1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 # ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 struct vm_stack { 195 struct rcu_head rcu; 196 struct vm_struct *stack_vm_area; 197 }; 198 199 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 200 { 201 unsigned int i; 202 203 for (i = 0; i < NR_CACHED_STACKS; i++) { 204 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 205 continue; 206 return true; 207 } 208 return false; 209 } 210 211 static void thread_stack_free_rcu(struct rcu_head *rh) 212 { 213 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 214 215 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 216 return; 217 218 vfree(vm_stack); 219 } 220 221 static void thread_stack_delayed_free(struct task_struct *tsk) 222 { 223 struct vm_stack *vm_stack = tsk->stack; 224 225 vm_stack->stack_vm_area = tsk->stack_vm_area; 226 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 227 } 228 229 static int free_vm_stack_cache(unsigned int cpu) 230 { 231 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 232 int i; 233 234 for (i = 0; i < NR_CACHED_STACKS; i++) { 235 struct vm_struct *vm_stack = cached_vm_stacks[i]; 236 237 if (!vm_stack) 238 continue; 239 240 vfree(vm_stack->addr); 241 cached_vm_stacks[i] = NULL; 242 } 243 244 return 0; 245 } 246 247 static int memcg_charge_kernel_stack(struct vm_struct *vm) 248 { 249 int i; 250 int ret; 251 int nr_charged = 0; 252 253 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 254 255 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 256 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 257 if (ret) 258 goto err; 259 nr_charged++; 260 } 261 return 0; 262 err: 263 for (i = 0; i < nr_charged; i++) 264 memcg_kmem_uncharge_page(vm->pages[i], 0); 265 return ret; 266 } 267 268 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 269 { 270 struct vm_struct *vm; 271 void *stack; 272 int i; 273 274 for (i = 0; i < NR_CACHED_STACKS; i++) { 275 struct vm_struct *s; 276 277 s = this_cpu_xchg(cached_stacks[i], NULL); 278 279 if (!s) 280 continue; 281 282 /* Reset stack metadata. */ 283 kasan_unpoison_range(s->addr, THREAD_SIZE); 284 285 stack = kasan_reset_tag(s->addr); 286 287 /* Clear stale pointers from reused stack. */ 288 memset(stack, 0, THREAD_SIZE); 289 290 if (memcg_charge_kernel_stack(s)) { 291 vfree(s->addr); 292 return -ENOMEM; 293 } 294 295 tsk->stack_vm_area = s; 296 tsk->stack = stack; 297 return 0; 298 } 299 300 /* 301 * Allocated stacks are cached and later reused by new threads, 302 * so memcg accounting is performed manually on assigning/releasing 303 * stacks to tasks. Drop __GFP_ACCOUNT. 304 */ 305 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 306 VMALLOC_START, VMALLOC_END, 307 THREADINFO_GFP & ~__GFP_ACCOUNT, 308 PAGE_KERNEL, 309 0, node, __builtin_return_address(0)); 310 if (!stack) 311 return -ENOMEM; 312 313 vm = find_vm_area(stack); 314 if (memcg_charge_kernel_stack(vm)) { 315 vfree(stack); 316 return -ENOMEM; 317 } 318 /* 319 * We can't call find_vm_area() in interrupt context, and 320 * free_thread_stack() can be called in interrupt context, 321 * so cache the vm_struct. 322 */ 323 tsk->stack_vm_area = vm; 324 stack = kasan_reset_tag(stack); 325 tsk->stack = stack; 326 return 0; 327 } 328 329 static void free_thread_stack(struct task_struct *tsk) 330 { 331 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 332 thread_stack_delayed_free(tsk); 333 334 tsk->stack = NULL; 335 tsk->stack_vm_area = NULL; 336 } 337 338 # else /* !CONFIG_VMAP_STACK */ 339 340 static void thread_stack_free_rcu(struct rcu_head *rh) 341 { 342 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 343 } 344 345 static void thread_stack_delayed_free(struct task_struct *tsk) 346 { 347 struct rcu_head *rh = tsk->stack; 348 349 call_rcu(rh, thread_stack_free_rcu); 350 } 351 352 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 353 { 354 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 355 THREAD_SIZE_ORDER); 356 357 if (likely(page)) { 358 tsk->stack = kasan_reset_tag(page_address(page)); 359 return 0; 360 } 361 return -ENOMEM; 362 } 363 364 static void free_thread_stack(struct task_struct *tsk) 365 { 366 thread_stack_delayed_free(tsk); 367 tsk->stack = NULL; 368 } 369 370 # endif /* CONFIG_VMAP_STACK */ 371 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 372 373 static struct kmem_cache *thread_stack_cache; 374 375 static void thread_stack_free_rcu(struct rcu_head *rh) 376 { 377 kmem_cache_free(thread_stack_cache, rh); 378 } 379 380 static void thread_stack_delayed_free(struct task_struct *tsk) 381 { 382 struct rcu_head *rh = tsk->stack; 383 384 call_rcu(rh, thread_stack_free_rcu); 385 } 386 387 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 388 { 389 unsigned long *stack; 390 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 391 stack = kasan_reset_tag(stack); 392 tsk->stack = stack; 393 return stack ? 0 : -ENOMEM; 394 } 395 396 static void free_thread_stack(struct task_struct *tsk) 397 { 398 thread_stack_delayed_free(tsk); 399 tsk->stack = NULL; 400 } 401 402 void thread_stack_cache_init(void) 403 { 404 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 405 THREAD_SIZE, THREAD_SIZE, 0, 0, 406 THREAD_SIZE, NULL); 407 BUG_ON(thread_stack_cache == NULL); 408 } 409 410 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 411 412 /* SLAB cache for signal_struct structures (tsk->signal) */ 413 static struct kmem_cache *signal_cachep; 414 415 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 416 struct kmem_cache *sighand_cachep; 417 418 /* SLAB cache for files_struct structures (tsk->files) */ 419 struct kmem_cache *files_cachep; 420 421 /* SLAB cache for fs_struct structures (tsk->fs) */ 422 struct kmem_cache *fs_cachep; 423 424 /* SLAB cache for vm_area_struct structures */ 425 static struct kmem_cache *vm_area_cachep; 426 427 /* SLAB cache for mm_struct structures (tsk->mm) */ 428 static struct kmem_cache *mm_cachep; 429 430 #ifdef CONFIG_PER_VMA_LOCK 431 432 /* SLAB cache for vm_area_struct.lock */ 433 static struct kmem_cache *vma_lock_cachep; 434 435 static bool vma_lock_alloc(struct vm_area_struct *vma) 436 { 437 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 438 if (!vma->vm_lock) 439 return false; 440 441 init_rwsem(&vma->vm_lock->lock); 442 vma->vm_lock_seq = -1; 443 444 return true; 445 } 446 447 static inline void vma_lock_free(struct vm_area_struct *vma) 448 { 449 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 450 } 451 452 #else /* CONFIG_PER_VMA_LOCK */ 453 454 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 455 static inline void vma_lock_free(struct vm_area_struct *vma) {} 456 457 #endif /* CONFIG_PER_VMA_LOCK */ 458 459 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 460 { 461 struct vm_area_struct *vma; 462 463 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 464 if (!vma) 465 return NULL; 466 467 vma_init(vma, mm); 468 if (!vma_lock_alloc(vma)) { 469 kmem_cache_free(vm_area_cachep, vma); 470 return NULL; 471 } 472 473 return vma; 474 } 475 476 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 477 { 478 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 479 480 if (!new) 481 return NULL; 482 483 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 484 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 485 /* 486 * orig->shared.rb may be modified concurrently, but the clone 487 * will be reinitialized. 488 */ 489 data_race(memcpy(new, orig, sizeof(*new))); 490 if (!vma_lock_alloc(new)) { 491 kmem_cache_free(vm_area_cachep, new); 492 return NULL; 493 } 494 INIT_LIST_HEAD(&new->anon_vma_chain); 495 vma_numab_state_init(new); 496 dup_anon_vma_name(orig, new); 497 498 return new; 499 } 500 501 void __vm_area_free(struct vm_area_struct *vma) 502 { 503 vma_numab_state_free(vma); 504 free_anon_vma_name(vma); 505 vma_lock_free(vma); 506 kmem_cache_free(vm_area_cachep, vma); 507 } 508 509 #ifdef CONFIG_PER_VMA_LOCK 510 static void vm_area_free_rcu_cb(struct rcu_head *head) 511 { 512 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 513 vm_rcu); 514 515 /* The vma should not be locked while being destroyed. */ 516 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 517 __vm_area_free(vma); 518 } 519 #endif 520 521 void vm_area_free(struct vm_area_struct *vma) 522 { 523 #ifdef CONFIG_PER_VMA_LOCK 524 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 525 #else 526 __vm_area_free(vma); 527 #endif 528 } 529 530 static void account_kernel_stack(struct task_struct *tsk, int account) 531 { 532 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 533 struct vm_struct *vm = task_stack_vm_area(tsk); 534 int i; 535 536 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 537 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 538 account * (PAGE_SIZE / 1024)); 539 } else { 540 void *stack = task_stack_page(tsk); 541 542 /* All stack pages are in the same node. */ 543 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 544 account * (THREAD_SIZE / 1024)); 545 } 546 } 547 548 void exit_task_stack_account(struct task_struct *tsk) 549 { 550 account_kernel_stack(tsk, -1); 551 552 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 553 struct vm_struct *vm; 554 int i; 555 556 vm = task_stack_vm_area(tsk); 557 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 558 memcg_kmem_uncharge_page(vm->pages[i], 0); 559 } 560 } 561 562 static void release_task_stack(struct task_struct *tsk) 563 { 564 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 565 return; /* Better to leak the stack than to free prematurely */ 566 567 free_thread_stack(tsk); 568 } 569 570 #ifdef CONFIG_THREAD_INFO_IN_TASK 571 void put_task_stack(struct task_struct *tsk) 572 { 573 if (refcount_dec_and_test(&tsk->stack_refcount)) 574 release_task_stack(tsk); 575 } 576 #endif 577 578 void free_task(struct task_struct *tsk) 579 { 580 #ifdef CONFIG_SECCOMP 581 WARN_ON_ONCE(tsk->seccomp.filter); 582 #endif 583 release_user_cpus_ptr(tsk); 584 scs_release(tsk); 585 586 #ifndef CONFIG_THREAD_INFO_IN_TASK 587 /* 588 * The task is finally done with both the stack and thread_info, 589 * so free both. 590 */ 591 release_task_stack(tsk); 592 #else 593 /* 594 * If the task had a separate stack allocation, it should be gone 595 * by now. 596 */ 597 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 598 #endif 599 rt_mutex_debug_task_free(tsk); 600 ftrace_graph_exit_task(tsk); 601 arch_release_task_struct(tsk); 602 if (tsk->flags & PF_KTHREAD) 603 free_kthread_struct(tsk); 604 bpf_task_storage_free(tsk); 605 free_task_struct(tsk); 606 } 607 EXPORT_SYMBOL(free_task); 608 609 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 610 { 611 struct file *exe_file; 612 613 exe_file = get_mm_exe_file(oldmm); 614 RCU_INIT_POINTER(mm->exe_file, exe_file); 615 /* 616 * We depend on the oldmm having properly denied write access to the 617 * exe_file already. 618 */ 619 if (exe_file && deny_write_access(exe_file)) 620 pr_warn_once("deny_write_access() failed in %s\n", __func__); 621 } 622 623 #ifdef CONFIG_MMU 624 static __latent_entropy int dup_mmap(struct mm_struct *mm, 625 struct mm_struct *oldmm) 626 { 627 struct vm_area_struct *mpnt, *tmp; 628 int retval; 629 unsigned long charge = 0; 630 LIST_HEAD(uf); 631 VMA_ITERATOR(old_vmi, oldmm, 0); 632 VMA_ITERATOR(vmi, mm, 0); 633 634 uprobe_start_dup_mmap(); 635 if (mmap_write_lock_killable(oldmm)) { 636 retval = -EINTR; 637 goto fail_uprobe_end; 638 } 639 flush_cache_dup_mm(oldmm); 640 uprobe_dup_mmap(oldmm, mm); 641 /* 642 * Not linked in yet - no deadlock potential: 643 */ 644 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 645 646 /* No ordering required: file already has been exposed. */ 647 dup_mm_exe_file(mm, oldmm); 648 649 mm->total_vm = oldmm->total_vm; 650 mm->data_vm = oldmm->data_vm; 651 mm->exec_vm = oldmm->exec_vm; 652 mm->stack_vm = oldmm->stack_vm; 653 654 retval = ksm_fork(mm, oldmm); 655 if (retval) 656 goto out; 657 khugepaged_fork(mm, oldmm); 658 659 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 660 if (retval) 661 goto out; 662 663 mt_clear_in_rcu(vmi.mas.tree); 664 for_each_vma(old_vmi, mpnt) { 665 struct file *file; 666 667 vma_start_write(mpnt); 668 if (mpnt->vm_flags & VM_DONTCOPY) { 669 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 670 continue; 671 } 672 charge = 0; 673 /* 674 * Don't duplicate many vmas if we've been oom-killed (for 675 * example) 676 */ 677 if (fatal_signal_pending(current)) { 678 retval = -EINTR; 679 goto loop_out; 680 } 681 if (mpnt->vm_flags & VM_ACCOUNT) { 682 unsigned long len = vma_pages(mpnt); 683 684 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 685 goto fail_nomem; 686 charge = len; 687 } 688 tmp = vm_area_dup(mpnt); 689 if (!tmp) 690 goto fail_nomem; 691 retval = vma_dup_policy(mpnt, tmp); 692 if (retval) 693 goto fail_nomem_policy; 694 tmp->vm_mm = mm; 695 retval = dup_userfaultfd(tmp, &uf); 696 if (retval) 697 goto fail_nomem_anon_vma_fork; 698 if (tmp->vm_flags & VM_WIPEONFORK) { 699 /* 700 * VM_WIPEONFORK gets a clean slate in the child. 701 * Don't prepare anon_vma until fault since we don't 702 * copy page for current vma. 703 */ 704 tmp->anon_vma = NULL; 705 } else if (anon_vma_fork(tmp, mpnt)) 706 goto fail_nomem_anon_vma_fork; 707 vm_flags_clear(tmp, VM_LOCKED_MASK); 708 file = tmp->vm_file; 709 if (file) { 710 struct address_space *mapping = file->f_mapping; 711 712 get_file(file); 713 i_mmap_lock_write(mapping); 714 if (vma_is_shared_maywrite(tmp)) 715 mapping_allow_writable(mapping); 716 flush_dcache_mmap_lock(mapping); 717 /* insert tmp into the share list, just after mpnt */ 718 vma_interval_tree_insert_after(tmp, mpnt, 719 &mapping->i_mmap); 720 flush_dcache_mmap_unlock(mapping); 721 i_mmap_unlock_write(mapping); 722 } 723 724 /* 725 * Copy/update hugetlb private vma information. 726 */ 727 if (is_vm_hugetlb_page(tmp)) 728 hugetlb_dup_vma_private(tmp); 729 730 /* Link the vma into the MT */ 731 if (vma_iter_bulk_store(&vmi, tmp)) 732 goto fail_nomem_vmi_store; 733 734 mm->map_count++; 735 if (!(tmp->vm_flags & VM_WIPEONFORK)) 736 retval = copy_page_range(tmp, mpnt); 737 738 if (tmp->vm_ops && tmp->vm_ops->open) 739 tmp->vm_ops->open(tmp); 740 741 if (retval) 742 goto loop_out; 743 } 744 /* a new mm has just been created */ 745 retval = arch_dup_mmap(oldmm, mm); 746 loop_out: 747 vma_iter_free(&vmi); 748 if (!retval) 749 mt_set_in_rcu(vmi.mas.tree); 750 out: 751 mmap_write_unlock(mm); 752 flush_tlb_mm(oldmm); 753 mmap_write_unlock(oldmm); 754 dup_userfaultfd_complete(&uf); 755 fail_uprobe_end: 756 uprobe_end_dup_mmap(); 757 return retval; 758 759 fail_nomem_vmi_store: 760 unlink_anon_vmas(tmp); 761 fail_nomem_anon_vma_fork: 762 mpol_put(vma_policy(tmp)); 763 fail_nomem_policy: 764 vm_area_free(tmp); 765 fail_nomem: 766 retval = -ENOMEM; 767 vm_unacct_memory(charge); 768 goto loop_out; 769 } 770 771 static inline int mm_alloc_pgd(struct mm_struct *mm) 772 { 773 mm->pgd = pgd_alloc(mm); 774 if (unlikely(!mm->pgd)) 775 return -ENOMEM; 776 return 0; 777 } 778 779 static inline void mm_free_pgd(struct mm_struct *mm) 780 { 781 pgd_free(mm, mm->pgd); 782 } 783 #else 784 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 785 { 786 mmap_write_lock(oldmm); 787 dup_mm_exe_file(mm, oldmm); 788 mmap_write_unlock(oldmm); 789 return 0; 790 } 791 #define mm_alloc_pgd(mm) (0) 792 #define mm_free_pgd(mm) 793 #endif /* CONFIG_MMU */ 794 795 static void check_mm(struct mm_struct *mm) 796 { 797 int i; 798 799 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 800 "Please make sure 'struct resident_page_types[]' is updated as well"); 801 802 for (i = 0; i < NR_MM_COUNTERS; i++) { 803 long x = percpu_counter_sum(&mm->rss_stat[i]); 804 805 if (unlikely(x)) 806 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 807 mm, resident_page_types[i], x); 808 } 809 810 if (mm_pgtables_bytes(mm)) 811 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 812 mm_pgtables_bytes(mm)); 813 814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 815 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 816 #endif 817 } 818 819 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 820 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 821 822 static void do_check_lazy_tlb(void *arg) 823 { 824 struct mm_struct *mm = arg; 825 826 WARN_ON_ONCE(current->active_mm == mm); 827 } 828 829 static void do_shoot_lazy_tlb(void *arg) 830 { 831 struct mm_struct *mm = arg; 832 833 if (current->active_mm == mm) { 834 WARN_ON_ONCE(current->mm); 835 current->active_mm = &init_mm; 836 switch_mm(mm, &init_mm, current); 837 } 838 } 839 840 static void cleanup_lazy_tlbs(struct mm_struct *mm) 841 { 842 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 843 /* 844 * In this case, lazy tlb mms are refounted and would not reach 845 * __mmdrop until all CPUs have switched away and mmdrop()ed. 846 */ 847 return; 848 } 849 850 /* 851 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 852 * requires lazy mm users to switch to another mm when the refcount 853 * drops to zero, before the mm is freed. This requires IPIs here to 854 * switch kernel threads to init_mm. 855 * 856 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 857 * switch with the final userspace teardown TLB flush which leaves the 858 * mm lazy on this CPU but no others, reducing the need for additional 859 * IPIs here. There are cases where a final IPI is still required here, 860 * such as the final mmdrop being performed on a different CPU than the 861 * one exiting, or kernel threads using the mm when userspace exits. 862 * 863 * IPI overheads have not found to be expensive, but they could be 864 * reduced in a number of possible ways, for example (roughly 865 * increasing order of complexity): 866 * - The last lazy reference created by exit_mm() could instead switch 867 * to init_mm, however it's probable this will run on the same CPU 868 * immediately afterwards, so this may not reduce IPIs much. 869 * - A batch of mms requiring IPIs could be gathered and freed at once. 870 * - CPUs store active_mm where it can be remotely checked without a 871 * lock, to filter out false-positives in the cpumask. 872 * - After mm_users or mm_count reaches zero, switching away from the 873 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 874 * with some batching or delaying of the final IPIs. 875 * - A delayed freeing and RCU-like quiescing sequence based on mm 876 * switching to avoid IPIs completely. 877 */ 878 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 879 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 880 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 881 } 882 883 /* 884 * Called when the last reference to the mm 885 * is dropped: either by a lazy thread or by 886 * mmput. Free the page directory and the mm. 887 */ 888 void __mmdrop(struct mm_struct *mm) 889 { 890 BUG_ON(mm == &init_mm); 891 WARN_ON_ONCE(mm == current->mm); 892 893 /* Ensure no CPUs are using this as their lazy tlb mm */ 894 cleanup_lazy_tlbs(mm); 895 896 WARN_ON_ONCE(mm == current->active_mm); 897 mm_free_pgd(mm); 898 destroy_context(mm); 899 mmu_notifier_subscriptions_destroy(mm); 900 check_mm(mm); 901 put_user_ns(mm->user_ns); 902 mm_pasid_drop(mm); 903 mm_destroy_cid(mm); 904 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 905 906 free_mm(mm); 907 } 908 EXPORT_SYMBOL_GPL(__mmdrop); 909 910 static void mmdrop_async_fn(struct work_struct *work) 911 { 912 struct mm_struct *mm; 913 914 mm = container_of(work, struct mm_struct, async_put_work); 915 __mmdrop(mm); 916 } 917 918 static void mmdrop_async(struct mm_struct *mm) 919 { 920 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 921 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 922 schedule_work(&mm->async_put_work); 923 } 924 } 925 926 static inline void free_signal_struct(struct signal_struct *sig) 927 { 928 taskstats_tgid_free(sig); 929 sched_autogroup_exit(sig); 930 /* 931 * __mmdrop is not safe to call from softirq context on x86 due to 932 * pgd_dtor so postpone it to the async context 933 */ 934 if (sig->oom_mm) 935 mmdrop_async(sig->oom_mm); 936 kmem_cache_free(signal_cachep, sig); 937 } 938 939 static inline void put_signal_struct(struct signal_struct *sig) 940 { 941 if (refcount_dec_and_test(&sig->sigcnt)) 942 free_signal_struct(sig); 943 } 944 945 void __put_task_struct(struct task_struct *tsk) 946 { 947 WARN_ON(!tsk->exit_state); 948 WARN_ON(refcount_read(&tsk->usage)); 949 WARN_ON(tsk == current); 950 951 io_uring_free(tsk); 952 cgroup_free(tsk); 953 task_numa_free(tsk, true); 954 security_task_free(tsk); 955 exit_creds(tsk); 956 delayacct_tsk_free(tsk); 957 put_signal_struct(tsk->signal); 958 sched_core_free(tsk); 959 free_task(tsk); 960 } 961 EXPORT_SYMBOL_GPL(__put_task_struct); 962 963 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 964 { 965 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 966 967 __put_task_struct(task); 968 } 969 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 970 971 void __init __weak arch_task_cache_init(void) { } 972 973 /* 974 * set_max_threads 975 */ 976 static void set_max_threads(unsigned int max_threads_suggested) 977 { 978 u64 threads; 979 unsigned long nr_pages = totalram_pages(); 980 981 /* 982 * The number of threads shall be limited such that the thread 983 * structures may only consume a small part of the available memory. 984 */ 985 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 986 threads = MAX_THREADS; 987 else 988 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 989 (u64) THREAD_SIZE * 8UL); 990 991 if (threads > max_threads_suggested) 992 threads = max_threads_suggested; 993 994 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 995 } 996 997 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 998 /* Initialized by the architecture: */ 999 int arch_task_struct_size __read_mostly; 1000 #endif 1001 1002 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1003 { 1004 /* Fetch thread_struct whitelist for the architecture. */ 1005 arch_thread_struct_whitelist(offset, size); 1006 1007 /* 1008 * Handle zero-sized whitelist or empty thread_struct, otherwise 1009 * adjust offset to position of thread_struct in task_struct. 1010 */ 1011 if (unlikely(*size == 0)) 1012 *offset = 0; 1013 else 1014 *offset += offsetof(struct task_struct, thread); 1015 } 1016 1017 void __init fork_init(void) 1018 { 1019 int i; 1020 #ifndef ARCH_MIN_TASKALIGN 1021 #define ARCH_MIN_TASKALIGN 0 1022 #endif 1023 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1024 unsigned long useroffset, usersize; 1025 1026 /* create a slab on which task_structs can be allocated */ 1027 task_struct_whitelist(&useroffset, &usersize); 1028 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1029 arch_task_struct_size, align, 1030 SLAB_PANIC|SLAB_ACCOUNT, 1031 useroffset, usersize, NULL); 1032 1033 /* do the arch specific task caches init */ 1034 arch_task_cache_init(); 1035 1036 set_max_threads(MAX_THREADS); 1037 1038 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1039 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1040 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1041 init_task.signal->rlim[RLIMIT_NPROC]; 1042 1043 for (i = 0; i < UCOUNT_COUNTS; i++) 1044 init_user_ns.ucount_max[i] = max_threads/2; 1045 1046 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1047 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1048 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1049 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1050 1051 #ifdef CONFIG_VMAP_STACK 1052 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1053 NULL, free_vm_stack_cache); 1054 #endif 1055 1056 scs_init(); 1057 1058 lockdep_init_task(&init_task); 1059 uprobes_init(); 1060 } 1061 1062 int __weak arch_dup_task_struct(struct task_struct *dst, 1063 struct task_struct *src) 1064 { 1065 *dst = *src; 1066 return 0; 1067 } 1068 1069 void set_task_stack_end_magic(struct task_struct *tsk) 1070 { 1071 unsigned long *stackend; 1072 1073 stackend = end_of_stack(tsk); 1074 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1075 } 1076 1077 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1078 { 1079 struct task_struct *tsk; 1080 int err; 1081 1082 if (node == NUMA_NO_NODE) 1083 node = tsk_fork_get_node(orig); 1084 tsk = alloc_task_struct_node(node); 1085 if (!tsk) 1086 return NULL; 1087 1088 err = arch_dup_task_struct(tsk, orig); 1089 if (err) 1090 goto free_tsk; 1091 1092 err = alloc_thread_stack_node(tsk, node); 1093 if (err) 1094 goto free_tsk; 1095 1096 #ifdef CONFIG_THREAD_INFO_IN_TASK 1097 refcount_set(&tsk->stack_refcount, 1); 1098 #endif 1099 account_kernel_stack(tsk, 1); 1100 1101 err = scs_prepare(tsk, node); 1102 if (err) 1103 goto free_stack; 1104 1105 #ifdef CONFIG_SECCOMP 1106 /* 1107 * We must handle setting up seccomp filters once we're under 1108 * the sighand lock in case orig has changed between now and 1109 * then. Until then, filter must be NULL to avoid messing up 1110 * the usage counts on the error path calling free_task. 1111 */ 1112 tsk->seccomp.filter = NULL; 1113 #endif 1114 1115 setup_thread_stack(tsk, orig); 1116 clear_user_return_notifier(tsk); 1117 clear_tsk_need_resched(tsk); 1118 set_task_stack_end_magic(tsk); 1119 clear_syscall_work_syscall_user_dispatch(tsk); 1120 1121 #ifdef CONFIG_STACKPROTECTOR 1122 tsk->stack_canary = get_random_canary(); 1123 #endif 1124 if (orig->cpus_ptr == &orig->cpus_mask) 1125 tsk->cpus_ptr = &tsk->cpus_mask; 1126 dup_user_cpus_ptr(tsk, orig, node); 1127 1128 /* 1129 * One for the user space visible state that goes away when reaped. 1130 * One for the scheduler. 1131 */ 1132 refcount_set(&tsk->rcu_users, 2); 1133 /* One for the rcu users */ 1134 refcount_set(&tsk->usage, 1); 1135 #ifdef CONFIG_BLK_DEV_IO_TRACE 1136 tsk->btrace_seq = 0; 1137 #endif 1138 tsk->splice_pipe = NULL; 1139 tsk->task_frag.page = NULL; 1140 tsk->wake_q.next = NULL; 1141 tsk->worker_private = NULL; 1142 1143 kcov_task_init(tsk); 1144 kmsan_task_create(tsk); 1145 kmap_local_fork(tsk); 1146 1147 #ifdef CONFIG_FAULT_INJECTION 1148 tsk->fail_nth = 0; 1149 #endif 1150 1151 #ifdef CONFIG_BLK_CGROUP 1152 tsk->throttle_disk = NULL; 1153 tsk->use_memdelay = 0; 1154 #endif 1155 1156 #ifdef CONFIG_IOMMU_SVA 1157 tsk->pasid_activated = 0; 1158 #endif 1159 1160 #ifdef CONFIG_MEMCG 1161 tsk->active_memcg = NULL; 1162 #endif 1163 1164 #ifdef CONFIG_CPU_SUP_INTEL 1165 tsk->reported_split_lock = 0; 1166 #endif 1167 1168 #ifdef CONFIG_SCHED_MM_CID 1169 tsk->mm_cid = -1; 1170 tsk->last_mm_cid = -1; 1171 tsk->mm_cid_active = 0; 1172 tsk->migrate_from_cpu = -1; 1173 #endif 1174 return tsk; 1175 1176 free_stack: 1177 exit_task_stack_account(tsk); 1178 free_thread_stack(tsk); 1179 free_tsk: 1180 free_task_struct(tsk); 1181 return NULL; 1182 } 1183 1184 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1185 1186 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1187 1188 static int __init coredump_filter_setup(char *s) 1189 { 1190 default_dump_filter = 1191 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1192 MMF_DUMP_FILTER_MASK; 1193 return 1; 1194 } 1195 1196 __setup("coredump_filter=", coredump_filter_setup); 1197 1198 #include <linux/init_task.h> 1199 1200 static void mm_init_aio(struct mm_struct *mm) 1201 { 1202 #ifdef CONFIG_AIO 1203 spin_lock_init(&mm->ioctx_lock); 1204 mm->ioctx_table = NULL; 1205 #endif 1206 } 1207 1208 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1209 struct task_struct *p) 1210 { 1211 #ifdef CONFIG_MEMCG 1212 if (mm->owner == p) 1213 WRITE_ONCE(mm->owner, NULL); 1214 #endif 1215 } 1216 1217 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1218 { 1219 #ifdef CONFIG_MEMCG 1220 mm->owner = p; 1221 #endif 1222 } 1223 1224 static void mm_init_uprobes_state(struct mm_struct *mm) 1225 { 1226 #ifdef CONFIG_UPROBES 1227 mm->uprobes_state.xol_area = NULL; 1228 #endif 1229 } 1230 1231 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1232 struct user_namespace *user_ns) 1233 { 1234 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1235 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1236 atomic_set(&mm->mm_users, 1); 1237 atomic_set(&mm->mm_count, 1); 1238 seqcount_init(&mm->write_protect_seq); 1239 mmap_init_lock(mm); 1240 INIT_LIST_HEAD(&mm->mmlist); 1241 #ifdef CONFIG_PER_VMA_LOCK 1242 mm->mm_lock_seq = 0; 1243 #endif 1244 mm_pgtables_bytes_init(mm); 1245 mm->map_count = 0; 1246 mm->locked_vm = 0; 1247 atomic64_set(&mm->pinned_vm, 0); 1248 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1249 spin_lock_init(&mm->page_table_lock); 1250 spin_lock_init(&mm->arg_lock); 1251 mm_init_cpumask(mm); 1252 mm_init_aio(mm); 1253 mm_init_owner(mm, p); 1254 mm_pasid_init(mm); 1255 RCU_INIT_POINTER(mm->exe_file, NULL); 1256 mmu_notifier_subscriptions_init(mm); 1257 init_tlb_flush_pending(mm); 1258 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1259 mm->pmd_huge_pte = NULL; 1260 #endif 1261 mm_init_uprobes_state(mm); 1262 hugetlb_count_init(mm); 1263 1264 if (current->mm) { 1265 mm->flags = mmf_init_flags(current->mm->flags); 1266 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1267 } else { 1268 mm->flags = default_dump_filter; 1269 mm->def_flags = 0; 1270 } 1271 1272 if (mm_alloc_pgd(mm)) 1273 goto fail_nopgd; 1274 1275 if (init_new_context(p, mm)) 1276 goto fail_nocontext; 1277 1278 if (mm_alloc_cid(mm)) 1279 goto fail_cid; 1280 1281 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1282 NR_MM_COUNTERS)) 1283 goto fail_pcpu; 1284 1285 mm->user_ns = get_user_ns(user_ns); 1286 lru_gen_init_mm(mm); 1287 return mm; 1288 1289 fail_pcpu: 1290 mm_destroy_cid(mm); 1291 fail_cid: 1292 destroy_context(mm); 1293 fail_nocontext: 1294 mm_free_pgd(mm); 1295 fail_nopgd: 1296 free_mm(mm); 1297 return NULL; 1298 } 1299 1300 /* 1301 * Allocate and initialize an mm_struct. 1302 */ 1303 struct mm_struct *mm_alloc(void) 1304 { 1305 struct mm_struct *mm; 1306 1307 mm = allocate_mm(); 1308 if (!mm) 1309 return NULL; 1310 1311 memset(mm, 0, sizeof(*mm)); 1312 return mm_init(mm, current, current_user_ns()); 1313 } 1314 1315 static inline void __mmput(struct mm_struct *mm) 1316 { 1317 VM_BUG_ON(atomic_read(&mm->mm_users)); 1318 1319 uprobe_clear_state(mm); 1320 exit_aio(mm); 1321 ksm_exit(mm); 1322 khugepaged_exit(mm); /* must run before exit_mmap */ 1323 exit_mmap(mm); 1324 mm_put_huge_zero_page(mm); 1325 set_mm_exe_file(mm, NULL); 1326 if (!list_empty(&mm->mmlist)) { 1327 spin_lock(&mmlist_lock); 1328 list_del(&mm->mmlist); 1329 spin_unlock(&mmlist_lock); 1330 } 1331 if (mm->binfmt) 1332 module_put(mm->binfmt->module); 1333 lru_gen_del_mm(mm); 1334 mmdrop(mm); 1335 } 1336 1337 /* 1338 * Decrement the use count and release all resources for an mm. 1339 */ 1340 void mmput(struct mm_struct *mm) 1341 { 1342 might_sleep(); 1343 1344 if (atomic_dec_and_test(&mm->mm_users)) 1345 __mmput(mm); 1346 } 1347 EXPORT_SYMBOL_GPL(mmput); 1348 1349 #ifdef CONFIG_MMU 1350 static void mmput_async_fn(struct work_struct *work) 1351 { 1352 struct mm_struct *mm = container_of(work, struct mm_struct, 1353 async_put_work); 1354 1355 __mmput(mm); 1356 } 1357 1358 void mmput_async(struct mm_struct *mm) 1359 { 1360 if (atomic_dec_and_test(&mm->mm_users)) { 1361 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1362 schedule_work(&mm->async_put_work); 1363 } 1364 } 1365 EXPORT_SYMBOL_GPL(mmput_async); 1366 #endif 1367 1368 /** 1369 * set_mm_exe_file - change a reference to the mm's executable file 1370 * @mm: The mm to change. 1371 * @new_exe_file: The new file to use. 1372 * 1373 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1374 * 1375 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1376 * invocations: in mmput() nobody alive left, in execve it happens before 1377 * the new mm is made visible to anyone. 1378 * 1379 * Can only fail if new_exe_file != NULL. 1380 */ 1381 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1382 { 1383 struct file *old_exe_file; 1384 1385 /* 1386 * It is safe to dereference the exe_file without RCU as 1387 * this function is only called if nobody else can access 1388 * this mm -- see comment above for justification. 1389 */ 1390 old_exe_file = rcu_dereference_raw(mm->exe_file); 1391 1392 if (new_exe_file) { 1393 /* 1394 * We expect the caller (i.e., sys_execve) to already denied 1395 * write access, so this is unlikely to fail. 1396 */ 1397 if (unlikely(deny_write_access(new_exe_file))) 1398 return -EACCES; 1399 get_file(new_exe_file); 1400 } 1401 rcu_assign_pointer(mm->exe_file, new_exe_file); 1402 if (old_exe_file) { 1403 allow_write_access(old_exe_file); 1404 fput(old_exe_file); 1405 } 1406 return 0; 1407 } 1408 1409 /** 1410 * replace_mm_exe_file - replace a reference to the mm's executable file 1411 * @mm: The mm to change. 1412 * @new_exe_file: The new file to use. 1413 * 1414 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1415 * 1416 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1417 */ 1418 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1419 { 1420 struct vm_area_struct *vma; 1421 struct file *old_exe_file; 1422 int ret = 0; 1423 1424 /* Forbid mm->exe_file change if old file still mapped. */ 1425 old_exe_file = get_mm_exe_file(mm); 1426 if (old_exe_file) { 1427 VMA_ITERATOR(vmi, mm, 0); 1428 mmap_read_lock(mm); 1429 for_each_vma(vmi, vma) { 1430 if (!vma->vm_file) 1431 continue; 1432 if (path_equal(&vma->vm_file->f_path, 1433 &old_exe_file->f_path)) { 1434 ret = -EBUSY; 1435 break; 1436 } 1437 } 1438 mmap_read_unlock(mm); 1439 fput(old_exe_file); 1440 if (ret) 1441 return ret; 1442 } 1443 1444 ret = deny_write_access(new_exe_file); 1445 if (ret) 1446 return -EACCES; 1447 get_file(new_exe_file); 1448 1449 /* set the new file */ 1450 mmap_write_lock(mm); 1451 old_exe_file = rcu_dereference_raw(mm->exe_file); 1452 rcu_assign_pointer(mm->exe_file, new_exe_file); 1453 mmap_write_unlock(mm); 1454 1455 if (old_exe_file) { 1456 allow_write_access(old_exe_file); 1457 fput(old_exe_file); 1458 } 1459 return 0; 1460 } 1461 1462 /** 1463 * get_mm_exe_file - acquire a reference to the mm's executable file 1464 * @mm: The mm of interest. 1465 * 1466 * Returns %NULL if mm has no associated executable file. 1467 * User must release file via fput(). 1468 */ 1469 struct file *get_mm_exe_file(struct mm_struct *mm) 1470 { 1471 struct file *exe_file; 1472 1473 rcu_read_lock(); 1474 exe_file = get_file_rcu(&mm->exe_file); 1475 rcu_read_unlock(); 1476 return exe_file; 1477 } 1478 1479 /** 1480 * get_task_exe_file - acquire a reference to the task's executable file 1481 * @task: The task. 1482 * 1483 * Returns %NULL if task's mm (if any) has no associated executable file or 1484 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1485 * User must release file via fput(). 1486 */ 1487 struct file *get_task_exe_file(struct task_struct *task) 1488 { 1489 struct file *exe_file = NULL; 1490 struct mm_struct *mm; 1491 1492 task_lock(task); 1493 mm = task->mm; 1494 if (mm) { 1495 if (!(task->flags & PF_KTHREAD)) 1496 exe_file = get_mm_exe_file(mm); 1497 } 1498 task_unlock(task); 1499 return exe_file; 1500 } 1501 1502 /** 1503 * get_task_mm - acquire a reference to the task's mm 1504 * @task: The task. 1505 * 1506 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1507 * this kernel workthread has transiently adopted a user mm with use_mm, 1508 * to do its AIO) is not set and if so returns a reference to it, after 1509 * bumping up the use count. User must release the mm via mmput() 1510 * after use. Typically used by /proc and ptrace. 1511 */ 1512 struct mm_struct *get_task_mm(struct task_struct *task) 1513 { 1514 struct mm_struct *mm; 1515 1516 task_lock(task); 1517 mm = task->mm; 1518 if (mm) { 1519 if (task->flags & PF_KTHREAD) 1520 mm = NULL; 1521 else 1522 mmget(mm); 1523 } 1524 task_unlock(task); 1525 return mm; 1526 } 1527 EXPORT_SYMBOL_GPL(get_task_mm); 1528 1529 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1530 { 1531 struct mm_struct *mm; 1532 int err; 1533 1534 err = down_read_killable(&task->signal->exec_update_lock); 1535 if (err) 1536 return ERR_PTR(err); 1537 1538 mm = get_task_mm(task); 1539 if (mm && mm != current->mm && 1540 !ptrace_may_access(task, mode)) { 1541 mmput(mm); 1542 mm = ERR_PTR(-EACCES); 1543 } 1544 up_read(&task->signal->exec_update_lock); 1545 1546 return mm; 1547 } 1548 1549 static void complete_vfork_done(struct task_struct *tsk) 1550 { 1551 struct completion *vfork; 1552 1553 task_lock(tsk); 1554 vfork = tsk->vfork_done; 1555 if (likely(vfork)) { 1556 tsk->vfork_done = NULL; 1557 complete(vfork); 1558 } 1559 task_unlock(tsk); 1560 } 1561 1562 static int wait_for_vfork_done(struct task_struct *child, 1563 struct completion *vfork) 1564 { 1565 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1566 int killed; 1567 1568 cgroup_enter_frozen(); 1569 killed = wait_for_completion_state(vfork, state); 1570 cgroup_leave_frozen(false); 1571 1572 if (killed) { 1573 task_lock(child); 1574 child->vfork_done = NULL; 1575 task_unlock(child); 1576 } 1577 1578 put_task_struct(child); 1579 return killed; 1580 } 1581 1582 /* Please note the differences between mmput and mm_release. 1583 * mmput is called whenever we stop holding onto a mm_struct, 1584 * error success whatever. 1585 * 1586 * mm_release is called after a mm_struct has been removed 1587 * from the current process. 1588 * 1589 * This difference is important for error handling, when we 1590 * only half set up a mm_struct for a new process and need to restore 1591 * the old one. Because we mmput the new mm_struct before 1592 * restoring the old one. . . 1593 * Eric Biederman 10 January 1998 1594 */ 1595 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1596 { 1597 uprobe_free_utask(tsk); 1598 1599 /* Get rid of any cached register state */ 1600 deactivate_mm(tsk, mm); 1601 1602 /* 1603 * Signal userspace if we're not exiting with a core dump 1604 * because we want to leave the value intact for debugging 1605 * purposes. 1606 */ 1607 if (tsk->clear_child_tid) { 1608 if (atomic_read(&mm->mm_users) > 1) { 1609 /* 1610 * We don't check the error code - if userspace has 1611 * not set up a proper pointer then tough luck. 1612 */ 1613 put_user(0, tsk->clear_child_tid); 1614 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1615 1, NULL, NULL, 0, 0); 1616 } 1617 tsk->clear_child_tid = NULL; 1618 } 1619 1620 /* 1621 * All done, finally we can wake up parent and return this mm to him. 1622 * Also kthread_stop() uses this completion for synchronization. 1623 */ 1624 if (tsk->vfork_done) 1625 complete_vfork_done(tsk); 1626 } 1627 1628 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1629 { 1630 futex_exit_release(tsk); 1631 mm_release(tsk, mm); 1632 } 1633 1634 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1635 { 1636 futex_exec_release(tsk); 1637 mm_release(tsk, mm); 1638 } 1639 1640 /** 1641 * dup_mm() - duplicates an existing mm structure 1642 * @tsk: the task_struct with which the new mm will be associated. 1643 * @oldmm: the mm to duplicate. 1644 * 1645 * Allocates a new mm structure and duplicates the provided @oldmm structure 1646 * content into it. 1647 * 1648 * Return: the duplicated mm or NULL on failure. 1649 */ 1650 static struct mm_struct *dup_mm(struct task_struct *tsk, 1651 struct mm_struct *oldmm) 1652 { 1653 struct mm_struct *mm; 1654 int err; 1655 1656 mm = allocate_mm(); 1657 if (!mm) 1658 goto fail_nomem; 1659 1660 memcpy(mm, oldmm, sizeof(*mm)); 1661 1662 if (!mm_init(mm, tsk, mm->user_ns)) 1663 goto fail_nomem; 1664 1665 err = dup_mmap(mm, oldmm); 1666 if (err) 1667 goto free_pt; 1668 1669 mm->hiwater_rss = get_mm_rss(mm); 1670 mm->hiwater_vm = mm->total_vm; 1671 1672 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1673 goto free_pt; 1674 1675 return mm; 1676 1677 free_pt: 1678 /* don't put binfmt in mmput, we haven't got module yet */ 1679 mm->binfmt = NULL; 1680 mm_init_owner(mm, NULL); 1681 mmput(mm); 1682 1683 fail_nomem: 1684 return NULL; 1685 } 1686 1687 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1688 { 1689 struct mm_struct *mm, *oldmm; 1690 1691 tsk->min_flt = tsk->maj_flt = 0; 1692 tsk->nvcsw = tsk->nivcsw = 0; 1693 #ifdef CONFIG_DETECT_HUNG_TASK 1694 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1695 tsk->last_switch_time = 0; 1696 #endif 1697 1698 tsk->mm = NULL; 1699 tsk->active_mm = NULL; 1700 1701 /* 1702 * Are we cloning a kernel thread? 1703 * 1704 * We need to steal a active VM for that.. 1705 */ 1706 oldmm = current->mm; 1707 if (!oldmm) 1708 return 0; 1709 1710 if (clone_flags & CLONE_VM) { 1711 mmget(oldmm); 1712 mm = oldmm; 1713 } else { 1714 mm = dup_mm(tsk, current->mm); 1715 if (!mm) 1716 return -ENOMEM; 1717 } 1718 1719 tsk->mm = mm; 1720 tsk->active_mm = mm; 1721 sched_mm_cid_fork(tsk); 1722 return 0; 1723 } 1724 1725 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1726 { 1727 struct fs_struct *fs = current->fs; 1728 if (clone_flags & CLONE_FS) { 1729 /* tsk->fs is already what we want */ 1730 spin_lock(&fs->lock); 1731 if (fs->in_exec) { 1732 spin_unlock(&fs->lock); 1733 return -EAGAIN; 1734 } 1735 fs->users++; 1736 spin_unlock(&fs->lock); 1737 return 0; 1738 } 1739 tsk->fs = copy_fs_struct(fs); 1740 if (!tsk->fs) 1741 return -ENOMEM; 1742 return 0; 1743 } 1744 1745 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1746 int no_files) 1747 { 1748 struct files_struct *oldf, *newf; 1749 int error = 0; 1750 1751 /* 1752 * A background process may not have any files ... 1753 */ 1754 oldf = current->files; 1755 if (!oldf) 1756 goto out; 1757 1758 if (no_files) { 1759 tsk->files = NULL; 1760 goto out; 1761 } 1762 1763 if (clone_flags & CLONE_FILES) { 1764 atomic_inc(&oldf->count); 1765 goto out; 1766 } 1767 1768 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1769 if (!newf) 1770 goto out; 1771 1772 tsk->files = newf; 1773 error = 0; 1774 out: 1775 return error; 1776 } 1777 1778 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1779 { 1780 struct sighand_struct *sig; 1781 1782 if (clone_flags & CLONE_SIGHAND) { 1783 refcount_inc(¤t->sighand->count); 1784 return 0; 1785 } 1786 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1787 RCU_INIT_POINTER(tsk->sighand, sig); 1788 if (!sig) 1789 return -ENOMEM; 1790 1791 refcount_set(&sig->count, 1); 1792 spin_lock_irq(¤t->sighand->siglock); 1793 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1794 spin_unlock_irq(¤t->sighand->siglock); 1795 1796 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1797 if (clone_flags & CLONE_CLEAR_SIGHAND) 1798 flush_signal_handlers(tsk, 0); 1799 1800 return 0; 1801 } 1802 1803 void __cleanup_sighand(struct sighand_struct *sighand) 1804 { 1805 if (refcount_dec_and_test(&sighand->count)) { 1806 signalfd_cleanup(sighand); 1807 /* 1808 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1809 * without an RCU grace period, see __lock_task_sighand(). 1810 */ 1811 kmem_cache_free(sighand_cachep, sighand); 1812 } 1813 } 1814 1815 /* 1816 * Initialize POSIX timer handling for a thread group. 1817 */ 1818 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1819 { 1820 struct posix_cputimers *pct = &sig->posix_cputimers; 1821 unsigned long cpu_limit; 1822 1823 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1824 posix_cputimers_group_init(pct, cpu_limit); 1825 } 1826 1827 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1828 { 1829 struct signal_struct *sig; 1830 1831 if (clone_flags & CLONE_THREAD) 1832 return 0; 1833 1834 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1835 tsk->signal = sig; 1836 if (!sig) 1837 return -ENOMEM; 1838 1839 sig->nr_threads = 1; 1840 sig->quick_threads = 1; 1841 atomic_set(&sig->live, 1); 1842 refcount_set(&sig->sigcnt, 1); 1843 1844 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1845 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1846 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1847 1848 init_waitqueue_head(&sig->wait_chldexit); 1849 sig->curr_target = tsk; 1850 init_sigpending(&sig->shared_pending); 1851 INIT_HLIST_HEAD(&sig->multiprocess); 1852 seqlock_init(&sig->stats_lock); 1853 prev_cputime_init(&sig->prev_cputime); 1854 1855 #ifdef CONFIG_POSIX_TIMERS 1856 INIT_LIST_HEAD(&sig->posix_timers); 1857 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1858 sig->real_timer.function = it_real_fn; 1859 #endif 1860 1861 task_lock(current->group_leader); 1862 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1863 task_unlock(current->group_leader); 1864 1865 posix_cpu_timers_init_group(sig); 1866 1867 tty_audit_fork(sig); 1868 sched_autogroup_fork(sig); 1869 1870 sig->oom_score_adj = current->signal->oom_score_adj; 1871 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1872 1873 mutex_init(&sig->cred_guard_mutex); 1874 init_rwsem(&sig->exec_update_lock); 1875 1876 return 0; 1877 } 1878 1879 static void copy_seccomp(struct task_struct *p) 1880 { 1881 #ifdef CONFIG_SECCOMP 1882 /* 1883 * Must be called with sighand->lock held, which is common to 1884 * all threads in the group. Holding cred_guard_mutex is not 1885 * needed because this new task is not yet running and cannot 1886 * be racing exec. 1887 */ 1888 assert_spin_locked(¤t->sighand->siglock); 1889 1890 /* Ref-count the new filter user, and assign it. */ 1891 get_seccomp_filter(current); 1892 p->seccomp = current->seccomp; 1893 1894 /* 1895 * Explicitly enable no_new_privs here in case it got set 1896 * between the task_struct being duplicated and holding the 1897 * sighand lock. The seccomp state and nnp must be in sync. 1898 */ 1899 if (task_no_new_privs(current)) 1900 task_set_no_new_privs(p); 1901 1902 /* 1903 * If the parent gained a seccomp mode after copying thread 1904 * flags and between before we held the sighand lock, we have 1905 * to manually enable the seccomp thread flag here. 1906 */ 1907 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1908 set_task_syscall_work(p, SECCOMP); 1909 #endif 1910 } 1911 1912 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1913 { 1914 current->clear_child_tid = tidptr; 1915 1916 return task_pid_vnr(current); 1917 } 1918 1919 static void rt_mutex_init_task(struct task_struct *p) 1920 { 1921 raw_spin_lock_init(&p->pi_lock); 1922 #ifdef CONFIG_RT_MUTEXES 1923 p->pi_waiters = RB_ROOT_CACHED; 1924 p->pi_top_task = NULL; 1925 p->pi_blocked_on = NULL; 1926 #endif 1927 } 1928 1929 static inline void init_task_pid_links(struct task_struct *task) 1930 { 1931 enum pid_type type; 1932 1933 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1934 INIT_HLIST_NODE(&task->pid_links[type]); 1935 } 1936 1937 static inline void 1938 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1939 { 1940 if (type == PIDTYPE_PID) 1941 task->thread_pid = pid; 1942 else 1943 task->signal->pids[type] = pid; 1944 } 1945 1946 static inline void rcu_copy_process(struct task_struct *p) 1947 { 1948 #ifdef CONFIG_PREEMPT_RCU 1949 p->rcu_read_lock_nesting = 0; 1950 p->rcu_read_unlock_special.s = 0; 1951 p->rcu_blocked_node = NULL; 1952 INIT_LIST_HEAD(&p->rcu_node_entry); 1953 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1954 #ifdef CONFIG_TASKS_RCU 1955 p->rcu_tasks_holdout = false; 1956 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1957 p->rcu_tasks_idle_cpu = -1; 1958 #endif /* #ifdef CONFIG_TASKS_RCU */ 1959 #ifdef CONFIG_TASKS_TRACE_RCU 1960 p->trc_reader_nesting = 0; 1961 p->trc_reader_special.s = 0; 1962 INIT_LIST_HEAD(&p->trc_holdout_list); 1963 INIT_LIST_HEAD(&p->trc_blkd_node); 1964 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1965 } 1966 1967 struct pid *pidfd_pid(const struct file *file) 1968 { 1969 if (file->f_op == &pidfd_fops) 1970 return file->private_data; 1971 1972 return ERR_PTR(-EBADF); 1973 } 1974 1975 static int pidfd_release(struct inode *inode, struct file *file) 1976 { 1977 struct pid *pid = file->private_data; 1978 1979 file->private_data = NULL; 1980 put_pid(pid); 1981 return 0; 1982 } 1983 1984 #ifdef CONFIG_PROC_FS 1985 /** 1986 * pidfd_show_fdinfo - print information about a pidfd 1987 * @m: proc fdinfo file 1988 * @f: file referencing a pidfd 1989 * 1990 * Pid: 1991 * This function will print the pid that a given pidfd refers to in the 1992 * pid namespace of the procfs instance. 1993 * If the pid namespace of the process is not a descendant of the pid 1994 * namespace of the procfs instance 0 will be shown as its pid. This is 1995 * similar to calling getppid() on a process whose parent is outside of 1996 * its pid namespace. 1997 * 1998 * NSpid: 1999 * If pid namespaces are supported then this function will also print 2000 * the pid of a given pidfd refers to for all descendant pid namespaces 2001 * starting from the current pid namespace of the instance, i.e. the 2002 * Pid field and the first entry in the NSpid field will be identical. 2003 * If the pid namespace of the process is not a descendant of the pid 2004 * namespace of the procfs instance 0 will be shown as its first NSpid 2005 * entry and no others will be shown. 2006 * Note that this differs from the Pid and NSpid fields in 2007 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2008 * the pid namespace of the procfs instance. The difference becomes 2009 * obvious when sending around a pidfd between pid namespaces from a 2010 * different branch of the tree, i.e. where no ancestral relation is 2011 * present between the pid namespaces: 2012 * - create two new pid namespaces ns1 and ns2 in the initial pid 2013 * namespace (also take care to create new mount namespaces in the 2014 * new pid namespace and mount procfs) 2015 * - create a process with a pidfd in ns1 2016 * - send pidfd from ns1 to ns2 2017 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2018 * have exactly one entry, which is 0 2019 */ 2020 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2021 { 2022 struct pid *pid = f->private_data; 2023 struct pid_namespace *ns; 2024 pid_t nr = -1; 2025 2026 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2027 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2028 nr = pid_nr_ns(pid, ns); 2029 } 2030 2031 seq_put_decimal_ll(m, "Pid:\t", nr); 2032 2033 #ifdef CONFIG_PID_NS 2034 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2035 if (nr > 0) { 2036 int i; 2037 2038 /* If nr is non-zero it means that 'pid' is valid and that 2039 * ns, i.e. the pid namespace associated with the procfs 2040 * instance, is in the pid namespace hierarchy of pid. 2041 * Start at one below the already printed level. 2042 */ 2043 for (i = ns->level + 1; i <= pid->level; i++) 2044 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2045 } 2046 #endif 2047 seq_putc(m, '\n'); 2048 } 2049 #endif 2050 2051 /* 2052 * Poll support for process exit notification. 2053 */ 2054 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2055 { 2056 struct pid *pid = file->private_data; 2057 __poll_t poll_flags = 0; 2058 2059 poll_wait(file, &pid->wait_pidfd, pts); 2060 2061 /* 2062 * Inform pollers only when the whole thread group exits. 2063 * If the thread group leader exits before all other threads in the 2064 * group, then poll(2) should block, similar to the wait(2) family. 2065 */ 2066 if (thread_group_exited(pid)) 2067 poll_flags = EPOLLIN | EPOLLRDNORM; 2068 2069 return poll_flags; 2070 } 2071 2072 const struct file_operations pidfd_fops = { 2073 .release = pidfd_release, 2074 .poll = pidfd_poll, 2075 #ifdef CONFIG_PROC_FS 2076 .show_fdinfo = pidfd_show_fdinfo, 2077 #endif 2078 }; 2079 2080 /** 2081 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2082 * @pid: the struct pid for which to create a pidfd 2083 * @flags: flags of the new @pidfd 2084 * @ret: Where to return the file for the pidfd. 2085 * 2086 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2087 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2088 * 2089 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2090 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2091 * pidfd file are prepared. 2092 * 2093 * If this function returns successfully the caller is responsible to either 2094 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2095 * order to install the pidfd into its file descriptor table or they must use 2096 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2097 * respectively. 2098 * 2099 * This function is useful when a pidfd must already be reserved but there 2100 * might still be points of failure afterwards and the caller wants to ensure 2101 * that no pidfd is leaked into its file descriptor table. 2102 * 2103 * Return: On success, a reserved pidfd is returned from the function and a new 2104 * pidfd file is returned in the last argument to the function. On 2105 * error, a negative error code is returned from the function and the 2106 * last argument remains unchanged. 2107 */ 2108 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2109 { 2110 int pidfd; 2111 struct file *pidfd_file; 2112 2113 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2114 return -EINVAL; 2115 2116 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2117 if (pidfd < 0) 2118 return pidfd; 2119 2120 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2121 flags | O_RDWR | O_CLOEXEC); 2122 if (IS_ERR(pidfd_file)) { 2123 put_unused_fd(pidfd); 2124 return PTR_ERR(pidfd_file); 2125 } 2126 get_pid(pid); /* held by pidfd_file now */ 2127 *ret = pidfd_file; 2128 return pidfd; 2129 } 2130 2131 /** 2132 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2133 * @pid: the struct pid for which to create a pidfd 2134 * @flags: flags of the new @pidfd 2135 * @ret: Where to return the pidfd. 2136 * 2137 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2138 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2139 * 2140 * The helper verifies that @pid is used as a thread group leader. 2141 * 2142 * If this function returns successfully the caller is responsible to either 2143 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2144 * order to install the pidfd into its file descriptor table or they must use 2145 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2146 * respectively. 2147 * 2148 * This function is useful when a pidfd must already be reserved but there 2149 * might still be points of failure afterwards and the caller wants to ensure 2150 * that no pidfd is leaked into its file descriptor table. 2151 * 2152 * Return: On success, a reserved pidfd is returned from the function and a new 2153 * pidfd file is returned in the last argument to the function. On 2154 * error, a negative error code is returned from the function and the 2155 * last argument remains unchanged. 2156 */ 2157 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2158 { 2159 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2160 return -EINVAL; 2161 2162 return __pidfd_prepare(pid, flags, ret); 2163 } 2164 2165 static void __delayed_free_task(struct rcu_head *rhp) 2166 { 2167 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2168 2169 free_task(tsk); 2170 } 2171 2172 static __always_inline void delayed_free_task(struct task_struct *tsk) 2173 { 2174 if (IS_ENABLED(CONFIG_MEMCG)) 2175 call_rcu(&tsk->rcu, __delayed_free_task); 2176 else 2177 free_task(tsk); 2178 } 2179 2180 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2181 { 2182 /* Skip if kernel thread */ 2183 if (!tsk->mm) 2184 return; 2185 2186 /* Skip if spawning a thread or using vfork */ 2187 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2188 return; 2189 2190 /* We need to synchronize with __set_oom_adj */ 2191 mutex_lock(&oom_adj_mutex); 2192 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2193 /* Update the values in case they were changed after copy_signal */ 2194 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2195 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2196 mutex_unlock(&oom_adj_mutex); 2197 } 2198 2199 #ifdef CONFIG_RV 2200 static void rv_task_fork(struct task_struct *p) 2201 { 2202 int i; 2203 2204 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2205 p->rv[i].da_mon.monitoring = false; 2206 } 2207 #else 2208 #define rv_task_fork(p) do {} while (0) 2209 #endif 2210 2211 /* 2212 * This creates a new process as a copy of the old one, 2213 * but does not actually start it yet. 2214 * 2215 * It copies the registers, and all the appropriate 2216 * parts of the process environment (as per the clone 2217 * flags). The actual kick-off is left to the caller. 2218 */ 2219 __latent_entropy struct task_struct *copy_process( 2220 struct pid *pid, 2221 int trace, 2222 int node, 2223 struct kernel_clone_args *args) 2224 { 2225 int pidfd = -1, retval; 2226 struct task_struct *p; 2227 struct multiprocess_signals delayed; 2228 struct file *pidfile = NULL; 2229 const u64 clone_flags = args->flags; 2230 struct nsproxy *nsp = current->nsproxy; 2231 2232 /* 2233 * Don't allow sharing the root directory with processes in a different 2234 * namespace 2235 */ 2236 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2237 return ERR_PTR(-EINVAL); 2238 2239 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2240 return ERR_PTR(-EINVAL); 2241 2242 /* 2243 * Thread groups must share signals as well, and detached threads 2244 * can only be started up within the thread group. 2245 */ 2246 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2247 return ERR_PTR(-EINVAL); 2248 2249 /* 2250 * Shared signal handlers imply shared VM. By way of the above, 2251 * thread groups also imply shared VM. Blocking this case allows 2252 * for various simplifications in other code. 2253 */ 2254 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2255 return ERR_PTR(-EINVAL); 2256 2257 /* 2258 * Siblings of global init remain as zombies on exit since they are 2259 * not reaped by their parent (swapper). To solve this and to avoid 2260 * multi-rooted process trees, prevent global and container-inits 2261 * from creating siblings. 2262 */ 2263 if ((clone_flags & CLONE_PARENT) && 2264 current->signal->flags & SIGNAL_UNKILLABLE) 2265 return ERR_PTR(-EINVAL); 2266 2267 /* 2268 * If the new process will be in a different pid or user namespace 2269 * do not allow it to share a thread group with the forking task. 2270 */ 2271 if (clone_flags & CLONE_THREAD) { 2272 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2273 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2274 return ERR_PTR(-EINVAL); 2275 } 2276 2277 if (clone_flags & CLONE_PIDFD) { 2278 /* 2279 * - CLONE_DETACHED is blocked so that we can potentially 2280 * reuse it later for CLONE_PIDFD. 2281 * - CLONE_THREAD is blocked until someone really needs it. 2282 */ 2283 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2284 return ERR_PTR(-EINVAL); 2285 } 2286 2287 /* 2288 * Force any signals received before this point to be delivered 2289 * before the fork happens. Collect up signals sent to multiple 2290 * processes that happen during the fork and delay them so that 2291 * they appear to happen after the fork. 2292 */ 2293 sigemptyset(&delayed.signal); 2294 INIT_HLIST_NODE(&delayed.node); 2295 2296 spin_lock_irq(¤t->sighand->siglock); 2297 if (!(clone_flags & CLONE_THREAD)) 2298 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2299 recalc_sigpending(); 2300 spin_unlock_irq(¤t->sighand->siglock); 2301 retval = -ERESTARTNOINTR; 2302 if (task_sigpending(current)) 2303 goto fork_out; 2304 2305 retval = -ENOMEM; 2306 p = dup_task_struct(current, node); 2307 if (!p) 2308 goto fork_out; 2309 p->flags &= ~PF_KTHREAD; 2310 if (args->kthread) 2311 p->flags |= PF_KTHREAD; 2312 if (args->user_worker) { 2313 /* 2314 * Mark us a user worker, and block any signal that isn't 2315 * fatal or STOP 2316 */ 2317 p->flags |= PF_USER_WORKER; 2318 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2319 } 2320 if (args->io_thread) 2321 p->flags |= PF_IO_WORKER; 2322 2323 if (args->name) 2324 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2325 2326 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2327 /* 2328 * Clear TID on mm_release()? 2329 */ 2330 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2331 2332 ftrace_graph_init_task(p); 2333 2334 rt_mutex_init_task(p); 2335 2336 lockdep_assert_irqs_enabled(); 2337 #ifdef CONFIG_PROVE_LOCKING 2338 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2339 #endif 2340 retval = copy_creds(p, clone_flags); 2341 if (retval < 0) 2342 goto bad_fork_free; 2343 2344 retval = -EAGAIN; 2345 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2346 if (p->real_cred->user != INIT_USER && 2347 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2348 goto bad_fork_cleanup_count; 2349 } 2350 current->flags &= ~PF_NPROC_EXCEEDED; 2351 2352 /* 2353 * If multiple threads are within copy_process(), then this check 2354 * triggers too late. This doesn't hurt, the check is only there 2355 * to stop root fork bombs. 2356 */ 2357 retval = -EAGAIN; 2358 if (data_race(nr_threads >= max_threads)) 2359 goto bad_fork_cleanup_count; 2360 2361 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2362 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2363 p->flags |= PF_FORKNOEXEC; 2364 INIT_LIST_HEAD(&p->children); 2365 INIT_LIST_HEAD(&p->sibling); 2366 rcu_copy_process(p); 2367 p->vfork_done = NULL; 2368 spin_lock_init(&p->alloc_lock); 2369 2370 init_sigpending(&p->pending); 2371 2372 p->utime = p->stime = p->gtime = 0; 2373 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2374 p->utimescaled = p->stimescaled = 0; 2375 #endif 2376 prev_cputime_init(&p->prev_cputime); 2377 2378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2379 seqcount_init(&p->vtime.seqcount); 2380 p->vtime.starttime = 0; 2381 p->vtime.state = VTIME_INACTIVE; 2382 #endif 2383 2384 #ifdef CONFIG_IO_URING 2385 p->io_uring = NULL; 2386 #endif 2387 2388 p->default_timer_slack_ns = current->timer_slack_ns; 2389 2390 #ifdef CONFIG_PSI 2391 p->psi_flags = 0; 2392 #endif 2393 2394 task_io_accounting_init(&p->ioac); 2395 acct_clear_integrals(p); 2396 2397 posix_cputimers_init(&p->posix_cputimers); 2398 2399 p->io_context = NULL; 2400 audit_set_context(p, NULL); 2401 cgroup_fork(p); 2402 if (args->kthread) { 2403 if (!set_kthread_struct(p)) 2404 goto bad_fork_cleanup_delayacct; 2405 } 2406 #ifdef CONFIG_NUMA 2407 p->mempolicy = mpol_dup(p->mempolicy); 2408 if (IS_ERR(p->mempolicy)) { 2409 retval = PTR_ERR(p->mempolicy); 2410 p->mempolicy = NULL; 2411 goto bad_fork_cleanup_delayacct; 2412 } 2413 #endif 2414 #ifdef CONFIG_CPUSETS 2415 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2416 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2417 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2418 #endif 2419 #ifdef CONFIG_TRACE_IRQFLAGS 2420 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2421 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2422 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2423 p->softirqs_enabled = 1; 2424 p->softirq_context = 0; 2425 #endif 2426 2427 p->pagefault_disabled = 0; 2428 2429 #ifdef CONFIG_LOCKDEP 2430 lockdep_init_task(p); 2431 #endif 2432 2433 #ifdef CONFIG_DEBUG_MUTEXES 2434 p->blocked_on = NULL; /* not blocked yet */ 2435 #endif 2436 #ifdef CONFIG_BCACHE 2437 p->sequential_io = 0; 2438 p->sequential_io_avg = 0; 2439 #endif 2440 #ifdef CONFIG_BPF_SYSCALL 2441 RCU_INIT_POINTER(p->bpf_storage, NULL); 2442 p->bpf_ctx = NULL; 2443 #endif 2444 2445 /* Perform scheduler related setup. Assign this task to a CPU. */ 2446 retval = sched_fork(clone_flags, p); 2447 if (retval) 2448 goto bad_fork_cleanup_policy; 2449 2450 retval = perf_event_init_task(p, clone_flags); 2451 if (retval) 2452 goto bad_fork_cleanup_policy; 2453 retval = audit_alloc(p); 2454 if (retval) 2455 goto bad_fork_cleanup_perf; 2456 /* copy all the process information */ 2457 shm_init_task(p); 2458 retval = security_task_alloc(p, clone_flags); 2459 if (retval) 2460 goto bad_fork_cleanup_audit; 2461 retval = copy_semundo(clone_flags, p); 2462 if (retval) 2463 goto bad_fork_cleanup_security; 2464 retval = copy_files(clone_flags, p, args->no_files); 2465 if (retval) 2466 goto bad_fork_cleanup_semundo; 2467 retval = copy_fs(clone_flags, p); 2468 if (retval) 2469 goto bad_fork_cleanup_files; 2470 retval = copy_sighand(clone_flags, p); 2471 if (retval) 2472 goto bad_fork_cleanup_fs; 2473 retval = copy_signal(clone_flags, p); 2474 if (retval) 2475 goto bad_fork_cleanup_sighand; 2476 retval = copy_mm(clone_flags, p); 2477 if (retval) 2478 goto bad_fork_cleanup_signal; 2479 retval = copy_namespaces(clone_flags, p); 2480 if (retval) 2481 goto bad_fork_cleanup_mm; 2482 retval = copy_io(clone_flags, p); 2483 if (retval) 2484 goto bad_fork_cleanup_namespaces; 2485 retval = copy_thread(p, args); 2486 if (retval) 2487 goto bad_fork_cleanup_io; 2488 2489 stackleak_task_init(p); 2490 2491 if (pid != &init_struct_pid) { 2492 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2493 args->set_tid_size); 2494 if (IS_ERR(pid)) { 2495 retval = PTR_ERR(pid); 2496 goto bad_fork_cleanup_thread; 2497 } 2498 } 2499 2500 /* 2501 * This has to happen after we've potentially unshared the file 2502 * descriptor table (so that the pidfd doesn't leak into the child 2503 * if the fd table isn't shared). 2504 */ 2505 if (clone_flags & CLONE_PIDFD) { 2506 /* Note that no task has been attached to @pid yet. */ 2507 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2508 if (retval < 0) 2509 goto bad_fork_free_pid; 2510 pidfd = retval; 2511 2512 retval = put_user(pidfd, args->pidfd); 2513 if (retval) 2514 goto bad_fork_put_pidfd; 2515 } 2516 2517 #ifdef CONFIG_BLOCK 2518 p->plug = NULL; 2519 #endif 2520 futex_init_task(p); 2521 2522 /* 2523 * sigaltstack should be cleared when sharing the same VM 2524 */ 2525 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2526 sas_ss_reset(p); 2527 2528 /* 2529 * Syscall tracing and stepping should be turned off in the 2530 * child regardless of CLONE_PTRACE. 2531 */ 2532 user_disable_single_step(p); 2533 clear_task_syscall_work(p, SYSCALL_TRACE); 2534 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2535 clear_task_syscall_work(p, SYSCALL_EMU); 2536 #endif 2537 clear_tsk_latency_tracing(p); 2538 2539 /* ok, now we should be set up.. */ 2540 p->pid = pid_nr(pid); 2541 if (clone_flags & CLONE_THREAD) { 2542 p->group_leader = current->group_leader; 2543 p->tgid = current->tgid; 2544 } else { 2545 p->group_leader = p; 2546 p->tgid = p->pid; 2547 } 2548 2549 p->nr_dirtied = 0; 2550 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2551 p->dirty_paused_when = 0; 2552 2553 p->pdeath_signal = 0; 2554 p->task_works = NULL; 2555 clear_posix_cputimers_work(p); 2556 2557 #ifdef CONFIG_KRETPROBES 2558 p->kretprobe_instances.first = NULL; 2559 #endif 2560 #ifdef CONFIG_RETHOOK 2561 p->rethooks.first = NULL; 2562 #endif 2563 2564 /* 2565 * Ensure that the cgroup subsystem policies allow the new process to be 2566 * forked. It should be noted that the new process's css_set can be changed 2567 * between here and cgroup_post_fork() if an organisation operation is in 2568 * progress. 2569 */ 2570 retval = cgroup_can_fork(p, args); 2571 if (retval) 2572 goto bad_fork_put_pidfd; 2573 2574 /* 2575 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2576 * the new task on the correct runqueue. All this *before* the task 2577 * becomes visible. 2578 * 2579 * This isn't part of ->can_fork() because while the re-cloning is 2580 * cgroup specific, it unconditionally needs to place the task on a 2581 * runqueue. 2582 */ 2583 sched_cgroup_fork(p, args); 2584 2585 /* 2586 * From this point on we must avoid any synchronous user-space 2587 * communication until we take the tasklist-lock. In particular, we do 2588 * not want user-space to be able to predict the process start-time by 2589 * stalling fork(2) after we recorded the start_time but before it is 2590 * visible to the system. 2591 */ 2592 2593 p->start_time = ktime_get_ns(); 2594 p->start_boottime = ktime_get_boottime_ns(); 2595 2596 /* 2597 * Make it visible to the rest of the system, but dont wake it up yet. 2598 * Need tasklist lock for parent etc handling! 2599 */ 2600 write_lock_irq(&tasklist_lock); 2601 2602 /* CLONE_PARENT re-uses the old parent */ 2603 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2604 p->real_parent = current->real_parent; 2605 p->parent_exec_id = current->parent_exec_id; 2606 if (clone_flags & CLONE_THREAD) 2607 p->exit_signal = -1; 2608 else 2609 p->exit_signal = current->group_leader->exit_signal; 2610 } else { 2611 p->real_parent = current; 2612 p->parent_exec_id = current->self_exec_id; 2613 p->exit_signal = args->exit_signal; 2614 } 2615 2616 klp_copy_process(p); 2617 2618 sched_core_fork(p); 2619 2620 spin_lock(¤t->sighand->siglock); 2621 2622 rv_task_fork(p); 2623 2624 rseq_fork(p, clone_flags); 2625 2626 /* Don't start children in a dying pid namespace */ 2627 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2628 retval = -ENOMEM; 2629 goto bad_fork_cancel_cgroup; 2630 } 2631 2632 /* Let kill terminate clone/fork in the middle */ 2633 if (fatal_signal_pending(current)) { 2634 retval = -EINTR; 2635 goto bad_fork_cancel_cgroup; 2636 } 2637 2638 /* No more failure paths after this point. */ 2639 2640 /* 2641 * Copy seccomp details explicitly here, in case they were changed 2642 * before holding sighand lock. 2643 */ 2644 copy_seccomp(p); 2645 2646 init_task_pid_links(p); 2647 if (likely(p->pid)) { 2648 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2649 2650 init_task_pid(p, PIDTYPE_PID, pid); 2651 if (thread_group_leader(p)) { 2652 init_task_pid(p, PIDTYPE_TGID, pid); 2653 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2654 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2655 2656 if (is_child_reaper(pid)) { 2657 ns_of_pid(pid)->child_reaper = p; 2658 p->signal->flags |= SIGNAL_UNKILLABLE; 2659 } 2660 p->signal->shared_pending.signal = delayed.signal; 2661 p->signal->tty = tty_kref_get(current->signal->tty); 2662 /* 2663 * Inherit has_child_subreaper flag under the same 2664 * tasklist_lock with adding child to the process tree 2665 * for propagate_has_child_subreaper optimization. 2666 */ 2667 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2668 p->real_parent->signal->is_child_subreaper; 2669 list_add_tail(&p->sibling, &p->real_parent->children); 2670 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2671 attach_pid(p, PIDTYPE_TGID); 2672 attach_pid(p, PIDTYPE_PGID); 2673 attach_pid(p, PIDTYPE_SID); 2674 __this_cpu_inc(process_counts); 2675 } else { 2676 current->signal->nr_threads++; 2677 current->signal->quick_threads++; 2678 atomic_inc(¤t->signal->live); 2679 refcount_inc(¤t->signal->sigcnt); 2680 task_join_group_stop(p); 2681 list_add_tail_rcu(&p->thread_node, 2682 &p->signal->thread_head); 2683 } 2684 attach_pid(p, PIDTYPE_PID); 2685 nr_threads++; 2686 } 2687 total_forks++; 2688 hlist_del_init(&delayed.node); 2689 spin_unlock(¤t->sighand->siglock); 2690 syscall_tracepoint_update(p); 2691 write_unlock_irq(&tasklist_lock); 2692 2693 if (pidfile) 2694 fd_install(pidfd, pidfile); 2695 2696 proc_fork_connector(p); 2697 sched_post_fork(p); 2698 cgroup_post_fork(p, args); 2699 perf_event_fork(p); 2700 2701 trace_task_newtask(p, clone_flags); 2702 uprobe_copy_process(p, clone_flags); 2703 user_events_fork(p, clone_flags); 2704 2705 copy_oom_score_adj(clone_flags, p); 2706 2707 return p; 2708 2709 bad_fork_cancel_cgroup: 2710 sched_core_free(p); 2711 spin_unlock(¤t->sighand->siglock); 2712 write_unlock_irq(&tasklist_lock); 2713 cgroup_cancel_fork(p, args); 2714 bad_fork_put_pidfd: 2715 if (clone_flags & CLONE_PIDFD) { 2716 fput(pidfile); 2717 put_unused_fd(pidfd); 2718 } 2719 bad_fork_free_pid: 2720 if (pid != &init_struct_pid) 2721 free_pid(pid); 2722 bad_fork_cleanup_thread: 2723 exit_thread(p); 2724 bad_fork_cleanup_io: 2725 if (p->io_context) 2726 exit_io_context(p); 2727 bad_fork_cleanup_namespaces: 2728 exit_task_namespaces(p); 2729 bad_fork_cleanup_mm: 2730 if (p->mm) { 2731 mm_clear_owner(p->mm, p); 2732 mmput(p->mm); 2733 } 2734 bad_fork_cleanup_signal: 2735 if (!(clone_flags & CLONE_THREAD)) 2736 free_signal_struct(p->signal); 2737 bad_fork_cleanup_sighand: 2738 __cleanup_sighand(p->sighand); 2739 bad_fork_cleanup_fs: 2740 exit_fs(p); /* blocking */ 2741 bad_fork_cleanup_files: 2742 exit_files(p); /* blocking */ 2743 bad_fork_cleanup_semundo: 2744 exit_sem(p); 2745 bad_fork_cleanup_security: 2746 security_task_free(p); 2747 bad_fork_cleanup_audit: 2748 audit_free(p); 2749 bad_fork_cleanup_perf: 2750 perf_event_free_task(p); 2751 bad_fork_cleanup_policy: 2752 lockdep_free_task(p); 2753 #ifdef CONFIG_NUMA 2754 mpol_put(p->mempolicy); 2755 #endif 2756 bad_fork_cleanup_delayacct: 2757 delayacct_tsk_free(p); 2758 bad_fork_cleanup_count: 2759 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2760 exit_creds(p); 2761 bad_fork_free: 2762 WRITE_ONCE(p->__state, TASK_DEAD); 2763 exit_task_stack_account(p); 2764 put_task_stack(p); 2765 delayed_free_task(p); 2766 fork_out: 2767 spin_lock_irq(¤t->sighand->siglock); 2768 hlist_del_init(&delayed.node); 2769 spin_unlock_irq(¤t->sighand->siglock); 2770 return ERR_PTR(retval); 2771 } 2772 2773 static inline void init_idle_pids(struct task_struct *idle) 2774 { 2775 enum pid_type type; 2776 2777 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2778 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2779 init_task_pid(idle, type, &init_struct_pid); 2780 } 2781 } 2782 2783 static int idle_dummy(void *dummy) 2784 { 2785 /* This function is never called */ 2786 return 0; 2787 } 2788 2789 struct task_struct * __init fork_idle(int cpu) 2790 { 2791 struct task_struct *task; 2792 struct kernel_clone_args args = { 2793 .flags = CLONE_VM, 2794 .fn = &idle_dummy, 2795 .fn_arg = NULL, 2796 .kthread = 1, 2797 .idle = 1, 2798 }; 2799 2800 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2801 if (!IS_ERR(task)) { 2802 init_idle_pids(task); 2803 init_idle(task, cpu); 2804 } 2805 2806 return task; 2807 } 2808 2809 /* 2810 * This is like kernel_clone(), but shaved down and tailored to just 2811 * creating io_uring workers. It returns a created task, or an error pointer. 2812 * The returned task is inactive, and the caller must fire it up through 2813 * wake_up_new_task(p). All signals are blocked in the created task. 2814 */ 2815 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2816 { 2817 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2818 CLONE_IO; 2819 struct kernel_clone_args args = { 2820 .flags = ((lower_32_bits(flags) | CLONE_VM | 2821 CLONE_UNTRACED) & ~CSIGNAL), 2822 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2823 .fn = fn, 2824 .fn_arg = arg, 2825 .io_thread = 1, 2826 .user_worker = 1, 2827 }; 2828 2829 return copy_process(NULL, 0, node, &args); 2830 } 2831 2832 /* 2833 * Ok, this is the main fork-routine. 2834 * 2835 * It copies the process, and if successful kick-starts 2836 * it and waits for it to finish using the VM if required. 2837 * 2838 * args->exit_signal is expected to be checked for sanity by the caller. 2839 */ 2840 pid_t kernel_clone(struct kernel_clone_args *args) 2841 { 2842 u64 clone_flags = args->flags; 2843 struct completion vfork; 2844 struct pid *pid; 2845 struct task_struct *p; 2846 int trace = 0; 2847 pid_t nr; 2848 2849 /* 2850 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2851 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2852 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2853 * field in struct clone_args and it still doesn't make sense to have 2854 * them both point at the same memory location. Performing this check 2855 * here has the advantage that we don't need to have a separate helper 2856 * to check for legacy clone(). 2857 */ 2858 if ((args->flags & CLONE_PIDFD) && 2859 (args->flags & CLONE_PARENT_SETTID) && 2860 (args->pidfd == args->parent_tid)) 2861 return -EINVAL; 2862 2863 /* 2864 * Determine whether and which event to report to ptracer. When 2865 * called from kernel_thread or CLONE_UNTRACED is explicitly 2866 * requested, no event is reported; otherwise, report if the event 2867 * for the type of forking is enabled. 2868 */ 2869 if (!(clone_flags & CLONE_UNTRACED)) { 2870 if (clone_flags & CLONE_VFORK) 2871 trace = PTRACE_EVENT_VFORK; 2872 else if (args->exit_signal != SIGCHLD) 2873 trace = PTRACE_EVENT_CLONE; 2874 else 2875 trace = PTRACE_EVENT_FORK; 2876 2877 if (likely(!ptrace_event_enabled(current, trace))) 2878 trace = 0; 2879 } 2880 2881 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2882 add_latent_entropy(); 2883 2884 if (IS_ERR(p)) 2885 return PTR_ERR(p); 2886 2887 /* 2888 * Do this prior waking up the new thread - the thread pointer 2889 * might get invalid after that point, if the thread exits quickly. 2890 */ 2891 trace_sched_process_fork(current, p); 2892 2893 pid = get_task_pid(p, PIDTYPE_PID); 2894 nr = pid_vnr(pid); 2895 2896 if (clone_flags & CLONE_PARENT_SETTID) 2897 put_user(nr, args->parent_tid); 2898 2899 if (clone_flags & CLONE_VFORK) { 2900 p->vfork_done = &vfork; 2901 init_completion(&vfork); 2902 get_task_struct(p); 2903 } 2904 2905 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2906 /* lock the task to synchronize with memcg migration */ 2907 task_lock(p); 2908 lru_gen_add_mm(p->mm); 2909 task_unlock(p); 2910 } 2911 2912 wake_up_new_task(p); 2913 2914 /* forking complete and child started to run, tell ptracer */ 2915 if (unlikely(trace)) 2916 ptrace_event_pid(trace, pid); 2917 2918 if (clone_flags & CLONE_VFORK) { 2919 if (!wait_for_vfork_done(p, &vfork)) 2920 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2921 } 2922 2923 put_pid(pid); 2924 return nr; 2925 } 2926 2927 /* 2928 * Create a kernel thread. 2929 */ 2930 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2931 unsigned long flags) 2932 { 2933 struct kernel_clone_args args = { 2934 .flags = ((lower_32_bits(flags) | CLONE_VM | 2935 CLONE_UNTRACED) & ~CSIGNAL), 2936 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2937 .fn = fn, 2938 .fn_arg = arg, 2939 .name = name, 2940 .kthread = 1, 2941 }; 2942 2943 return kernel_clone(&args); 2944 } 2945 2946 /* 2947 * Create a user mode thread. 2948 */ 2949 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2950 { 2951 struct kernel_clone_args args = { 2952 .flags = ((lower_32_bits(flags) | CLONE_VM | 2953 CLONE_UNTRACED) & ~CSIGNAL), 2954 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2955 .fn = fn, 2956 .fn_arg = arg, 2957 }; 2958 2959 return kernel_clone(&args); 2960 } 2961 2962 #ifdef __ARCH_WANT_SYS_FORK 2963 SYSCALL_DEFINE0(fork) 2964 { 2965 #ifdef CONFIG_MMU 2966 struct kernel_clone_args args = { 2967 .exit_signal = SIGCHLD, 2968 }; 2969 2970 return kernel_clone(&args); 2971 #else 2972 /* can not support in nommu mode */ 2973 return -EINVAL; 2974 #endif 2975 } 2976 #endif 2977 2978 #ifdef __ARCH_WANT_SYS_VFORK 2979 SYSCALL_DEFINE0(vfork) 2980 { 2981 struct kernel_clone_args args = { 2982 .flags = CLONE_VFORK | CLONE_VM, 2983 .exit_signal = SIGCHLD, 2984 }; 2985 2986 return kernel_clone(&args); 2987 } 2988 #endif 2989 2990 #ifdef __ARCH_WANT_SYS_CLONE 2991 #ifdef CONFIG_CLONE_BACKWARDS 2992 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2993 int __user *, parent_tidptr, 2994 unsigned long, tls, 2995 int __user *, child_tidptr) 2996 #elif defined(CONFIG_CLONE_BACKWARDS2) 2997 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2998 int __user *, parent_tidptr, 2999 int __user *, child_tidptr, 3000 unsigned long, tls) 3001 #elif defined(CONFIG_CLONE_BACKWARDS3) 3002 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3003 int, stack_size, 3004 int __user *, parent_tidptr, 3005 int __user *, child_tidptr, 3006 unsigned long, tls) 3007 #else 3008 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3009 int __user *, parent_tidptr, 3010 int __user *, child_tidptr, 3011 unsigned long, tls) 3012 #endif 3013 { 3014 struct kernel_clone_args args = { 3015 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3016 .pidfd = parent_tidptr, 3017 .child_tid = child_tidptr, 3018 .parent_tid = parent_tidptr, 3019 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3020 .stack = newsp, 3021 .tls = tls, 3022 }; 3023 3024 return kernel_clone(&args); 3025 } 3026 #endif 3027 3028 #ifdef __ARCH_WANT_SYS_CLONE3 3029 3030 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3031 struct clone_args __user *uargs, 3032 size_t usize) 3033 { 3034 int err; 3035 struct clone_args args; 3036 pid_t *kset_tid = kargs->set_tid; 3037 3038 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3039 CLONE_ARGS_SIZE_VER0); 3040 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3041 CLONE_ARGS_SIZE_VER1); 3042 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3043 CLONE_ARGS_SIZE_VER2); 3044 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3045 3046 if (unlikely(usize > PAGE_SIZE)) 3047 return -E2BIG; 3048 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3049 return -EINVAL; 3050 3051 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3052 if (err) 3053 return err; 3054 3055 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3056 return -EINVAL; 3057 3058 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3059 return -EINVAL; 3060 3061 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3062 return -EINVAL; 3063 3064 /* 3065 * Verify that higher 32bits of exit_signal are unset and that 3066 * it is a valid signal 3067 */ 3068 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3069 !valid_signal(args.exit_signal))) 3070 return -EINVAL; 3071 3072 if ((args.flags & CLONE_INTO_CGROUP) && 3073 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3074 return -EINVAL; 3075 3076 *kargs = (struct kernel_clone_args){ 3077 .flags = args.flags, 3078 .pidfd = u64_to_user_ptr(args.pidfd), 3079 .child_tid = u64_to_user_ptr(args.child_tid), 3080 .parent_tid = u64_to_user_ptr(args.parent_tid), 3081 .exit_signal = args.exit_signal, 3082 .stack = args.stack, 3083 .stack_size = args.stack_size, 3084 .tls = args.tls, 3085 .set_tid_size = args.set_tid_size, 3086 .cgroup = args.cgroup, 3087 }; 3088 3089 if (args.set_tid && 3090 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3091 (kargs->set_tid_size * sizeof(pid_t)))) 3092 return -EFAULT; 3093 3094 kargs->set_tid = kset_tid; 3095 3096 return 0; 3097 } 3098 3099 /** 3100 * clone3_stack_valid - check and prepare stack 3101 * @kargs: kernel clone args 3102 * 3103 * Verify that the stack arguments userspace gave us are sane. 3104 * In addition, set the stack direction for userspace since it's easy for us to 3105 * determine. 3106 */ 3107 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3108 { 3109 if (kargs->stack == 0) { 3110 if (kargs->stack_size > 0) 3111 return false; 3112 } else { 3113 if (kargs->stack_size == 0) 3114 return false; 3115 3116 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3117 return false; 3118 3119 #if !defined(CONFIG_STACK_GROWSUP) 3120 kargs->stack += kargs->stack_size; 3121 #endif 3122 } 3123 3124 return true; 3125 } 3126 3127 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3128 { 3129 /* Verify that no unknown flags are passed along. */ 3130 if (kargs->flags & 3131 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3132 return false; 3133 3134 /* 3135 * - make the CLONE_DETACHED bit reusable for clone3 3136 * - make the CSIGNAL bits reusable for clone3 3137 */ 3138 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3139 return false; 3140 3141 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3142 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3143 return false; 3144 3145 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3146 kargs->exit_signal) 3147 return false; 3148 3149 if (!clone3_stack_valid(kargs)) 3150 return false; 3151 3152 return true; 3153 } 3154 3155 /** 3156 * sys_clone3 - create a new process with specific properties 3157 * @uargs: argument structure 3158 * @size: size of @uargs 3159 * 3160 * clone3() is the extensible successor to clone()/clone2(). 3161 * It takes a struct as argument that is versioned by its size. 3162 * 3163 * Return: On success, a positive PID for the child process. 3164 * On error, a negative errno number. 3165 */ 3166 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3167 { 3168 int err; 3169 3170 struct kernel_clone_args kargs; 3171 pid_t set_tid[MAX_PID_NS_LEVEL]; 3172 3173 kargs.set_tid = set_tid; 3174 3175 err = copy_clone_args_from_user(&kargs, uargs, size); 3176 if (err) 3177 return err; 3178 3179 if (!clone3_args_valid(&kargs)) 3180 return -EINVAL; 3181 3182 return kernel_clone(&kargs); 3183 } 3184 #endif 3185 3186 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3187 { 3188 struct task_struct *leader, *parent, *child; 3189 int res; 3190 3191 read_lock(&tasklist_lock); 3192 leader = top = top->group_leader; 3193 down: 3194 for_each_thread(leader, parent) { 3195 list_for_each_entry(child, &parent->children, sibling) { 3196 res = visitor(child, data); 3197 if (res) { 3198 if (res < 0) 3199 goto out; 3200 leader = child; 3201 goto down; 3202 } 3203 up: 3204 ; 3205 } 3206 } 3207 3208 if (leader != top) { 3209 child = leader; 3210 parent = child->real_parent; 3211 leader = parent->group_leader; 3212 goto up; 3213 } 3214 out: 3215 read_unlock(&tasklist_lock); 3216 } 3217 3218 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3219 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3220 #endif 3221 3222 static void sighand_ctor(void *data) 3223 { 3224 struct sighand_struct *sighand = data; 3225 3226 spin_lock_init(&sighand->siglock); 3227 init_waitqueue_head(&sighand->signalfd_wqh); 3228 } 3229 3230 void __init mm_cache_init(void) 3231 { 3232 unsigned int mm_size; 3233 3234 /* 3235 * The mm_cpumask is located at the end of mm_struct, and is 3236 * dynamically sized based on the maximum CPU number this system 3237 * can have, taking hotplug into account (nr_cpu_ids). 3238 */ 3239 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3240 3241 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3242 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3243 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3244 offsetof(struct mm_struct, saved_auxv), 3245 sizeof_field(struct mm_struct, saved_auxv), 3246 NULL); 3247 } 3248 3249 void __init proc_caches_init(void) 3250 { 3251 sighand_cachep = kmem_cache_create("sighand_cache", 3252 sizeof(struct sighand_struct), 0, 3253 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3254 SLAB_ACCOUNT, sighand_ctor); 3255 signal_cachep = kmem_cache_create("signal_cache", 3256 sizeof(struct signal_struct), 0, 3257 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3258 NULL); 3259 files_cachep = kmem_cache_create("files_cache", 3260 sizeof(struct files_struct), 0, 3261 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3262 NULL); 3263 fs_cachep = kmem_cache_create("fs_cache", 3264 sizeof(struct fs_struct), 0, 3265 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3266 NULL); 3267 3268 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3269 #ifdef CONFIG_PER_VMA_LOCK 3270 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3271 #endif 3272 mmap_init(); 3273 nsproxy_cache_init(); 3274 } 3275 3276 /* 3277 * Check constraints on flags passed to the unshare system call. 3278 */ 3279 static int check_unshare_flags(unsigned long unshare_flags) 3280 { 3281 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3282 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3283 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3284 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3285 CLONE_NEWTIME)) 3286 return -EINVAL; 3287 /* 3288 * Not implemented, but pretend it works if there is nothing 3289 * to unshare. Note that unsharing the address space or the 3290 * signal handlers also need to unshare the signal queues (aka 3291 * CLONE_THREAD). 3292 */ 3293 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3294 if (!thread_group_empty(current)) 3295 return -EINVAL; 3296 } 3297 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3298 if (refcount_read(¤t->sighand->count) > 1) 3299 return -EINVAL; 3300 } 3301 if (unshare_flags & CLONE_VM) { 3302 if (!current_is_single_threaded()) 3303 return -EINVAL; 3304 } 3305 3306 return 0; 3307 } 3308 3309 /* 3310 * Unshare the filesystem structure if it is being shared 3311 */ 3312 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3313 { 3314 struct fs_struct *fs = current->fs; 3315 3316 if (!(unshare_flags & CLONE_FS) || !fs) 3317 return 0; 3318 3319 /* don't need lock here; in the worst case we'll do useless copy */ 3320 if (fs->users == 1) 3321 return 0; 3322 3323 *new_fsp = copy_fs_struct(fs); 3324 if (!*new_fsp) 3325 return -ENOMEM; 3326 3327 return 0; 3328 } 3329 3330 /* 3331 * Unshare file descriptor table if it is being shared 3332 */ 3333 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3334 struct files_struct **new_fdp) 3335 { 3336 struct files_struct *fd = current->files; 3337 int error = 0; 3338 3339 if ((unshare_flags & CLONE_FILES) && 3340 (fd && atomic_read(&fd->count) > 1)) { 3341 *new_fdp = dup_fd(fd, max_fds, &error); 3342 if (!*new_fdp) 3343 return error; 3344 } 3345 3346 return 0; 3347 } 3348 3349 /* 3350 * unshare allows a process to 'unshare' part of the process 3351 * context which was originally shared using clone. copy_* 3352 * functions used by kernel_clone() cannot be used here directly 3353 * because they modify an inactive task_struct that is being 3354 * constructed. Here we are modifying the current, active, 3355 * task_struct. 3356 */ 3357 int ksys_unshare(unsigned long unshare_flags) 3358 { 3359 struct fs_struct *fs, *new_fs = NULL; 3360 struct files_struct *new_fd = NULL; 3361 struct cred *new_cred = NULL; 3362 struct nsproxy *new_nsproxy = NULL; 3363 int do_sysvsem = 0; 3364 int err; 3365 3366 /* 3367 * If unsharing a user namespace must also unshare the thread group 3368 * and unshare the filesystem root and working directories. 3369 */ 3370 if (unshare_flags & CLONE_NEWUSER) 3371 unshare_flags |= CLONE_THREAD | CLONE_FS; 3372 /* 3373 * If unsharing vm, must also unshare signal handlers. 3374 */ 3375 if (unshare_flags & CLONE_VM) 3376 unshare_flags |= CLONE_SIGHAND; 3377 /* 3378 * If unsharing a signal handlers, must also unshare the signal queues. 3379 */ 3380 if (unshare_flags & CLONE_SIGHAND) 3381 unshare_flags |= CLONE_THREAD; 3382 /* 3383 * If unsharing namespace, must also unshare filesystem information. 3384 */ 3385 if (unshare_flags & CLONE_NEWNS) 3386 unshare_flags |= CLONE_FS; 3387 3388 err = check_unshare_flags(unshare_flags); 3389 if (err) 3390 goto bad_unshare_out; 3391 /* 3392 * CLONE_NEWIPC must also detach from the undolist: after switching 3393 * to a new ipc namespace, the semaphore arrays from the old 3394 * namespace are unreachable. 3395 */ 3396 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3397 do_sysvsem = 1; 3398 err = unshare_fs(unshare_flags, &new_fs); 3399 if (err) 3400 goto bad_unshare_out; 3401 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3402 if (err) 3403 goto bad_unshare_cleanup_fs; 3404 err = unshare_userns(unshare_flags, &new_cred); 3405 if (err) 3406 goto bad_unshare_cleanup_fd; 3407 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3408 new_cred, new_fs); 3409 if (err) 3410 goto bad_unshare_cleanup_cred; 3411 3412 if (new_cred) { 3413 err = set_cred_ucounts(new_cred); 3414 if (err) 3415 goto bad_unshare_cleanup_cred; 3416 } 3417 3418 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3419 if (do_sysvsem) { 3420 /* 3421 * CLONE_SYSVSEM is equivalent to sys_exit(). 3422 */ 3423 exit_sem(current); 3424 } 3425 if (unshare_flags & CLONE_NEWIPC) { 3426 /* Orphan segments in old ns (see sem above). */ 3427 exit_shm(current); 3428 shm_init_task(current); 3429 } 3430 3431 if (new_nsproxy) 3432 switch_task_namespaces(current, new_nsproxy); 3433 3434 task_lock(current); 3435 3436 if (new_fs) { 3437 fs = current->fs; 3438 spin_lock(&fs->lock); 3439 current->fs = new_fs; 3440 if (--fs->users) 3441 new_fs = NULL; 3442 else 3443 new_fs = fs; 3444 spin_unlock(&fs->lock); 3445 } 3446 3447 if (new_fd) 3448 swap(current->files, new_fd); 3449 3450 task_unlock(current); 3451 3452 if (new_cred) { 3453 /* Install the new user namespace */ 3454 commit_creds(new_cred); 3455 new_cred = NULL; 3456 } 3457 } 3458 3459 perf_event_namespaces(current); 3460 3461 bad_unshare_cleanup_cred: 3462 if (new_cred) 3463 put_cred(new_cred); 3464 bad_unshare_cleanup_fd: 3465 if (new_fd) 3466 put_files_struct(new_fd); 3467 3468 bad_unshare_cleanup_fs: 3469 if (new_fs) 3470 free_fs_struct(new_fs); 3471 3472 bad_unshare_out: 3473 return err; 3474 } 3475 3476 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3477 { 3478 return ksys_unshare(unshare_flags); 3479 } 3480 3481 /* 3482 * Helper to unshare the files of the current task. 3483 * We don't want to expose copy_files internals to 3484 * the exec layer of the kernel. 3485 */ 3486 3487 int unshare_files(void) 3488 { 3489 struct task_struct *task = current; 3490 struct files_struct *old, *copy = NULL; 3491 int error; 3492 3493 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3494 if (error || !copy) 3495 return error; 3496 3497 old = task->files; 3498 task_lock(task); 3499 task->files = copy; 3500 task_unlock(task); 3501 put_files_struct(old); 3502 return 0; 3503 } 3504 3505 int sysctl_max_threads(struct ctl_table *table, int write, 3506 void *buffer, size_t *lenp, loff_t *ppos) 3507 { 3508 struct ctl_table t; 3509 int ret; 3510 int threads = max_threads; 3511 int min = 1; 3512 int max = MAX_THREADS; 3513 3514 t = *table; 3515 t.data = &threads; 3516 t.extra1 = &min; 3517 t.extra2 = &max; 3518 3519 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3520 if (ret || !write) 3521 return ret; 3522 3523 max_threads = threads; 3524 3525 return 0; 3526 } 3527