1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/mnt_namespace.h> 21 #include <linux/personality.h> 22 #include <linux/mempolicy.h> 23 #include <linux/sem.h> 24 #include <linux/file.h> 25 #include <linux/fdtable.h> 26 #include <linux/iocontext.h> 27 #include <linux/key.h> 28 #include <linux/binfmts.h> 29 #include <linux/mman.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/fs.h> 32 #include <linux/nsproxy.h> 33 #include <linux/capability.h> 34 #include <linux/cpu.h> 35 #include <linux/cgroup.h> 36 #include <linux/security.h> 37 #include <linux/hugetlb.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/tracehook.h> 42 #include <linux/futex.h> 43 #include <linux/compat.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/profile.h> 51 #include <linux/rmap.h> 52 #include <linux/acct.h> 53 #include <linux/tsacct_kern.h> 54 #include <linux/cn_proc.h> 55 #include <linux/freezer.h> 56 #include <linux/delayacct.h> 57 #include <linux/taskstats_kern.h> 58 #include <linux/random.h> 59 #include <linux/tty.h> 60 #include <linux/proc_fs.h> 61 #include <linux/blkdev.h> 62 #include <trace/sched.h> 63 64 #include <asm/pgtable.h> 65 #include <asm/pgalloc.h> 66 #include <asm/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/cacheflush.h> 69 #include <asm/tlbflush.h> 70 71 /* 72 * Protected counters by write_lock_irq(&tasklist_lock) 73 */ 74 unsigned long total_forks; /* Handle normal Linux uptimes. */ 75 int nr_threads; /* The idle threads do not count.. */ 76 77 int max_threads; /* tunable limit on nr_threads */ 78 79 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 80 81 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 82 83 int nr_processes(void) 84 { 85 int cpu; 86 int total = 0; 87 88 for_each_online_cpu(cpu) 89 total += per_cpu(process_counts, cpu); 90 91 return total; 92 } 93 94 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 95 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 96 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 97 static struct kmem_cache *task_struct_cachep; 98 #endif 99 100 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 101 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk) 102 { 103 #ifdef CONFIG_DEBUG_STACK_USAGE 104 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 105 #else 106 gfp_t mask = GFP_KERNEL; 107 #endif 108 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER); 109 } 110 111 static inline void free_thread_info(struct thread_info *ti) 112 { 113 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 114 } 115 #endif 116 117 /* SLAB cache for signal_struct structures (tsk->signal) */ 118 static struct kmem_cache *signal_cachep; 119 120 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 121 struct kmem_cache *sighand_cachep; 122 123 /* SLAB cache for files_struct structures (tsk->files) */ 124 struct kmem_cache *files_cachep; 125 126 /* SLAB cache for fs_struct structures (tsk->fs) */ 127 struct kmem_cache *fs_cachep; 128 129 /* SLAB cache for vm_area_struct structures */ 130 struct kmem_cache *vm_area_cachep; 131 132 /* SLAB cache for mm_struct structures (tsk->mm) */ 133 static struct kmem_cache *mm_cachep; 134 135 void free_task(struct task_struct *tsk) 136 { 137 prop_local_destroy_single(&tsk->dirties); 138 free_thread_info(tsk->stack); 139 rt_mutex_debug_task_free(tsk); 140 free_task_struct(tsk); 141 } 142 EXPORT_SYMBOL(free_task); 143 144 void __put_task_struct(struct task_struct *tsk) 145 { 146 WARN_ON(!tsk->exit_state); 147 WARN_ON(atomic_read(&tsk->usage)); 148 WARN_ON(tsk == current); 149 150 security_task_free(tsk); 151 free_uid(tsk->user); 152 put_group_info(tsk->group_info); 153 delayacct_tsk_free(tsk); 154 155 if (!profile_handoff_task(tsk)) 156 free_task(tsk); 157 } 158 159 /* 160 * macro override instead of weak attribute alias, to workaround 161 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 162 */ 163 #ifndef arch_task_cache_init 164 #define arch_task_cache_init() 165 #endif 166 167 void __init fork_init(unsigned long mempages) 168 { 169 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 170 #ifndef ARCH_MIN_TASKALIGN 171 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 172 #endif 173 /* create a slab on which task_structs can be allocated */ 174 task_struct_cachep = 175 kmem_cache_create("task_struct", sizeof(struct task_struct), 176 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); 177 #endif 178 179 /* do the arch specific task caches init */ 180 arch_task_cache_init(); 181 182 /* 183 * The default maximum number of threads is set to a safe 184 * value: the thread structures can take up at most half 185 * of memory. 186 */ 187 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 188 189 /* 190 * we need to allow at least 20 threads to boot a system 191 */ 192 if(max_threads < 20) 193 max_threads = 20; 194 195 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 196 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 197 init_task.signal->rlim[RLIMIT_SIGPENDING] = 198 init_task.signal->rlim[RLIMIT_NPROC]; 199 } 200 201 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 202 struct task_struct *src) 203 { 204 *dst = *src; 205 return 0; 206 } 207 208 static struct task_struct *dup_task_struct(struct task_struct *orig) 209 { 210 struct task_struct *tsk; 211 struct thread_info *ti; 212 int err; 213 214 prepare_to_copy(orig); 215 216 tsk = alloc_task_struct(); 217 if (!tsk) 218 return NULL; 219 220 ti = alloc_thread_info(tsk); 221 if (!ti) { 222 free_task_struct(tsk); 223 return NULL; 224 } 225 226 err = arch_dup_task_struct(tsk, orig); 227 if (err) 228 goto out; 229 230 tsk->stack = ti; 231 232 err = prop_local_init_single(&tsk->dirties); 233 if (err) 234 goto out; 235 236 setup_thread_stack(tsk, orig); 237 238 #ifdef CONFIG_CC_STACKPROTECTOR 239 tsk->stack_canary = get_random_int(); 240 #endif 241 242 /* One for us, one for whoever does the "release_task()" (usually parent) */ 243 atomic_set(&tsk->usage,2); 244 atomic_set(&tsk->fs_excl, 0); 245 #ifdef CONFIG_BLK_DEV_IO_TRACE 246 tsk->btrace_seq = 0; 247 #endif 248 tsk->splice_pipe = NULL; 249 return tsk; 250 251 out: 252 free_thread_info(ti); 253 free_task_struct(tsk); 254 return NULL; 255 } 256 257 #ifdef CONFIG_MMU 258 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 259 { 260 struct vm_area_struct *mpnt, *tmp, **pprev; 261 struct rb_node **rb_link, *rb_parent; 262 int retval; 263 unsigned long charge; 264 struct mempolicy *pol; 265 266 down_write(&oldmm->mmap_sem); 267 flush_cache_dup_mm(oldmm); 268 /* 269 * Not linked in yet - no deadlock potential: 270 */ 271 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 272 273 mm->locked_vm = 0; 274 mm->mmap = NULL; 275 mm->mmap_cache = NULL; 276 mm->free_area_cache = oldmm->mmap_base; 277 mm->cached_hole_size = ~0UL; 278 mm->map_count = 0; 279 cpus_clear(mm->cpu_vm_mask); 280 mm->mm_rb = RB_ROOT; 281 rb_link = &mm->mm_rb.rb_node; 282 rb_parent = NULL; 283 pprev = &mm->mmap; 284 285 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 286 struct file *file; 287 288 if (mpnt->vm_flags & VM_DONTCOPY) { 289 long pages = vma_pages(mpnt); 290 mm->total_vm -= pages; 291 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 292 -pages); 293 continue; 294 } 295 charge = 0; 296 if (mpnt->vm_flags & VM_ACCOUNT) { 297 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 298 if (security_vm_enough_memory(len)) 299 goto fail_nomem; 300 charge = len; 301 } 302 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 303 if (!tmp) 304 goto fail_nomem; 305 *tmp = *mpnt; 306 pol = mpol_dup(vma_policy(mpnt)); 307 retval = PTR_ERR(pol); 308 if (IS_ERR(pol)) 309 goto fail_nomem_policy; 310 vma_set_policy(tmp, pol); 311 tmp->vm_flags &= ~VM_LOCKED; 312 tmp->vm_mm = mm; 313 tmp->vm_next = NULL; 314 anon_vma_link(tmp); 315 file = tmp->vm_file; 316 if (file) { 317 struct inode *inode = file->f_path.dentry->d_inode; 318 get_file(file); 319 if (tmp->vm_flags & VM_DENYWRITE) 320 atomic_dec(&inode->i_writecount); 321 322 /* insert tmp into the share list, just after mpnt */ 323 spin_lock(&file->f_mapping->i_mmap_lock); 324 tmp->vm_truncate_count = mpnt->vm_truncate_count; 325 flush_dcache_mmap_lock(file->f_mapping); 326 vma_prio_tree_add(tmp, mpnt); 327 flush_dcache_mmap_unlock(file->f_mapping); 328 spin_unlock(&file->f_mapping->i_mmap_lock); 329 } 330 331 /* 332 * Clear hugetlb-related page reserves for children. This only 333 * affects MAP_PRIVATE mappings. Faults generated by the child 334 * are not guaranteed to succeed, even if read-only 335 */ 336 if (is_vm_hugetlb_page(tmp)) 337 reset_vma_resv_huge_pages(tmp); 338 339 /* 340 * Link in the new vma and copy the page table entries. 341 */ 342 *pprev = tmp; 343 pprev = &tmp->vm_next; 344 345 __vma_link_rb(mm, tmp, rb_link, rb_parent); 346 rb_link = &tmp->vm_rb.rb_right; 347 rb_parent = &tmp->vm_rb; 348 349 mm->map_count++; 350 retval = copy_page_range(mm, oldmm, mpnt); 351 352 if (tmp->vm_ops && tmp->vm_ops->open) 353 tmp->vm_ops->open(tmp); 354 355 if (retval) 356 goto out; 357 } 358 /* a new mm has just been created */ 359 arch_dup_mmap(oldmm, mm); 360 retval = 0; 361 out: 362 up_write(&mm->mmap_sem); 363 flush_tlb_mm(oldmm); 364 up_write(&oldmm->mmap_sem); 365 return retval; 366 fail_nomem_policy: 367 kmem_cache_free(vm_area_cachep, tmp); 368 fail_nomem: 369 retval = -ENOMEM; 370 vm_unacct_memory(charge); 371 goto out; 372 } 373 374 static inline int mm_alloc_pgd(struct mm_struct * mm) 375 { 376 mm->pgd = pgd_alloc(mm); 377 if (unlikely(!mm->pgd)) 378 return -ENOMEM; 379 return 0; 380 } 381 382 static inline void mm_free_pgd(struct mm_struct * mm) 383 { 384 pgd_free(mm, mm->pgd); 385 } 386 #else 387 #define dup_mmap(mm, oldmm) (0) 388 #define mm_alloc_pgd(mm) (0) 389 #define mm_free_pgd(mm) 390 #endif /* CONFIG_MMU */ 391 392 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 393 394 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 395 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 396 397 #include <linux/init_task.h> 398 399 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 400 { 401 atomic_set(&mm->mm_users, 1); 402 atomic_set(&mm->mm_count, 1); 403 init_rwsem(&mm->mmap_sem); 404 INIT_LIST_HEAD(&mm->mmlist); 405 mm->flags = (current->mm) ? current->mm->flags 406 : MMF_DUMP_FILTER_DEFAULT; 407 mm->core_state = NULL; 408 mm->nr_ptes = 0; 409 set_mm_counter(mm, file_rss, 0); 410 set_mm_counter(mm, anon_rss, 0); 411 spin_lock_init(&mm->page_table_lock); 412 rwlock_init(&mm->ioctx_list_lock); 413 mm->ioctx_list = NULL; 414 mm->free_area_cache = TASK_UNMAPPED_BASE; 415 mm->cached_hole_size = ~0UL; 416 mm_init_owner(mm, p); 417 418 if (likely(!mm_alloc_pgd(mm))) { 419 mm->def_flags = 0; 420 mmu_notifier_mm_init(mm); 421 return mm; 422 } 423 424 free_mm(mm); 425 return NULL; 426 } 427 428 /* 429 * Allocate and initialize an mm_struct. 430 */ 431 struct mm_struct * mm_alloc(void) 432 { 433 struct mm_struct * mm; 434 435 mm = allocate_mm(); 436 if (mm) { 437 memset(mm, 0, sizeof(*mm)); 438 mm = mm_init(mm, current); 439 } 440 return mm; 441 } 442 443 /* 444 * Called when the last reference to the mm 445 * is dropped: either by a lazy thread or by 446 * mmput. Free the page directory and the mm. 447 */ 448 void __mmdrop(struct mm_struct *mm) 449 { 450 BUG_ON(mm == &init_mm); 451 mm_free_pgd(mm); 452 destroy_context(mm); 453 mmu_notifier_mm_destroy(mm); 454 free_mm(mm); 455 } 456 EXPORT_SYMBOL_GPL(__mmdrop); 457 458 /* 459 * Decrement the use count and release all resources for an mm. 460 */ 461 void mmput(struct mm_struct *mm) 462 { 463 might_sleep(); 464 465 if (atomic_dec_and_test(&mm->mm_users)) { 466 exit_aio(mm); 467 exit_mmap(mm); 468 set_mm_exe_file(mm, NULL); 469 if (!list_empty(&mm->mmlist)) { 470 spin_lock(&mmlist_lock); 471 list_del(&mm->mmlist); 472 spin_unlock(&mmlist_lock); 473 } 474 put_swap_token(mm); 475 mmdrop(mm); 476 } 477 } 478 EXPORT_SYMBOL_GPL(mmput); 479 480 /** 481 * get_task_mm - acquire a reference to the task's mm 482 * 483 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 484 * this kernel workthread has transiently adopted a user mm with use_mm, 485 * to do its AIO) is not set and if so returns a reference to it, after 486 * bumping up the use count. User must release the mm via mmput() 487 * after use. Typically used by /proc and ptrace. 488 */ 489 struct mm_struct *get_task_mm(struct task_struct *task) 490 { 491 struct mm_struct *mm; 492 493 task_lock(task); 494 mm = task->mm; 495 if (mm) { 496 if (task->flags & PF_KTHREAD) 497 mm = NULL; 498 else 499 atomic_inc(&mm->mm_users); 500 } 501 task_unlock(task); 502 return mm; 503 } 504 EXPORT_SYMBOL_GPL(get_task_mm); 505 506 /* Please note the differences between mmput and mm_release. 507 * mmput is called whenever we stop holding onto a mm_struct, 508 * error success whatever. 509 * 510 * mm_release is called after a mm_struct has been removed 511 * from the current process. 512 * 513 * This difference is important for error handling, when we 514 * only half set up a mm_struct for a new process and need to restore 515 * the old one. Because we mmput the new mm_struct before 516 * restoring the old one. . . 517 * Eric Biederman 10 January 1998 518 */ 519 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 520 { 521 struct completion *vfork_done = tsk->vfork_done; 522 523 /* Get rid of any futexes when releasing the mm */ 524 #ifdef CONFIG_FUTEX 525 if (unlikely(tsk->robust_list)) 526 exit_robust_list(tsk); 527 #ifdef CONFIG_COMPAT 528 if (unlikely(tsk->compat_robust_list)) 529 compat_exit_robust_list(tsk); 530 #endif 531 #endif 532 533 /* Get rid of any cached register state */ 534 deactivate_mm(tsk, mm); 535 536 /* notify parent sleeping on vfork() */ 537 if (vfork_done) { 538 tsk->vfork_done = NULL; 539 complete(vfork_done); 540 } 541 542 /* 543 * If we're exiting normally, clear a user-space tid field if 544 * requested. We leave this alone when dying by signal, to leave 545 * the value intact in a core dump, and to save the unnecessary 546 * trouble otherwise. Userland only wants this done for a sys_exit. 547 */ 548 if (tsk->clear_child_tid 549 && !(tsk->flags & PF_SIGNALED) 550 && atomic_read(&mm->mm_users) > 1) { 551 u32 __user * tidptr = tsk->clear_child_tid; 552 tsk->clear_child_tid = NULL; 553 554 /* 555 * We don't check the error code - if userspace has 556 * not set up a proper pointer then tough luck. 557 */ 558 put_user(0, tidptr); 559 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 560 } 561 } 562 563 /* 564 * Allocate a new mm structure and copy contents from the 565 * mm structure of the passed in task structure. 566 */ 567 struct mm_struct *dup_mm(struct task_struct *tsk) 568 { 569 struct mm_struct *mm, *oldmm = current->mm; 570 int err; 571 572 if (!oldmm) 573 return NULL; 574 575 mm = allocate_mm(); 576 if (!mm) 577 goto fail_nomem; 578 579 memcpy(mm, oldmm, sizeof(*mm)); 580 581 /* Initializing for Swap token stuff */ 582 mm->token_priority = 0; 583 mm->last_interval = 0; 584 585 if (!mm_init(mm, tsk)) 586 goto fail_nomem; 587 588 if (init_new_context(tsk, mm)) 589 goto fail_nocontext; 590 591 dup_mm_exe_file(oldmm, mm); 592 593 err = dup_mmap(mm, oldmm); 594 if (err) 595 goto free_pt; 596 597 mm->hiwater_rss = get_mm_rss(mm); 598 mm->hiwater_vm = mm->total_vm; 599 600 return mm; 601 602 free_pt: 603 mmput(mm); 604 605 fail_nomem: 606 return NULL; 607 608 fail_nocontext: 609 /* 610 * If init_new_context() failed, we cannot use mmput() to free the mm 611 * because it calls destroy_context() 612 */ 613 mm_free_pgd(mm); 614 free_mm(mm); 615 return NULL; 616 } 617 618 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 619 { 620 struct mm_struct * mm, *oldmm; 621 int retval; 622 623 tsk->min_flt = tsk->maj_flt = 0; 624 tsk->nvcsw = tsk->nivcsw = 0; 625 626 tsk->mm = NULL; 627 tsk->active_mm = NULL; 628 629 /* 630 * Are we cloning a kernel thread? 631 * 632 * We need to steal a active VM for that.. 633 */ 634 oldmm = current->mm; 635 if (!oldmm) 636 return 0; 637 638 if (clone_flags & CLONE_VM) { 639 atomic_inc(&oldmm->mm_users); 640 mm = oldmm; 641 goto good_mm; 642 } 643 644 retval = -ENOMEM; 645 mm = dup_mm(tsk); 646 if (!mm) 647 goto fail_nomem; 648 649 good_mm: 650 /* Initializing for Swap token stuff */ 651 mm->token_priority = 0; 652 mm->last_interval = 0; 653 654 tsk->mm = mm; 655 tsk->active_mm = mm; 656 return 0; 657 658 fail_nomem: 659 return retval; 660 } 661 662 static struct fs_struct *__copy_fs_struct(struct fs_struct *old) 663 { 664 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 665 /* We don't need to lock fs - think why ;-) */ 666 if (fs) { 667 atomic_set(&fs->count, 1); 668 rwlock_init(&fs->lock); 669 fs->umask = old->umask; 670 read_lock(&old->lock); 671 fs->root = old->root; 672 path_get(&old->root); 673 fs->pwd = old->pwd; 674 path_get(&old->pwd); 675 read_unlock(&old->lock); 676 } 677 return fs; 678 } 679 680 struct fs_struct *copy_fs_struct(struct fs_struct *old) 681 { 682 return __copy_fs_struct(old); 683 } 684 685 EXPORT_SYMBOL_GPL(copy_fs_struct); 686 687 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 688 { 689 if (clone_flags & CLONE_FS) { 690 atomic_inc(¤t->fs->count); 691 return 0; 692 } 693 tsk->fs = __copy_fs_struct(current->fs); 694 if (!tsk->fs) 695 return -ENOMEM; 696 return 0; 697 } 698 699 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 700 { 701 struct files_struct *oldf, *newf; 702 int error = 0; 703 704 /* 705 * A background process may not have any files ... 706 */ 707 oldf = current->files; 708 if (!oldf) 709 goto out; 710 711 if (clone_flags & CLONE_FILES) { 712 atomic_inc(&oldf->count); 713 goto out; 714 } 715 716 newf = dup_fd(oldf, &error); 717 if (!newf) 718 goto out; 719 720 tsk->files = newf; 721 error = 0; 722 out: 723 return error; 724 } 725 726 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 727 { 728 #ifdef CONFIG_BLOCK 729 struct io_context *ioc = current->io_context; 730 731 if (!ioc) 732 return 0; 733 /* 734 * Share io context with parent, if CLONE_IO is set 735 */ 736 if (clone_flags & CLONE_IO) { 737 tsk->io_context = ioc_task_link(ioc); 738 if (unlikely(!tsk->io_context)) 739 return -ENOMEM; 740 } else if (ioprio_valid(ioc->ioprio)) { 741 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 742 if (unlikely(!tsk->io_context)) 743 return -ENOMEM; 744 745 tsk->io_context->ioprio = ioc->ioprio; 746 } 747 #endif 748 return 0; 749 } 750 751 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 752 { 753 struct sighand_struct *sig; 754 755 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { 756 atomic_inc(¤t->sighand->count); 757 return 0; 758 } 759 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 760 rcu_assign_pointer(tsk->sighand, sig); 761 if (!sig) 762 return -ENOMEM; 763 atomic_set(&sig->count, 1); 764 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 765 return 0; 766 } 767 768 void __cleanup_sighand(struct sighand_struct *sighand) 769 { 770 if (atomic_dec_and_test(&sighand->count)) 771 kmem_cache_free(sighand_cachep, sighand); 772 } 773 774 775 /* 776 * Initialize POSIX timer handling for a thread group. 777 */ 778 static void posix_cpu_timers_init_group(struct signal_struct *sig) 779 { 780 /* Thread group counters. */ 781 thread_group_cputime_init(sig); 782 783 /* Expiration times and increments. */ 784 sig->it_virt_expires = cputime_zero; 785 sig->it_virt_incr = cputime_zero; 786 sig->it_prof_expires = cputime_zero; 787 sig->it_prof_incr = cputime_zero; 788 789 /* Cached expiration times. */ 790 sig->cputime_expires.prof_exp = cputime_zero; 791 sig->cputime_expires.virt_exp = cputime_zero; 792 sig->cputime_expires.sched_exp = 0; 793 794 /* The timer lists. */ 795 INIT_LIST_HEAD(&sig->cpu_timers[0]); 796 INIT_LIST_HEAD(&sig->cpu_timers[1]); 797 INIT_LIST_HEAD(&sig->cpu_timers[2]); 798 } 799 800 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 801 { 802 struct signal_struct *sig; 803 int ret; 804 805 if (clone_flags & CLONE_THREAD) { 806 ret = thread_group_cputime_clone_thread(current); 807 if (likely(!ret)) { 808 atomic_inc(¤t->signal->count); 809 atomic_inc(¤t->signal->live); 810 } 811 return ret; 812 } 813 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 814 tsk->signal = sig; 815 if (!sig) 816 return -ENOMEM; 817 818 ret = copy_thread_group_keys(tsk); 819 if (ret < 0) { 820 kmem_cache_free(signal_cachep, sig); 821 return ret; 822 } 823 824 atomic_set(&sig->count, 1); 825 atomic_set(&sig->live, 1); 826 init_waitqueue_head(&sig->wait_chldexit); 827 sig->flags = 0; 828 sig->group_exit_code = 0; 829 sig->group_exit_task = NULL; 830 sig->group_stop_count = 0; 831 sig->curr_target = tsk; 832 init_sigpending(&sig->shared_pending); 833 INIT_LIST_HEAD(&sig->posix_timers); 834 835 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 836 sig->it_real_incr.tv64 = 0; 837 sig->real_timer.function = it_real_fn; 838 839 sig->leader = 0; /* session leadership doesn't inherit */ 840 sig->tty_old_pgrp = NULL; 841 sig->tty = NULL; 842 843 sig->cutime = sig->cstime = cputime_zero; 844 sig->gtime = cputime_zero; 845 sig->cgtime = cputime_zero; 846 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 847 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 848 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 849 task_io_accounting_init(&sig->ioac); 850 taskstats_tgid_init(sig); 851 852 task_lock(current->group_leader); 853 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 854 task_unlock(current->group_leader); 855 856 posix_cpu_timers_init_group(sig); 857 858 acct_init_pacct(&sig->pacct); 859 860 tty_audit_fork(sig); 861 862 return 0; 863 } 864 865 void __cleanup_signal(struct signal_struct *sig) 866 { 867 thread_group_cputime_free(sig); 868 exit_thread_group_keys(sig); 869 tty_kref_put(sig->tty); 870 kmem_cache_free(signal_cachep, sig); 871 } 872 873 static void cleanup_signal(struct task_struct *tsk) 874 { 875 struct signal_struct *sig = tsk->signal; 876 877 atomic_dec(&sig->live); 878 879 if (atomic_dec_and_test(&sig->count)) 880 __cleanup_signal(sig); 881 } 882 883 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 884 { 885 unsigned long new_flags = p->flags; 886 887 new_flags &= ~PF_SUPERPRIV; 888 new_flags |= PF_FORKNOEXEC; 889 new_flags |= PF_STARTING; 890 p->flags = new_flags; 891 clear_freeze_flag(p); 892 } 893 894 asmlinkage long sys_set_tid_address(int __user *tidptr) 895 { 896 current->clear_child_tid = tidptr; 897 898 return task_pid_vnr(current); 899 } 900 901 static void rt_mutex_init_task(struct task_struct *p) 902 { 903 spin_lock_init(&p->pi_lock); 904 #ifdef CONFIG_RT_MUTEXES 905 plist_head_init(&p->pi_waiters, &p->pi_lock); 906 p->pi_blocked_on = NULL; 907 #endif 908 } 909 910 #ifdef CONFIG_MM_OWNER 911 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 912 { 913 mm->owner = p; 914 } 915 #endif /* CONFIG_MM_OWNER */ 916 917 /* 918 * Initialize POSIX timer handling for a single task. 919 */ 920 static void posix_cpu_timers_init(struct task_struct *tsk) 921 { 922 tsk->cputime_expires.prof_exp = cputime_zero; 923 tsk->cputime_expires.virt_exp = cputime_zero; 924 tsk->cputime_expires.sched_exp = 0; 925 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 926 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 927 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 928 } 929 930 /* 931 * This creates a new process as a copy of the old one, 932 * but does not actually start it yet. 933 * 934 * It copies the registers, and all the appropriate 935 * parts of the process environment (as per the clone 936 * flags). The actual kick-off is left to the caller. 937 */ 938 static struct task_struct *copy_process(unsigned long clone_flags, 939 unsigned long stack_start, 940 struct pt_regs *regs, 941 unsigned long stack_size, 942 int __user *child_tidptr, 943 struct pid *pid, 944 int trace) 945 { 946 int retval; 947 struct task_struct *p; 948 int cgroup_callbacks_done = 0; 949 950 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 951 return ERR_PTR(-EINVAL); 952 953 /* 954 * Thread groups must share signals as well, and detached threads 955 * can only be started up within the thread group. 956 */ 957 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 958 return ERR_PTR(-EINVAL); 959 960 /* 961 * Shared signal handlers imply shared VM. By way of the above, 962 * thread groups also imply shared VM. Blocking this case allows 963 * for various simplifications in other code. 964 */ 965 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 966 return ERR_PTR(-EINVAL); 967 968 retval = security_task_create(clone_flags); 969 if (retval) 970 goto fork_out; 971 972 retval = -ENOMEM; 973 p = dup_task_struct(current); 974 if (!p) 975 goto fork_out; 976 977 rt_mutex_init_task(p); 978 979 #ifdef CONFIG_PROVE_LOCKING 980 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 981 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 982 #endif 983 retval = -EAGAIN; 984 if (atomic_read(&p->user->processes) >= 985 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 986 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 987 p->user != current->nsproxy->user_ns->root_user) 988 goto bad_fork_free; 989 } 990 991 atomic_inc(&p->user->__count); 992 atomic_inc(&p->user->processes); 993 get_group_info(p->group_info); 994 995 /* 996 * If multiple threads are within copy_process(), then this check 997 * triggers too late. This doesn't hurt, the check is only there 998 * to stop root fork bombs. 999 */ 1000 if (nr_threads >= max_threads) 1001 goto bad_fork_cleanup_count; 1002 1003 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1004 goto bad_fork_cleanup_count; 1005 1006 if (p->binfmt && !try_module_get(p->binfmt->module)) 1007 goto bad_fork_cleanup_put_domain; 1008 1009 p->did_exec = 0; 1010 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1011 copy_flags(clone_flags, p); 1012 INIT_LIST_HEAD(&p->children); 1013 INIT_LIST_HEAD(&p->sibling); 1014 #ifdef CONFIG_PREEMPT_RCU 1015 p->rcu_read_lock_nesting = 0; 1016 p->rcu_flipctr_idx = 0; 1017 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1018 p->vfork_done = NULL; 1019 spin_lock_init(&p->alloc_lock); 1020 1021 clear_tsk_thread_flag(p, TIF_SIGPENDING); 1022 init_sigpending(&p->pending); 1023 1024 p->utime = cputime_zero; 1025 p->stime = cputime_zero; 1026 p->gtime = cputime_zero; 1027 p->utimescaled = cputime_zero; 1028 p->stimescaled = cputime_zero; 1029 p->prev_utime = cputime_zero; 1030 p->prev_stime = cputime_zero; 1031 1032 p->default_timer_slack_ns = current->timer_slack_ns; 1033 1034 #ifdef CONFIG_DETECT_SOFTLOCKUP 1035 p->last_switch_count = 0; 1036 p->last_switch_timestamp = 0; 1037 #endif 1038 1039 task_io_accounting_init(&p->ioac); 1040 acct_clear_integrals(p); 1041 1042 posix_cpu_timers_init(p); 1043 1044 p->lock_depth = -1; /* -1 = no lock */ 1045 do_posix_clock_monotonic_gettime(&p->start_time); 1046 p->real_start_time = p->start_time; 1047 monotonic_to_bootbased(&p->real_start_time); 1048 #ifdef CONFIG_SECURITY 1049 p->security = NULL; 1050 #endif 1051 p->cap_bset = current->cap_bset; 1052 p->io_context = NULL; 1053 p->audit_context = NULL; 1054 cgroup_fork(p); 1055 #ifdef CONFIG_NUMA 1056 p->mempolicy = mpol_dup(p->mempolicy); 1057 if (IS_ERR(p->mempolicy)) { 1058 retval = PTR_ERR(p->mempolicy); 1059 p->mempolicy = NULL; 1060 goto bad_fork_cleanup_cgroup; 1061 } 1062 mpol_fix_fork_child_flag(p); 1063 #endif 1064 #ifdef CONFIG_TRACE_IRQFLAGS 1065 p->irq_events = 0; 1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1067 p->hardirqs_enabled = 1; 1068 #else 1069 p->hardirqs_enabled = 0; 1070 #endif 1071 p->hardirq_enable_ip = 0; 1072 p->hardirq_enable_event = 0; 1073 p->hardirq_disable_ip = _THIS_IP_; 1074 p->hardirq_disable_event = 0; 1075 p->softirqs_enabled = 1; 1076 p->softirq_enable_ip = _THIS_IP_; 1077 p->softirq_enable_event = 0; 1078 p->softirq_disable_ip = 0; 1079 p->softirq_disable_event = 0; 1080 p->hardirq_context = 0; 1081 p->softirq_context = 0; 1082 #endif 1083 #ifdef CONFIG_LOCKDEP 1084 p->lockdep_depth = 0; /* no locks held yet */ 1085 p->curr_chain_key = 0; 1086 p->lockdep_recursion = 0; 1087 #endif 1088 1089 #ifdef CONFIG_DEBUG_MUTEXES 1090 p->blocked_on = NULL; /* not blocked yet */ 1091 #endif 1092 1093 /* Perform scheduler related setup. Assign this task to a CPU. */ 1094 sched_fork(p, clone_flags); 1095 1096 if ((retval = security_task_alloc(p))) 1097 goto bad_fork_cleanup_policy; 1098 if ((retval = audit_alloc(p))) 1099 goto bad_fork_cleanup_security; 1100 /* copy all the process information */ 1101 if ((retval = copy_semundo(clone_flags, p))) 1102 goto bad_fork_cleanup_audit; 1103 if ((retval = copy_files(clone_flags, p))) 1104 goto bad_fork_cleanup_semundo; 1105 if ((retval = copy_fs(clone_flags, p))) 1106 goto bad_fork_cleanup_files; 1107 if ((retval = copy_sighand(clone_flags, p))) 1108 goto bad_fork_cleanup_fs; 1109 if ((retval = copy_signal(clone_flags, p))) 1110 goto bad_fork_cleanup_sighand; 1111 if ((retval = copy_mm(clone_flags, p))) 1112 goto bad_fork_cleanup_signal; 1113 if ((retval = copy_keys(clone_flags, p))) 1114 goto bad_fork_cleanup_mm; 1115 if ((retval = copy_namespaces(clone_flags, p))) 1116 goto bad_fork_cleanup_keys; 1117 if ((retval = copy_io(clone_flags, p))) 1118 goto bad_fork_cleanup_namespaces; 1119 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 1120 if (retval) 1121 goto bad_fork_cleanup_io; 1122 1123 if (pid != &init_struct_pid) { 1124 retval = -ENOMEM; 1125 pid = alloc_pid(task_active_pid_ns(p)); 1126 if (!pid) 1127 goto bad_fork_cleanup_io; 1128 1129 if (clone_flags & CLONE_NEWPID) { 1130 retval = pid_ns_prepare_proc(task_active_pid_ns(p)); 1131 if (retval < 0) 1132 goto bad_fork_free_pid; 1133 } 1134 } 1135 1136 p->pid = pid_nr(pid); 1137 p->tgid = p->pid; 1138 if (clone_flags & CLONE_THREAD) 1139 p->tgid = current->tgid; 1140 1141 if (current->nsproxy != p->nsproxy) { 1142 retval = ns_cgroup_clone(p, pid); 1143 if (retval) 1144 goto bad_fork_free_pid; 1145 } 1146 1147 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1148 /* 1149 * Clear TID on mm_release()? 1150 */ 1151 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1152 #ifdef CONFIG_FUTEX 1153 p->robust_list = NULL; 1154 #ifdef CONFIG_COMPAT 1155 p->compat_robust_list = NULL; 1156 #endif 1157 INIT_LIST_HEAD(&p->pi_state_list); 1158 p->pi_state_cache = NULL; 1159 #endif 1160 /* 1161 * sigaltstack should be cleared when sharing the same VM 1162 */ 1163 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1164 p->sas_ss_sp = p->sas_ss_size = 0; 1165 1166 /* 1167 * Syscall tracing should be turned off in the child regardless 1168 * of CLONE_PTRACE. 1169 */ 1170 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1171 #ifdef TIF_SYSCALL_EMU 1172 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1173 #endif 1174 clear_all_latency_tracing(p); 1175 1176 /* Our parent execution domain becomes current domain 1177 These must match for thread signalling to apply */ 1178 p->parent_exec_id = p->self_exec_id; 1179 1180 /* ok, now we should be set up.. */ 1181 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1182 p->pdeath_signal = 0; 1183 p->exit_state = 0; 1184 1185 /* 1186 * Ok, make it visible to the rest of the system. 1187 * We dont wake it up yet. 1188 */ 1189 p->group_leader = p; 1190 INIT_LIST_HEAD(&p->thread_group); 1191 1192 /* Now that the task is set up, run cgroup callbacks if 1193 * necessary. We need to run them before the task is visible 1194 * on the tasklist. */ 1195 cgroup_fork_callbacks(p); 1196 cgroup_callbacks_done = 1; 1197 1198 /* Need tasklist lock for parent etc handling! */ 1199 write_lock_irq(&tasklist_lock); 1200 1201 /* 1202 * The task hasn't been attached yet, so its cpus_allowed mask will 1203 * not be changed, nor will its assigned CPU. 1204 * 1205 * The cpus_allowed mask of the parent may have changed after it was 1206 * copied first time - so re-copy it here, then check the child's CPU 1207 * to ensure it is on a valid CPU (and if not, just force it back to 1208 * parent's CPU). This avoids alot of nasty races. 1209 */ 1210 p->cpus_allowed = current->cpus_allowed; 1211 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; 1212 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || 1213 !cpu_online(task_cpu(p)))) 1214 set_task_cpu(p, smp_processor_id()); 1215 1216 /* CLONE_PARENT re-uses the old parent */ 1217 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1218 p->real_parent = current->real_parent; 1219 else 1220 p->real_parent = current; 1221 1222 spin_lock(¤t->sighand->siglock); 1223 1224 /* 1225 * Process group and session signals need to be delivered to just the 1226 * parent before the fork or both the parent and the child after the 1227 * fork. Restart if a signal comes in before we add the new process to 1228 * it's process group. 1229 * A fatal signal pending means that current will exit, so the new 1230 * thread can't slip out of an OOM kill (or normal SIGKILL). 1231 */ 1232 recalc_sigpending(); 1233 if (signal_pending(current)) { 1234 spin_unlock(¤t->sighand->siglock); 1235 write_unlock_irq(&tasklist_lock); 1236 retval = -ERESTARTNOINTR; 1237 goto bad_fork_free_pid; 1238 } 1239 1240 if (clone_flags & CLONE_THREAD) { 1241 p->group_leader = current->group_leader; 1242 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1243 } 1244 1245 if (likely(p->pid)) { 1246 list_add_tail(&p->sibling, &p->real_parent->children); 1247 tracehook_finish_clone(p, clone_flags, trace); 1248 1249 if (thread_group_leader(p)) { 1250 if (clone_flags & CLONE_NEWPID) 1251 p->nsproxy->pid_ns->child_reaper = p; 1252 1253 p->signal->leader_pid = pid; 1254 tty_kref_put(p->signal->tty); 1255 p->signal->tty = tty_kref_get(current->signal->tty); 1256 set_task_pgrp(p, task_pgrp_nr(current)); 1257 set_task_session(p, task_session_nr(current)); 1258 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1259 attach_pid(p, PIDTYPE_SID, task_session(current)); 1260 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1261 __get_cpu_var(process_counts)++; 1262 } 1263 attach_pid(p, PIDTYPE_PID, pid); 1264 nr_threads++; 1265 } 1266 1267 total_forks++; 1268 spin_unlock(¤t->sighand->siglock); 1269 write_unlock_irq(&tasklist_lock); 1270 proc_fork_connector(p); 1271 cgroup_post_fork(p); 1272 return p; 1273 1274 bad_fork_free_pid: 1275 if (pid != &init_struct_pid) 1276 free_pid(pid); 1277 bad_fork_cleanup_io: 1278 put_io_context(p->io_context); 1279 bad_fork_cleanup_namespaces: 1280 exit_task_namespaces(p); 1281 bad_fork_cleanup_keys: 1282 exit_keys(p); 1283 bad_fork_cleanup_mm: 1284 if (p->mm) 1285 mmput(p->mm); 1286 bad_fork_cleanup_signal: 1287 cleanup_signal(p); 1288 bad_fork_cleanup_sighand: 1289 __cleanup_sighand(p->sighand); 1290 bad_fork_cleanup_fs: 1291 exit_fs(p); /* blocking */ 1292 bad_fork_cleanup_files: 1293 exit_files(p); /* blocking */ 1294 bad_fork_cleanup_semundo: 1295 exit_sem(p); 1296 bad_fork_cleanup_audit: 1297 audit_free(p); 1298 bad_fork_cleanup_security: 1299 security_task_free(p); 1300 bad_fork_cleanup_policy: 1301 #ifdef CONFIG_NUMA 1302 mpol_put(p->mempolicy); 1303 bad_fork_cleanup_cgroup: 1304 #endif 1305 cgroup_exit(p, cgroup_callbacks_done); 1306 delayacct_tsk_free(p); 1307 if (p->binfmt) 1308 module_put(p->binfmt->module); 1309 bad_fork_cleanup_put_domain: 1310 module_put(task_thread_info(p)->exec_domain->module); 1311 bad_fork_cleanup_count: 1312 put_group_info(p->group_info); 1313 atomic_dec(&p->user->processes); 1314 free_uid(p->user); 1315 bad_fork_free: 1316 free_task(p); 1317 fork_out: 1318 return ERR_PTR(retval); 1319 } 1320 1321 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1322 { 1323 memset(regs, 0, sizeof(struct pt_regs)); 1324 return regs; 1325 } 1326 1327 struct task_struct * __cpuinit fork_idle(int cpu) 1328 { 1329 struct task_struct *task; 1330 struct pt_regs regs; 1331 1332 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1333 &init_struct_pid, 0); 1334 if (!IS_ERR(task)) 1335 init_idle(task, cpu); 1336 1337 return task; 1338 } 1339 1340 /* 1341 * Ok, this is the main fork-routine. 1342 * 1343 * It copies the process, and if successful kick-starts 1344 * it and waits for it to finish using the VM if required. 1345 */ 1346 long do_fork(unsigned long clone_flags, 1347 unsigned long stack_start, 1348 struct pt_regs *regs, 1349 unsigned long stack_size, 1350 int __user *parent_tidptr, 1351 int __user *child_tidptr) 1352 { 1353 struct task_struct *p; 1354 int trace = 0; 1355 long nr; 1356 1357 /* 1358 * We hope to recycle these flags after 2.6.26 1359 */ 1360 if (unlikely(clone_flags & CLONE_STOPPED)) { 1361 static int __read_mostly count = 100; 1362 1363 if (count > 0 && printk_ratelimit()) { 1364 char comm[TASK_COMM_LEN]; 1365 1366 count--; 1367 printk(KERN_INFO "fork(): process `%s' used deprecated " 1368 "clone flags 0x%lx\n", 1369 get_task_comm(comm, current), 1370 clone_flags & CLONE_STOPPED); 1371 } 1372 } 1373 1374 /* 1375 * When called from kernel_thread, don't do user tracing stuff. 1376 */ 1377 if (likely(user_mode(regs))) 1378 trace = tracehook_prepare_clone(clone_flags); 1379 1380 p = copy_process(clone_flags, stack_start, regs, stack_size, 1381 child_tidptr, NULL, trace); 1382 /* 1383 * Do this prior waking up the new thread - the thread pointer 1384 * might get invalid after that point, if the thread exits quickly. 1385 */ 1386 if (!IS_ERR(p)) { 1387 struct completion vfork; 1388 1389 trace_sched_process_fork(current, p); 1390 1391 nr = task_pid_vnr(p); 1392 1393 if (clone_flags & CLONE_PARENT_SETTID) 1394 put_user(nr, parent_tidptr); 1395 1396 if (clone_flags & CLONE_VFORK) { 1397 p->vfork_done = &vfork; 1398 init_completion(&vfork); 1399 } 1400 1401 tracehook_report_clone(trace, regs, clone_flags, nr, p); 1402 1403 /* 1404 * We set PF_STARTING at creation in case tracing wants to 1405 * use this to distinguish a fully live task from one that 1406 * hasn't gotten to tracehook_report_clone() yet. Now we 1407 * clear it and set the child going. 1408 */ 1409 p->flags &= ~PF_STARTING; 1410 1411 if (unlikely(clone_flags & CLONE_STOPPED)) { 1412 /* 1413 * We'll start up with an immediate SIGSTOP. 1414 */ 1415 sigaddset(&p->pending.signal, SIGSTOP); 1416 set_tsk_thread_flag(p, TIF_SIGPENDING); 1417 __set_task_state(p, TASK_STOPPED); 1418 } else { 1419 wake_up_new_task(p, clone_flags); 1420 } 1421 1422 tracehook_report_clone_complete(trace, regs, 1423 clone_flags, nr, p); 1424 1425 if (clone_flags & CLONE_VFORK) { 1426 freezer_do_not_count(); 1427 wait_for_completion(&vfork); 1428 freezer_count(); 1429 tracehook_report_vfork_done(p, nr); 1430 } 1431 } else { 1432 nr = PTR_ERR(p); 1433 } 1434 return nr; 1435 } 1436 1437 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1438 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1439 #endif 1440 1441 static void sighand_ctor(void *data) 1442 { 1443 struct sighand_struct *sighand = data; 1444 1445 spin_lock_init(&sighand->siglock); 1446 init_waitqueue_head(&sighand->signalfd_wqh); 1447 } 1448 1449 void __init proc_caches_init(void) 1450 { 1451 sighand_cachep = kmem_cache_create("sighand_cache", 1452 sizeof(struct sighand_struct), 0, 1453 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, 1454 sighand_ctor); 1455 signal_cachep = kmem_cache_create("signal_cache", 1456 sizeof(struct signal_struct), 0, 1457 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1458 files_cachep = kmem_cache_create("files_cache", 1459 sizeof(struct files_struct), 0, 1460 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1461 fs_cachep = kmem_cache_create("fs_cache", 1462 sizeof(struct fs_struct), 0, 1463 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1464 vm_area_cachep = kmem_cache_create("vm_area_struct", 1465 sizeof(struct vm_area_struct), 0, 1466 SLAB_PANIC, NULL); 1467 mm_cachep = kmem_cache_create("mm_struct", 1468 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1469 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1470 } 1471 1472 /* 1473 * Check constraints on flags passed to the unshare system call and 1474 * force unsharing of additional process context as appropriate. 1475 */ 1476 static void check_unshare_flags(unsigned long *flags_ptr) 1477 { 1478 /* 1479 * If unsharing a thread from a thread group, must also 1480 * unshare vm. 1481 */ 1482 if (*flags_ptr & CLONE_THREAD) 1483 *flags_ptr |= CLONE_VM; 1484 1485 /* 1486 * If unsharing vm, must also unshare signal handlers. 1487 */ 1488 if (*flags_ptr & CLONE_VM) 1489 *flags_ptr |= CLONE_SIGHAND; 1490 1491 /* 1492 * If unsharing signal handlers and the task was created 1493 * using CLONE_THREAD, then must unshare the thread 1494 */ 1495 if ((*flags_ptr & CLONE_SIGHAND) && 1496 (atomic_read(¤t->signal->count) > 1)) 1497 *flags_ptr |= CLONE_THREAD; 1498 1499 /* 1500 * If unsharing namespace, must also unshare filesystem information. 1501 */ 1502 if (*flags_ptr & CLONE_NEWNS) 1503 *flags_ptr |= CLONE_FS; 1504 } 1505 1506 /* 1507 * Unsharing of tasks created with CLONE_THREAD is not supported yet 1508 */ 1509 static int unshare_thread(unsigned long unshare_flags) 1510 { 1511 if (unshare_flags & CLONE_THREAD) 1512 return -EINVAL; 1513 1514 return 0; 1515 } 1516 1517 /* 1518 * Unshare the filesystem structure if it is being shared 1519 */ 1520 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1521 { 1522 struct fs_struct *fs = current->fs; 1523 1524 if ((unshare_flags & CLONE_FS) && 1525 (fs && atomic_read(&fs->count) > 1)) { 1526 *new_fsp = __copy_fs_struct(current->fs); 1527 if (!*new_fsp) 1528 return -ENOMEM; 1529 } 1530 1531 return 0; 1532 } 1533 1534 /* 1535 * Unsharing of sighand is not supported yet 1536 */ 1537 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) 1538 { 1539 struct sighand_struct *sigh = current->sighand; 1540 1541 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) 1542 return -EINVAL; 1543 else 1544 return 0; 1545 } 1546 1547 /* 1548 * Unshare vm if it is being shared 1549 */ 1550 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) 1551 { 1552 struct mm_struct *mm = current->mm; 1553 1554 if ((unshare_flags & CLONE_VM) && 1555 (mm && atomic_read(&mm->mm_users) > 1)) { 1556 return -EINVAL; 1557 } 1558 1559 return 0; 1560 } 1561 1562 /* 1563 * Unshare file descriptor table if it is being shared 1564 */ 1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1566 { 1567 struct files_struct *fd = current->files; 1568 int error = 0; 1569 1570 if ((unshare_flags & CLONE_FILES) && 1571 (fd && atomic_read(&fd->count) > 1)) { 1572 *new_fdp = dup_fd(fd, &error); 1573 if (!*new_fdp) 1574 return error; 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* 1581 * unshare allows a process to 'unshare' part of the process 1582 * context which was originally shared using clone. copy_* 1583 * functions used by do_fork() cannot be used here directly 1584 * because they modify an inactive task_struct that is being 1585 * constructed. Here we are modifying the current, active, 1586 * task_struct. 1587 */ 1588 asmlinkage long sys_unshare(unsigned long unshare_flags) 1589 { 1590 int err = 0; 1591 struct fs_struct *fs, *new_fs = NULL; 1592 struct sighand_struct *new_sigh = NULL; 1593 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; 1594 struct files_struct *fd, *new_fd = NULL; 1595 struct nsproxy *new_nsproxy = NULL; 1596 int do_sysvsem = 0; 1597 1598 check_unshare_flags(&unshare_flags); 1599 1600 /* Return -EINVAL for all unsupported flags */ 1601 err = -EINVAL; 1602 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1603 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1604 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| 1605 CLONE_NEWNET)) 1606 goto bad_unshare_out; 1607 1608 /* 1609 * CLONE_NEWIPC must also detach from the undolist: after switching 1610 * to a new ipc namespace, the semaphore arrays from the old 1611 * namespace are unreachable. 1612 */ 1613 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1614 do_sysvsem = 1; 1615 if ((err = unshare_thread(unshare_flags))) 1616 goto bad_unshare_out; 1617 if ((err = unshare_fs(unshare_flags, &new_fs))) 1618 goto bad_unshare_cleanup_thread; 1619 if ((err = unshare_sighand(unshare_flags, &new_sigh))) 1620 goto bad_unshare_cleanup_fs; 1621 if ((err = unshare_vm(unshare_flags, &new_mm))) 1622 goto bad_unshare_cleanup_sigh; 1623 if ((err = unshare_fd(unshare_flags, &new_fd))) 1624 goto bad_unshare_cleanup_vm; 1625 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1626 new_fs))) 1627 goto bad_unshare_cleanup_fd; 1628 1629 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) { 1630 if (do_sysvsem) { 1631 /* 1632 * CLONE_SYSVSEM is equivalent to sys_exit(). 1633 */ 1634 exit_sem(current); 1635 } 1636 1637 if (new_nsproxy) { 1638 switch_task_namespaces(current, new_nsproxy); 1639 new_nsproxy = NULL; 1640 } 1641 1642 task_lock(current); 1643 1644 if (new_fs) { 1645 fs = current->fs; 1646 current->fs = new_fs; 1647 new_fs = fs; 1648 } 1649 1650 if (new_mm) { 1651 mm = current->mm; 1652 active_mm = current->active_mm; 1653 current->mm = new_mm; 1654 current->active_mm = new_mm; 1655 activate_mm(active_mm, new_mm); 1656 new_mm = mm; 1657 } 1658 1659 if (new_fd) { 1660 fd = current->files; 1661 current->files = new_fd; 1662 new_fd = fd; 1663 } 1664 1665 task_unlock(current); 1666 } 1667 1668 if (new_nsproxy) 1669 put_nsproxy(new_nsproxy); 1670 1671 bad_unshare_cleanup_fd: 1672 if (new_fd) 1673 put_files_struct(new_fd); 1674 1675 bad_unshare_cleanup_vm: 1676 if (new_mm) 1677 mmput(new_mm); 1678 1679 bad_unshare_cleanup_sigh: 1680 if (new_sigh) 1681 if (atomic_dec_and_test(&new_sigh->count)) 1682 kmem_cache_free(sighand_cachep, new_sigh); 1683 1684 bad_unshare_cleanup_fs: 1685 if (new_fs) 1686 put_fs_struct(new_fs); 1687 1688 bad_unshare_cleanup_thread: 1689 bad_unshare_out: 1690 return err; 1691 } 1692 1693 /* 1694 * Helper to unshare the files of the current task. 1695 * We don't want to expose copy_files internals to 1696 * the exec layer of the kernel. 1697 */ 1698 1699 int unshare_files(struct files_struct **displaced) 1700 { 1701 struct task_struct *task = current; 1702 struct files_struct *copy = NULL; 1703 int error; 1704 1705 error = unshare_fd(CLONE_FILES, ©); 1706 if (error || !copy) { 1707 *displaced = NULL; 1708 return error; 1709 } 1710 *displaced = task->files; 1711 task_lock(task); 1712 task->files = copy; 1713 task_unlock(task); 1714 return 0; 1715 } 1716