xref: /linux-6.15/kernel/fork.c (revision 185000fc)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/swap.h>
37 #include <linux/syscalls.h>
38 #include <linux/jiffies.h>
39 #include <linux/futex.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/rcupdate.h>
42 #include <linux/ptrace.h>
43 #include <linux/mount.h>
44 #include <linux/audit.h>
45 #include <linux/memcontrol.h>
46 #include <linux/profile.h>
47 #include <linux/rmap.h>
48 #include <linux/acct.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/freezer.h>
52 #include <linux/delayacct.h>
53 #include <linux/taskstats_kern.h>
54 #include <linux/random.h>
55 #include <linux/tty.h>
56 #include <linux/proc_fs.h>
57 #include <linux/blkdev.h>
58 
59 #include <asm/pgtable.h>
60 #include <asm/pgalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/cacheflush.h>
64 #include <asm/tlbflush.h>
65 
66 /*
67  * Protected counters by write_lock_irq(&tasklist_lock)
68  */
69 unsigned long total_forks;	/* Handle normal Linux uptimes. */
70 int nr_threads; 		/* The idle threads do not count.. */
71 
72 int max_threads;		/* tunable limit on nr_threads */
73 
74 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
75 
76 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
77 
78 int nr_processes(void)
79 {
80 	int cpu;
81 	int total = 0;
82 
83 	for_each_online_cpu(cpu)
84 		total += per_cpu(process_counts, cpu);
85 
86 	return total;
87 }
88 
89 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
90 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
91 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
92 static struct kmem_cache *task_struct_cachep;
93 #endif
94 
95 /* SLAB cache for signal_struct structures (tsk->signal) */
96 static struct kmem_cache *signal_cachep;
97 
98 /* SLAB cache for sighand_struct structures (tsk->sighand) */
99 struct kmem_cache *sighand_cachep;
100 
101 /* SLAB cache for files_struct structures (tsk->files) */
102 struct kmem_cache *files_cachep;
103 
104 /* SLAB cache for fs_struct structures (tsk->fs) */
105 struct kmem_cache *fs_cachep;
106 
107 /* SLAB cache for vm_area_struct structures */
108 struct kmem_cache *vm_area_cachep;
109 
110 /* SLAB cache for mm_struct structures (tsk->mm) */
111 static struct kmem_cache *mm_cachep;
112 
113 void free_task(struct task_struct *tsk)
114 {
115 	prop_local_destroy_single(&tsk->dirties);
116 	free_thread_info(tsk->stack);
117 	rt_mutex_debug_task_free(tsk);
118 	free_task_struct(tsk);
119 }
120 EXPORT_SYMBOL(free_task);
121 
122 void __put_task_struct(struct task_struct *tsk)
123 {
124 	WARN_ON(!tsk->exit_state);
125 	WARN_ON(atomic_read(&tsk->usage));
126 	WARN_ON(tsk == current);
127 
128 	security_task_free(tsk);
129 	free_uid(tsk->user);
130 	put_group_info(tsk->group_info);
131 	delayacct_tsk_free(tsk);
132 
133 	if (!profile_handoff_task(tsk))
134 		free_task(tsk);
135 }
136 
137 /*
138  * macro override instead of weak attribute alias, to workaround
139  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
140  */
141 #ifndef arch_task_cache_init
142 #define arch_task_cache_init()
143 #endif
144 
145 void __init fork_init(unsigned long mempages)
146 {
147 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
148 #ifndef ARCH_MIN_TASKALIGN
149 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
150 #endif
151 	/* create a slab on which task_structs can be allocated */
152 	task_struct_cachep =
153 		kmem_cache_create("task_struct", sizeof(struct task_struct),
154 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
155 #endif
156 
157 	/* do the arch specific task caches init */
158 	arch_task_cache_init();
159 
160 	/*
161 	 * The default maximum number of threads is set to a safe
162 	 * value: the thread structures can take up at most half
163 	 * of memory.
164 	 */
165 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
166 
167 	/*
168 	 * we need to allow at least 20 threads to boot a system
169 	 */
170 	if(max_threads < 20)
171 		max_threads = 20;
172 
173 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
174 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
175 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
176 		init_task.signal->rlim[RLIMIT_NPROC];
177 }
178 
179 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
180 					       struct task_struct *src)
181 {
182 	*dst = *src;
183 	return 0;
184 }
185 
186 static struct task_struct *dup_task_struct(struct task_struct *orig)
187 {
188 	struct task_struct *tsk;
189 	struct thread_info *ti;
190 	int err;
191 
192 	prepare_to_copy(orig);
193 
194 	tsk = alloc_task_struct();
195 	if (!tsk)
196 		return NULL;
197 
198 	ti = alloc_thread_info(tsk);
199 	if (!ti) {
200 		free_task_struct(tsk);
201 		return NULL;
202 	}
203 
204  	err = arch_dup_task_struct(tsk, orig);
205 	if (err)
206 		goto out;
207 
208 	tsk->stack = ti;
209 
210 	err = prop_local_init_single(&tsk->dirties);
211 	if (err)
212 		goto out;
213 
214 	setup_thread_stack(tsk, orig);
215 
216 #ifdef CONFIG_CC_STACKPROTECTOR
217 	tsk->stack_canary = get_random_int();
218 #endif
219 
220 	/* One for us, one for whoever does the "release_task()" (usually parent) */
221 	atomic_set(&tsk->usage,2);
222 	atomic_set(&tsk->fs_excl, 0);
223 #ifdef CONFIG_BLK_DEV_IO_TRACE
224 	tsk->btrace_seq = 0;
225 #endif
226 	tsk->splice_pipe = NULL;
227 	return tsk;
228 
229 out:
230 	free_thread_info(ti);
231 	free_task_struct(tsk);
232 	return NULL;
233 }
234 
235 #ifdef CONFIG_MMU
236 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
237 {
238 	struct vm_area_struct *mpnt, *tmp, **pprev;
239 	struct rb_node **rb_link, *rb_parent;
240 	int retval;
241 	unsigned long charge;
242 	struct mempolicy *pol;
243 
244 	down_write(&oldmm->mmap_sem);
245 	flush_cache_dup_mm(oldmm);
246 	/*
247 	 * Not linked in yet - no deadlock potential:
248 	 */
249 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
250 
251 	mm->locked_vm = 0;
252 	mm->mmap = NULL;
253 	mm->mmap_cache = NULL;
254 	mm->free_area_cache = oldmm->mmap_base;
255 	mm->cached_hole_size = ~0UL;
256 	mm->map_count = 0;
257 	cpus_clear(mm->cpu_vm_mask);
258 	mm->mm_rb = RB_ROOT;
259 	rb_link = &mm->mm_rb.rb_node;
260 	rb_parent = NULL;
261 	pprev = &mm->mmap;
262 
263 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
264 		struct file *file;
265 
266 		if (mpnt->vm_flags & VM_DONTCOPY) {
267 			long pages = vma_pages(mpnt);
268 			mm->total_vm -= pages;
269 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
270 								-pages);
271 			continue;
272 		}
273 		charge = 0;
274 		if (mpnt->vm_flags & VM_ACCOUNT) {
275 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
276 			if (security_vm_enough_memory(len))
277 				goto fail_nomem;
278 			charge = len;
279 		}
280 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
281 		if (!tmp)
282 			goto fail_nomem;
283 		*tmp = *mpnt;
284 		pol = mpol_dup(vma_policy(mpnt));
285 		retval = PTR_ERR(pol);
286 		if (IS_ERR(pol))
287 			goto fail_nomem_policy;
288 		vma_set_policy(tmp, pol);
289 		tmp->vm_flags &= ~VM_LOCKED;
290 		tmp->vm_mm = mm;
291 		tmp->vm_next = NULL;
292 		anon_vma_link(tmp);
293 		file = tmp->vm_file;
294 		if (file) {
295 			struct inode *inode = file->f_path.dentry->d_inode;
296 			get_file(file);
297 			if (tmp->vm_flags & VM_DENYWRITE)
298 				atomic_dec(&inode->i_writecount);
299 
300 			/* insert tmp into the share list, just after mpnt */
301 			spin_lock(&file->f_mapping->i_mmap_lock);
302 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
303 			flush_dcache_mmap_lock(file->f_mapping);
304 			vma_prio_tree_add(tmp, mpnt);
305 			flush_dcache_mmap_unlock(file->f_mapping);
306 			spin_unlock(&file->f_mapping->i_mmap_lock);
307 		}
308 
309 		/*
310 		 * Link in the new vma and copy the page table entries.
311 		 */
312 		*pprev = tmp;
313 		pprev = &tmp->vm_next;
314 
315 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
316 		rb_link = &tmp->vm_rb.rb_right;
317 		rb_parent = &tmp->vm_rb;
318 
319 		mm->map_count++;
320 		retval = copy_page_range(mm, oldmm, mpnt);
321 
322 		if (tmp->vm_ops && tmp->vm_ops->open)
323 			tmp->vm_ops->open(tmp);
324 
325 		if (retval)
326 			goto out;
327 	}
328 	/* a new mm has just been created */
329 	arch_dup_mmap(oldmm, mm);
330 	retval = 0;
331 out:
332 	up_write(&mm->mmap_sem);
333 	flush_tlb_mm(oldmm);
334 	up_write(&oldmm->mmap_sem);
335 	return retval;
336 fail_nomem_policy:
337 	kmem_cache_free(vm_area_cachep, tmp);
338 fail_nomem:
339 	retval = -ENOMEM;
340 	vm_unacct_memory(charge);
341 	goto out;
342 }
343 
344 static inline int mm_alloc_pgd(struct mm_struct * mm)
345 {
346 	mm->pgd = pgd_alloc(mm);
347 	if (unlikely(!mm->pgd))
348 		return -ENOMEM;
349 	return 0;
350 }
351 
352 static inline void mm_free_pgd(struct mm_struct * mm)
353 {
354 	pgd_free(mm, mm->pgd);
355 }
356 #else
357 #define dup_mmap(mm, oldmm)	(0)
358 #define mm_alloc_pgd(mm)	(0)
359 #define mm_free_pgd(mm)
360 #endif /* CONFIG_MMU */
361 
362 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
363 
364 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
365 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
366 
367 #include <linux/init_task.h>
368 
369 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
370 {
371 	atomic_set(&mm->mm_users, 1);
372 	atomic_set(&mm->mm_count, 1);
373 	init_rwsem(&mm->mmap_sem);
374 	INIT_LIST_HEAD(&mm->mmlist);
375 	mm->flags = (current->mm) ? current->mm->flags
376 				  : MMF_DUMP_FILTER_DEFAULT;
377 	mm->core_waiters = 0;
378 	mm->nr_ptes = 0;
379 	set_mm_counter(mm, file_rss, 0);
380 	set_mm_counter(mm, anon_rss, 0);
381 	spin_lock_init(&mm->page_table_lock);
382 	rwlock_init(&mm->ioctx_list_lock);
383 	mm->ioctx_list = NULL;
384 	mm->free_area_cache = TASK_UNMAPPED_BASE;
385 	mm->cached_hole_size = ~0UL;
386 	mm_init_owner(mm, p);
387 
388 	if (likely(!mm_alloc_pgd(mm))) {
389 		mm->def_flags = 0;
390 		return mm;
391 	}
392 
393 	free_mm(mm);
394 	return NULL;
395 }
396 
397 /*
398  * Allocate and initialize an mm_struct.
399  */
400 struct mm_struct * mm_alloc(void)
401 {
402 	struct mm_struct * mm;
403 
404 	mm = allocate_mm();
405 	if (mm) {
406 		memset(mm, 0, sizeof(*mm));
407 		mm = mm_init(mm, current);
408 	}
409 	return mm;
410 }
411 
412 /*
413  * Called when the last reference to the mm
414  * is dropped: either by a lazy thread or by
415  * mmput. Free the page directory and the mm.
416  */
417 void __mmdrop(struct mm_struct *mm)
418 {
419 	BUG_ON(mm == &init_mm);
420 	mm_free_pgd(mm);
421 	destroy_context(mm);
422 	free_mm(mm);
423 }
424 EXPORT_SYMBOL_GPL(__mmdrop);
425 
426 /*
427  * Decrement the use count and release all resources for an mm.
428  */
429 void mmput(struct mm_struct *mm)
430 {
431 	might_sleep();
432 
433 	if (atomic_dec_and_test(&mm->mm_users)) {
434 		exit_aio(mm);
435 		exit_mmap(mm);
436 		set_mm_exe_file(mm, NULL);
437 		if (!list_empty(&mm->mmlist)) {
438 			spin_lock(&mmlist_lock);
439 			list_del(&mm->mmlist);
440 			spin_unlock(&mmlist_lock);
441 		}
442 		put_swap_token(mm);
443 		mmdrop(mm);
444 	}
445 }
446 EXPORT_SYMBOL_GPL(mmput);
447 
448 /**
449  * get_task_mm - acquire a reference to the task's mm
450  *
451  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
452  * this kernel workthread has transiently adopted a user mm with use_mm,
453  * to do its AIO) is not set and if so returns a reference to it, after
454  * bumping up the use count.  User must release the mm via mmput()
455  * after use.  Typically used by /proc and ptrace.
456  */
457 struct mm_struct *get_task_mm(struct task_struct *task)
458 {
459 	struct mm_struct *mm;
460 
461 	task_lock(task);
462 	mm = task->mm;
463 	if (mm) {
464 		if (task->flags & PF_BORROWED_MM)
465 			mm = NULL;
466 		else
467 			atomic_inc(&mm->mm_users);
468 	}
469 	task_unlock(task);
470 	return mm;
471 }
472 EXPORT_SYMBOL_GPL(get_task_mm);
473 
474 /* Please note the differences between mmput and mm_release.
475  * mmput is called whenever we stop holding onto a mm_struct,
476  * error success whatever.
477  *
478  * mm_release is called after a mm_struct has been removed
479  * from the current process.
480  *
481  * This difference is important for error handling, when we
482  * only half set up a mm_struct for a new process and need to restore
483  * the old one.  Because we mmput the new mm_struct before
484  * restoring the old one. . .
485  * Eric Biederman 10 January 1998
486  */
487 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
488 {
489 	struct completion *vfork_done = tsk->vfork_done;
490 
491 	/* Get rid of any cached register state */
492 	deactivate_mm(tsk, mm);
493 
494 	/* notify parent sleeping on vfork() */
495 	if (vfork_done) {
496 		tsk->vfork_done = NULL;
497 		complete(vfork_done);
498 	}
499 
500 	/*
501 	 * If we're exiting normally, clear a user-space tid field if
502 	 * requested.  We leave this alone when dying by signal, to leave
503 	 * the value intact in a core dump, and to save the unnecessary
504 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
505 	 */
506 	if (tsk->clear_child_tid
507 	    && !(tsk->flags & PF_SIGNALED)
508 	    && atomic_read(&mm->mm_users) > 1) {
509 		u32 __user * tidptr = tsk->clear_child_tid;
510 		tsk->clear_child_tid = NULL;
511 
512 		/*
513 		 * We don't check the error code - if userspace has
514 		 * not set up a proper pointer then tough luck.
515 		 */
516 		put_user(0, tidptr);
517 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
518 	}
519 }
520 
521 /*
522  * Allocate a new mm structure and copy contents from the
523  * mm structure of the passed in task structure.
524  */
525 struct mm_struct *dup_mm(struct task_struct *tsk)
526 {
527 	struct mm_struct *mm, *oldmm = current->mm;
528 	int err;
529 
530 	if (!oldmm)
531 		return NULL;
532 
533 	mm = allocate_mm();
534 	if (!mm)
535 		goto fail_nomem;
536 
537 	memcpy(mm, oldmm, sizeof(*mm));
538 
539 	/* Initializing for Swap token stuff */
540 	mm->token_priority = 0;
541 	mm->last_interval = 0;
542 
543 	if (!mm_init(mm, tsk))
544 		goto fail_nomem;
545 
546 	if (init_new_context(tsk, mm))
547 		goto fail_nocontext;
548 
549 	dup_mm_exe_file(oldmm, mm);
550 
551 	err = dup_mmap(mm, oldmm);
552 	if (err)
553 		goto free_pt;
554 
555 	mm->hiwater_rss = get_mm_rss(mm);
556 	mm->hiwater_vm = mm->total_vm;
557 
558 	return mm;
559 
560 free_pt:
561 	mmput(mm);
562 
563 fail_nomem:
564 	return NULL;
565 
566 fail_nocontext:
567 	/*
568 	 * If init_new_context() failed, we cannot use mmput() to free the mm
569 	 * because it calls destroy_context()
570 	 */
571 	mm_free_pgd(mm);
572 	free_mm(mm);
573 	return NULL;
574 }
575 
576 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
577 {
578 	struct mm_struct * mm, *oldmm;
579 	int retval;
580 
581 	tsk->min_flt = tsk->maj_flt = 0;
582 	tsk->nvcsw = tsk->nivcsw = 0;
583 
584 	tsk->mm = NULL;
585 	tsk->active_mm = NULL;
586 
587 	/*
588 	 * Are we cloning a kernel thread?
589 	 *
590 	 * We need to steal a active VM for that..
591 	 */
592 	oldmm = current->mm;
593 	if (!oldmm)
594 		return 0;
595 
596 	if (clone_flags & CLONE_VM) {
597 		atomic_inc(&oldmm->mm_users);
598 		mm = oldmm;
599 		goto good_mm;
600 	}
601 
602 	retval = -ENOMEM;
603 	mm = dup_mm(tsk);
604 	if (!mm)
605 		goto fail_nomem;
606 
607 good_mm:
608 	/* Initializing for Swap token stuff */
609 	mm->token_priority = 0;
610 	mm->last_interval = 0;
611 
612 	tsk->mm = mm;
613 	tsk->active_mm = mm;
614 	return 0;
615 
616 fail_nomem:
617 	return retval;
618 }
619 
620 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
621 {
622 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
623 	/* We don't need to lock fs - think why ;-) */
624 	if (fs) {
625 		atomic_set(&fs->count, 1);
626 		rwlock_init(&fs->lock);
627 		fs->umask = old->umask;
628 		read_lock(&old->lock);
629 		fs->root = old->root;
630 		path_get(&old->root);
631 		fs->pwd = old->pwd;
632 		path_get(&old->pwd);
633 		if (old->altroot.dentry) {
634 			fs->altroot = old->altroot;
635 			path_get(&old->altroot);
636 		} else {
637 			fs->altroot.mnt = NULL;
638 			fs->altroot.dentry = NULL;
639 		}
640 		read_unlock(&old->lock);
641 	}
642 	return fs;
643 }
644 
645 struct fs_struct *copy_fs_struct(struct fs_struct *old)
646 {
647 	return __copy_fs_struct(old);
648 }
649 
650 EXPORT_SYMBOL_GPL(copy_fs_struct);
651 
652 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
653 {
654 	if (clone_flags & CLONE_FS) {
655 		atomic_inc(&current->fs->count);
656 		return 0;
657 	}
658 	tsk->fs = __copy_fs_struct(current->fs);
659 	if (!tsk->fs)
660 		return -ENOMEM;
661 	return 0;
662 }
663 
664 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
665 {
666 	struct files_struct *oldf, *newf;
667 	int error = 0;
668 
669 	/*
670 	 * A background process may not have any files ...
671 	 */
672 	oldf = current->files;
673 	if (!oldf)
674 		goto out;
675 
676 	if (clone_flags & CLONE_FILES) {
677 		atomic_inc(&oldf->count);
678 		goto out;
679 	}
680 
681 	newf = dup_fd(oldf, &error);
682 	if (!newf)
683 		goto out;
684 
685 	tsk->files = newf;
686 	error = 0;
687 out:
688 	return error;
689 }
690 
691 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
692 {
693 #ifdef CONFIG_BLOCK
694 	struct io_context *ioc = current->io_context;
695 
696 	if (!ioc)
697 		return 0;
698 	/*
699 	 * Share io context with parent, if CLONE_IO is set
700 	 */
701 	if (clone_flags & CLONE_IO) {
702 		tsk->io_context = ioc_task_link(ioc);
703 		if (unlikely(!tsk->io_context))
704 			return -ENOMEM;
705 	} else if (ioprio_valid(ioc->ioprio)) {
706 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
707 		if (unlikely(!tsk->io_context))
708 			return -ENOMEM;
709 
710 		tsk->io_context->ioprio = ioc->ioprio;
711 	}
712 #endif
713 	return 0;
714 }
715 
716 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
717 {
718 	struct sighand_struct *sig;
719 
720 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
721 		atomic_inc(&current->sighand->count);
722 		return 0;
723 	}
724 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
725 	rcu_assign_pointer(tsk->sighand, sig);
726 	if (!sig)
727 		return -ENOMEM;
728 	atomic_set(&sig->count, 1);
729 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
730 	return 0;
731 }
732 
733 void __cleanup_sighand(struct sighand_struct *sighand)
734 {
735 	if (atomic_dec_and_test(&sighand->count))
736 		kmem_cache_free(sighand_cachep, sighand);
737 }
738 
739 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
740 {
741 	struct signal_struct *sig;
742 	int ret;
743 
744 	if (clone_flags & CLONE_THREAD) {
745 		atomic_inc(&current->signal->count);
746 		atomic_inc(&current->signal->live);
747 		return 0;
748 	}
749 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
750 	tsk->signal = sig;
751 	if (!sig)
752 		return -ENOMEM;
753 
754 	ret = copy_thread_group_keys(tsk);
755 	if (ret < 0) {
756 		kmem_cache_free(signal_cachep, sig);
757 		return ret;
758 	}
759 
760 	atomic_set(&sig->count, 1);
761 	atomic_set(&sig->live, 1);
762 	init_waitqueue_head(&sig->wait_chldexit);
763 	sig->flags = 0;
764 	sig->group_exit_code = 0;
765 	sig->group_exit_task = NULL;
766 	sig->group_stop_count = 0;
767 	sig->curr_target = tsk;
768 	init_sigpending(&sig->shared_pending);
769 	INIT_LIST_HEAD(&sig->posix_timers);
770 
771 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
772 	sig->it_real_incr.tv64 = 0;
773 	sig->real_timer.function = it_real_fn;
774 
775 	sig->it_virt_expires = cputime_zero;
776 	sig->it_virt_incr = cputime_zero;
777 	sig->it_prof_expires = cputime_zero;
778 	sig->it_prof_incr = cputime_zero;
779 
780 	sig->leader = 0;	/* session leadership doesn't inherit */
781 	sig->tty_old_pgrp = NULL;
782 
783 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
784 	sig->gtime = cputime_zero;
785 	sig->cgtime = cputime_zero;
786 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
787 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
788 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
789 	sig->sum_sched_runtime = 0;
790 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
791 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
792 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
793 	taskstats_tgid_init(sig);
794 
795 	task_lock(current->group_leader);
796 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
797 	task_unlock(current->group_leader);
798 
799 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
800 		/*
801 		 * New sole thread in the process gets an expiry time
802 		 * of the whole CPU time limit.
803 		 */
804 		tsk->it_prof_expires =
805 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
806 	}
807 	acct_init_pacct(&sig->pacct);
808 
809 	tty_audit_fork(sig);
810 
811 	return 0;
812 }
813 
814 void __cleanup_signal(struct signal_struct *sig)
815 {
816 	exit_thread_group_keys(sig);
817 	kmem_cache_free(signal_cachep, sig);
818 }
819 
820 static void cleanup_signal(struct task_struct *tsk)
821 {
822 	struct signal_struct *sig = tsk->signal;
823 
824 	atomic_dec(&sig->live);
825 
826 	if (atomic_dec_and_test(&sig->count))
827 		__cleanup_signal(sig);
828 }
829 
830 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
831 {
832 	unsigned long new_flags = p->flags;
833 
834 	new_flags &= ~PF_SUPERPRIV;
835 	new_flags |= PF_FORKNOEXEC;
836 	if (!(clone_flags & CLONE_PTRACE))
837 		p->ptrace = 0;
838 	p->flags = new_flags;
839 	clear_freeze_flag(p);
840 }
841 
842 asmlinkage long sys_set_tid_address(int __user *tidptr)
843 {
844 	current->clear_child_tid = tidptr;
845 
846 	return task_pid_vnr(current);
847 }
848 
849 static void rt_mutex_init_task(struct task_struct *p)
850 {
851 	spin_lock_init(&p->pi_lock);
852 #ifdef CONFIG_RT_MUTEXES
853 	plist_head_init(&p->pi_waiters, &p->pi_lock);
854 	p->pi_blocked_on = NULL;
855 #endif
856 }
857 
858 #ifdef CONFIG_MM_OWNER
859 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
860 {
861 	mm->owner = p;
862 }
863 #endif /* CONFIG_MM_OWNER */
864 
865 /*
866  * This creates a new process as a copy of the old one,
867  * but does not actually start it yet.
868  *
869  * It copies the registers, and all the appropriate
870  * parts of the process environment (as per the clone
871  * flags). The actual kick-off is left to the caller.
872  */
873 static struct task_struct *copy_process(unsigned long clone_flags,
874 					unsigned long stack_start,
875 					struct pt_regs *regs,
876 					unsigned long stack_size,
877 					int __user *child_tidptr,
878 					struct pid *pid)
879 {
880 	int retval;
881 	struct task_struct *p;
882 	int cgroup_callbacks_done = 0;
883 
884 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
885 		return ERR_PTR(-EINVAL);
886 
887 	/*
888 	 * Thread groups must share signals as well, and detached threads
889 	 * can only be started up within the thread group.
890 	 */
891 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
892 		return ERR_PTR(-EINVAL);
893 
894 	/*
895 	 * Shared signal handlers imply shared VM. By way of the above,
896 	 * thread groups also imply shared VM. Blocking this case allows
897 	 * for various simplifications in other code.
898 	 */
899 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
900 		return ERR_PTR(-EINVAL);
901 
902 	retval = security_task_create(clone_flags);
903 	if (retval)
904 		goto fork_out;
905 
906 	retval = -ENOMEM;
907 	p = dup_task_struct(current);
908 	if (!p)
909 		goto fork_out;
910 
911 	rt_mutex_init_task(p);
912 
913 #ifdef CONFIG_PROVE_LOCKING
914 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
915 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
916 #endif
917 	retval = -EAGAIN;
918 	if (atomic_read(&p->user->processes) >=
919 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
920 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
921 		    p->user != current->nsproxy->user_ns->root_user)
922 			goto bad_fork_free;
923 	}
924 
925 	atomic_inc(&p->user->__count);
926 	atomic_inc(&p->user->processes);
927 	get_group_info(p->group_info);
928 
929 	/*
930 	 * If multiple threads are within copy_process(), then this check
931 	 * triggers too late. This doesn't hurt, the check is only there
932 	 * to stop root fork bombs.
933 	 */
934 	if (nr_threads >= max_threads)
935 		goto bad_fork_cleanup_count;
936 
937 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
938 		goto bad_fork_cleanup_count;
939 
940 	if (p->binfmt && !try_module_get(p->binfmt->module))
941 		goto bad_fork_cleanup_put_domain;
942 
943 	p->did_exec = 0;
944 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
945 	copy_flags(clone_flags, p);
946 	INIT_LIST_HEAD(&p->children);
947 	INIT_LIST_HEAD(&p->sibling);
948 #ifdef CONFIG_PREEMPT_RCU
949 	p->rcu_read_lock_nesting = 0;
950 	p->rcu_flipctr_idx = 0;
951 #endif /* #ifdef CONFIG_PREEMPT_RCU */
952 	p->vfork_done = NULL;
953 	spin_lock_init(&p->alloc_lock);
954 
955 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
956 	init_sigpending(&p->pending);
957 
958 	p->utime = cputime_zero;
959 	p->stime = cputime_zero;
960 	p->gtime = cputime_zero;
961 	p->utimescaled = cputime_zero;
962 	p->stimescaled = cputime_zero;
963 	p->prev_utime = cputime_zero;
964 	p->prev_stime = cputime_zero;
965 
966 #ifdef CONFIG_DETECT_SOFTLOCKUP
967 	p->last_switch_count = 0;
968 	p->last_switch_timestamp = 0;
969 #endif
970 
971 #ifdef CONFIG_TASK_XACCT
972 	p->rchar = 0;		/* I/O counter: bytes read */
973 	p->wchar = 0;		/* I/O counter: bytes written */
974 	p->syscr = 0;		/* I/O counter: read syscalls */
975 	p->syscw = 0;		/* I/O counter: write syscalls */
976 #endif
977 	task_io_accounting_init(p);
978 	acct_clear_integrals(p);
979 
980 	p->it_virt_expires = cputime_zero;
981 	p->it_prof_expires = cputime_zero;
982 	p->it_sched_expires = 0;
983 	INIT_LIST_HEAD(&p->cpu_timers[0]);
984 	INIT_LIST_HEAD(&p->cpu_timers[1]);
985 	INIT_LIST_HEAD(&p->cpu_timers[2]);
986 
987 	p->lock_depth = -1;		/* -1 = no lock */
988 	do_posix_clock_monotonic_gettime(&p->start_time);
989 	p->real_start_time = p->start_time;
990 	monotonic_to_bootbased(&p->real_start_time);
991 #ifdef CONFIG_SECURITY
992 	p->security = NULL;
993 #endif
994 	p->cap_bset = current->cap_bset;
995 	p->io_context = NULL;
996 	p->audit_context = NULL;
997 	cgroup_fork(p);
998 #ifdef CONFIG_NUMA
999 	p->mempolicy = mpol_dup(p->mempolicy);
1000  	if (IS_ERR(p->mempolicy)) {
1001  		retval = PTR_ERR(p->mempolicy);
1002  		p->mempolicy = NULL;
1003  		goto bad_fork_cleanup_cgroup;
1004  	}
1005 	mpol_fix_fork_child_flag(p);
1006 #endif
1007 #ifdef CONFIG_TRACE_IRQFLAGS
1008 	p->irq_events = 0;
1009 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1010 	p->hardirqs_enabled = 1;
1011 #else
1012 	p->hardirqs_enabled = 0;
1013 #endif
1014 	p->hardirq_enable_ip = 0;
1015 	p->hardirq_enable_event = 0;
1016 	p->hardirq_disable_ip = _THIS_IP_;
1017 	p->hardirq_disable_event = 0;
1018 	p->softirqs_enabled = 1;
1019 	p->softirq_enable_ip = _THIS_IP_;
1020 	p->softirq_enable_event = 0;
1021 	p->softirq_disable_ip = 0;
1022 	p->softirq_disable_event = 0;
1023 	p->hardirq_context = 0;
1024 	p->softirq_context = 0;
1025 #endif
1026 #ifdef CONFIG_LOCKDEP
1027 	p->lockdep_depth = 0; /* no locks held yet */
1028 	p->curr_chain_key = 0;
1029 	p->lockdep_recursion = 0;
1030 #endif
1031 
1032 #ifdef CONFIG_DEBUG_MUTEXES
1033 	p->blocked_on = NULL; /* not blocked yet */
1034 #endif
1035 
1036 	/* Perform scheduler related setup. Assign this task to a CPU. */
1037 	sched_fork(p, clone_flags);
1038 
1039 	if ((retval = security_task_alloc(p)))
1040 		goto bad_fork_cleanup_policy;
1041 	if ((retval = audit_alloc(p)))
1042 		goto bad_fork_cleanup_security;
1043 	/* copy all the process information */
1044 	if ((retval = copy_semundo(clone_flags, p)))
1045 		goto bad_fork_cleanup_audit;
1046 	if ((retval = copy_files(clone_flags, p)))
1047 		goto bad_fork_cleanup_semundo;
1048 	if ((retval = copy_fs(clone_flags, p)))
1049 		goto bad_fork_cleanup_files;
1050 	if ((retval = copy_sighand(clone_flags, p)))
1051 		goto bad_fork_cleanup_fs;
1052 	if ((retval = copy_signal(clone_flags, p)))
1053 		goto bad_fork_cleanup_sighand;
1054 	if ((retval = copy_mm(clone_flags, p)))
1055 		goto bad_fork_cleanup_signal;
1056 	if ((retval = copy_keys(clone_flags, p)))
1057 		goto bad_fork_cleanup_mm;
1058 	if ((retval = copy_namespaces(clone_flags, p)))
1059 		goto bad_fork_cleanup_keys;
1060 	if ((retval = copy_io(clone_flags, p)))
1061 		goto bad_fork_cleanup_namespaces;
1062 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1063 	if (retval)
1064 		goto bad_fork_cleanup_io;
1065 
1066 	if (pid != &init_struct_pid) {
1067 		retval = -ENOMEM;
1068 		pid = alloc_pid(task_active_pid_ns(p));
1069 		if (!pid)
1070 			goto bad_fork_cleanup_io;
1071 
1072 		if (clone_flags & CLONE_NEWPID) {
1073 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1074 			if (retval < 0)
1075 				goto bad_fork_free_pid;
1076 		}
1077 	}
1078 
1079 	p->pid = pid_nr(pid);
1080 	p->tgid = p->pid;
1081 	if (clone_flags & CLONE_THREAD)
1082 		p->tgid = current->tgid;
1083 
1084 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1085 	/*
1086 	 * Clear TID on mm_release()?
1087 	 */
1088 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1089 #ifdef CONFIG_FUTEX
1090 	p->robust_list = NULL;
1091 #ifdef CONFIG_COMPAT
1092 	p->compat_robust_list = NULL;
1093 #endif
1094 	INIT_LIST_HEAD(&p->pi_state_list);
1095 	p->pi_state_cache = NULL;
1096 #endif
1097 	/*
1098 	 * sigaltstack should be cleared when sharing the same VM
1099 	 */
1100 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1101 		p->sas_ss_sp = p->sas_ss_size = 0;
1102 
1103 	/*
1104 	 * Syscall tracing should be turned off in the child regardless
1105 	 * of CLONE_PTRACE.
1106 	 */
1107 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1108 #ifdef TIF_SYSCALL_EMU
1109 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1110 #endif
1111 	clear_all_latency_tracing(p);
1112 
1113 	/* Our parent execution domain becomes current domain
1114 	   These must match for thread signalling to apply */
1115 	p->parent_exec_id = p->self_exec_id;
1116 
1117 	/* ok, now we should be set up.. */
1118 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1119 	p->pdeath_signal = 0;
1120 	p->exit_state = 0;
1121 
1122 	/*
1123 	 * Ok, make it visible to the rest of the system.
1124 	 * We dont wake it up yet.
1125 	 */
1126 	p->group_leader = p;
1127 	INIT_LIST_HEAD(&p->thread_group);
1128 	INIT_LIST_HEAD(&p->ptrace_entry);
1129 	INIT_LIST_HEAD(&p->ptraced);
1130 
1131 	/* Now that the task is set up, run cgroup callbacks if
1132 	 * necessary. We need to run them before the task is visible
1133 	 * on the tasklist. */
1134 	cgroup_fork_callbacks(p);
1135 	cgroup_callbacks_done = 1;
1136 
1137 	/* Need tasklist lock for parent etc handling! */
1138 	write_lock_irq(&tasklist_lock);
1139 
1140 	/*
1141 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1142 	 * not be changed, nor will its assigned CPU.
1143 	 *
1144 	 * The cpus_allowed mask of the parent may have changed after it was
1145 	 * copied first time - so re-copy it here, then check the child's CPU
1146 	 * to ensure it is on a valid CPU (and if not, just force it back to
1147 	 * parent's CPU). This avoids alot of nasty races.
1148 	 */
1149 	p->cpus_allowed = current->cpus_allowed;
1150 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1151 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1152 			!cpu_online(task_cpu(p))))
1153 		set_task_cpu(p, smp_processor_id());
1154 
1155 	/* CLONE_PARENT re-uses the old parent */
1156 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1157 		p->real_parent = current->real_parent;
1158 	else
1159 		p->real_parent = current;
1160 	p->parent = p->real_parent;
1161 
1162 	spin_lock(&current->sighand->siglock);
1163 
1164 	/*
1165 	 * Process group and session signals need to be delivered to just the
1166 	 * parent before the fork or both the parent and the child after the
1167 	 * fork. Restart if a signal comes in before we add the new process to
1168 	 * it's process group.
1169 	 * A fatal signal pending means that current will exit, so the new
1170 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1171  	 */
1172 	recalc_sigpending();
1173 	if (signal_pending(current)) {
1174 		spin_unlock(&current->sighand->siglock);
1175 		write_unlock_irq(&tasklist_lock);
1176 		retval = -ERESTARTNOINTR;
1177 		goto bad_fork_free_pid;
1178 	}
1179 
1180 	if (clone_flags & CLONE_THREAD) {
1181 		p->group_leader = current->group_leader;
1182 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1183 
1184 		if (!cputime_eq(current->signal->it_virt_expires,
1185 				cputime_zero) ||
1186 		    !cputime_eq(current->signal->it_prof_expires,
1187 				cputime_zero) ||
1188 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1189 		    !list_empty(&current->signal->cpu_timers[0]) ||
1190 		    !list_empty(&current->signal->cpu_timers[1]) ||
1191 		    !list_empty(&current->signal->cpu_timers[2])) {
1192 			/*
1193 			 * Have child wake up on its first tick to check
1194 			 * for process CPU timers.
1195 			 */
1196 			p->it_prof_expires = jiffies_to_cputime(1);
1197 		}
1198 	}
1199 
1200 	if (likely(p->pid)) {
1201 		list_add_tail(&p->sibling, &p->real_parent->children);
1202 		if (unlikely(p->ptrace & PT_PTRACED))
1203 			__ptrace_link(p, current->parent);
1204 
1205 		if (thread_group_leader(p)) {
1206 			if (clone_flags & CLONE_NEWPID)
1207 				p->nsproxy->pid_ns->child_reaper = p;
1208 
1209 			p->signal->leader_pid = pid;
1210 			p->signal->tty = current->signal->tty;
1211 			set_task_pgrp(p, task_pgrp_nr(current));
1212 			set_task_session(p, task_session_nr(current));
1213 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1214 			attach_pid(p, PIDTYPE_SID, task_session(current));
1215 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1216 			__get_cpu_var(process_counts)++;
1217 		}
1218 		attach_pid(p, PIDTYPE_PID, pid);
1219 		nr_threads++;
1220 	}
1221 
1222 	total_forks++;
1223 	spin_unlock(&current->sighand->siglock);
1224 	write_unlock_irq(&tasklist_lock);
1225 	proc_fork_connector(p);
1226 	cgroup_post_fork(p);
1227 	return p;
1228 
1229 bad_fork_free_pid:
1230 	if (pid != &init_struct_pid)
1231 		free_pid(pid);
1232 bad_fork_cleanup_io:
1233 	put_io_context(p->io_context);
1234 bad_fork_cleanup_namespaces:
1235 	exit_task_namespaces(p);
1236 bad_fork_cleanup_keys:
1237 	exit_keys(p);
1238 bad_fork_cleanup_mm:
1239 	if (p->mm)
1240 		mmput(p->mm);
1241 bad_fork_cleanup_signal:
1242 	cleanup_signal(p);
1243 bad_fork_cleanup_sighand:
1244 	__cleanup_sighand(p->sighand);
1245 bad_fork_cleanup_fs:
1246 	exit_fs(p); /* blocking */
1247 bad_fork_cleanup_files:
1248 	exit_files(p); /* blocking */
1249 bad_fork_cleanup_semundo:
1250 	exit_sem(p);
1251 bad_fork_cleanup_audit:
1252 	audit_free(p);
1253 bad_fork_cleanup_security:
1254 	security_task_free(p);
1255 bad_fork_cleanup_policy:
1256 #ifdef CONFIG_NUMA
1257 	mpol_put(p->mempolicy);
1258 bad_fork_cleanup_cgroup:
1259 #endif
1260 	cgroup_exit(p, cgroup_callbacks_done);
1261 	delayacct_tsk_free(p);
1262 	if (p->binfmt)
1263 		module_put(p->binfmt->module);
1264 bad_fork_cleanup_put_domain:
1265 	module_put(task_thread_info(p)->exec_domain->module);
1266 bad_fork_cleanup_count:
1267 	put_group_info(p->group_info);
1268 	atomic_dec(&p->user->processes);
1269 	free_uid(p->user);
1270 bad_fork_free:
1271 	free_task(p);
1272 fork_out:
1273 	return ERR_PTR(retval);
1274 }
1275 
1276 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1277 {
1278 	memset(regs, 0, sizeof(struct pt_regs));
1279 	return regs;
1280 }
1281 
1282 struct task_struct * __cpuinit fork_idle(int cpu)
1283 {
1284 	struct task_struct *task;
1285 	struct pt_regs regs;
1286 
1287 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1288 				&init_struct_pid);
1289 	if (!IS_ERR(task))
1290 		init_idle(task, cpu);
1291 
1292 	return task;
1293 }
1294 
1295 static int fork_traceflag(unsigned clone_flags)
1296 {
1297 	if (clone_flags & CLONE_UNTRACED)
1298 		return 0;
1299 	else if (clone_flags & CLONE_VFORK) {
1300 		if (current->ptrace & PT_TRACE_VFORK)
1301 			return PTRACE_EVENT_VFORK;
1302 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1303 		if (current->ptrace & PT_TRACE_CLONE)
1304 			return PTRACE_EVENT_CLONE;
1305 	} else if (current->ptrace & PT_TRACE_FORK)
1306 		return PTRACE_EVENT_FORK;
1307 
1308 	return 0;
1309 }
1310 
1311 /*
1312  *  Ok, this is the main fork-routine.
1313  *
1314  * It copies the process, and if successful kick-starts
1315  * it and waits for it to finish using the VM if required.
1316  */
1317 long do_fork(unsigned long clone_flags,
1318 	      unsigned long stack_start,
1319 	      struct pt_regs *regs,
1320 	      unsigned long stack_size,
1321 	      int __user *parent_tidptr,
1322 	      int __user *child_tidptr)
1323 {
1324 	struct task_struct *p;
1325 	int trace = 0;
1326 	long nr;
1327 
1328 	/*
1329 	 * We hope to recycle these flags after 2.6.26
1330 	 */
1331 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1332 		static int __read_mostly count = 100;
1333 
1334 		if (count > 0 && printk_ratelimit()) {
1335 			char comm[TASK_COMM_LEN];
1336 
1337 			count--;
1338 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1339 					"clone flags 0x%lx\n",
1340 				get_task_comm(comm, current),
1341 				clone_flags & CLONE_STOPPED);
1342 		}
1343 	}
1344 
1345 	if (unlikely(current->ptrace)) {
1346 		trace = fork_traceflag (clone_flags);
1347 		if (trace)
1348 			clone_flags |= CLONE_PTRACE;
1349 	}
1350 
1351 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1352 			child_tidptr, NULL);
1353 	/*
1354 	 * Do this prior waking up the new thread - the thread pointer
1355 	 * might get invalid after that point, if the thread exits quickly.
1356 	 */
1357 	if (!IS_ERR(p)) {
1358 		struct completion vfork;
1359 
1360 		nr = task_pid_vnr(p);
1361 
1362 		if (clone_flags & CLONE_PARENT_SETTID)
1363 			put_user(nr, parent_tidptr);
1364 
1365 		if (clone_flags & CLONE_VFORK) {
1366 			p->vfork_done = &vfork;
1367 			init_completion(&vfork);
1368 		}
1369 
1370 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1371 			/*
1372 			 * We'll start up with an immediate SIGSTOP.
1373 			 */
1374 			sigaddset(&p->pending.signal, SIGSTOP);
1375 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1376 		}
1377 
1378 		if (!(clone_flags & CLONE_STOPPED))
1379 			wake_up_new_task(p, clone_flags);
1380 		else
1381 			__set_task_state(p, TASK_STOPPED);
1382 
1383 		if (unlikely (trace)) {
1384 			current->ptrace_message = nr;
1385 			ptrace_notify ((trace << 8) | SIGTRAP);
1386 		}
1387 
1388 		if (clone_flags & CLONE_VFORK) {
1389 			freezer_do_not_count();
1390 			wait_for_completion(&vfork);
1391 			freezer_count();
1392 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1393 				current->ptrace_message = nr;
1394 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1395 			}
1396 		}
1397 	} else {
1398 		nr = PTR_ERR(p);
1399 	}
1400 	return nr;
1401 }
1402 
1403 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1404 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1405 #endif
1406 
1407 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1408 {
1409 	struct sighand_struct *sighand = data;
1410 
1411 	spin_lock_init(&sighand->siglock);
1412 	init_waitqueue_head(&sighand->signalfd_wqh);
1413 }
1414 
1415 void __init proc_caches_init(void)
1416 {
1417 	sighand_cachep = kmem_cache_create("sighand_cache",
1418 			sizeof(struct sighand_struct), 0,
1419 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1420 			sighand_ctor);
1421 	signal_cachep = kmem_cache_create("signal_cache",
1422 			sizeof(struct signal_struct), 0,
1423 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1424 	files_cachep = kmem_cache_create("files_cache",
1425 			sizeof(struct files_struct), 0,
1426 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1427 	fs_cachep = kmem_cache_create("fs_cache",
1428 			sizeof(struct fs_struct), 0,
1429 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1430 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1431 			sizeof(struct vm_area_struct), 0,
1432 			SLAB_PANIC, NULL);
1433 	mm_cachep = kmem_cache_create("mm_struct",
1434 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1435 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1436 }
1437 
1438 /*
1439  * Check constraints on flags passed to the unshare system call and
1440  * force unsharing of additional process context as appropriate.
1441  */
1442 static void check_unshare_flags(unsigned long *flags_ptr)
1443 {
1444 	/*
1445 	 * If unsharing a thread from a thread group, must also
1446 	 * unshare vm.
1447 	 */
1448 	if (*flags_ptr & CLONE_THREAD)
1449 		*flags_ptr |= CLONE_VM;
1450 
1451 	/*
1452 	 * If unsharing vm, must also unshare signal handlers.
1453 	 */
1454 	if (*flags_ptr & CLONE_VM)
1455 		*flags_ptr |= CLONE_SIGHAND;
1456 
1457 	/*
1458 	 * If unsharing signal handlers and the task was created
1459 	 * using CLONE_THREAD, then must unshare the thread
1460 	 */
1461 	if ((*flags_ptr & CLONE_SIGHAND) &&
1462 	    (atomic_read(&current->signal->count) > 1))
1463 		*flags_ptr |= CLONE_THREAD;
1464 
1465 	/*
1466 	 * If unsharing namespace, must also unshare filesystem information.
1467 	 */
1468 	if (*flags_ptr & CLONE_NEWNS)
1469 		*flags_ptr |= CLONE_FS;
1470 }
1471 
1472 /*
1473  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1474  */
1475 static int unshare_thread(unsigned long unshare_flags)
1476 {
1477 	if (unshare_flags & CLONE_THREAD)
1478 		return -EINVAL;
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Unshare the filesystem structure if it is being shared
1485  */
1486 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1487 {
1488 	struct fs_struct *fs = current->fs;
1489 
1490 	if ((unshare_flags & CLONE_FS) &&
1491 	    (fs && atomic_read(&fs->count) > 1)) {
1492 		*new_fsp = __copy_fs_struct(current->fs);
1493 		if (!*new_fsp)
1494 			return -ENOMEM;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Unsharing of sighand is not supported yet
1502  */
1503 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1504 {
1505 	struct sighand_struct *sigh = current->sighand;
1506 
1507 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1508 		return -EINVAL;
1509 	else
1510 		return 0;
1511 }
1512 
1513 /*
1514  * Unshare vm if it is being shared
1515  */
1516 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1517 {
1518 	struct mm_struct *mm = current->mm;
1519 
1520 	if ((unshare_flags & CLONE_VM) &&
1521 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1522 		return -EINVAL;
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Unshare file descriptor table if it is being shared
1530  */
1531 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1532 {
1533 	struct files_struct *fd = current->files;
1534 	int error = 0;
1535 
1536 	if ((unshare_flags & CLONE_FILES) &&
1537 	    (fd && atomic_read(&fd->count) > 1)) {
1538 		*new_fdp = dup_fd(fd, &error);
1539 		if (!*new_fdp)
1540 			return error;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * unshare allows a process to 'unshare' part of the process
1548  * context which was originally shared using clone.  copy_*
1549  * functions used by do_fork() cannot be used here directly
1550  * because they modify an inactive task_struct that is being
1551  * constructed. Here we are modifying the current, active,
1552  * task_struct.
1553  */
1554 asmlinkage long sys_unshare(unsigned long unshare_flags)
1555 {
1556 	int err = 0;
1557 	struct fs_struct *fs, *new_fs = NULL;
1558 	struct sighand_struct *new_sigh = NULL;
1559 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1560 	struct files_struct *fd, *new_fd = NULL;
1561 	struct nsproxy *new_nsproxy = NULL;
1562 	int do_sysvsem = 0;
1563 
1564 	check_unshare_flags(&unshare_flags);
1565 
1566 	/* Return -EINVAL for all unsupported flags */
1567 	err = -EINVAL;
1568 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1569 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1570 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1571 				CLONE_NEWNET))
1572 		goto bad_unshare_out;
1573 
1574 	/*
1575 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1576 	 * to a new ipc namespace, the semaphore arrays from the old
1577 	 * namespace are unreachable.
1578 	 */
1579 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1580 		do_sysvsem = 1;
1581 	if ((err = unshare_thread(unshare_flags)))
1582 		goto bad_unshare_out;
1583 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1584 		goto bad_unshare_cleanup_thread;
1585 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1586 		goto bad_unshare_cleanup_fs;
1587 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1588 		goto bad_unshare_cleanup_sigh;
1589 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1590 		goto bad_unshare_cleanup_vm;
1591 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1592 			new_fs)))
1593 		goto bad_unshare_cleanup_fd;
1594 
1595 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1596 		if (do_sysvsem) {
1597 			/*
1598 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1599 			 */
1600 			exit_sem(current);
1601 		}
1602 
1603 		if (new_nsproxy) {
1604 			switch_task_namespaces(current, new_nsproxy);
1605 			new_nsproxy = NULL;
1606 		}
1607 
1608 		task_lock(current);
1609 
1610 		if (new_fs) {
1611 			fs = current->fs;
1612 			current->fs = new_fs;
1613 			new_fs = fs;
1614 		}
1615 
1616 		if (new_mm) {
1617 			mm = current->mm;
1618 			active_mm = current->active_mm;
1619 			current->mm = new_mm;
1620 			current->active_mm = new_mm;
1621 			activate_mm(active_mm, new_mm);
1622 			new_mm = mm;
1623 		}
1624 
1625 		if (new_fd) {
1626 			fd = current->files;
1627 			current->files = new_fd;
1628 			new_fd = fd;
1629 		}
1630 
1631 		task_unlock(current);
1632 	}
1633 
1634 	if (new_nsproxy)
1635 		put_nsproxy(new_nsproxy);
1636 
1637 bad_unshare_cleanup_fd:
1638 	if (new_fd)
1639 		put_files_struct(new_fd);
1640 
1641 bad_unshare_cleanup_vm:
1642 	if (new_mm)
1643 		mmput(new_mm);
1644 
1645 bad_unshare_cleanup_sigh:
1646 	if (new_sigh)
1647 		if (atomic_dec_and_test(&new_sigh->count))
1648 			kmem_cache_free(sighand_cachep, new_sigh);
1649 
1650 bad_unshare_cleanup_fs:
1651 	if (new_fs)
1652 		put_fs_struct(new_fs);
1653 
1654 bad_unshare_cleanup_thread:
1655 bad_unshare_out:
1656 	return err;
1657 }
1658 
1659 /*
1660  *	Helper to unshare the files of the current task.
1661  *	We don't want to expose copy_files internals to
1662  *	the exec layer of the kernel.
1663  */
1664 
1665 int unshare_files(struct files_struct **displaced)
1666 {
1667 	struct task_struct *task = current;
1668 	struct files_struct *copy = NULL;
1669 	int error;
1670 
1671 	error = unshare_fd(CLONE_FILES, &copy);
1672 	if (error || !copy) {
1673 		*displaced = NULL;
1674 		return error;
1675 	}
1676 	*displaced = task->files;
1677 	task_lock(task);
1678 	task->files = copy;
1679 	task_unlock(task);
1680 	return 0;
1681 }
1682