1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/mnt_namespace.h> 21 #include <linux/personality.h> 22 #include <linux/mempolicy.h> 23 #include <linux/sem.h> 24 #include <linux/file.h> 25 #include <linux/fdtable.h> 26 #include <linux/iocontext.h> 27 #include <linux/key.h> 28 #include <linux/binfmts.h> 29 #include <linux/mman.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/swap.h> 37 #include <linux/syscalls.h> 38 #include <linux/jiffies.h> 39 #include <linux/futex.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/rcupdate.h> 42 #include <linux/ptrace.h> 43 #include <linux/mount.h> 44 #include <linux/audit.h> 45 #include <linux/memcontrol.h> 46 #include <linux/profile.h> 47 #include <linux/rmap.h> 48 #include <linux/acct.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/freezer.h> 52 #include <linux/delayacct.h> 53 #include <linux/taskstats_kern.h> 54 #include <linux/random.h> 55 #include <linux/tty.h> 56 #include <linux/proc_fs.h> 57 #include <linux/blkdev.h> 58 59 #include <asm/pgtable.h> 60 #include <asm/pgalloc.h> 61 #include <asm/uaccess.h> 62 #include <asm/mmu_context.h> 63 #include <asm/cacheflush.h> 64 #include <asm/tlbflush.h> 65 66 /* 67 * Protected counters by write_lock_irq(&tasklist_lock) 68 */ 69 unsigned long total_forks; /* Handle normal Linux uptimes. */ 70 int nr_threads; /* The idle threads do not count.. */ 71 72 int max_threads; /* tunable limit on nr_threads */ 73 74 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 75 76 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 77 78 int nr_processes(void) 79 { 80 int cpu; 81 int total = 0; 82 83 for_each_online_cpu(cpu) 84 total += per_cpu(process_counts, cpu); 85 86 return total; 87 } 88 89 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 90 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 91 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 92 static struct kmem_cache *task_struct_cachep; 93 #endif 94 95 /* SLAB cache for signal_struct structures (tsk->signal) */ 96 static struct kmem_cache *signal_cachep; 97 98 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 99 struct kmem_cache *sighand_cachep; 100 101 /* SLAB cache for files_struct structures (tsk->files) */ 102 struct kmem_cache *files_cachep; 103 104 /* SLAB cache for fs_struct structures (tsk->fs) */ 105 struct kmem_cache *fs_cachep; 106 107 /* SLAB cache for vm_area_struct structures */ 108 struct kmem_cache *vm_area_cachep; 109 110 /* SLAB cache for mm_struct structures (tsk->mm) */ 111 static struct kmem_cache *mm_cachep; 112 113 void free_task(struct task_struct *tsk) 114 { 115 prop_local_destroy_single(&tsk->dirties); 116 free_thread_info(tsk->stack); 117 rt_mutex_debug_task_free(tsk); 118 free_task_struct(tsk); 119 } 120 EXPORT_SYMBOL(free_task); 121 122 void __put_task_struct(struct task_struct *tsk) 123 { 124 WARN_ON(!tsk->exit_state); 125 WARN_ON(atomic_read(&tsk->usage)); 126 WARN_ON(tsk == current); 127 128 security_task_free(tsk); 129 free_uid(tsk->user); 130 put_group_info(tsk->group_info); 131 delayacct_tsk_free(tsk); 132 133 if (!profile_handoff_task(tsk)) 134 free_task(tsk); 135 } 136 137 /* 138 * macro override instead of weak attribute alias, to workaround 139 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 140 */ 141 #ifndef arch_task_cache_init 142 #define arch_task_cache_init() 143 #endif 144 145 void __init fork_init(unsigned long mempages) 146 { 147 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 148 #ifndef ARCH_MIN_TASKALIGN 149 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 150 #endif 151 /* create a slab on which task_structs can be allocated */ 152 task_struct_cachep = 153 kmem_cache_create("task_struct", sizeof(struct task_struct), 154 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); 155 #endif 156 157 /* do the arch specific task caches init */ 158 arch_task_cache_init(); 159 160 /* 161 * The default maximum number of threads is set to a safe 162 * value: the thread structures can take up at most half 163 * of memory. 164 */ 165 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 166 167 /* 168 * we need to allow at least 20 threads to boot a system 169 */ 170 if(max_threads < 20) 171 max_threads = 20; 172 173 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 174 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 175 init_task.signal->rlim[RLIMIT_SIGPENDING] = 176 init_task.signal->rlim[RLIMIT_NPROC]; 177 } 178 179 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 180 struct task_struct *src) 181 { 182 *dst = *src; 183 return 0; 184 } 185 186 static struct task_struct *dup_task_struct(struct task_struct *orig) 187 { 188 struct task_struct *tsk; 189 struct thread_info *ti; 190 int err; 191 192 prepare_to_copy(orig); 193 194 tsk = alloc_task_struct(); 195 if (!tsk) 196 return NULL; 197 198 ti = alloc_thread_info(tsk); 199 if (!ti) { 200 free_task_struct(tsk); 201 return NULL; 202 } 203 204 err = arch_dup_task_struct(tsk, orig); 205 if (err) 206 goto out; 207 208 tsk->stack = ti; 209 210 err = prop_local_init_single(&tsk->dirties); 211 if (err) 212 goto out; 213 214 setup_thread_stack(tsk, orig); 215 216 #ifdef CONFIG_CC_STACKPROTECTOR 217 tsk->stack_canary = get_random_int(); 218 #endif 219 220 /* One for us, one for whoever does the "release_task()" (usually parent) */ 221 atomic_set(&tsk->usage,2); 222 atomic_set(&tsk->fs_excl, 0); 223 #ifdef CONFIG_BLK_DEV_IO_TRACE 224 tsk->btrace_seq = 0; 225 #endif 226 tsk->splice_pipe = NULL; 227 return tsk; 228 229 out: 230 free_thread_info(ti); 231 free_task_struct(tsk); 232 return NULL; 233 } 234 235 #ifdef CONFIG_MMU 236 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 237 { 238 struct vm_area_struct *mpnt, *tmp, **pprev; 239 struct rb_node **rb_link, *rb_parent; 240 int retval; 241 unsigned long charge; 242 struct mempolicy *pol; 243 244 down_write(&oldmm->mmap_sem); 245 flush_cache_dup_mm(oldmm); 246 /* 247 * Not linked in yet - no deadlock potential: 248 */ 249 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 250 251 mm->locked_vm = 0; 252 mm->mmap = NULL; 253 mm->mmap_cache = NULL; 254 mm->free_area_cache = oldmm->mmap_base; 255 mm->cached_hole_size = ~0UL; 256 mm->map_count = 0; 257 cpus_clear(mm->cpu_vm_mask); 258 mm->mm_rb = RB_ROOT; 259 rb_link = &mm->mm_rb.rb_node; 260 rb_parent = NULL; 261 pprev = &mm->mmap; 262 263 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 264 struct file *file; 265 266 if (mpnt->vm_flags & VM_DONTCOPY) { 267 long pages = vma_pages(mpnt); 268 mm->total_vm -= pages; 269 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 270 -pages); 271 continue; 272 } 273 charge = 0; 274 if (mpnt->vm_flags & VM_ACCOUNT) { 275 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 276 if (security_vm_enough_memory(len)) 277 goto fail_nomem; 278 charge = len; 279 } 280 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 281 if (!tmp) 282 goto fail_nomem; 283 *tmp = *mpnt; 284 pol = mpol_dup(vma_policy(mpnt)); 285 retval = PTR_ERR(pol); 286 if (IS_ERR(pol)) 287 goto fail_nomem_policy; 288 vma_set_policy(tmp, pol); 289 tmp->vm_flags &= ~VM_LOCKED; 290 tmp->vm_mm = mm; 291 tmp->vm_next = NULL; 292 anon_vma_link(tmp); 293 file = tmp->vm_file; 294 if (file) { 295 struct inode *inode = file->f_path.dentry->d_inode; 296 get_file(file); 297 if (tmp->vm_flags & VM_DENYWRITE) 298 atomic_dec(&inode->i_writecount); 299 300 /* insert tmp into the share list, just after mpnt */ 301 spin_lock(&file->f_mapping->i_mmap_lock); 302 tmp->vm_truncate_count = mpnt->vm_truncate_count; 303 flush_dcache_mmap_lock(file->f_mapping); 304 vma_prio_tree_add(tmp, mpnt); 305 flush_dcache_mmap_unlock(file->f_mapping); 306 spin_unlock(&file->f_mapping->i_mmap_lock); 307 } 308 309 /* 310 * Link in the new vma and copy the page table entries. 311 */ 312 *pprev = tmp; 313 pprev = &tmp->vm_next; 314 315 __vma_link_rb(mm, tmp, rb_link, rb_parent); 316 rb_link = &tmp->vm_rb.rb_right; 317 rb_parent = &tmp->vm_rb; 318 319 mm->map_count++; 320 retval = copy_page_range(mm, oldmm, mpnt); 321 322 if (tmp->vm_ops && tmp->vm_ops->open) 323 tmp->vm_ops->open(tmp); 324 325 if (retval) 326 goto out; 327 } 328 /* a new mm has just been created */ 329 arch_dup_mmap(oldmm, mm); 330 retval = 0; 331 out: 332 up_write(&mm->mmap_sem); 333 flush_tlb_mm(oldmm); 334 up_write(&oldmm->mmap_sem); 335 return retval; 336 fail_nomem_policy: 337 kmem_cache_free(vm_area_cachep, tmp); 338 fail_nomem: 339 retval = -ENOMEM; 340 vm_unacct_memory(charge); 341 goto out; 342 } 343 344 static inline int mm_alloc_pgd(struct mm_struct * mm) 345 { 346 mm->pgd = pgd_alloc(mm); 347 if (unlikely(!mm->pgd)) 348 return -ENOMEM; 349 return 0; 350 } 351 352 static inline void mm_free_pgd(struct mm_struct * mm) 353 { 354 pgd_free(mm, mm->pgd); 355 } 356 #else 357 #define dup_mmap(mm, oldmm) (0) 358 #define mm_alloc_pgd(mm) (0) 359 #define mm_free_pgd(mm) 360 #endif /* CONFIG_MMU */ 361 362 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 363 364 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 365 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 366 367 #include <linux/init_task.h> 368 369 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 370 { 371 atomic_set(&mm->mm_users, 1); 372 atomic_set(&mm->mm_count, 1); 373 init_rwsem(&mm->mmap_sem); 374 INIT_LIST_HEAD(&mm->mmlist); 375 mm->flags = (current->mm) ? current->mm->flags 376 : MMF_DUMP_FILTER_DEFAULT; 377 mm->core_waiters = 0; 378 mm->nr_ptes = 0; 379 set_mm_counter(mm, file_rss, 0); 380 set_mm_counter(mm, anon_rss, 0); 381 spin_lock_init(&mm->page_table_lock); 382 rwlock_init(&mm->ioctx_list_lock); 383 mm->ioctx_list = NULL; 384 mm->free_area_cache = TASK_UNMAPPED_BASE; 385 mm->cached_hole_size = ~0UL; 386 mm_init_owner(mm, p); 387 388 if (likely(!mm_alloc_pgd(mm))) { 389 mm->def_flags = 0; 390 return mm; 391 } 392 393 free_mm(mm); 394 return NULL; 395 } 396 397 /* 398 * Allocate and initialize an mm_struct. 399 */ 400 struct mm_struct * mm_alloc(void) 401 { 402 struct mm_struct * mm; 403 404 mm = allocate_mm(); 405 if (mm) { 406 memset(mm, 0, sizeof(*mm)); 407 mm = mm_init(mm, current); 408 } 409 return mm; 410 } 411 412 /* 413 * Called when the last reference to the mm 414 * is dropped: either by a lazy thread or by 415 * mmput. Free the page directory and the mm. 416 */ 417 void __mmdrop(struct mm_struct *mm) 418 { 419 BUG_ON(mm == &init_mm); 420 mm_free_pgd(mm); 421 destroy_context(mm); 422 free_mm(mm); 423 } 424 EXPORT_SYMBOL_GPL(__mmdrop); 425 426 /* 427 * Decrement the use count and release all resources for an mm. 428 */ 429 void mmput(struct mm_struct *mm) 430 { 431 might_sleep(); 432 433 if (atomic_dec_and_test(&mm->mm_users)) { 434 exit_aio(mm); 435 exit_mmap(mm); 436 set_mm_exe_file(mm, NULL); 437 if (!list_empty(&mm->mmlist)) { 438 spin_lock(&mmlist_lock); 439 list_del(&mm->mmlist); 440 spin_unlock(&mmlist_lock); 441 } 442 put_swap_token(mm); 443 mmdrop(mm); 444 } 445 } 446 EXPORT_SYMBOL_GPL(mmput); 447 448 /** 449 * get_task_mm - acquire a reference to the task's mm 450 * 451 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning 452 * this kernel workthread has transiently adopted a user mm with use_mm, 453 * to do its AIO) is not set and if so returns a reference to it, after 454 * bumping up the use count. User must release the mm via mmput() 455 * after use. Typically used by /proc and ptrace. 456 */ 457 struct mm_struct *get_task_mm(struct task_struct *task) 458 { 459 struct mm_struct *mm; 460 461 task_lock(task); 462 mm = task->mm; 463 if (mm) { 464 if (task->flags & PF_BORROWED_MM) 465 mm = NULL; 466 else 467 atomic_inc(&mm->mm_users); 468 } 469 task_unlock(task); 470 return mm; 471 } 472 EXPORT_SYMBOL_GPL(get_task_mm); 473 474 /* Please note the differences between mmput and mm_release. 475 * mmput is called whenever we stop holding onto a mm_struct, 476 * error success whatever. 477 * 478 * mm_release is called after a mm_struct has been removed 479 * from the current process. 480 * 481 * This difference is important for error handling, when we 482 * only half set up a mm_struct for a new process and need to restore 483 * the old one. Because we mmput the new mm_struct before 484 * restoring the old one. . . 485 * Eric Biederman 10 January 1998 486 */ 487 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 488 { 489 struct completion *vfork_done = tsk->vfork_done; 490 491 /* Get rid of any cached register state */ 492 deactivate_mm(tsk, mm); 493 494 /* notify parent sleeping on vfork() */ 495 if (vfork_done) { 496 tsk->vfork_done = NULL; 497 complete(vfork_done); 498 } 499 500 /* 501 * If we're exiting normally, clear a user-space tid field if 502 * requested. We leave this alone when dying by signal, to leave 503 * the value intact in a core dump, and to save the unnecessary 504 * trouble otherwise. Userland only wants this done for a sys_exit. 505 */ 506 if (tsk->clear_child_tid 507 && !(tsk->flags & PF_SIGNALED) 508 && atomic_read(&mm->mm_users) > 1) { 509 u32 __user * tidptr = tsk->clear_child_tid; 510 tsk->clear_child_tid = NULL; 511 512 /* 513 * We don't check the error code - if userspace has 514 * not set up a proper pointer then tough luck. 515 */ 516 put_user(0, tidptr); 517 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 518 } 519 } 520 521 /* 522 * Allocate a new mm structure and copy contents from the 523 * mm structure of the passed in task structure. 524 */ 525 struct mm_struct *dup_mm(struct task_struct *tsk) 526 { 527 struct mm_struct *mm, *oldmm = current->mm; 528 int err; 529 530 if (!oldmm) 531 return NULL; 532 533 mm = allocate_mm(); 534 if (!mm) 535 goto fail_nomem; 536 537 memcpy(mm, oldmm, sizeof(*mm)); 538 539 /* Initializing for Swap token stuff */ 540 mm->token_priority = 0; 541 mm->last_interval = 0; 542 543 if (!mm_init(mm, tsk)) 544 goto fail_nomem; 545 546 if (init_new_context(tsk, mm)) 547 goto fail_nocontext; 548 549 dup_mm_exe_file(oldmm, mm); 550 551 err = dup_mmap(mm, oldmm); 552 if (err) 553 goto free_pt; 554 555 mm->hiwater_rss = get_mm_rss(mm); 556 mm->hiwater_vm = mm->total_vm; 557 558 return mm; 559 560 free_pt: 561 mmput(mm); 562 563 fail_nomem: 564 return NULL; 565 566 fail_nocontext: 567 /* 568 * If init_new_context() failed, we cannot use mmput() to free the mm 569 * because it calls destroy_context() 570 */ 571 mm_free_pgd(mm); 572 free_mm(mm); 573 return NULL; 574 } 575 576 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 577 { 578 struct mm_struct * mm, *oldmm; 579 int retval; 580 581 tsk->min_flt = tsk->maj_flt = 0; 582 tsk->nvcsw = tsk->nivcsw = 0; 583 584 tsk->mm = NULL; 585 tsk->active_mm = NULL; 586 587 /* 588 * Are we cloning a kernel thread? 589 * 590 * We need to steal a active VM for that.. 591 */ 592 oldmm = current->mm; 593 if (!oldmm) 594 return 0; 595 596 if (clone_flags & CLONE_VM) { 597 atomic_inc(&oldmm->mm_users); 598 mm = oldmm; 599 goto good_mm; 600 } 601 602 retval = -ENOMEM; 603 mm = dup_mm(tsk); 604 if (!mm) 605 goto fail_nomem; 606 607 good_mm: 608 /* Initializing for Swap token stuff */ 609 mm->token_priority = 0; 610 mm->last_interval = 0; 611 612 tsk->mm = mm; 613 tsk->active_mm = mm; 614 return 0; 615 616 fail_nomem: 617 return retval; 618 } 619 620 static struct fs_struct *__copy_fs_struct(struct fs_struct *old) 621 { 622 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 623 /* We don't need to lock fs - think why ;-) */ 624 if (fs) { 625 atomic_set(&fs->count, 1); 626 rwlock_init(&fs->lock); 627 fs->umask = old->umask; 628 read_lock(&old->lock); 629 fs->root = old->root; 630 path_get(&old->root); 631 fs->pwd = old->pwd; 632 path_get(&old->pwd); 633 if (old->altroot.dentry) { 634 fs->altroot = old->altroot; 635 path_get(&old->altroot); 636 } else { 637 fs->altroot.mnt = NULL; 638 fs->altroot.dentry = NULL; 639 } 640 read_unlock(&old->lock); 641 } 642 return fs; 643 } 644 645 struct fs_struct *copy_fs_struct(struct fs_struct *old) 646 { 647 return __copy_fs_struct(old); 648 } 649 650 EXPORT_SYMBOL_GPL(copy_fs_struct); 651 652 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 653 { 654 if (clone_flags & CLONE_FS) { 655 atomic_inc(¤t->fs->count); 656 return 0; 657 } 658 tsk->fs = __copy_fs_struct(current->fs); 659 if (!tsk->fs) 660 return -ENOMEM; 661 return 0; 662 } 663 664 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 665 { 666 struct files_struct *oldf, *newf; 667 int error = 0; 668 669 /* 670 * A background process may not have any files ... 671 */ 672 oldf = current->files; 673 if (!oldf) 674 goto out; 675 676 if (clone_flags & CLONE_FILES) { 677 atomic_inc(&oldf->count); 678 goto out; 679 } 680 681 newf = dup_fd(oldf, &error); 682 if (!newf) 683 goto out; 684 685 tsk->files = newf; 686 error = 0; 687 out: 688 return error; 689 } 690 691 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 692 { 693 #ifdef CONFIG_BLOCK 694 struct io_context *ioc = current->io_context; 695 696 if (!ioc) 697 return 0; 698 /* 699 * Share io context with parent, if CLONE_IO is set 700 */ 701 if (clone_flags & CLONE_IO) { 702 tsk->io_context = ioc_task_link(ioc); 703 if (unlikely(!tsk->io_context)) 704 return -ENOMEM; 705 } else if (ioprio_valid(ioc->ioprio)) { 706 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 707 if (unlikely(!tsk->io_context)) 708 return -ENOMEM; 709 710 tsk->io_context->ioprio = ioc->ioprio; 711 } 712 #endif 713 return 0; 714 } 715 716 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 717 { 718 struct sighand_struct *sig; 719 720 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { 721 atomic_inc(¤t->sighand->count); 722 return 0; 723 } 724 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 725 rcu_assign_pointer(tsk->sighand, sig); 726 if (!sig) 727 return -ENOMEM; 728 atomic_set(&sig->count, 1); 729 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 730 return 0; 731 } 732 733 void __cleanup_sighand(struct sighand_struct *sighand) 734 { 735 if (atomic_dec_and_test(&sighand->count)) 736 kmem_cache_free(sighand_cachep, sighand); 737 } 738 739 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 740 { 741 struct signal_struct *sig; 742 int ret; 743 744 if (clone_flags & CLONE_THREAD) { 745 atomic_inc(¤t->signal->count); 746 atomic_inc(¤t->signal->live); 747 return 0; 748 } 749 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 750 tsk->signal = sig; 751 if (!sig) 752 return -ENOMEM; 753 754 ret = copy_thread_group_keys(tsk); 755 if (ret < 0) { 756 kmem_cache_free(signal_cachep, sig); 757 return ret; 758 } 759 760 atomic_set(&sig->count, 1); 761 atomic_set(&sig->live, 1); 762 init_waitqueue_head(&sig->wait_chldexit); 763 sig->flags = 0; 764 sig->group_exit_code = 0; 765 sig->group_exit_task = NULL; 766 sig->group_stop_count = 0; 767 sig->curr_target = tsk; 768 init_sigpending(&sig->shared_pending); 769 INIT_LIST_HEAD(&sig->posix_timers); 770 771 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 772 sig->it_real_incr.tv64 = 0; 773 sig->real_timer.function = it_real_fn; 774 775 sig->it_virt_expires = cputime_zero; 776 sig->it_virt_incr = cputime_zero; 777 sig->it_prof_expires = cputime_zero; 778 sig->it_prof_incr = cputime_zero; 779 780 sig->leader = 0; /* session leadership doesn't inherit */ 781 sig->tty_old_pgrp = NULL; 782 783 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; 784 sig->gtime = cputime_zero; 785 sig->cgtime = cputime_zero; 786 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 787 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 788 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 789 sig->sum_sched_runtime = 0; 790 INIT_LIST_HEAD(&sig->cpu_timers[0]); 791 INIT_LIST_HEAD(&sig->cpu_timers[1]); 792 INIT_LIST_HEAD(&sig->cpu_timers[2]); 793 taskstats_tgid_init(sig); 794 795 task_lock(current->group_leader); 796 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 797 task_unlock(current->group_leader); 798 799 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 800 /* 801 * New sole thread in the process gets an expiry time 802 * of the whole CPU time limit. 803 */ 804 tsk->it_prof_expires = 805 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); 806 } 807 acct_init_pacct(&sig->pacct); 808 809 tty_audit_fork(sig); 810 811 return 0; 812 } 813 814 void __cleanup_signal(struct signal_struct *sig) 815 { 816 exit_thread_group_keys(sig); 817 kmem_cache_free(signal_cachep, sig); 818 } 819 820 static void cleanup_signal(struct task_struct *tsk) 821 { 822 struct signal_struct *sig = tsk->signal; 823 824 atomic_dec(&sig->live); 825 826 if (atomic_dec_and_test(&sig->count)) 827 __cleanup_signal(sig); 828 } 829 830 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 831 { 832 unsigned long new_flags = p->flags; 833 834 new_flags &= ~PF_SUPERPRIV; 835 new_flags |= PF_FORKNOEXEC; 836 if (!(clone_flags & CLONE_PTRACE)) 837 p->ptrace = 0; 838 p->flags = new_flags; 839 clear_freeze_flag(p); 840 } 841 842 asmlinkage long sys_set_tid_address(int __user *tidptr) 843 { 844 current->clear_child_tid = tidptr; 845 846 return task_pid_vnr(current); 847 } 848 849 static void rt_mutex_init_task(struct task_struct *p) 850 { 851 spin_lock_init(&p->pi_lock); 852 #ifdef CONFIG_RT_MUTEXES 853 plist_head_init(&p->pi_waiters, &p->pi_lock); 854 p->pi_blocked_on = NULL; 855 #endif 856 } 857 858 #ifdef CONFIG_MM_OWNER 859 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 860 { 861 mm->owner = p; 862 } 863 #endif /* CONFIG_MM_OWNER */ 864 865 /* 866 * This creates a new process as a copy of the old one, 867 * but does not actually start it yet. 868 * 869 * It copies the registers, and all the appropriate 870 * parts of the process environment (as per the clone 871 * flags). The actual kick-off is left to the caller. 872 */ 873 static struct task_struct *copy_process(unsigned long clone_flags, 874 unsigned long stack_start, 875 struct pt_regs *regs, 876 unsigned long stack_size, 877 int __user *child_tidptr, 878 struct pid *pid) 879 { 880 int retval; 881 struct task_struct *p; 882 int cgroup_callbacks_done = 0; 883 884 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 885 return ERR_PTR(-EINVAL); 886 887 /* 888 * Thread groups must share signals as well, and detached threads 889 * can only be started up within the thread group. 890 */ 891 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 892 return ERR_PTR(-EINVAL); 893 894 /* 895 * Shared signal handlers imply shared VM. By way of the above, 896 * thread groups also imply shared VM. Blocking this case allows 897 * for various simplifications in other code. 898 */ 899 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 900 return ERR_PTR(-EINVAL); 901 902 retval = security_task_create(clone_flags); 903 if (retval) 904 goto fork_out; 905 906 retval = -ENOMEM; 907 p = dup_task_struct(current); 908 if (!p) 909 goto fork_out; 910 911 rt_mutex_init_task(p); 912 913 #ifdef CONFIG_PROVE_LOCKING 914 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 915 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 916 #endif 917 retval = -EAGAIN; 918 if (atomic_read(&p->user->processes) >= 919 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 920 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 921 p->user != current->nsproxy->user_ns->root_user) 922 goto bad_fork_free; 923 } 924 925 atomic_inc(&p->user->__count); 926 atomic_inc(&p->user->processes); 927 get_group_info(p->group_info); 928 929 /* 930 * If multiple threads are within copy_process(), then this check 931 * triggers too late. This doesn't hurt, the check is only there 932 * to stop root fork bombs. 933 */ 934 if (nr_threads >= max_threads) 935 goto bad_fork_cleanup_count; 936 937 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 938 goto bad_fork_cleanup_count; 939 940 if (p->binfmt && !try_module_get(p->binfmt->module)) 941 goto bad_fork_cleanup_put_domain; 942 943 p->did_exec = 0; 944 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 945 copy_flags(clone_flags, p); 946 INIT_LIST_HEAD(&p->children); 947 INIT_LIST_HEAD(&p->sibling); 948 #ifdef CONFIG_PREEMPT_RCU 949 p->rcu_read_lock_nesting = 0; 950 p->rcu_flipctr_idx = 0; 951 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 952 p->vfork_done = NULL; 953 spin_lock_init(&p->alloc_lock); 954 955 clear_tsk_thread_flag(p, TIF_SIGPENDING); 956 init_sigpending(&p->pending); 957 958 p->utime = cputime_zero; 959 p->stime = cputime_zero; 960 p->gtime = cputime_zero; 961 p->utimescaled = cputime_zero; 962 p->stimescaled = cputime_zero; 963 p->prev_utime = cputime_zero; 964 p->prev_stime = cputime_zero; 965 966 #ifdef CONFIG_DETECT_SOFTLOCKUP 967 p->last_switch_count = 0; 968 p->last_switch_timestamp = 0; 969 #endif 970 971 #ifdef CONFIG_TASK_XACCT 972 p->rchar = 0; /* I/O counter: bytes read */ 973 p->wchar = 0; /* I/O counter: bytes written */ 974 p->syscr = 0; /* I/O counter: read syscalls */ 975 p->syscw = 0; /* I/O counter: write syscalls */ 976 #endif 977 task_io_accounting_init(p); 978 acct_clear_integrals(p); 979 980 p->it_virt_expires = cputime_zero; 981 p->it_prof_expires = cputime_zero; 982 p->it_sched_expires = 0; 983 INIT_LIST_HEAD(&p->cpu_timers[0]); 984 INIT_LIST_HEAD(&p->cpu_timers[1]); 985 INIT_LIST_HEAD(&p->cpu_timers[2]); 986 987 p->lock_depth = -1; /* -1 = no lock */ 988 do_posix_clock_monotonic_gettime(&p->start_time); 989 p->real_start_time = p->start_time; 990 monotonic_to_bootbased(&p->real_start_time); 991 #ifdef CONFIG_SECURITY 992 p->security = NULL; 993 #endif 994 p->cap_bset = current->cap_bset; 995 p->io_context = NULL; 996 p->audit_context = NULL; 997 cgroup_fork(p); 998 #ifdef CONFIG_NUMA 999 p->mempolicy = mpol_dup(p->mempolicy); 1000 if (IS_ERR(p->mempolicy)) { 1001 retval = PTR_ERR(p->mempolicy); 1002 p->mempolicy = NULL; 1003 goto bad_fork_cleanup_cgroup; 1004 } 1005 mpol_fix_fork_child_flag(p); 1006 #endif 1007 #ifdef CONFIG_TRACE_IRQFLAGS 1008 p->irq_events = 0; 1009 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1010 p->hardirqs_enabled = 1; 1011 #else 1012 p->hardirqs_enabled = 0; 1013 #endif 1014 p->hardirq_enable_ip = 0; 1015 p->hardirq_enable_event = 0; 1016 p->hardirq_disable_ip = _THIS_IP_; 1017 p->hardirq_disable_event = 0; 1018 p->softirqs_enabled = 1; 1019 p->softirq_enable_ip = _THIS_IP_; 1020 p->softirq_enable_event = 0; 1021 p->softirq_disable_ip = 0; 1022 p->softirq_disable_event = 0; 1023 p->hardirq_context = 0; 1024 p->softirq_context = 0; 1025 #endif 1026 #ifdef CONFIG_LOCKDEP 1027 p->lockdep_depth = 0; /* no locks held yet */ 1028 p->curr_chain_key = 0; 1029 p->lockdep_recursion = 0; 1030 #endif 1031 1032 #ifdef CONFIG_DEBUG_MUTEXES 1033 p->blocked_on = NULL; /* not blocked yet */ 1034 #endif 1035 1036 /* Perform scheduler related setup. Assign this task to a CPU. */ 1037 sched_fork(p, clone_flags); 1038 1039 if ((retval = security_task_alloc(p))) 1040 goto bad_fork_cleanup_policy; 1041 if ((retval = audit_alloc(p))) 1042 goto bad_fork_cleanup_security; 1043 /* copy all the process information */ 1044 if ((retval = copy_semundo(clone_flags, p))) 1045 goto bad_fork_cleanup_audit; 1046 if ((retval = copy_files(clone_flags, p))) 1047 goto bad_fork_cleanup_semundo; 1048 if ((retval = copy_fs(clone_flags, p))) 1049 goto bad_fork_cleanup_files; 1050 if ((retval = copy_sighand(clone_flags, p))) 1051 goto bad_fork_cleanup_fs; 1052 if ((retval = copy_signal(clone_flags, p))) 1053 goto bad_fork_cleanup_sighand; 1054 if ((retval = copy_mm(clone_flags, p))) 1055 goto bad_fork_cleanup_signal; 1056 if ((retval = copy_keys(clone_flags, p))) 1057 goto bad_fork_cleanup_mm; 1058 if ((retval = copy_namespaces(clone_flags, p))) 1059 goto bad_fork_cleanup_keys; 1060 if ((retval = copy_io(clone_flags, p))) 1061 goto bad_fork_cleanup_namespaces; 1062 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 1063 if (retval) 1064 goto bad_fork_cleanup_io; 1065 1066 if (pid != &init_struct_pid) { 1067 retval = -ENOMEM; 1068 pid = alloc_pid(task_active_pid_ns(p)); 1069 if (!pid) 1070 goto bad_fork_cleanup_io; 1071 1072 if (clone_flags & CLONE_NEWPID) { 1073 retval = pid_ns_prepare_proc(task_active_pid_ns(p)); 1074 if (retval < 0) 1075 goto bad_fork_free_pid; 1076 } 1077 } 1078 1079 p->pid = pid_nr(pid); 1080 p->tgid = p->pid; 1081 if (clone_flags & CLONE_THREAD) 1082 p->tgid = current->tgid; 1083 1084 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1085 /* 1086 * Clear TID on mm_release()? 1087 */ 1088 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1089 #ifdef CONFIG_FUTEX 1090 p->robust_list = NULL; 1091 #ifdef CONFIG_COMPAT 1092 p->compat_robust_list = NULL; 1093 #endif 1094 INIT_LIST_HEAD(&p->pi_state_list); 1095 p->pi_state_cache = NULL; 1096 #endif 1097 /* 1098 * sigaltstack should be cleared when sharing the same VM 1099 */ 1100 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1101 p->sas_ss_sp = p->sas_ss_size = 0; 1102 1103 /* 1104 * Syscall tracing should be turned off in the child regardless 1105 * of CLONE_PTRACE. 1106 */ 1107 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1108 #ifdef TIF_SYSCALL_EMU 1109 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1110 #endif 1111 clear_all_latency_tracing(p); 1112 1113 /* Our parent execution domain becomes current domain 1114 These must match for thread signalling to apply */ 1115 p->parent_exec_id = p->self_exec_id; 1116 1117 /* ok, now we should be set up.. */ 1118 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1119 p->pdeath_signal = 0; 1120 p->exit_state = 0; 1121 1122 /* 1123 * Ok, make it visible to the rest of the system. 1124 * We dont wake it up yet. 1125 */ 1126 p->group_leader = p; 1127 INIT_LIST_HEAD(&p->thread_group); 1128 INIT_LIST_HEAD(&p->ptrace_entry); 1129 INIT_LIST_HEAD(&p->ptraced); 1130 1131 /* Now that the task is set up, run cgroup callbacks if 1132 * necessary. We need to run them before the task is visible 1133 * on the tasklist. */ 1134 cgroup_fork_callbacks(p); 1135 cgroup_callbacks_done = 1; 1136 1137 /* Need tasklist lock for parent etc handling! */ 1138 write_lock_irq(&tasklist_lock); 1139 1140 /* 1141 * The task hasn't been attached yet, so its cpus_allowed mask will 1142 * not be changed, nor will its assigned CPU. 1143 * 1144 * The cpus_allowed mask of the parent may have changed after it was 1145 * copied first time - so re-copy it here, then check the child's CPU 1146 * to ensure it is on a valid CPU (and if not, just force it back to 1147 * parent's CPU). This avoids alot of nasty races. 1148 */ 1149 p->cpus_allowed = current->cpus_allowed; 1150 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; 1151 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || 1152 !cpu_online(task_cpu(p)))) 1153 set_task_cpu(p, smp_processor_id()); 1154 1155 /* CLONE_PARENT re-uses the old parent */ 1156 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1157 p->real_parent = current->real_parent; 1158 else 1159 p->real_parent = current; 1160 p->parent = p->real_parent; 1161 1162 spin_lock(¤t->sighand->siglock); 1163 1164 /* 1165 * Process group and session signals need to be delivered to just the 1166 * parent before the fork or both the parent and the child after the 1167 * fork. Restart if a signal comes in before we add the new process to 1168 * it's process group. 1169 * A fatal signal pending means that current will exit, so the new 1170 * thread can't slip out of an OOM kill (or normal SIGKILL). 1171 */ 1172 recalc_sigpending(); 1173 if (signal_pending(current)) { 1174 spin_unlock(¤t->sighand->siglock); 1175 write_unlock_irq(&tasklist_lock); 1176 retval = -ERESTARTNOINTR; 1177 goto bad_fork_free_pid; 1178 } 1179 1180 if (clone_flags & CLONE_THREAD) { 1181 p->group_leader = current->group_leader; 1182 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1183 1184 if (!cputime_eq(current->signal->it_virt_expires, 1185 cputime_zero) || 1186 !cputime_eq(current->signal->it_prof_expires, 1187 cputime_zero) || 1188 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || 1189 !list_empty(¤t->signal->cpu_timers[0]) || 1190 !list_empty(¤t->signal->cpu_timers[1]) || 1191 !list_empty(¤t->signal->cpu_timers[2])) { 1192 /* 1193 * Have child wake up on its first tick to check 1194 * for process CPU timers. 1195 */ 1196 p->it_prof_expires = jiffies_to_cputime(1); 1197 } 1198 } 1199 1200 if (likely(p->pid)) { 1201 list_add_tail(&p->sibling, &p->real_parent->children); 1202 if (unlikely(p->ptrace & PT_PTRACED)) 1203 __ptrace_link(p, current->parent); 1204 1205 if (thread_group_leader(p)) { 1206 if (clone_flags & CLONE_NEWPID) 1207 p->nsproxy->pid_ns->child_reaper = p; 1208 1209 p->signal->leader_pid = pid; 1210 p->signal->tty = current->signal->tty; 1211 set_task_pgrp(p, task_pgrp_nr(current)); 1212 set_task_session(p, task_session_nr(current)); 1213 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1214 attach_pid(p, PIDTYPE_SID, task_session(current)); 1215 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1216 __get_cpu_var(process_counts)++; 1217 } 1218 attach_pid(p, PIDTYPE_PID, pid); 1219 nr_threads++; 1220 } 1221 1222 total_forks++; 1223 spin_unlock(¤t->sighand->siglock); 1224 write_unlock_irq(&tasklist_lock); 1225 proc_fork_connector(p); 1226 cgroup_post_fork(p); 1227 return p; 1228 1229 bad_fork_free_pid: 1230 if (pid != &init_struct_pid) 1231 free_pid(pid); 1232 bad_fork_cleanup_io: 1233 put_io_context(p->io_context); 1234 bad_fork_cleanup_namespaces: 1235 exit_task_namespaces(p); 1236 bad_fork_cleanup_keys: 1237 exit_keys(p); 1238 bad_fork_cleanup_mm: 1239 if (p->mm) 1240 mmput(p->mm); 1241 bad_fork_cleanup_signal: 1242 cleanup_signal(p); 1243 bad_fork_cleanup_sighand: 1244 __cleanup_sighand(p->sighand); 1245 bad_fork_cleanup_fs: 1246 exit_fs(p); /* blocking */ 1247 bad_fork_cleanup_files: 1248 exit_files(p); /* blocking */ 1249 bad_fork_cleanup_semundo: 1250 exit_sem(p); 1251 bad_fork_cleanup_audit: 1252 audit_free(p); 1253 bad_fork_cleanup_security: 1254 security_task_free(p); 1255 bad_fork_cleanup_policy: 1256 #ifdef CONFIG_NUMA 1257 mpol_put(p->mempolicy); 1258 bad_fork_cleanup_cgroup: 1259 #endif 1260 cgroup_exit(p, cgroup_callbacks_done); 1261 delayacct_tsk_free(p); 1262 if (p->binfmt) 1263 module_put(p->binfmt->module); 1264 bad_fork_cleanup_put_domain: 1265 module_put(task_thread_info(p)->exec_domain->module); 1266 bad_fork_cleanup_count: 1267 put_group_info(p->group_info); 1268 atomic_dec(&p->user->processes); 1269 free_uid(p->user); 1270 bad_fork_free: 1271 free_task(p); 1272 fork_out: 1273 return ERR_PTR(retval); 1274 } 1275 1276 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1277 { 1278 memset(regs, 0, sizeof(struct pt_regs)); 1279 return regs; 1280 } 1281 1282 struct task_struct * __cpuinit fork_idle(int cpu) 1283 { 1284 struct task_struct *task; 1285 struct pt_regs regs; 1286 1287 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1288 &init_struct_pid); 1289 if (!IS_ERR(task)) 1290 init_idle(task, cpu); 1291 1292 return task; 1293 } 1294 1295 static int fork_traceflag(unsigned clone_flags) 1296 { 1297 if (clone_flags & CLONE_UNTRACED) 1298 return 0; 1299 else if (clone_flags & CLONE_VFORK) { 1300 if (current->ptrace & PT_TRACE_VFORK) 1301 return PTRACE_EVENT_VFORK; 1302 } else if ((clone_flags & CSIGNAL) != SIGCHLD) { 1303 if (current->ptrace & PT_TRACE_CLONE) 1304 return PTRACE_EVENT_CLONE; 1305 } else if (current->ptrace & PT_TRACE_FORK) 1306 return PTRACE_EVENT_FORK; 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * Ok, this is the main fork-routine. 1313 * 1314 * It copies the process, and if successful kick-starts 1315 * it and waits for it to finish using the VM if required. 1316 */ 1317 long do_fork(unsigned long clone_flags, 1318 unsigned long stack_start, 1319 struct pt_regs *regs, 1320 unsigned long stack_size, 1321 int __user *parent_tidptr, 1322 int __user *child_tidptr) 1323 { 1324 struct task_struct *p; 1325 int trace = 0; 1326 long nr; 1327 1328 /* 1329 * We hope to recycle these flags after 2.6.26 1330 */ 1331 if (unlikely(clone_flags & CLONE_STOPPED)) { 1332 static int __read_mostly count = 100; 1333 1334 if (count > 0 && printk_ratelimit()) { 1335 char comm[TASK_COMM_LEN]; 1336 1337 count--; 1338 printk(KERN_INFO "fork(): process `%s' used deprecated " 1339 "clone flags 0x%lx\n", 1340 get_task_comm(comm, current), 1341 clone_flags & CLONE_STOPPED); 1342 } 1343 } 1344 1345 if (unlikely(current->ptrace)) { 1346 trace = fork_traceflag (clone_flags); 1347 if (trace) 1348 clone_flags |= CLONE_PTRACE; 1349 } 1350 1351 p = copy_process(clone_flags, stack_start, regs, stack_size, 1352 child_tidptr, NULL); 1353 /* 1354 * Do this prior waking up the new thread - the thread pointer 1355 * might get invalid after that point, if the thread exits quickly. 1356 */ 1357 if (!IS_ERR(p)) { 1358 struct completion vfork; 1359 1360 nr = task_pid_vnr(p); 1361 1362 if (clone_flags & CLONE_PARENT_SETTID) 1363 put_user(nr, parent_tidptr); 1364 1365 if (clone_flags & CLONE_VFORK) { 1366 p->vfork_done = &vfork; 1367 init_completion(&vfork); 1368 } 1369 1370 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { 1371 /* 1372 * We'll start up with an immediate SIGSTOP. 1373 */ 1374 sigaddset(&p->pending.signal, SIGSTOP); 1375 set_tsk_thread_flag(p, TIF_SIGPENDING); 1376 } 1377 1378 if (!(clone_flags & CLONE_STOPPED)) 1379 wake_up_new_task(p, clone_flags); 1380 else 1381 __set_task_state(p, TASK_STOPPED); 1382 1383 if (unlikely (trace)) { 1384 current->ptrace_message = nr; 1385 ptrace_notify ((trace << 8) | SIGTRAP); 1386 } 1387 1388 if (clone_flags & CLONE_VFORK) { 1389 freezer_do_not_count(); 1390 wait_for_completion(&vfork); 1391 freezer_count(); 1392 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { 1393 current->ptrace_message = nr; 1394 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); 1395 } 1396 } 1397 } else { 1398 nr = PTR_ERR(p); 1399 } 1400 return nr; 1401 } 1402 1403 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1404 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1405 #endif 1406 1407 static void sighand_ctor(struct kmem_cache *cachep, void *data) 1408 { 1409 struct sighand_struct *sighand = data; 1410 1411 spin_lock_init(&sighand->siglock); 1412 init_waitqueue_head(&sighand->signalfd_wqh); 1413 } 1414 1415 void __init proc_caches_init(void) 1416 { 1417 sighand_cachep = kmem_cache_create("sighand_cache", 1418 sizeof(struct sighand_struct), 0, 1419 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, 1420 sighand_ctor); 1421 signal_cachep = kmem_cache_create("signal_cache", 1422 sizeof(struct signal_struct), 0, 1423 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1424 files_cachep = kmem_cache_create("files_cache", 1425 sizeof(struct files_struct), 0, 1426 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1427 fs_cachep = kmem_cache_create("fs_cache", 1428 sizeof(struct fs_struct), 0, 1429 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1430 vm_area_cachep = kmem_cache_create("vm_area_struct", 1431 sizeof(struct vm_area_struct), 0, 1432 SLAB_PANIC, NULL); 1433 mm_cachep = kmem_cache_create("mm_struct", 1434 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1435 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1436 } 1437 1438 /* 1439 * Check constraints on flags passed to the unshare system call and 1440 * force unsharing of additional process context as appropriate. 1441 */ 1442 static void check_unshare_flags(unsigned long *flags_ptr) 1443 { 1444 /* 1445 * If unsharing a thread from a thread group, must also 1446 * unshare vm. 1447 */ 1448 if (*flags_ptr & CLONE_THREAD) 1449 *flags_ptr |= CLONE_VM; 1450 1451 /* 1452 * If unsharing vm, must also unshare signal handlers. 1453 */ 1454 if (*flags_ptr & CLONE_VM) 1455 *flags_ptr |= CLONE_SIGHAND; 1456 1457 /* 1458 * If unsharing signal handlers and the task was created 1459 * using CLONE_THREAD, then must unshare the thread 1460 */ 1461 if ((*flags_ptr & CLONE_SIGHAND) && 1462 (atomic_read(¤t->signal->count) > 1)) 1463 *flags_ptr |= CLONE_THREAD; 1464 1465 /* 1466 * If unsharing namespace, must also unshare filesystem information. 1467 */ 1468 if (*flags_ptr & CLONE_NEWNS) 1469 *flags_ptr |= CLONE_FS; 1470 } 1471 1472 /* 1473 * Unsharing of tasks created with CLONE_THREAD is not supported yet 1474 */ 1475 static int unshare_thread(unsigned long unshare_flags) 1476 { 1477 if (unshare_flags & CLONE_THREAD) 1478 return -EINVAL; 1479 1480 return 0; 1481 } 1482 1483 /* 1484 * Unshare the filesystem structure if it is being shared 1485 */ 1486 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1487 { 1488 struct fs_struct *fs = current->fs; 1489 1490 if ((unshare_flags & CLONE_FS) && 1491 (fs && atomic_read(&fs->count) > 1)) { 1492 *new_fsp = __copy_fs_struct(current->fs); 1493 if (!*new_fsp) 1494 return -ENOMEM; 1495 } 1496 1497 return 0; 1498 } 1499 1500 /* 1501 * Unsharing of sighand is not supported yet 1502 */ 1503 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) 1504 { 1505 struct sighand_struct *sigh = current->sighand; 1506 1507 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) 1508 return -EINVAL; 1509 else 1510 return 0; 1511 } 1512 1513 /* 1514 * Unshare vm if it is being shared 1515 */ 1516 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) 1517 { 1518 struct mm_struct *mm = current->mm; 1519 1520 if ((unshare_flags & CLONE_VM) && 1521 (mm && atomic_read(&mm->mm_users) > 1)) { 1522 return -EINVAL; 1523 } 1524 1525 return 0; 1526 } 1527 1528 /* 1529 * Unshare file descriptor table if it is being shared 1530 */ 1531 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1532 { 1533 struct files_struct *fd = current->files; 1534 int error = 0; 1535 1536 if ((unshare_flags & CLONE_FILES) && 1537 (fd && atomic_read(&fd->count) > 1)) { 1538 *new_fdp = dup_fd(fd, &error); 1539 if (!*new_fdp) 1540 return error; 1541 } 1542 1543 return 0; 1544 } 1545 1546 /* 1547 * unshare allows a process to 'unshare' part of the process 1548 * context which was originally shared using clone. copy_* 1549 * functions used by do_fork() cannot be used here directly 1550 * because they modify an inactive task_struct that is being 1551 * constructed. Here we are modifying the current, active, 1552 * task_struct. 1553 */ 1554 asmlinkage long sys_unshare(unsigned long unshare_flags) 1555 { 1556 int err = 0; 1557 struct fs_struct *fs, *new_fs = NULL; 1558 struct sighand_struct *new_sigh = NULL; 1559 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; 1560 struct files_struct *fd, *new_fd = NULL; 1561 struct nsproxy *new_nsproxy = NULL; 1562 int do_sysvsem = 0; 1563 1564 check_unshare_flags(&unshare_flags); 1565 1566 /* Return -EINVAL for all unsupported flags */ 1567 err = -EINVAL; 1568 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1569 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1570 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| 1571 CLONE_NEWNET)) 1572 goto bad_unshare_out; 1573 1574 /* 1575 * CLONE_NEWIPC must also detach from the undolist: after switching 1576 * to a new ipc namespace, the semaphore arrays from the old 1577 * namespace are unreachable. 1578 */ 1579 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1580 do_sysvsem = 1; 1581 if ((err = unshare_thread(unshare_flags))) 1582 goto bad_unshare_out; 1583 if ((err = unshare_fs(unshare_flags, &new_fs))) 1584 goto bad_unshare_cleanup_thread; 1585 if ((err = unshare_sighand(unshare_flags, &new_sigh))) 1586 goto bad_unshare_cleanup_fs; 1587 if ((err = unshare_vm(unshare_flags, &new_mm))) 1588 goto bad_unshare_cleanup_sigh; 1589 if ((err = unshare_fd(unshare_flags, &new_fd))) 1590 goto bad_unshare_cleanup_vm; 1591 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1592 new_fs))) 1593 goto bad_unshare_cleanup_fd; 1594 1595 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) { 1596 if (do_sysvsem) { 1597 /* 1598 * CLONE_SYSVSEM is equivalent to sys_exit(). 1599 */ 1600 exit_sem(current); 1601 } 1602 1603 if (new_nsproxy) { 1604 switch_task_namespaces(current, new_nsproxy); 1605 new_nsproxy = NULL; 1606 } 1607 1608 task_lock(current); 1609 1610 if (new_fs) { 1611 fs = current->fs; 1612 current->fs = new_fs; 1613 new_fs = fs; 1614 } 1615 1616 if (new_mm) { 1617 mm = current->mm; 1618 active_mm = current->active_mm; 1619 current->mm = new_mm; 1620 current->active_mm = new_mm; 1621 activate_mm(active_mm, new_mm); 1622 new_mm = mm; 1623 } 1624 1625 if (new_fd) { 1626 fd = current->files; 1627 current->files = new_fd; 1628 new_fd = fd; 1629 } 1630 1631 task_unlock(current); 1632 } 1633 1634 if (new_nsproxy) 1635 put_nsproxy(new_nsproxy); 1636 1637 bad_unshare_cleanup_fd: 1638 if (new_fd) 1639 put_files_struct(new_fd); 1640 1641 bad_unshare_cleanup_vm: 1642 if (new_mm) 1643 mmput(new_mm); 1644 1645 bad_unshare_cleanup_sigh: 1646 if (new_sigh) 1647 if (atomic_dec_and_test(&new_sigh->count)) 1648 kmem_cache_free(sighand_cachep, new_sigh); 1649 1650 bad_unshare_cleanup_fs: 1651 if (new_fs) 1652 put_fs_struct(new_fs); 1653 1654 bad_unshare_cleanup_thread: 1655 bad_unshare_out: 1656 return err; 1657 } 1658 1659 /* 1660 * Helper to unshare the files of the current task. 1661 * We don't want to expose copy_files internals to 1662 * the exec layer of the kernel. 1663 */ 1664 1665 int unshare_files(struct files_struct **displaced) 1666 { 1667 struct task_struct *task = current; 1668 struct files_struct *copy = NULL; 1669 int error; 1670 1671 error = unshare_fd(CLONE_FILES, ©); 1672 if (error || !copy) { 1673 *displaced = NULL; 1674 return error; 1675 } 1676 *displaced = task->files; 1677 task_lock(task); 1678 task->files = copy; 1679 task_unlock(task); 1680 return 0; 1681 } 1682