area() in interrupt context, and
200 	 * free_thread_stack() can be called in interrupt context,
201 	 * so cache the vm_struct.
202 	 */
203 	if (stack)
204 		tsk->stack_vm_area = find_vm_area(stack);
205 	return stack;
206 #else
207 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 					     THREAD_SIZE_ORDER);
209 
210 	return page ? page_address(page) : NULL;
211 #endif
212 }
213 
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	if (task_stack_vm_area(tsk)) {
218 		unsigned long flags;
219 		int i;
220 
221 		local_irq_save(flags);
222 		for (i = 0; i < NR_CACHED_STACKS; i++) {
223 			if (this_cpu_read(cached_stacks[i]))
224 				continue;
225 
226 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 			local_irq_restore(flags);
228 			return;
229 		}
230 		local_irq_restore(flags);
231 
232 		vfree_atomic(tsk->stack);
233 		return;
234 	}
235 #endif
236 
237 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241 
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 						  int node)
244 {
245 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247 
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 	kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252 
253 void thread_stack_cache_init(void)
254 {
255 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 					      THREAD_SIZE, 0, NULL);
257 	BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261 
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264 
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267 
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270 
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273 
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276 
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279 
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 	void *stack = task_stack_page(tsk);
283 	struct vm_struct *vm = task_stack_vm_area(tsk);
284 
285 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286 
287 	if (vm) {
288 		int i;
289 
290 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291 
292 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 			mod_zone_page_state(page_zone(vm->pages[i]),
294 					    NR_KERNEL_STACK_KB,
295 					    PAGE_SIZE / 1024 * account);
296 		}
297 
298 		/* All stack pages belong to the same memcg. */
299 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 					    account * (THREAD_SIZE / 1024));
301 	} else {
302 		/*
303 		 * All stack pages are in the same zone and belong to the
304 		 * same memcg.
305 		 */
306 		struct page *first_page = virt_to_page(stack);
307 
308 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 				    THREAD_SIZE / 1024 * account);
310 
311 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 					    account * (THREAD_SIZE / 1024));
313 	}
314 }
315 
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 	if (WARN_ON(tsk->state != TASK_DEAD))
319 		return;  /* Better to leak the stack than to free prematurely */
320 
321 	account_kernel_stack(tsk, -1);
322 	arch_release_thread_stack(tsk->stack);
323 	free_thread_stack(tsk);
324 	tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 	tsk->stack_vm_area = NULL;
327 #endif
328 }
329 
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
332 {
333 	if (atomic_dec_and_test(&tsk->stack_refcount))
334 		release_task_stack(tsk);
335 }
336 #endif
337 
338 void free_task(struct task_struct *tsk)
339 {
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
341 	/*
342 	 * The task is finally done with both the stack and thread_info,
343 	 * so free both.
344 	 */
345 	release_task_stack(tsk);
346 #else
347 	/*
348 	 * If the task had a separate stack allocation, it should be gone
349 	 * by now.
350 	 */
351 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 	rt_mutex_debug_task_free(tsk);
354 	ftrace_graph_exit_task(tsk);
355 	put_seccomp_filter(tsk);
356 	arch_release_task_struct(tsk);
357 	if (tsk->flags & PF_KTHREAD)
358 		free_kthread_struct(tsk);
359 	free_task_struct(tsk);
360 }
361 EXPORT_SYMBOL(free_task);
362 
363 static inline void free_signal_struct(struct signal_struct *sig)
364 {
365 	taskstats_tgid_free(sig);
366 	sched_autogroup_exit(sig);
367 	/*
368 	 * __mmdrop is not safe to call from softirq context on x86 due to
369 	 * pgd_dtor so postpone it to the async context
370 	 */
371 	if (sig->oom_mm)
372 		mmdrop_async(sig->oom_mm);
373 	kmem_cache_free(signal_cachep, sig);
374 }
375 
376 static inline void put_signal_struct(struct signal_struct *sig)
377 {
378 	if (atomic_dec_and_test(&sig->sigcnt))
379 		free_signal_struct(sig);
380 }
381 
382 void __put_task_struct(struct task_struct *tsk)
383 {
384 	WARN_ON(!tsk->exit_state);
385 	WARN_ON(atomic_read(&tsk->usage));
386 	WARN_ON(tsk == current);
387 
388 	cgroup_free(tsk);
389 	task_numa_free(tsk);
390 	security_task_free(tsk);
391 	exit_creds(tsk);
392 	delayacct_tsk_free(tsk);
393 	put_signal_struct(tsk->signal);
394 
395 	if (!profile_handoff_task(tsk))
396 		free_task(tsk);
397 }
398 EXPORT_SYMBOL_GPL(__put_task_struct);
399 
400 void __init __weak arch_task_cache_init(void) { }
401 
402 /*
403  * set_max_threads
404  */
405 static void set_max_threads(unsigned int max_threads_suggested)
406 {
407 	u64 threads;
408 
409 	/*
410 	 * The number of threads shall be limited such that the thread
411 	 * structures may only consume a small part of the available memory.
412 	 */
413 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
414 		threads = MAX_THREADS;
415 	else
416 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
417 				    (u64) THREAD_SIZE * 8UL);
418 
419 	if (threads > max_threads_suggested)
420 		threads = max_threads_suggested;
421 
422 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
423 }
424 
425 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
426 /* Initialized by the architecture: */
427 int arch_task_struct_size __read_mostly;
428 #endif
429 
430 void __init fork_init(void)
431 {
432 	int i;
433 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
434 #ifndef ARCH_MIN_TASKALIGN
435 #define ARCH_MIN_TASKALIGN	0
436 #endif
437 	int align = min_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
438 
439 	/* create a slab on which task_structs can be allocated */
440 	task_struct_cachep = kmem_cache_create("task_struct",
441 			arch_task_struct_size, align,
442 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
443 #endif
444 
445 	/* do the arch specific task caches init */
446 	arch_task_cache_init();
447 
448 	set_max_threads(MAX_THREADS);
449 
450 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
451 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
452 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
453 		init_task.signal->rlim[RLIMIT_NPROC];
454 
455 	for (i = 0; i < UCOUNT_COUNTS; i++) {
456 		init_user_ns.ucount_max[i] = max_threads/2;
457 	}
458 }
459 
460 int __weak arch_dup_task_struct(struct task_struct *dst,
461 					       struct task_struct *src)
462 {
463 	*dst = *src;
464 	return 0;
465 }
466 
467 void set_task_stack_end_magic(struct task_struct *tsk)
468 {
469 	unsigned long *stackend;
470 
471 	stackend = end_of_stack(tsk);
472 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
473 }
474 
475 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
476 {
477 	struct task_struct *tsk;
478 	unsigned long *stack;
479 	struct vm_struct *stack_vm_area;
480 	int err;
481 
482 	if (node == NUMA_NO_NODE)
483 		node = tsk_fork_get_node(orig);
484 	tsk = alloc_task_struct_node(node);
485 	if (!tsk)
486 		return NULL;
487 
488 	stack = alloc_thread_stack_node(tsk, node);
489 	if (!stack)
490 		goto free_tsk;
491 
492 	stack_vm_area = task_stack_vm_area(tsk);
493 
494 	err = arch_dup_task_struct(tsk, orig);
495 
496 	/*
497 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
498 	 * sure they're properly initialized before using any stack-related
499 	 * functions again.
500 	 */
501 	tsk->stack = stack;
502 #ifdef CONFIG_VMAP_STACK
503 	tsk->stack_vm_area = stack_vm_area;
504 #endif
505 #ifdef CONFIG_THREAD_INFO_IN_TASK
506 	atomic_set(&tsk->stack_refcount, 1);
507 #endif
508 
509 	if (err)
510 		goto free_stack;
511 
512 #ifdef CONFIG_SECCOMP
513 	/*
514 	 * We must handle setting up seccomp filters once we're under
515 	 * the sighand lock in case orig has changed between now and
516 	 * then. Until then, filter must be NULL to avoid messing up
517 	 * the usage counts on the error path calling free_task.
518 	 */
519 	tsk->seccomp.filter = NULL;
520 #endif
521 
522 	setup_thread_stack(tsk, orig);
523 	clear_user_return_notifier(tsk);
524 	clear_tsk_need_resched(tsk);
525 	set_task_stack_end_magic(tsk);
526 
527 #ifdef CONFIG_CC_STACKPROTECTOR
528 	tsk->stack_canary = get_random_int();
529 #endif
530 
531 	/*
532 	 * One for us, one for whoever does the "release_task()" (usually
533 	 * parent)
534 	 */
535 	atomic_set(&tsk->usage, 2);
536 #ifdef CONFIG_BLK_DEV_IO_TRACE
537 	tsk->btrace_seq = 0;
538 #endif
539 	tsk->splice_pipe = NULL;
540 	tsk->task_frag.page = NULL;
541 	tsk->wake_q.next = NULL;
542 
543 	account_kernel_stack(tsk, 1);
544 
545 	kcov_task_init(tsk);
546 
547 	return tsk;
548 
549 free_stack:
550 	free_thread_stack(tsk);
551 free_tsk:
552 	free_task_struct(tsk);
553 	return NULL;
554 }
555 
556 #ifdef CONFIG_MMU
557 static __latent_entropy int dup_mmap(struct mm_struct *mm,
558 					struct mm_struct *oldmm)
559 {
560 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
561 	struct rb_node **rb_link, *rb_parent;
562 	int retval;
563 	unsigned long charge;
564 
565 	uprobe_start_dup_mmap();
566 	if (down_write_killable(&oldmm->mmap_sem)) {
567 		retval = -EINTR;
568 		goto fail_uprobe_end;
569 	}
570 	flush_cache_dup_mm(oldmm);
571 	uprobe_dup_mmap(oldmm, mm);
572 	/*
573 	 * Not linked in yet - no deadlock potential:
574 	 */
575 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
576 
577 	/* No ordering required: file already has been exposed. */
578 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
579 
580 	mm->total_vm = oldmm->total_vm;
581 	mm->data_vm = oldmm->data_vm;
582 	mm->exec_vm = oldmm->exec_vm;
583 	mm->stack_vm = oldmm->stack_vm;
584 
585 	rb_link = &mm->mm_rb.rb_node;
586 	rb_parent = NULL;
587 	pprev = &mm->mmap;
588 	retval = ksm_fork(mm, oldmm);
589 	if (retval)
590 		goto out;
591 	retval = khugepaged_fork(mm, oldmm);
592 	if (retval)
593 		goto out;
594 
595 	prev = NULL;
596 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
597 		struct file *file;
598 
599 		if (mpnt->vm_flags & VM_DONTCOPY) {
600 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
601 			continue;
602 		}
603 		charge = 0;
604 		if (mpnt->vm_flags & VM_ACCOUNT) {
605 			unsigned long len = vma_pages(mpnt);
606 
607 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
608 				goto fail_nomem;
609 			charge = len;
610 		}
611 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
612 		if (!tmp)
613 			goto fail_nomem;
614 		*tmp = *mpnt;
615 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
616 		retval = vma_dup_policy(mpnt, tmp);
617 		if (retval)
618 			goto fail_nomem_policy;
619 		tmp->vm_mm = mm;
620 		if (anon_vma_fork(tmp, mpnt))
621 			goto fail_nomem_anon_vma_fork;
622 		tmp->vm_flags &=
623 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
624 		tmp->vm_next = tmp->vm_prev = NULL;
625 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
626 		file = tmp->vm_file;
627 		if (file) {
628 			struct inode *inode = file_inode(file);
629 			struct address_space *mapping = file->f_mapping;
630 
631 			get_file(file);
632 			if (tmp->vm_flags & VM_DENYWRITE)
633 				atomic_dec(&inode->i_writecount);
634 			i_mmap_lock_write(mapping);
635 			if (tmp->vm_flags & VM_SHARED)
636 				atomic_inc(&mapping->i_mmap_writable);
637 			flush_dcache_mmap_lock(mapping);
638 			/* insert tmp into the share list, just after mpnt */
639 			vma_interval_tree_insert_after(tmp, mpnt,
640 					&mapping->i_mmap);
641 			flush_dcache_mmap_unlock(mapping);
642 			i_mmap_unlock_write(mapping);
643 		}
644 
645 		/*
646 		 * Clear hugetlb-related page reserves for children. This only
647 		 * affects MAP_PRIVATE mappings. Faults generated by the child
648 		 * are not guaranteed to succeed, even if read-only
649 		 */
650 		if (is_vm_hugetlb_page(tmp))
651 			reset_vma_resv_huge_pages(tmp);
652 
653 		/*
654 		 * Link in the new vma and copy the page table entries.
655 		 */
656 		*pprev = tmp;
657 		pprev = &tmp->vm_next;
658 		tmp->vm_prev = prev;
659 		prev = tmp;
660 
661 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
662 		rb_link = &tmp->vm_rb.rb_right;
663 		rb_parent = &tmp->vm_rb;
664 
665 		mm->map_count++;
666 		retval = copy_page_range(mm, oldmm, mpnt);
667 
668 		if (tmp->vm_ops && tmp->vm_ops->open)
669 			tmp->vm_ops->open(tmp);
670 
671 		if (retval)
672 			goto out;
673 	}
674 	/* a new mm has just been created */
675 	arch_dup_mmap(oldmm, mm);
676 	retval = 0;
677 out:
678 	up_write(&mm->mmap_sem);
679 	flush_tlb_mm(oldmm);
680 	up_write(&oldmm->mmap_sem);
681 fail_uprobe_end:
682 	uprobe_end_dup_mmap();
683 	return retval;
684 fail_nomem_anon_vma_fork:
685 	mpol_put(vma_policy(tmp));
686 fail_nomem_policy:
687 	kmem_cache_free(vm_area_cachep, tmp);
688 fail_nomem:
689 	retval = -ENOMEM;
690 	vm_unacct_memory(charge);
691 	goto out;
692 }
693 
694 static inline int mm_alloc_pgd(struct mm_struct *mm)
695 {
696 	mm->pgd = pgd_alloc(mm);
697 	if (unlikely(!mm->pgd))
698 		return -ENOMEM;
699 	return 0;
700 }
701 
702 static inline void mm_free_pgd(struct mm_struct *mm)
703 {
704 	pgd_free(mm, mm->pgd);
705 }
706 #else
707 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
708 {
709 	down_write(&oldmm->mmap_sem);
710 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
711 	up_write(&oldmm->mmap_sem);
712 	return 0;
713 }
714 #define mm_alloc_pgd(mm)	(0)
715 #define mm_free_pgd(mm)
716 #endif /* CONFIG_MMU */
717 
718 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
719 
720 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
721 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
722 
723 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
724 
725 static int __init coredump_filter_setup(char *s)
726 {
727 	default_dump_filter =
728 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
729 		MMF_DUMP_FILTER_MASK;
730 	return 1;
731 }
732 
733 __setup("coredump_filter=", coredump_filter_setup);
734 
735 #include <linux/init_task.h>
736 
737 static void mm_init_aio(struct mm_struct *mm)
738 {
739 #ifdef CONFIG_AIO
740 	spin_lock_init(&mm->ioctx_lock);
741 	mm->ioctx_table = NULL;
742 #endif
743 }
744 
745 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
746 {
747 #ifdef CONFIG_MEMCG
748 	mm->owner = p;
749 #endif
750 }
751 
752 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
753 	struct user_namespace *user_ns)
754 {
755 	mm->mmap = NULL;
756 	mm->mm_rb = RB_ROOT;
757 	mm->vmacache_seqnum = 0;
758 	atomic_set(&mm->mm_users, 1);
759 	atomic_set(&mm->mm_count, 1);
760 	init_rwsem(&mm->mmap_sem);
761 	INIT_LIST_HEAD(&mm->mmlist);
762 	mm->core_state = NULL;
763 	atomic_long_set(&mm->nr_ptes, 0);
764 	mm_nr_pmds_init(mm);
765 	mm->map_count = 0;
766 	mm->locked_vm = 0;
767 	mm->pinned_vm = 0;
768 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
769 	spin_lock_init(&mm->page_table_lock);
770 	mm_init_cpumask(mm);
771 	mm_init_aio(mm);
772 	mm_init_owner(mm, p);
773 	mmu_notifier_mm_init(mm);
774 	clear_tlb_flush_pending(mm);
775 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
776 	mm->pmd_huge_pte = NULL;
777 #endif
778 
779 	if (current->mm) {
780 		mm->flags = current->mm->flags & MMF_INIT_MASK;
781 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
782 	} else {
783 		mm->flags = default_dump_filter;
784 		mm->def_flags = 0;
785 	}
786 
787 	if (mm_alloc_pgd(mm))
788 		goto fail_nopgd;
789 
790 	if (init_new_context(p, mm))
791 		goto fail_nocontext;
792 
793 	mm->user_ns = get_user_ns(user_ns);
794 	return mm;
795 
796 fail_nocontext:
797 	mm_free_pgd(mm);
798 fail_nopgd:
799 	free_mm(mm);
800 	return NULL;
801 }
802 
803 static void check_mm(struct mm_struct *mm)
804 {
805 	int i;
806 
807 	for (i = 0; i < NR_MM_COUNTERS; i++) {
808 		long x = atomic_long_read(&mm->rss_stat.count[i]);
809 
810 		if (unlikely(x))
811 			printk(KERN_ALERT "BUG: Bad rss-counter state "
812 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
813 	}
814 
815 	if (atomic_long_read(&mm->nr_ptes))
816 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
817 				atomic_long_read(&mm->nr_ptes));
818 	if (mm_nr_pmds(mm))
819 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
820 				mm_nr_pmds(mm));
821 
822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
823 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
824 #endif
825 }
826 
827 /*
828  * Allocate and initialize an mm_struct.
829  */
830 struct mm_struct *mm_alloc(void)
831 {
832 	struct mm_struct *mm;
833 
834 	mm = allocate_mm();
835 	if (!mm)
836 		return NULL;
837 
838 	memset(mm, 0, sizeof(*mm));
839 	return mm_init(mm, current, current_user_ns());
840 }
841 
842 /*
843  * Called when the last reference to the mm
844  * is dropped: either by a lazy thread or by
845  * mmput. Free the page directory and the mm.
846  */
847 void __mmdrop(struct mm_struct *mm)
848 {
849 	BUG_ON(mm == &init_mm);
850 	mm_free_pgd(mm);
851 	destroy_context(mm);
852 	mmu_notifier_mm_destroy(mm);
853 	check_mm(mm);
854 	put_user_ns(mm->user_ns);
855 	free_mm(mm);
856 }
857 EXPORT_SYMBOL_GPL(__mmdrop);
858 
859 static inline void __mmput(struct mm_struct *mm)
860 {
861 	VM_BUG_ON(atomic_read(&mm->mm_users));
862 
863 	uprobe_clear_state(mm);
864 	exit_aio(mm);
865 	ksm_exit(mm);
866 	khugepaged_exit(mm); /* must run before exit_mmap */
867 	exit_mmap(mm);
868 	mm_put_huge_zero_page(mm);
869 	set_mm_exe_file(mm, NULL);
870 	if (!list_empty(&mm->mmlist)) {
871 		spin_lock(&mmlist_lock);
872 		list_del(&mm->mmlist);
873 		spin_unlock(&mmlist_lock);
874 	}
875 	if (mm->binfmt)
876 		module_put(mm->binfmt->module);
877 	set_bit(MMF_OOM_SKIP, &mm->flags);
878 	mmdrop(mm);
879 }
880 
881 /*
882  * Decrement the use count and release all resources for an mm.
883  */
884 void mmput(struct mm_struct *mm)
885 {
886 	might_sleep();
887 
888 	if (atomic_dec_and_test(&mm->mm_users))
889 		__mmput(mm);
890 }
891 EXPORT_SYMBOL_GPL(mmput);
892 
893 #ifdef CONFIG_MMU
894 static void mmput_async_fn(struct work_struct *work)
895 {
896 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
897 	__mmput(mm);
898 }
899 
900 void mmput_async(struct mm_struct *mm)
901 {
902 	if (atomic_dec_and_test(&mm->mm_users)) {
903 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
904 		schedule_work(&mm->async_put_work);
905 	}
906 }
907 #endif
908 
909 /**
910  * set_mm_exe_file - change a reference to the mm's executable file
911  *
912  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
913  *
914  * Main users are mmput() and sys_execve(). Callers prevent concurrent
915  * invocations: in mmput() nobody alive left, in execve task is single
916  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
917  * mm->exe_file, but does so without using set_mm_exe_file() in order
918  * to do avoid the need for any locks.
919  */
920 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
921 {
922 	struct file *old_exe_file;
923 
924 	/*
925 	 * It is safe to dereference the exe_file without RCU as
926 	 * this function is only called if nobody else can access
927 	 * this mm -- see comment above for justification.
928 	 */
929 	old_exe_file = rcu_dereference_raw(mm->exe_file);
930 
931 	if (new_exe_file)
932 		get_file(new_exe_file);
933 	rcu_assign_pointer(mm->exe_file, new_exe_file);
934 	if (old_exe_file)
935 		fput(old_exe_file);
936 }
937 
938 /**
939  * get_mm_exe_file - acquire a reference to the mm's executable file
940  *
941  * Returns %NULL if mm has no associated executable file.
942  * User must release file via fput().
943  */
944 struct file *get_mm_exe_file(struct mm_struct *mm)
945 {
946 	struct file *exe_file;
947 
948 	rcu_read_lock();
949 	exe_file = rcu_dereference(mm->exe_file);
950 	if (exe_file && !get_file_rcu(exe_file))
951 		exe_file = NULL;
952 	rcu_read_unlock();
953 	return exe_file;
954 }
955 EXPORT_SYMBOL(get_mm_exe_file);
956 
957 /**
958  * get_task_exe_file - acquire a reference to the task's executable file
959  *
960  * Returns %NULL if task's mm (if any) has no associated executable file or
961  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
962  * User must release file via fput().
963  */
964 struct file *get_task_exe_file(struct task_struct *task)
965 {
966 	struct file *exe_file = NULL;
967 	struct mm_struct *mm;
968 
969 	task_lock(task);
970 	mm = task->mm;
971 	if (mm) {
972 		if (!(task->flags & PF_KTHREAD))
973 			exe_file = get_mm_exe_file(mm);
974 	}
975 	task_unlock(task);
976 	return exe_file;
977 }
978 EXPORT_SYMBOL(get_task_exe_file);
979 
980 /**
981  * get_task_mm - acquire a reference to the task's mm
982  *
983  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
984  * this kernel workthread has transiently adopted a user mm with use_mm,
985  * to do its AIO) is not set and if so returns a reference to it, after
986  * bumping up the use count.  User must release the mm via mmput()
987  * after use.  Typically used by /proc and ptrace.
988  */
989 struct mm_struct *get_task_mm(struct task_struct *task)
990 {
991 	struct mm_struct *mm;
992 
993 	task_lock(task);
994 	mm = task->mm;
995 	if (mm) {
996 		if (task->flags & PF_KTHREAD)
997 			mm = NULL;
998 		else
999 			atomic_inc(&mm->mm_users);
1000 	}
1001 	task_unlock(task);
1002 	return mm;
1003 }
1004 EXPORT_SYMBOL_GPL(get_task_mm);
1005 
1006 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1007 {
1008 	struct mm_struct *mm;
1009 	int err;
1010 
1011 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1012 	if (err)
1013 		return ERR_PTR(err);
1014 
1015 	mm = get_task_mm(task);
1016 	if (mm && mm != current->mm &&
1017 			!ptrace_may_access(task, mode)) {
1018 		mmput(mm);
1019 		mm = ERR_PTR(-EACCES);
1020 	}
1021 	mutex_unlock(&task->signal->cred_guard_mutex);
1022 
1023 	return mm;
1024 }
1025 
1026 static void complete_vfork_done(struct task_struct *tsk)
1027 {
1028 	struct completion *vfork;
1029 
1030 	task_lock(tsk);
1031 	vfork = tsk->vfork_done;
1032 	if (likely(vfork)) {
1033 		tsk->vfork_done = NULL;
1034 		complete(vfork);
1035 	}
1036 	task_unlock(tsk);
1037 }
1038 
1039 static int wait_for_vfork_done(struct task_struct *child,
1040 				struct completion *vfork)
1041 {
1042 	int killed;
1043 
1044 	freezer_do_not_count();
1045 	killed = wait_for_completion_killable(vfork);
1046 	freezer_count();
1047 
1048 	if (killed) {
1049 		task_lock(child);
1050 		child->vfork_done = NULL;
1051 		task_unlock(child);
1052 	}
1053 
1054 	put_task_struct(child);
1055 	return killed;
1056 }
1057 
1058 /* Please note the differences between mmput and mm_release.
1059  * mmput is called whenever we stop holding onto a mm_struct,
1060  * error success whatever.
1061  *
1062  * mm_release is called after a mm_struct has been removed
1063  * from the current process.
1064  *
1065  * This difference is important for error handling, when we
1066  * only half set up a mm_struct for a new process and need to restore
1067  * the old one.  Because we mmput the new mm_struct before
1068  * restoring the old one. . .
1069  * Eric Biederman 10 January 1998
1070  */
1071 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1072 {
1073 	/* Get rid of any futexes when releasing the mm */
1074 #ifdef CONFIG_FUTEX
1075 	if (unlikely(tsk->robust_list)) {
1076 		exit_robust_list(tsk);
1077 		tsk->robust_list = NULL;
1078 	}
1079 #ifdef CONFIG_COMPAT
1080 	if (unlikely(tsk->compat_robust_list)) {
1081 		compat_exit_robust_list(tsk);
1082 		tsk->compat_robust_list = NULL;
1083 	}
1084 #endif
1085 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1086 		exit_pi_state_list(tsk);
1087 #endif
1088 
1089 	uprobe_free_utask(tsk);
1090 
1091 	/* Get rid of any cached register state */
1092 	deactivate_mm(tsk, mm);
1093 
1094 	/*
1095 	 * Signal userspace if we're not exiting with a core dump
1096 	 * because we want to leave the value intact for debugging
1097 	 * purposes.
1098 	 */
1099 	if (tsk->clear_child_tid) {
1100 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1101 		    atomic_read(&mm->mm_users) > 1) {
1102 			/*
1103 			 * We don't check the error code - if userspace has
1104 			 * not set up a proper pointer then tough luck.
1105 			 */
1106 			put_user(0, tsk->clear_child_tid);
1107 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1108 					1, NULL, NULL, 0);
1109 		}
1110 		tsk->clear_child_tid = NULL;
1111 	}
1112 
1113 	/*
1114 	 * All done, finally we can wake up parent and return this mm to him.
1115 	 * Also kthread_stop() uses this completion for synchronization.
1116 	 */
1117 	if (tsk->vfork_done)
1118 		complete_vfork_done(tsk);
1119 }
1120 
1121 /*
1122  * Allocate a new mm structure and copy contents from the
1123  * mm structure of the passed in task structure.
1124  */
1125 static struct mm_struct *dup_mm(struct task_struct *tsk)
1126 {
1127 	struct mm_struct *mm, *oldmm = current->mm;
1128 	int err;
1129 
1130 	mm = allocate_mm();
1131 	if (!mm)
1132 		goto fail_nomem;
1133 
1134 	memcpy(mm, oldmm, sizeof(*mm));
1135 
1136 	if (!mm_init(mm, tsk, mm->user_ns))
1137 		goto fail_nomem;
1138 
1139 	err = dup_mmap(mm, oldmm);
1140 	if (err)
1141 		goto free_pt;
1142 
1143 	mm->hiwater_rss = get_mm_rss(mm);
1144 	mm->hiwater_vm = mm->total_vm;
1145 
1146 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1147 		goto free_pt;
1148 
1149 	return mm;
1150 
1151 free_pt:
1152 	/* don't put binfmt in mmput, we haven't got module yet */
1153 	mm->binfmt = NULL;
1154 	mmput(mm);
1155 
1156 fail_nomem:
1157 	return NULL;
1158 }
1159 
1160 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1161 {
1162 	struct mm_struct *mm, *oldmm;
1163 	int retval;
1164 
1165 	tsk->min_flt = tsk->maj_flt = 0;
1166 	tsk->nvcsw = tsk->nivcsw = 0;
1167 #ifdef CONFIG_DETECT_HUNG_TASK
1168 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1169 #endif
1170 
1171 	tsk->mm = NULL;
1172 	tsk->active_mm = NULL;
1173 
1174 	/*
1175 	 * Are we cloning a kernel thread?
1176 	 *
1177 	 * We need to steal a active VM for that..
1178 	 */
1179 	oldmm = current->mm;
1180 	if (!oldmm)
1181 		return 0;
1182 
1183 	/* initialize the new vmacache entries */
1184 	vmacache_flush(tsk);
1185 
1186 	if (clone_flags & CLONE_VM) {
1187 		atomic_inc(&oldmm->mm_users);
1188 		mm = oldmm;
1189 		goto good_mm;
1190 	}
1191 
1192 	retval = -ENOMEM;
1193 	mm = dup_mm(tsk);
1194 	if (!mm)
1195 		goto fail_nomem;
1196 
1197 good_mm:
1198 	tsk->mm = mm;
1199 	tsk->active_mm = mm;
1200 	return 0;
1201 
1202 fail_nomem:
1203 	return retval;
1204 }
1205 
1206 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1207 {
1208 	struct fs_struct *fs = current->fs;
1209 	if (clone_flags & CLONE_FS) {
1210 		/* tsk->fs is already what we want */
1211 		spin_lock(&fs->lock);
1212 		if (fs->in_exec) {
1213 			spin_unlock(&fs->lock);
1214 			return -EAGAIN;
1215 		}
1216 		fs->users++;
1217 		spin_unlock(&fs->lock);
1218 		return 0;
1219 	}
1220 	tsk->fs = copy_fs_struct(fs);
1221 	if (!tsk->fs)
1222 		return -ENOMEM;
1223 	return 0;
1224 }
1225 
1226 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1227 {
1228 	struct files_struct *oldf, *newf;
1229 	int error = 0;
1230 
1231 	/*
1232 	 * A background process may not have any files ...
1233 	 */
1234 	oldf = current->files;
1235 	if (!oldf)
1236 		goto out;
1237 
1238 	if (clone_flags & CLONE_FILES) {
1239 		atomic_inc(&oldf->count);
1240 		goto out;
1241 	}
1242 
1243 	newf = dup_fd(oldf, &error);
1244 	if (!newf)
1245 		goto out;
1246 
1247 	tsk->files = newf;
1248 	error = 0;
1249 out:
1250 	return error;
1251 }
1252 
1253 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1254 {
1255 #ifdef CONFIG_BLOCK
1256 	struct io_context *ioc = current->io_context;
1257 	struct io_context *new_ioc;
1258 
1259 	if (!ioc)
1260 		return 0;
1261 	/*
1262 	 * Share io context with parent, if CLONE_IO is set
1263 	 */
1264 	if (clone_flags & CLONE_IO) {
1265 		ioc_task_link(ioc);
1266 		tsk->io_context = ioc;
1267 	} else if (ioprio_valid(ioc->ioprio)) {
1268 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1269 		if (unlikely(!new_ioc))
1270 			return -ENOMEM;
1271 
1272 		new_ioc->ioprio = ioc->ioprio;
1273 		put_io_context(new_ioc);
1274 	}
1275 #endif
1276 	return 0;
1277 }
1278 
1279 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1280 {
1281 	struct sighand_struct *sig;
1282 
1283 	if (clone_flags & CLONE_SIGHAND) {
1284 		atomic_inc(&current->sighand->count);
1285 		return 0;
1286 	}
1287 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1288 	rcu_assign_pointer(tsk->sighand, sig);
1289 	if (!sig)
1290 		return -ENOMEM;
1291 
1292 	atomic_set(&sig->count, 1);
1293 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1294 	return 0;
1295 }
1296 
1297 void __cleanup_sighand(struct sighand_struct *sighand)
1298 {
1299 	if (atomic_dec_and_test(&sighand->count)) {
1300 		signalfd_cleanup(sighand);
1301 		/*
1302 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1303 		 * without an RCU grace period, see __lock_task_sighand().
1304 		 */
1305 		kmem_cache_free(sighand_cachep, sighand);
1306 	}
1307 }
1308 
1309 /*
1310  * Initialize POSIX timer handling for a thread group.
1311  */
1312 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1313 {
1314 	unsigned long cpu_limit;
1315 
1316 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1317 	if (cpu_limit != RLIM_INFINITY) {
1318 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1319 		sig->cputimer.running = true;
1320 	}
1321 
1322 	/* The timer lists. */
1323 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1324 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1325 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1326 }
1327 
1328 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1329 {
1330 	struct signal_struct *sig;
1331 
1332 	if (clone_flags & CLONE_THREAD)
1333 		return 0;
1334 
1335 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1336 	tsk->signal = sig;
1337 	if (!sig)
1338 		return -ENOMEM;
1339 
1340 	sig->nr_threads = 1;
1341 	atomic_set(&sig->live, 1);
1342 	atomic_set(&sig->sigcnt, 1);
1343 
1344 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1345 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1346 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1347 
1348 	init_waitqueue_head(&sig->wait_chldexit);
1349 	sig->curr_target = tsk;
1350 	init_sigpending(&sig->shared_pending);
1351 	INIT_LIST_HEAD(&sig->posix_timers);
1352 	seqlock_init(&sig->stats_lock);
1353 	prev_cputime_init(&sig->prev_cputime);
1354 
1355 #ifdef CONFIG_POSIX_TIMERS
1356 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1357 	sig->real_timer.function = it_real_fn;
1358 #endif
1359 
1360 	task_lock(current->group_leader);
1361 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1362 	task_unlock(current->group_leader);
1363 
1364 	posix_cpu_timers_init_group(sig);
1365 
1366 	tty_audit_fork(sig);
1367 	sched_autogroup_fork(sig);
1368 
1369 	sig->oom_score_adj = current->signal->oom_score_adj;
1370 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1371 
1372 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1373 				   current->signal->is_child_subreaper;
1374 
1375 	mutex_init(&sig->cred_guard_mutex);
1376 
1377 	return 0;
1378 }
1379 
1380 static void copy_seccomp(struct task_struct *p)
1381 {
1382 #ifdef CONFIG_SECCOMP
1383 	/*
1384 	 * Must be called with sighand->lock held, which is common to
1385 	 * all threads in the group. Holding cred_guard_mutex is not
1386 	 * needed because this new task is not yet running and cannot
1387 	 * be racing exec.
1388 	 */
1389 	assert_spin_locked(&current->sighand->siglock);
1390 
1391 	/* Ref-count the new filter user, and assign it. */
1392 	get_seccomp_filter(current);
1393 	p->seccomp = current->seccomp;
1394 
1395 	/*
1396 	 * Explicitly enable no_new_privs here in case it got set
1397 	 * between the task_struct being duplicated and holding the
1398 	 * sighand lock. The seccomp state and nnp must be in sync.
1399 	 */
1400 	if (task_no_new_privs(current))
1401 		task_set_no_new_privs(p);
1402 
1403 	/*
1404 	 * If the parent gained a seccomp mode after copying thread
1405 	 * flags and between before we held the sighand lock, we have
1406 	 * to manually enable the seccomp thread flag here.
1407 	 */
1408 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1409 		set_tsk_thread_flag(p, TIF_SECCOMP);
1410 #endif
1411 }
1412 
1413 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1414 {
1415 	current->clear_child_tid = tidptr;
1416 
1417 	return task_pid_vnr(current);
1418 }
1419 
1420 static void rt_mutex_init_task(struct task_struct *p)
1421 {
1422 	raw_spin_lock_init(&p->pi_lock);
1423 #ifdef CONFIG_RT_MUTEXES
1424 	p->pi_waiters = RB_ROOT;
1425 	p->pi_waiters_leftmost = NULL;
1426 	p->pi_blocked_on = NULL;
1427 #endif
1428 }
1429 
1430 /*
1431  * Initialize POSIX timer handling for a single task.
1432  */
1433 static void posix_cpu_timers_init(struct task_struct *tsk)
1434 {
1435 	tsk->cputime_expires.prof_exp = 0;
1436 	tsk->cputime_expires.virt_exp = 0;
1437 	tsk->cputime_expires.sched_exp = 0;
1438 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1439 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1440 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1441 }
1442 
1443 static inline void
1444 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1445 {
1446 	 task->pids[type].pid = pid;
1447 }
1448 
1449 /*
1450  * This creates a new process as a copy of the old one,
1451  * but does not actually start it yet.
1452  *
1453  * It copies the registers, and all the appropriate
1454  * parts of the process environment (as per the clone
1455  * flags). The actual kick-off is left to the caller.
1456  */
1457 static __latent_entropy struct task_struct *copy_process(
1458 					unsigned long clone_flags,
1459 					unsigned long stack_start,
1460 					unsigned long stack_size,
1461 					int __user *child_tidptr,
1462 					struct pid *pid,
1463 					int trace,
1464 					unsigned long tls,
1465 					int node)
1466 {
1467 	int retval;
1468 	struct task_struct *p;
1469 
1470 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1471 		return ERR_PTR(-EINVAL);
1472 
1473 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1474 		return ERR_PTR(-EINVAL);
1475 
1476 	/*
1477 	 * Thread groups must share signals as well, and detached threads
1478 	 * can only be started up within the thread group.
1479 	 */
1480 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1481 		return ERR_PTR(-EINVAL);
1482 
1483 	/*
1484 	 * Shared signal handlers imply shared VM. By way of the above,
1485 	 * thread groups also imply shared VM. Blocking this case allows
1486 	 * for various simplifications in other code.
1487 	 */
1488 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	/*
1492 	 * Siblings of global init remain as zombies on exit since they are
1493 	 * not reaped by their parent (swapper). To solve this and to avoid
1494 	 * multi-rooted process trees, prevent global and container-inits
1495 	 * from creating siblings.
1496 	 */
1497 	if ((clone_flags & CLONE_PARENT) &&
1498 				current->signal->flags & SIGNAL_UNKILLABLE)
1499 		return ERR_PTR(-EINVAL);
1500 
1501 	/*
1502 	 * If the new process will be in a different pid or user namespace
1503 	 * do not allow it to share a thread group with the forking task.
1504 	 */
1505 	if (clone_flags & CLONE_THREAD) {
1506 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1507 		    (task_active_pid_ns(current) !=
1508 				current->nsproxy->pid_ns_for_children))
1509 			return ERR_PTR(-EINVAL);
1510 	}
1511 
1512 	retval = security_task_create(clone_flags);
1513 	if (retval)
1514 		goto fork_out;
1515 
1516 	retval = -ENOMEM;
1517 	p = dup_task_struct(current, node);
1518 	if (!p)
1519 		goto fork_out;
1520 
1521 	ftrace_graph_init_task(p);
1522 
1523 	rt_mutex_init_task(p);
1524 
1525 #ifdef CONFIG_PROVE_LOCKING
1526 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1527 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1528 #endif
1529 	retval = -EAGAIN;
1530 	if (atomic_read(&p->real_cred->user->processes) >=
1531 			task_rlimit(p, RLIMIT_NPROC)) {
1532 		if (p->real_cred->user != INIT_USER &&
1533 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1534 			goto bad_fork_free;
1535 	}
1536 	current->flags &= ~PF_NPROC_EXCEEDED;
1537 
1538 	retval = copy_creds(p, clone_flags);
1539 	if (retval < 0)
1540 		goto bad_fork_free;
1541 
1542 	/*
1543 	 * If multiple threads are within copy_process(), then this check
1544 	 * triggers too late. This doesn't hurt, the check is only there
1545 	 * to stop root fork bombs.
1546 	 */
1547 	retval = -EAGAIN;
1548 	if (nr_threads >= max_threads)
1549 		goto bad_fork_cleanup_count;
1550 
1551 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1552 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1553 	p->flags |= PF_FORKNOEXEC;
1554 	INIT_LIST_HEAD(&p->children);
1555 	INIT_LIST_HEAD(&p->sibling);
1556 	rcu_copy_process(p);
1557 	p->vfork_done = NULL;
1558 	spin_lock_init(&p->alloc_lock);
1559 
1560 	init_sigpending(&p->pending);
1561 
1562 	p->utime = p->stime = p->gtime = 0;
1563 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1564 	p->utimescaled = p->stimescaled = 0;
1565 #endif
1566 	prev_cputime_init(&p->prev_cputime);
1567 
1568 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1569 	seqcount_init(&p->vtime_seqcount);
1570 	p->vtime_snap = 0;
1571 	p->vtime_snap_whence = VTIME_INACTIVE;
1572 #endif
1573 
1574 #if defined(SPLIT_RSS_COUNTING)
1575 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1576 #endif
1577 
1578 	p->default_timer_slack_ns = current->timer_slack_ns;
1579 
1580 	task_io_accounting_init(&p->ioac);
1581 	acct_clear_integrals(p);
1582 
1583 	posix_cpu_timers_init(p);
1584 
1585 	p->start_time = ktime_get_ns();
1586 	p->real_start_time = ktime_get_boot_ns();
1587 	p->io_context = NULL;
1588 	p->audit_context = NULL;
1589 	cgroup_fork(p);
1590 #ifdef CONFIG_NUMA
1591 	p->mempolicy = mpol_dup(p->mempolicy);
1592 	if (IS_ERR(p->mempolicy)) {
1593 		retval = PTR_ERR(p->mempolicy);
1594 		p->mempolicy = NULL;
1595 		goto bad_fork_cleanup_threadgroup_lock;
1596 	}
1597 #endif
1598 #ifdef CONFIG_CPUSETS
1599 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1600 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1601 	seqcount_init(&p->mems_allowed_seq);
1602 #endif
1603 #ifdef CONFIG_TRACE_IRQFLAGS
1604 	p->irq_events = 0;
1605 	p->hardirqs_enabled = 0;
1606 	p->hardirq_enable_ip = 0;
1607 	p->hardirq_enable_event = 0;
1608 	p->hardirq_disable_ip = _THIS_IP_;
1609 	p->hardirq_disable_event = 0;
1610 	p->softirqs_enabled = 1;
1611 	p->softirq_enable_ip = _THIS_IP_;
1612 	p->softirq_enable_event = 0;
1613 	p->softirq_disable_ip = 0;
1614 	p->softirq_disable_event = 0;
1615 	p->hardirq_context = 0;
1616 	p->softirq_context = 0;
1617 #endif
1618 
1619 	p->pagefault_disabled = 0;
1620 
1621 #ifdef CONFIG_LOCKDEP
1622 	p->lockdep_depth = 0; /* no locks held yet */
1623 	p->curr_chain_key = 0;
1624 	p->lockdep_recursion = 0;
1625 #endif
1626 
1627 #ifdef CONFIG_DEBUG_MUTEXES
1628 	p->blocked_on = NULL; /* not blocked yet */
1629 #endif
1630 #ifdef CONFIG_BCACHE
1631 	p->sequential_io	= 0;
1632 	p->sequential_io_avg	= 0;
1633 #endif
1634 
1635 	/* Perform scheduler related setup. Assign this task to a CPU. */
1636 	retval = sched_fork(clone_flags, p);
1637 	if (retval)
1638 		goto bad_fork_cleanup_policy;
1639 
1640 	retval = perf_event_init_task(p);
1641 	if (retval)
1642 		goto bad_fork_cleanup_policy;
1643 	retval = audit_alloc(p);
1644 	if (retval)
1645 		goto bad_fork_cleanup_perf;
1646 	/* copy all the process information */
1647 	shm_init_task(p);
1648 	retval = copy_semundo(clone_flags, p);
1649 	if (retval)
1650 		goto bad_fork_cleanup_audit;
1651 	retval = copy_files(clone_flags, p);
1652 	if (retval)
1653 		goto bad_fork_cleanup_semundo;
1654 	retval = copy_fs(clone_flags, p);
1655 	if (retval)
1656 		goto bad_fork_cleanup_files;
1657 	retval = copy_sighand(clone_flags, p);
1658 	if (retval)
1659 		goto bad_fork_cleanup_fs;
1660 	retval = copy_signal(clone_flags, p);
1661 	if (retval)
1662 		goto bad_fork_cleanup_sighand;
1663 	retval = copy_mm(clone_flags, p);
1664 	if (retval)
1665 		goto bad_fork_cleanup_signal;
1666 	retval = copy_namespaces(clone_flags, p);
1667 	if (retval)
1668 		goto bad_fork_cleanup_mm;
1669 	retval = copy_io(clone_flags, p);
1670 	if (retval)
1671 		goto bad_fork_cleanup_namespaces;
1672 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1673 	if (retval)
1674 		goto bad_fork_cleanup_io;
1675 
1676 	if (pid != &init_struct_pid) {
1677 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1678 		if (IS_ERR(pid)) {
1679 			retval = PTR_ERR(pid);
1680 			goto bad_fork_cleanup_thread;
1681 		}
1682 	}
1683 
1684 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1685 	/*
1686 	 * Clear TID on mm_release()?
1687 	 */
1688 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1689 #ifdef CONFIG_BLOCK
1690 	p->plug = NULL;
1691 #endif
1692 #ifdef CONFIG_FUTEX
1693 	p->robust_list = NULL;
1694 #ifdef CONFIG_COMPAT
1695 	p->compat_robust_list = NULL;
1696 #endif
1697 	INIT_LIST_HEAD(&p->pi_state_list);
1698 	p->pi_state_cache = NULL;
1699 #endif
1700 	/*
1701 	 * sigaltstack should be cleared when sharing the same VM
1702 	 */
1703 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1704 		sas_ss_reset(p);
1705 
1706 	/*
1707 	 * Syscall tracing and stepping should be turned off in the
1708 	 * child regardless of CLONE_PTRACE.
1709 	 */
1710 	user_disable_single_step(p);
1711 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1712 #ifdef TIF_SYSCALL_EMU
1713 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1714 #endif
1715 	clear_all_latency_tracing(p);
1716 
1717 	/* ok, now we should be set up.. */
1718 	p->pid = pid_nr(pid);
1719 	if (clone_flags & CLONE_THREAD) {
1720 		p->exit_signal = -1;
1721 		p->group_leader = current->group_leader;
1722 		p->tgid = current->tgid;
1723 	} else {
1724 		if (clone_flags & CLONE_PARENT)
1725 			p->exit_signal = current->group_leader->exit_signal;
1726 		else
1727 			p->exit_signal = (clone_flags & CSIGNAL);
1728 		p->group_leader = p;
1729 		p->tgid = p->pid;
1730 	}
1731 
1732 	p->nr_dirtied = 0;
1733 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1734 	p->dirty_paused_when = 0;
1735 
1736 	p->pdeath_signal = 0;
1737 	INIT_LIST_HEAD(&p->thread_group);
1738 	p->task_works = NULL;
1739 
1740 	threadgroup_change_begin(current);
1741 	/*
1742 	 * Ensure that the cgroup subsystem policies allow the new process to be
1743 	 * forked. It should be noted the the new process's css_set can be changed
1744 	 * between here and cgroup_post_fork() if an organisation operation is in
1745 	 * progress.
1746 	 */
1747 	retval = cgroup_can_fork(p);
1748 	if (retval)
1749 		goto bad_fork_free_pid;
1750 
1751 	/*
1752 	 * Make it visible to the rest of the system, but dont wake it up yet.
1753 	 * Need tasklist lock for parent etc handling!
1754 	 */
1755 	write_lock_irq(&tasklist_lock);
1756 
1757 	/* CLONE_PARENT re-uses the old parent */
1758 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1759 		p->real_parent = current->real_parent;
1760 		p->parent_exec_id = current->parent_exec_id;
1761 	} else {
1762 		p->real_parent = current;
1763 		p->parent_exec_id = current->self_exec_id;
1764 	}
1765 
1766 	spin_lock(&current->sighand->siglock);
1767 
1768 	/*
1769 	 * Copy seccomp details explicitly here, in case they were changed
1770 	 * before holding sighand lock.
1771 	 */
1772 	copy_seccomp(p);
1773 
1774 	/*
1775 	 * Process group and session signals need to be delivered to just the
1776 	 * parent before the fork or both the parent and the child after the
1777 	 * fork. Restart if a signal comes in before we add the new process to
1778 	 * it's process group.
1779 	 * A fatal signal pending means that current will exit, so the new
1780 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1781 	*/
1782 	recalc_sigpending();
1783 	if (signal_pending(current)) {
1784 		spin_unlock(&current->sighand->siglock);
1785 		write_unlock_irq(&tasklist_lock);
1786 		retval = -ERESTARTNOINTR;
1787 		goto bad_fork_cancel_cgroup;
1788 	}
1789 
1790 	if (likely(p->pid)) {
1791 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1792 
1793 		init_task_pid(p, PIDTYPE_PID, pid);
1794 		if (thread_group_leader(p)) {
1795 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1796 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1797 
1798 			if (is_child_reaper(pid)) {
1799 				ns_of_pid(pid)->child_reaper = p;
1800 				p->signal->flags |= SIGNAL_UNKILLABLE;
1801 			}
1802 
1803 			p->signal->leader_pid = pid;
1804 			p->signal->tty = tty_kref_get(current->signal->tty);
1805 			list_add_tail(&p->sibling, &p->real_parent->children);
1806 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1807 			attach_pid(p, PIDTYPE_PGID);
1808 			attach_pid(p, PIDTYPE_SID);
1809 			__this_cpu_inc(process_counts);
1810 		} else {
1811 			current->signal->nr_threads++;
1812 			atomic_inc(&current->signal->live);
1813 			atomic_inc(&current->signal->sigcnt);
1814 			list_add_tail_rcu(&p->thread_group,
1815 					  &p->group_leader->thread_group);
1816 			list_add_tail_rcu(&p->thread_node,
1817 					  &p->signal->thread_head);
1818 		}
1819 		attach_pid(p, PIDTYPE_PID);
1820 		nr_threads++;
1821 	}
1822 
1823 	total_forks++;
1824 	spin_unlock(&current->sighand->siglock);
1825 	syscall_tracepoint_update(p);
1826 	write_unlock_irq(&tasklist_lock);
1827 
1828 	proc_fork_connector(p);
1829 	cgroup_post_fork(p);
1830 	threadgroup_change_end(current);
1831 	perf_event_fork(p);
1832 
1833 	trace_task_newtask(p, clone_flags);
1834 	uprobe_copy_process(p, clone_flags);
1835 
1836 	return p;
1837 
1838 bad_fork_cancel_cgroup:
1839 	cgroup_cancel_fork(p);
1840 bad_fork_free_pid:
1841 	threadgroup_change_end(current);
1842 	if (pid != &init_struct_pid)
1843 		free_pid(pid);
1844 bad_fork_cleanup_thread:
1845 	exit_thread(p);
1846 bad_fork_cleanup_io:
1847 	if (p->io_context)
1848 		exit_io_context(p);
1849 bad_fork_cleanup_namespaces:
1850 	exit_task_namespaces(p);
1851 bad_fork_cleanup_mm:
1852 	if (p->mm)
1853 		mmput(p->mm);
1854 bad_fork_cleanup_signal:
1855 	if (!(clone_flags & CLONE_THREAD))
1856 		free_signal_struct(p->signal);
1857 bad_fork_cleanup_sighand:
1858 	__cleanup_sighand(p->sighand);
1859 bad_fork_cleanup_fs:
1860 	exit_fs(p); /* blocking */
1861 bad_fork_cleanup_files:
1862 	exit_files(p); /* blocking */
1863 bad_fork_cleanup_semundo:
1864 	exit_sem(p);
1865 bad_fork_cleanup_audit:
1866 	audit_free(p);
1867 bad_fork_cleanup_perf:
1868 	perf_event_free_task(p);
1869 bad_fork_cleanup_policy:
1870 #ifdef CONFIG_NUMA
1871 	mpol_put(p->mempolicy);
1872 bad_fork_cleanup_threadgroup_lock:
1873 #endif
1874 	delayacct_tsk_free(p);
1875 bad_fork_cleanup_count:
1876 	atomic_dec(&p->cred->user->processes);
1877 	exit_creds(p);
1878 bad_fork_free:
1879 	p->state = TASK_DEAD;
1880 	put_task_stack(p);
1881 	free_task(p);
1882 fork_out:
1883 	return ERR_PTR(retval);
1884 }
1885 
1886 static inline void init_idle_pids(struct pid_link *links)
1887 {
1888 	enum pid_type type;
1889 
1890 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1891 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1892 		links[type].pid = &init_struct_pid;
1893 	}
1894 }
1895 
1896 struct task_struct *fork_idle(int cpu)
1897 {
1898 	struct task_struct *task;
1899 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1900 			    cpu_to_node(cpu));
1901 	if (!IS_ERR(task)) {
1902 		init_idle_pids(task->pids);
1903 		init_idle(task, cpu);
1904 	}
1905 
1906 	return task;
1907 }
1908 
1909 /*
1910  *  Ok, this is the main fork-routine.
1911  *
1912  * It copies the process, and if successful kick-starts
1913  * it and waits for it to finish using the VM if required.
1914  */
1915 long _do_fork(unsigned long clone_flags,
1916 	      unsigned long stack_start,
1917 	      unsigned long stack_size,
1918 	      int __user *parent_tidptr,
1919 	      int __user *child_tidptr,
1920 	      unsigned long tls)
1921 {
1922 	struct task_struct *p;
1923 	int trace = 0;
1924 	long nr;
1925 
1926 	/*
1927 	 * Determine whether and which event to report to ptracer.  When
1928 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1929 	 * requested, no event is reported; otherwise, report if the event
1930 	 * for the type of forking is enabled.
1931 	 */
1932 	if (!(clone_flags & CLONE_UNTRACED)) {
1933 		if (clone_flags & CLONE_VFORK)
1934 			trace = PTRACE_EVENT_VFORK;
1935 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1936 			trace = PTRACE_EVENT_CLONE;
1937 		else
1938 			trace = PTRACE_EVENT_FORK;
1939 
1940 		if (likely(!ptrace_event_enabled(current, trace)))
1941 			trace = 0;
1942 	}
1943 
1944 	p = copy_process(clone_flags, stack_start, stack_size,
1945 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1946 	add_latent_entropy();
1947 	/*
1948 	 * Do this prior waking up the new thread - the thread pointer
1949 	 * might get invalid after that point, if the thread exits quickly.
1950 	 */
1951 	if (!IS_ERR(p)) {
1952 		struct completion vfork;
1953 		struct pid *pid;
1954 
1955 		trace_sched_process_fork(current, p);
1956 
1957 		pid = get_task_pid(p, PIDTYPE_PID);
1958 		nr = pid_vnr(pid);
1959 
1960 		if (clone_flags & CLONE_PARENT_SETTID)
1961 			put_user(nr, parent_tidptr);
1962 
1963 		if (clone_flags & CLONE_VFORK) {
1964 			p->vfork_done = &vfork;
1965 			init_completion(&vfork);
1966 			get_task_struct(p);
1967 		}
1968 
1969 		wake_up_new_task(p);
1970 
1971 		/* forking complete and child started to run, tell ptracer */
1972 		if (unlikely(trace))
1973 			ptrace_event_pid(trace, pid);
1974 
1975 		if (clone_flags & CLONE_VFORK) {
1976 			if (!wait_for_vfork_done(p, &vfork))
1977 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1978 		}
1979 
1980 		put_pid(pid);
1981 	} else {
1982 		nr = PTR_ERR(p);
1983 	}
1984 	return nr;
1985 }
1986 
1987 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1988 /* For compatibility with architectures that call do_fork directly rather than
1989  * using the syscall entry points below. */
1990 long do_fork(unsigned long clone_flags,
1991 	      unsigned long stack_start,
1992 	      unsigned long stack_size,
1993 	      int __user *parent_tidptr,
1994 	      int __user *child_tidptr)
1995 {
1996 	return _do_fork(clone_flags, stack_start, stack_size,
1997 			parent_tidptr, child_tidptr, 0);
1998 }
1999 #endif
2000 
2001 /*
2002  * Create a kernel thread.
2003  */
2004 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2005 {
2006 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2007 		(unsigned long)arg, NULL, NULL, 0);
2008 }
2009 
2010 #ifdef __ARCH_WANT_SYS_FORK
2011 SYSCALL_DEFINE0(fork)
2012 {
2013 #ifdef CONFIG_MMU
2014 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2015 #else
2016 	/* can not support in nommu mode */
2017 	return -EINVAL;
2018 #endif
2019 }
2020 #endif
2021 
2022 #ifdef __ARCH_WANT_SYS_VFORK
2023 SYSCALL_DEFINE0(vfork)
2024 {
2025 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2026 			0, NULL, NULL, 0);
2027 }
2028 #endif
2029 
2030 #ifdef __ARCH_WANT_SYS_CLONE
2031 #ifdef CONFIG_CLONE_BACKWARDS
2032 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2033 		 int __user *, parent_tidptr,
2034 		 unsigned long, tls,
2035 		 int __user *, child_tidptr)
2036 #elif defined(CONFIG_CLONE_BACKWARDS2)
2037 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2038 		 int __user *, parent_tidptr,
2039 		 int __user *, child_tidptr,
2040 		 unsigned long, tls)
2041 #elif defined(CONFIG_CLONE_BACKWARDS3)
2042 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2043 		int, stack_size,
2044 		int __user *, parent_tidptr,
2045 		int __user *, child_tidptr,
2046 		unsigned long, tls)
2047 #else
2048 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2049 		 int __user *, parent_tidptr,
2050 		 int __user *, child_tidptr,
2051 		 unsigned long, tls)
2052 #endif
2053 {
2054 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2055 }
2056 #endif
2057 
2058 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2059 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2060 #endif
2061 
2062 static void sighand_ctor(void *data)
2063 {
2064 	struct sighand_struct *sighand = data;
2065 
2066 	spin_lock_init(&sighand->siglock);
2067 	init_waitqueue_head(&sighand->signalfd_wqh);
2068 }
2069 
2070 void __init proc_caches_init(void)
2071 {
2072 	sighand_cachep = kmem_cache_create("sighand_cache",
2073 			sizeof(struct sighand_struct), 0,
2074 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2075 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2076 	signal_cachep = kmem_cache_create("signal_cache",
2077 			sizeof(struct signal_struct), 0,
2078 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2079 			NULL);
2080 	files_cachep = kmem_cache_create("files_cache",
2081 			sizeof(struct files_struct), 0,
2082 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2083 			NULL);
2084 	fs_cachep = kmem_cache_create("fs_cache",
2085 			sizeof(struct fs_struct), 0,
2086 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2087 			NULL);
2088 	/*
2089 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2090 	 * whole struct cpumask for the OFFSTACK case. We could change
2091 	 * this to *only* allocate as much of it as required by the
2092 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2093 	 * is at the end of the structure, exactly for that reason.
2094 	 */
2095 	mm_cachep = kmem_cache_create("mm_struct",
2096 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2097 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2098 			NULL);
2099 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2100 	mmap_init();
2101 	nsproxy_cache_init();
2102 }
2103 
2104 /*
2105  * Check constraints on flags passed to the unshare system call.
2106  */
2107 static int check_unshare_flags(unsigned long unshare_flags)
2108 {
2109 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2110 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2111 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2112 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2113 		return -EINVAL;
2114 	/*
2115 	 * Not implemented, but pretend it works if there is nothing
2116 	 * to unshare.  Note that unsharing the address space or the
2117 	 * signal handlers also need to unshare the signal queues (aka
2118 	 * CLONE_THREAD).
2119 	 */
2120 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2121 		if (!thread_group_empty(current))
2122 			return -EINVAL;
2123 	}
2124 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2125 		if (atomic_read(&current->sighand->count) > 1)
2126 			return -EINVAL;
2127 	}
2128 	if (unshare_flags & CLONE_VM) {
2129 		if (!current_is_single_threaded())
2130 			return -EINVAL;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /*
2137  * Unshare the filesystem structure if it is being shared
2138  */
2139 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2140 {
2141 	struct fs_struct *fs = current->fs;
2142 
2143 	if (!(unshare_flags & CLONE_FS) || !fs)
2144 		return 0;
2145 
2146 	/* don't need lock here; in the worst case we'll do useless copy */
2147 	if (fs->users == 1)
2148 		return 0;
2149 
2150 	*new_fsp = copy_fs_struct(fs);
2151 	if (!*new_fsp)
2152 		return -ENOMEM;
2153 
2154 	return 0;
2155 }
2156 
2157 /*
2158  * Unshare file descriptor table if it is being shared
2159  */
2160 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2161 {
2162 	struct files_struct *fd = current->files;
2163 	int error = 0;
2164 
2165 	if ((unshare_flags & CLONE_FILES) &&
2166 	    (fd && atomic_read(&fd->count) > 1)) {
2167 		*new_fdp = dup_fd(fd, &error);
2168 		if (!*new_fdp)
2169 			return error;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 /*
2176  * unshare allows a process to 'unshare' part of the process
2177  * context which was originally shared using clone.  copy_*
2178  * functions used by do_fork() cannot be used here directly
2179  * because they modify an inactive task_struct that is being
2180  * constructed. Here we are modifying the current, active,
2181  * task_struct.
2182  */
2183 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2184 {
2185 	struct fs_struct *fs, *new_fs = NULL;
2186 	struct files_struct *fd, *new_fd = NULL;
2187 	struct cred *new_cred = NULL;
2188 	struct nsproxy *new_nsproxy = NULL;
2189 	int do_sysvsem = 0;
2190 	int err;
2191 
2192 	/*
2193 	 * If unsharing a user namespace must also unshare the thread group
2194 	 * and unshare the filesystem root and working directories.
2195 	 */
2196 	if (unshare_flags & CLONE_NEWUSER)
2197 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2198 	/*
2199 	 * If unsharing vm, must also unshare signal handlers.
2200 	 */
2201 	if (unshare_flags & CLONE_VM)
2202 		unshare_flags |= CLONE_SIGHAND;
2203 	/*
2204 	 * If unsharing a signal handlers, must also unshare the signal queues.
2205 	 */
2206 	if (unshare_flags & CLONE_SIGHAND)
2207 		unshare_flags |= CLONE_THREAD;
2208 	/*
2209 	 * If unsharing namespace, must also unshare filesystem information.
2210 	 */
2211 	if (unshare_flags & CLONE_NEWNS)
2212 		unshare_flags |= CLONE_FS;
2213 
2214 	err = check_unshare_flags(unshare_flags);
2215 	if (err)
2216 		goto bad_unshare_out;
2217 	/*
2218 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2219 	 * to a new ipc namespace, the semaphore arrays from the old
2220 	 * namespace are unreachable.
2221 	 */
2222 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2223 		do_sysvsem = 1;
2224 	err = unshare_fs(unshare_flags, &new_fs);
2225 	if (err)
2226 		goto bad_unshare_out;
2227 	err = unshare_fd(unshare_flags, &new_fd);
2228 	if (err)
2229 		goto bad_unshare_cleanup_fs;
2230 	err = unshare_userns(unshare_flags, &new_cred);
2231 	if (err)
2232 		goto bad_unshare_cleanup_fd;
2233 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2234 					 new_cred, new_fs);
2235 	if (err)
2236 		goto bad_unshare_cleanup_cred;
2237 
2238 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2239 		if (do_sysvsem) {
2240 			/*
2241 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2242 			 */
2243 			exit_sem(current);
2244 		}
2245 		if (unshare_flags & CLONE_NEWIPC) {
2246 			/* Orphan segments in old ns (see sem above). */
2247 			exit_shm(current);
2248 			shm_init_task(current);
2249 		}
2250 
2251 		if (new_nsproxy)
2252 			switch_task_namespaces(current, new_nsproxy);
2253 
2254 		task_lock(current);
2255 
2256 		if (new_fs) {
2257 			fs = current->fs;
2258 			spin_lock(&fs->lock);
2259 			current->fs = new_fs;
2260 			if (--fs->users)
2261 				new_fs = NULL;
2262 			else
2263 				new_fs = fs;
2264 			spin_unlock(&fs->lock);
2265 		}
2266 
2267 		if (new_fd) {
2268 			fd = current->files;
2269 			current->files = new_fd;
2270 			new_fd = fd;
2271 		}
2272 
2273 		task_unlock(current);
2274 
2275 		if (new_cred) {
2276 			/* Install the new user namespace */
2277 			commit_creds(new_cred);
2278 			new_cred = NULL;
2279 		}
2280 	}
2281 
2282 bad_unshare_cleanup_cred:
2283 	if (new_cred)
2284 		put_cred(new_cred);
2285 bad_unshare_cleanup_fd:
2286 	if (new_fd)
2287 		put_files_struct(new_fd);
2288 
2289 bad_unshare_cleanup_fs:
2290 	if (new_fs)
2291 		free_fs_struct(new_fs);
2292 
2293 bad_unshare_out:
2294 	return err;
2295 }
2296 
2297 /*
2298  *	Helper to unshare the files of the current task.
2299  *	We don't want to expose copy_files internals to
2300  *	the exec layer of the kernel.
2301  */
2302 
2303 int unshare_files(struct files_struct **displaced)
2304 {
2305 	struct task_struct *task = current;
2306 	struct files_struct *copy = NULL;
2307 	int error;
2308 
2309 	error = unshare_fd(CLONE_FILES, &copy);
2310 	if (error || !copy) {
2311 		*displaced = NULL;
2312 		return error;
2313 	}
2314 	*displaced = task->files;
2315 	task_lock(task);
2316 	task->files = copy;
2317 	task_unlock(task);
2318 	return 0;
2319 }
2320 
2321 int sysctl_max_threads(struct ctl_table *table, int write,
2322 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2323 {
2324 	struct ctl_table t;
2325 	int ret;
2326 	int threads = max_threads;
2327 	int min = MIN_THREADS;
2328 	int max = MAX_THREADS;
2329 
2330 	t = *table;
2331 	t.data = &threads;
2332 	t.extra1 = &min;
2333 	t.extra2 = &max;
2334 
2335 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2336 	if (ret || !write)
2337 		return ret;
2338 
2339 	set_max_threads(threads);
2340 
2341 	return 0;
2342 }
2343