xref: /linux-6.15/kernel/fork.c (revision 17c324fa)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <trace/sched.h>
63 
64 #include <asm/pgtable.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/cacheflush.h>
69 #include <asm/tlbflush.h>
70 
71 /*
72  * Protected counters by write_lock_irq(&tasklist_lock)
73  */
74 unsigned long total_forks;	/* Handle normal Linux uptimes. */
75 int nr_threads; 		/* The idle threads do not count.. */
76 
77 int max_threads;		/* tunable limit on nr_threads */
78 
79 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
80 
81 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
82 
83 int nr_processes(void)
84 {
85 	int cpu;
86 	int total = 0;
87 
88 	for_each_online_cpu(cpu)
89 		total += per_cpu(process_counts, cpu);
90 
91 	return total;
92 }
93 
94 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
95 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
96 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
97 static struct kmem_cache *task_struct_cachep;
98 #endif
99 
100 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
101 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
102 {
103 #ifdef CONFIG_DEBUG_STACK_USAGE
104 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
105 #else
106 	gfp_t mask = GFP_KERNEL;
107 #endif
108 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
109 }
110 
111 static inline void free_thread_info(struct thread_info *ti)
112 {
113 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
114 }
115 #endif
116 
117 /* SLAB cache for signal_struct structures (tsk->signal) */
118 static struct kmem_cache *signal_cachep;
119 
120 /* SLAB cache for sighand_struct structures (tsk->sighand) */
121 struct kmem_cache *sighand_cachep;
122 
123 /* SLAB cache for files_struct structures (tsk->files) */
124 struct kmem_cache *files_cachep;
125 
126 /* SLAB cache for fs_struct structures (tsk->fs) */
127 struct kmem_cache *fs_cachep;
128 
129 /* SLAB cache for vm_area_struct structures */
130 struct kmem_cache *vm_area_cachep;
131 
132 /* SLAB cache for mm_struct structures (tsk->mm) */
133 static struct kmem_cache *mm_cachep;
134 
135 void free_task(struct task_struct *tsk)
136 {
137 	prop_local_destroy_single(&tsk->dirties);
138 	free_thread_info(tsk->stack);
139 	rt_mutex_debug_task_free(tsk);
140 	free_task_struct(tsk);
141 }
142 EXPORT_SYMBOL(free_task);
143 
144 void __put_task_struct(struct task_struct *tsk)
145 {
146 	WARN_ON(!tsk->exit_state);
147 	WARN_ON(atomic_read(&tsk->usage));
148 	WARN_ON(tsk == current);
149 
150 	security_task_free(tsk);
151 	free_uid(tsk->user);
152 	put_group_info(tsk->group_info);
153 	delayacct_tsk_free(tsk);
154 
155 	if (!profile_handoff_task(tsk))
156 		free_task(tsk);
157 }
158 
159 /*
160  * macro override instead of weak attribute alias, to workaround
161  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
162  */
163 #ifndef arch_task_cache_init
164 #define arch_task_cache_init()
165 #endif
166 
167 void __init fork_init(unsigned long mempages)
168 {
169 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
170 #ifndef ARCH_MIN_TASKALIGN
171 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
172 #endif
173 	/* create a slab on which task_structs can be allocated */
174 	task_struct_cachep =
175 		kmem_cache_create("task_struct", sizeof(struct task_struct),
176 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
177 #endif
178 
179 	/* do the arch specific task caches init */
180 	arch_task_cache_init();
181 
182 	/*
183 	 * The default maximum number of threads is set to a safe
184 	 * value: the thread structures can take up at most half
185 	 * of memory.
186 	 */
187 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
188 
189 	/*
190 	 * we need to allow at least 20 threads to boot a system
191 	 */
192 	if(max_threads < 20)
193 		max_threads = 20;
194 
195 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
196 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
197 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
198 		init_task.signal->rlim[RLIMIT_NPROC];
199 }
200 
201 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
202 					       struct task_struct *src)
203 {
204 	*dst = *src;
205 	return 0;
206 }
207 
208 static struct task_struct *dup_task_struct(struct task_struct *orig)
209 {
210 	struct task_struct *tsk;
211 	struct thread_info *ti;
212 	int err;
213 
214 	prepare_to_copy(orig);
215 
216 	tsk = alloc_task_struct();
217 	if (!tsk)
218 		return NULL;
219 
220 	ti = alloc_thread_info(tsk);
221 	if (!ti) {
222 		free_task_struct(tsk);
223 		return NULL;
224 	}
225 
226  	err = arch_dup_task_struct(tsk, orig);
227 	if (err)
228 		goto out;
229 
230 	tsk->stack = ti;
231 
232 	err = prop_local_init_single(&tsk->dirties);
233 	if (err)
234 		goto out;
235 
236 	setup_thread_stack(tsk, orig);
237 
238 #ifdef CONFIG_CC_STACKPROTECTOR
239 	tsk->stack_canary = get_random_int();
240 #endif
241 
242 	/* One for us, one for whoever does the "release_task()" (usually parent) */
243 	atomic_set(&tsk->usage,2);
244 	atomic_set(&tsk->fs_excl, 0);
245 #ifdef CONFIG_BLK_DEV_IO_TRACE
246 	tsk->btrace_seq = 0;
247 #endif
248 	tsk->splice_pipe = NULL;
249 	return tsk;
250 
251 out:
252 	free_thread_info(ti);
253 	free_task_struct(tsk);
254 	return NULL;
255 }
256 
257 #ifdef CONFIG_MMU
258 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
259 {
260 	struct vm_area_struct *mpnt, *tmp, **pprev;
261 	struct rb_node **rb_link, *rb_parent;
262 	int retval;
263 	unsigned long charge;
264 	struct mempolicy *pol;
265 
266 	down_write(&oldmm->mmap_sem);
267 	flush_cache_dup_mm(oldmm);
268 	/*
269 	 * Not linked in yet - no deadlock potential:
270 	 */
271 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
272 
273 	mm->locked_vm = 0;
274 	mm->mmap = NULL;
275 	mm->mmap_cache = NULL;
276 	mm->free_area_cache = oldmm->mmap_base;
277 	mm->cached_hole_size = ~0UL;
278 	mm->map_count = 0;
279 	cpus_clear(mm->cpu_vm_mask);
280 	mm->mm_rb = RB_ROOT;
281 	rb_link = &mm->mm_rb.rb_node;
282 	rb_parent = NULL;
283 	pprev = &mm->mmap;
284 
285 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
286 		struct file *file;
287 
288 		if (mpnt->vm_flags & VM_DONTCOPY) {
289 			long pages = vma_pages(mpnt);
290 			mm->total_vm -= pages;
291 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
292 								-pages);
293 			continue;
294 		}
295 		charge = 0;
296 		if (mpnt->vm_flags & VM_ACCOUNT) {
297 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
298 			if (security_vm_enough_memory(len))
299 				goto fail_nomem;
300 			charge = len;
301 		}
302 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
303 		if (!tmp)
304 			goto fail_nomem;
305 		*tmp = *mpnt;
306 		pol = mpol_dup(vma_policy(mpnt));
307 		retval = PTR_ERR(pol);
308 		if (IS_ERR(pol))
309 			goto fail_nomem_policy;
310 		vma_set_policy(tmp, pol);
311 		tmp->vm_flags &= ~VM_LOCKED;
312 		tmp->vm_mm = mm;
313 		tmp->vm_next = NULL;
314 		anon_vma_link(tmp);
315 		file = tmp->vm_file;
316 		if (file) {
317 			struct inode *inode = file->f_path.dentry->d_inode;
318 			get_file(file);
319 			if (tmp->vm_flags & VM_DENYWRITE)
320 				atomic_dec(&inode->i_writecount);
321 
322 			/* insert tmp into the share list, just after mpnt */
323 			spin_lock(&file->f_mapping->i_mmap_lock);
324 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
325 			flush_dcache_mmap_lock(file->f_mapping);
326 			vma_prio_tree_add(tmp, mpnt);
327 			flush_dcache_mmap_unlock(file->f_mapping);
328 			spin_unlock(&file->f_mapping->i_mmap_lock);
329 		}
330 
331 		/*
332 		 * Clear hugetlb-related page reserves for children. This only
333 		 * affects MAP_PRIVATE mappings. Faults generated by the child
334 		 * are not guaranteed to succeed, even if read-only
335 		 */
336 		if (is_vm_hugetlb_page(tmp))
337 			reset_vma_resv_huge_pages(tmp);
338 
339 		/*
340 		 * Link in the new vma and copy the page table entries.
341 		 */
342 		*pprev = tmp;
343 		pprev = &tmp->vm_next;
344 
345 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
346 		rb_link = &tmp->vm_rb.rb_right;
347 		rb_parent = &tmp->vm_rb;
348 
349 		mm->map_count++;
350 		retval = copy_page_range(mm, oldmm, mpnt);
351 
352 		if (tmp->vm_ops && tmp->vm_ops->open)
353 			tmp->vm_ops->open(tmp);
354 
355 		if (retval)
356 			goto out;
357 	}
358 	/* a new mm has just been created */
359 	arch_dup_mmap(oldmm, mm);
360 	retval = 0;
361 out:
362 	up_write(&mm->mmap_sem);
363 	flush_tlb_mm(oldmm);
364 	up_write(&oldmm->mmap_sem);
365 	return retval;
366 fail_nomem_policy:
367 	kmem_cache_free(vm_area_cachep, tmp);
368 fail_nomem:
369 	retval = -ENOMEM;
370 	vm_unacct_memory(charge);
371 	goto out;
372 }
373 
374 static inline int mm_alloc_pgd(struct mm_struct * mm)
375 {
376 	mm->pgd = pgd_alloc(mm);
377 	if (unlikely(!mm->pgd))
378 		return -ENOMEM;
379 	return 0;
380 }
381 
382 static inline void mm_free_pgd(struct mm_struct * mm)
383 {
384 	pgd_free(mm, mm->pgd);
385 }
386 #else
387 #define dup_mmap(mm, oldmm)	(0)
388 #define mm_alloc_pgd(mm)	(0)
389 #define mm_free_pgd(mm)
390 #endif /* CONFIG_MMU */
391 
392 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
393 
394 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
395 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
396 
397 #include <linux/init_task.h>
398 
399 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
400 {
401 	atomic_set(&mm->mm_users, 1);
402 	atomic_set(&mm->mm_count, 1);
403 	init_rwsem(&mm->mmap_sem);
404 	INIT_LIST_HEAD(&mm->mmlist);
405 	mm->flags = (current->mm) ? current->mm->flags
406 				  : MMF_DUMP_FILTER_DEFAULT;
407 	mm->core_state = NULL;
408 	mm->nr_ptes = 0;
409 	set_mm_counter(mm, file_rss, 0);
410 	set_mm_counter(mm, anon_rss, 0);
411 	spin_lock_init(&mm->page_table_lock);
412 	rwlock_init(&mm->ioctx_list_lock);
413 	mm->ioctx_list = NULL;
414 	mm->free_area_cache = TASK_UNMAPPED_BASE;
415 	mm->cached_hole_size = ~0UL;
416 	mm_init_owner(mm, p);
417 
418 	if (likely(!mm_alloc_pgd(mm))) {
419 		mm->def_flags = 0;
420 		mmu_notifier_mm_init(mm);
421 		return mm;
422 	}
423 
424 	free_mm(mm);
425 	return NULL;
426 }
427 
428 /*
429  * Allocate and initialize an mm_struct.
430  */
431 struct mm_struct * mm_alloc(void)
432 {
433 	struct mm_struct * mm;
434 
435 	mm = allocate_mm();
436 	if (mm) {
437 		memset(mm, 0, sizeof(*mm));
438 		mm = mm_init(mm, current);
439 	}
440 	return mm;
441 }
442 
443 /*
444  * Called when the last reference to the mm
445  * is dropped: either by a lazy thread or by
446  * mmput. Free the page directory and the mm.
447  */
448 void __mmdrop(struct mm_struct *mm)
449 {
450 	BUG_ON(mm == &init_mm);
451 	mm_free_pgd(mm);
452 	destroy_context(mm);
453 	mmu_notifier_mm_destroy(mm);
454 	free_mm(mm);
455 }
456 EXPORT_SYMBOL_GPL(__mmdrop);
457 
458 /*
459  * Decrement the use count and release all resources for an mm.
460  */
461 void mmput(struct mm_struct *mm)
462 {
463 	might_sleep();
464 
465 	if (atomic_dec_and_test(&mm->mm_users)) {
466 		exit_aio(mm);
467 		exit_mmap(mm);
468 		set_mm_exe_file(mm, NULL);
469 		if (!list_empty(&mm->mmlist)) {
470 			spin_lock(&mmlist_lock);
471 			list_del(&mm->mmlist);
472 			spin_unlock(&mmlist_lock);
473 		}
474 		put_swap_token(mm);
475 		mmdrop(mm);
476 	}
477 }
478 EXPORT_SYMBOL_GPL(mmput);
479 
480 /**
481  * get_task_mm - acquire a reference to the task's mm
482  *
483  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
484  * this kernel workthread has transiently adopted a user mm with use_mm,
485  * to do its AIO) is not set and if so returns a reference to it, after
486  * bumping up the use count.  User must release the mm via mmput()
487  * after use.  Typically used by /proc and ptrace.
488  */
489 struct mm_struct *get_task_mm(struct task_struct *task)
490 {
491 	struct mm_struct *mm;
492 
493 	task_lock(task);
494 	mm = task->mm;
495 	if (mm) {
496 		if (task->flags & PF_KTHREAD)
497 			mm = NULL;
498 		else
499 			atomic_inc(&mm->mm_users);
500 	}
501 	task_unlock(task);
502 	return mm;
503 }
504 EXPORT_SYMBOL_GPL(get_task_mm);
505 
506 /* Please note the differences between mmput and mm_release.
507  * mmput is called whenever we stop holding onto a mm_struct,
508  * error success whatever.
509  *
510  * mm_release is called after a mm_struct has been removed
511  * from the current process.
512  *
513  * This difference is important for error handling, when we
514  * only half set up a mm_struct for a new process and need to restore
515  * the old one.  Because we mmput the new mm_struct before
516  * restoring the old one. . .
517  * Eric Biederman 10 January 1998
518  */
519 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
520 {
521 	struct completion *vfork_done = tsk->vfork_done;
522 
523 	/* Get rid of any futexes when releasing the mm */
524 #ifdef CONFIG_FUTEX
525 	if (unlikely(tsk->robust_list))
526 		exit_robust_list(tsk);
527 #ifdef CONFIG_COMPAT
528 	if (unlikely(tsk->compat_robust_list))
529 		compat_exit_robust_list(tsk);
530 #endif
531 #endif
532 
533 	/* Get rid of any cached register state */
534 	deactivate_mm(tsk, mm);
535 
536 	/* notify parent sleeping on vfork() */
537 	if (vfork_done) {
538 		tsk->vfork_done = NULL;
539 		complete(vfork_done);
540 	}
541 
542 	/*
543 	 * If we're exiting normally, clear a user-space tid field if
544 	 * requested.  We leave this alone when dying by signal, to leave
545 	 * the value intact in a core dump, and to save the unnecessary
546 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
547 	 */
548 	if (tsk->clear_child_tid
549 	    && !(tsk->flags & PF_SIGNALED)
550 	    && atomic_read(&mm->mm_users) > 1) {
551 		u32 __user * tidptr = tsk->clear_child_tid;
552 		tsk->clear_child_tid = NULL;
553 
554 		/*
555 		 * We don't check the error code - if userspace has
556 		 * not set up a proper pointer then tough luck.
557 		 */
558 		put_user(0, tidptr);
559 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
560 	}
561 }
562 
563 /*
564  * Allocate a new mm structure and copy contents from the
565  * mm structure of the passed in task structure.
566  */
567 struct mm_struct *dup_mm(struct task_struct *tsk)
568 {
569 	struct mm_struct *mm, *oldmm = current->mm;
570 	int err;
571 
572 	if (!oldmm)
573 		return NULL;
574 
575 	mm = allocate_mm();
576 	if (!mm)
577 		goto fail_nomem;
578 
579 	memcpy(mm, oldmm, sizeof(*mm));
580 
581 	/* Initializing for Swap token stuff */
582 	mm->token_priority = 0;
583 	mm->last_interval = 0;
584 
585 	if (!mm_init(mm, tsk))
586 		goto fail_nomem;
587 
588 	if (init_new_context(tsk, mm))
589 		goto fail_nocontext;
590 
591 	dup_mm_exe_file(oldmm, mm);
592 
593 	err = dup_mmap(mm, oldmm);
594 	if (err)
595 		goto free_pt;
596 
597 	mm->hiwater_rss = get_mm_rss(mm);
598 	mm->hiwater_vm = mm->total_vm;
599 
600 	return mm;
601 
602 free_pt:
603 	mmput(mm);
604 
605 fail_nomem:
606 	return NULL;
607 
608 fail_nocontext:
609 	/*
610 	 * If init_new_context() failed, we cannot use mmput() to free the mm
611 	 * because it calls destroy_context()
612 	 */
613 	mm_free_pgd(mm);
614 	free_mm(mm);
615 	return NULL;
616 }
617 
618 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
619 {
620 	struct mm_struct * mm, *oldmm;
621 	int retval;
622 
623 	tsk->min_flt = tsk->maj_flt = 0;
624 	tsk->nvcsw = tsk->nivcsw = 0;
625 
626 	tsk->mm = NULL;
627 	tsk->active_mm = NULL;
628 
629 	/*
630 	 * Are we cloning a kernel thread?
631 	 *
632 	 * We need to steal a active VM for that..
633 	 */
634 	oldmm = current->mm;
635 	if (!oldmm)
636 		return 0;
637 
638 	if (clone_flags & CLONE_VM) {
639 		atomic_inc(&oldmm->mm_users);
640 		mm = oldmm;
641 		goto good_mm;
642 	}
643 
644 	retval = -ENOMEM;
645 	mm = dup_mm(tsk);
646 	if (!mm)
647 		goto fail_nomem;
648 
649 good_mm:
650 	/* Initializing for Swap token stuff */
651 	mm->token_priority = 0;
652 	mm->last_interval = 0;
653 
654 	tsk->mm = mm;
655 	tsk->active_mm = mm;
656 	return 0;
657 
658 fail_nomem:
659 	return retval;
660 }
661 
662 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
663 {
664 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
665 	/* We don't need to lock fs - think why ;-) */
666 	if (fs) {
667 		atomic_set(&fs->count, 1);
668 		rwlock_init(&fs->lock);
669 		fs->umask = old->umask;
670 		read_lock(&old->lock);
671 		fs->root = old->root;
672 		path_get(&old->root);
673 		fs->pwd = old->pwd;
674 		path_get(&old->pwd);
675 		read_unlock(&old->lock);
676 	}
677 	return fs;
678 }
679 
680 struct fs_struct *copy_fs_struct(struct fs_struct *old)
681 {
682 	return __copy_fs_struct(old);
683 }
684 
685 EXPORT_SYMBOL_GPL(copy_fs_struct);
686 
687 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
688 {
689 	if (clone_flags & CLONE_FS) {
690 		atomic_inc(&current->fs->count);
691 		return 0;
692 	}
693 	tsk->fs = __copy_fs_struct(current->fs);
694 	if (!tsk->fs)
695 		return -ENOMEM;
696 	return 0;
697 }
698 
699 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
700 {
701 	struct files_struct *oldf, *newf;
702 	int error = 0;
703 
704 	/*
705 	 * A background process may not have any files ...
706 	 */
707 	oldf = current->files;
708 	if (!oldf)
709 		goto out;
710 
711 	if (clone_flags & CLONE_FILES) {
712 		atomic_inc(&oldf->count);
713 		goto out;
714 	}
715 
716 	newf = dup_fd(oldf, &error);
717 	if (!newf)
718 		goto out;
719 
720 	tsk->files = newf;
721 	error = 0;
722 out:
723 	return error;
724 }
725 
726 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
727 {
728 #ifdef CONFIG_BLOCK
729 	struct io_context *ioc = current->io_context;
730 
731 	if (!ioc)
732 		return 0;
733 	/*
734 	 * Share io context with parent, if CLONE_IO is set
735 	 */
736 	if (clone_flags & CLONE_IO) {
737 		tsk->io_context = ioc_task_link(ioc);
738 		if (unlikely(!tsk->io_context))
739 			return -ENOMEM;
740 	} else if (ioprio_valid(ioc->ioprio)) {
741 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
742 		if (unlikely(!tsk->io_context))
743 			return -ENOMEM;
744 
745 		tsk->io_context->ioprio = ioc->ioprio;
746 	}
747 #endif
748 	return 0;
749 }
750 
751 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
752 {
753 	struct sighand_struct *sig;
754 
755 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
756 		atomic_inc(&current->sighand->count);
757 		return 0;
758 	}
759 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
760 	rcu_assign_pointer(tsk->sighand, sig);
761 	if (!sig)
762 		return -ENOMEM;
763 	atomic_set(&sig->count, 1);
764 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
765 	return 0;
766 }
767 
768 void __cleanup_sighand(struct sighand_struct *sighand)
769 {
770 	if (atomic_dec_and_test(&sighand->count))
771 		kmem_cache_free(sighand_cachep, sighand);
772 }
773 
774 
775 /*
776  * Initialize POSIX timer handling for a thread group.
777  */
778 static void posix_cpu_timers_init_group(struct signal_struct *sig)
779 {
780 	/* Thread group counters. */
781 	thread_group_cputime_init(sig);
782 
783 	/* Expiration times and increments. */
784 	sig->it_virt_expires = cputime_zero;
785 	sig->it_virt_incr = cputime_zero;
786 	sig->it_prof_expires = cputime_zero;
787 	sig->it_prof_incr = cputime_zero;
788 
789 	/* Cached expiration times. */
790 	sig->cputime_expires.prof_exp = cputime_zero;
791 	sig->cputime_expires.virt_exp = cputime_zero;
792 	sig->cputime_expires.sched_exp = 0;
793 
794 	/* The timer lists. */
795 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
796 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
797 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
798 }
799 
800 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
801 {
802 	struct signal_struct *sig;
803 	int ret;
804 
805 	if (clone_flags & CLONE_THREAD) {
806 		ret = thread_group_cputime_clone_thread(current);
807 		if (likely(!ret)) {
808 			atomic_inc(&current->signal->count);
809 			atomic_inc(&current->signal->live);
810 		}
811 		return ret;
812 	}
813 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
814 	tsk->signal = sig;
815 	if (!sig)
816 		return -ENOMEM;
817 
818 	ret = copy_thread_group_keys(tsk);
819 	if (ret < 0) {
820 		kmem_cache_free(signal_cachep, sig);
821 		return ret;
822 	}
823 
824 	atomic_set(&sig->count, 1);
825 	atomic_set(&sig->live, 1);
826 	init_waitqueue_head(&sig->wait_chldexit);
827 	sig->flags = 0;
828 	sig->group_exit_code = 0;
829 	sig->group_exit_task = NULL;
830 	sig->group_stop_count = 0;
831 	sig->curr_target = tsk;
832 	init_sigpending(&sig->shared_pending);
833 	INIT_LIST_HEAD(&sig->posix_timers);
834 
835 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
836 	sig->it_real_incr.tv64 = 0;
837 	sig->real_timer.function = it_real_fn;
838 
839 	sig->leader = 0;	/* session leadership doesn't inherit */
840 	sig->tty_old_pgrp = NULL;
841 	sig->tty = NULL;
842 
843 	sig->cutime = sig->cstime = cputime_zero;
844 	sig->gtime = cputime_zero;
845 	sig->cgtime = cputime_zero;
846 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
847 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
848 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
849 	task_io_accounting_init(&sig->ioac);
850 	taskstats_tgid_init(sig);
851 
852 	task_lock(current->group_leader);
853 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
854 	task_unlock(current->group_leader);
855 
856 	posix_cpu_timers_init_group(sig);
857 
858 	acct_init_pacct(&sig->pacct);
859 
860 	tty_audit_fork(sig);
861 
862 	return 0;
863 }
864 
865 void __cleanup_signal(struct signal_struct *sig)
866 {
867 	thread_group_cputime_free(sig);
868 	exit_thread_group_keys(sig);
869 	tty_kref_put(sig->tty);
870 	kmem_cache_free(signal_cachep, sig);
871 }
872 
873 static void cleanup_signal(struct task_struct *tsk)
874 {
875 	struct signal_struct *sig = tsk->signal;
876 
877 	atomic_dec(&sig->live);
878 
879 	if (atomic_dec_and_test(&sig->count))
880 		__cleanup_signal(sig);
881 }
882 
883 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
884 {
885 	unsigned long new_flags = p->flags;
886 
887 	new_flags &= ~PF_SUPERPRIV;
888 	new_flags |= PF_FORKNOEXEC;
889 	new_flags |= PF_STARTING;
890 	p->flags = new_flags;
891 	clear_freeze_flag(p);
892 }
893 
894 asmlinkage long sys_set_tid_address(int __user *tidptr)
895 {
896 	current->clear_child_tid = tidptr;
897 
898 	return task_pid_vnr(current);
899 }
900 
901 static void rt_mutex_init_task(struct task_struct *p)
902 {
903 	spin_lock_init(&p->pi_lock);
904 #ifdef CONFIG_RT_MUTEXES
905 	plist_head_init(&p->pi_waiters, &p->pi_lock);
906 	p->pi_blocked_on = NULL;
907 #endif
908 }
909 
910 #ifdef CONFIG_MM_OWNER
911 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
912 {
913 	mm->owner = p;
914 }
915 #endif /* CONFIG_MM_OWNER */
916 
917 /*
918  * Initialize POSIX timer handling for a single task.
919  */
920 static void posix_cpu_timers_init(struct task_struct *tsk)
921 {
922 	tsk->cputime_expires.prof_exp = cputime_zero;
923 	tsk->cputime_expires.virt_exp = cputime_zero;
924 	tsk->cputime_expires.sched_exp = 0;
925 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
926 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
927 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
928 }
929 
930 /*
931  * This creates a new process as a copy of the old one,
932  * but does not actually start it yet.
933  *
934  * It copies the registers, and all the appropriate
935  * parts of the process environment (as per the clone
936  * flags). The actual kick-off is left to the caller.
937  */
938 static struct task_struct *copy_process(unsigned long clone_flags,
939 					unsigned long stack_start,
940 					struct pt_regs *regs,
941 					unsigned long stack_size,
942 					int __user *child_tidptr,
943 					struct pid *pid,
944 					int trace)
945 {
946 	int retval;
947 	struct task_struct *p;
948 	int cgroup_callbacks_done = 0;
949 
950 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
951 		return ERR_PTR(-EINVAL);
952 
953 	/*
954 	 * Thread groups must share signals as well, and detached threads
955 	 * can only be started up within the thread group.
956 	 */
957 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
958 		return ERR_PTR(-EINVAL);
959 
960 	/*
961 	 * Shared signal handlers imply shared VM. By way of the above,
962 	 * thread groups also imply shared VM. Blocking this case allows
963 	 * for various simplifications in other code.
964 	 */
965 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
966 		return ERR_PTR(-EINVAL);
967 
968 	retval = security_task_create(clone_flags);
969 	if (retval)
970 		goto fork_out;
971 
972 	retval = -ENOMEM;
973 	p = dup_task_struct(current);
974 	if (!p)
975 		goto fork_out;
976 
977 	rt_mutex_init_task(p);
978 
979 #ifdef CONFIG_PROVE_LOCKING
980 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
981 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
982 #endif
983 	retval = -EAGAIN;
984 	if (atomic_read(&p->user->processes) >=
985 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
986 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
987 		    p->user != current->nsproxy->user_ns->root_user)
988 			goto bad_fork_free;
989 	}
990 
991 	atomic_inc(&p->user->__count);
992 	atomic_inc(&p->user->processes);
993 	get_group_info(p->group_info);
994 
995 	/*
996 	 * If multiple threads are within copy_process(), then this check
997 	 * triggers too late. This doesn't hurt, the check is only there
998 	 * to stop root fork bombs.
999 	 */
1000 	if (nr_threads >= max_threads)
1001 		goto bad_fork_cleanup_count;
1002 
1003 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1004 		goto bad_fork_cleanup_count;
1005 
1006 	if (p->binfmt && !try_module_get(p->binfmt->module))
1007 		goto bad_fork_cleanup_put_domain;
1008 
1009 	p->did_exec = 0;
1010 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1011 	copy_flags(clone_flags, p);
1012 	INIT_LIST_HEAD(&p->children);
1013 	INIT_LIST_HEAD(&p->sibling);
1014 #ifdef CONFIG_PREEMPT_RCU
1015 	p->rcu_read_lock_nesting = 0;
1016 	p->rcu_flipctr_idx = 0;
1017 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1018 	p->vfork_done = NULL;
1019 	spin_lock_init(&p->alloc_lock);
1020 
1021 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1022 	init_sigpending(&p->pending);
1023 
1024 	p->utime = cputime_zero;
1025 	p->stime = cputime_zero;
1026 	p->gtime = cputime_zero;
1027 	p->utimescaled = cputime_zero;
1028 	p->stimescaled = cputime_zero;
1029 	p->prev_utime = cputime_zero;
1030 	p->prev_stime = cputime_zero;
1031 
1032 	p->default_timer_slack_ns = current->timer_slack_ns;
1033 
1034 #ifdef CONFIG_DETECT_SOFTLOCKUP
1035 	p->last_switch_count = 0;
1036 	p->last_switch_timestamp = 0;
1037 #endif
1038 
1039 	task_io_accounting_init(&p->ioac);
1040 	acct_clear_integrals(p);
1041 
1042 	posix_cpu_timers_init(p);
1043 
1044 	p->lock_depth = -1;		/* -1 = no lock */
1045 	do_posix_clock_monotonic_gettime(&p->start_time);
1046 	p->real_start_time = p->start_time;
1047 	monotonic_to_bootbased(&p->real_start_time);
1048 #ifdef CONFIG_SECURITY
1049 	p->security = NULL;
1050 #endif
1051 	p->cap_bset = current->cap_bset;
1052 	p->io_context = NULL;
1053 	p->audit_context = NULL;
1054 	cgroup_fork(p);
1055 #ifdef CONFIG_NUMA
1056 	p->mempolicy = mpol_dup(p->mempolicy);
1057  	if (IS_ERR(p->mempolicy)) {
1058  		retval = PTR_ERR(p->mempolicy);
1059  		p->mempolicy = NULL;
1060  		goto bad_fork_cleanup_cgroup;
1061  	}
1062 	mpol_fix_fork_child_flag(p);
1063 #endif
1064 #ifdef CONFIG_TRACE_IRQFLAGS
1065 	p->irq_events = 0;
1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067 	p->hardirqs_enabled = 1;
1068 #else
1069 	p->hardirqs_enabled = 0;
1070 #endif
1071 	p->hardirq_enable_ip = 0;
1072 	p->hardirq_enable_event = 0;
1073 	p->hardirq_disable_ip = _THIS_IP_;
1074 	p->hardirq_disable_event = 0;
1075 	p->softirqs_enabled = 1;
1076 	p->softirq_enable_ip = _THIS_IP_;
1077 	p->softirq_enable_event = 0;
1078 	p->softirq_disable_ip = 0;
1079 	p->softirq_disable_event = 0;
1080 	p->hardirq_context = 0;
1081 	p->softirq_context = 0;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084 	p->lockdep_depth = 0; /* no locks held yet */
1085 	p->curr_chain_key = 0;
1086 	p->lockdep_recursion = 0;
1087 #endif
1088 
1089 #ifdef CONFIG_DEBUG_MUTEXES
1090 	p->blocked_on = NULL; /* not blocked yet */
1091 #endif
1092 
1093 	/* Perform scheduler related setup. Assign this task to a CPU. */
1094 	sched_fork(p, clone_flags);
1095 
1096 	if ((retval = security_task_alloc(p)))
1097 		goto bad_fork_cleanup_policy;
1098 	if ((retval = audit_alloc(p)))
1099 		goto bad_fork_cleanup_security;
1100 	/* copy all the process information */
1101 	if ((retval = copy_semundo(clone_flags, p)))
1102 		goto bad_fork_cleanup_audit;
1103 	if ((retval = copy_files(clone_flags, p)))
1104 		goto bad_fork_cleanup_semundo;
1105 	if ((retval = copy_fs(clone_flags, p)))
1106 		goto bad_fork_cleanup_files;
1107 	if ((retval = copy_sighand(clone_flags, p)))
1108 		goto bad_fork_cleanup_fs;
1109 	if ((retval = copy_signal(clone_flags, p)))
1110 		goto bad_fork_cleanup_sighand;
1111 	if ((retval = copy_mm(clone_flags, p)))
1112 		goto bad_fork_cleanup_signal;
1113 	if ((retval = copy_keys(clone_flags, p)))
1114 		goto bad_fork_cleanup_mm;
1115 	if ((retval = copy_namespaces(clone_flags, p)))
1116 		goto bad_fork_cleanup_keys;
1117 	if ((retval = copy_io(clone_flags, p)))
1118 		goto bad_fork_cleanup_namespaces;
1119 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1120 	if (retval)
1121 		goto bad_fork_cleanup_io;
1122 
1123 	if (pid != &init_struct_pid) {
1124 		retval = -ENOMEM;
1125 		pid = alloc_pid(task_active_pid_ns(p));
1126 		if (!pid)
1127 			goto bad_fork_cleanup_io;
1128 
1129 		if (clone_flags & CLONE_NEWPID) {
1130 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1131 			if (retval < 0)
1132 				goto bad_fork_free_pid;
1133 		}
1134 	}
1135 
1136 	p->pid = pid_nr(pid);
1137 	p->tgid = p->pid;
1138 	if (clone_flags & CLONE_THREAD)
1139 		p->tgid = current->tgid;
1140 
1141 	if (current->nsproxy != p->nsproxy) {
1142 		retval = ns_cgroup_clone(p, pid);
1143 		if (retval)
1144 			goto bad_fork_free_pid;
1145 	}
1146 
1147 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1148 	/*
1149 	 * Clear TID on mm_release()?
1150 	 */
1151 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1152 #ifdef CONFIG_FUTEX
1153 	p->robust_list = NULL;
1154 #ifdef CONFIG_COMPAT
1155 	p->compat_robust_list = NULL;
1156 #endif
1157 	INIT_LIST_HEAD(&p->pi_state_list);
1158 	p->pi_state_cache = NULL;
1159 #endif
1160 	/*
1161 	 * sigaltstack should be cleared when sharing the same VM
1162 	 */
1163 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1164 		p->sas_ss_sp = p->sas_ss_size = 0;
1165 
1166 	/*
1167 	 * Syscall tracing should be turned off in the child regardless
1168 	 * of CLONE_PTRACE.
1169 	 */
1170 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1171 #ifdef TIF_SYSCALL_EMU
1172 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1173 #endif
1174 	clear_all_latency_tracing(p);
1175 
1176 	/* Our parent execution domain becomes current domain
1177 	   These must match for thread signalling to apply */
1178 	p->parent_exec_id = p->self_exec_id;
1179 
1180 	/* ok, now we should be set up.. */
1181 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1182 	p->pdeath_signal = 0;
1183 	p->exit_state = 0;
1184 
1185 	/*
1186 	 * Ok, make it visible to the rest of the system.
1187 	 * We dont wake it up yet.
1188 	 */
1189 	p->group_leader = p;
1190 	INIT_LIST_HEAD(&p->thread_group);
1191 
1192 	/* Now that the task is set up, run cgroup callbacks if
1193 	 * necessary. We need to run them before the task is visible
1194 	 * on the tasklist. */
1195 	cgroup_fork_callbacks(p);
1196 	cgroup_callbacks_done = 1;
1197 
1198 	/* Need tasklist lock for parent etc handling! */
1199 	write_lock_irq(&tasklist_lock);
1200 
1201 	/*
1202 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1203 	 * not be changed, nor will its assigned CPU.
1204 	 *
1205 	 * The cpus_allowed mask of the parent may have changed after it was
1206 	 * copied first time - so re-copy it here, then check the child's CPU
1207 	 * to ensure it is on a valid CPU (and if not, just force it back to
1208 	 * parent's CPU). This avoids alot of nasty races.
1209 	 */
1210 	p->cpus_allowed = current->cpus_allowed;
1211 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1212 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1213 			!cpu_online(task_cpu(p))))
1214 		set_task_cpu(p, smp_processor_id());
1215 
1216 	/* CLONE_PARENT re-uses the old parent */
1217 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1218 		p->real_parent = current->real_parent;
1219 	else
1220 		p->real_parent = current;
1221 
1222 	spin_lock(&current->sighand->siglock);
1223 
1224 	/*
1225 	 * Process group and session signals need to be delivered to just the
1226 	 * parent before the fork or both the parent and the child after the
1227 	 * fork. Restart if a signal comes in before we add the new process to
1228 	 * it's process group.
1229 	 * A fatal signal pending means that current will exit, so the new
1230 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1231  	 */
1232 	recalc_sigpending();
1233 	if (signal_pending(current)) {
1234 		spin_unlock(&current->sighand->siglock);
1235 		write_unlock_irq(&tasklist_lock);
1236 		retval = -ERESTARTNOINTR;
1237 		goto bad_fork_free_pid;
1238 	}
1239 
1240 	if (clone_flags & CLONE_THREAD) {
1241 		p->group_leader = current->group_leader;
1242 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1243 	}
1244 
1245 	if (likely(p->pid)) {
1246 		list_add_tail(&p->sibling, &p->real_parent->children);
1247 		tracehook_finish_clone(p, clone_flags, trace);
1248 
1249 		if (thread_group_leader(p)) {
1250 			if (clone_flags & CLONE_NEWPID)
1251 				p->nsproxy->pid_ns->child_reaper = p;
1252 
1253 			p->signal->leader_pid = pid;
1254 			tty_kref_put(p->signal->tty);
1255 			p->signal->tty = tty_kref_get(current->signal->tty);
1256 			set_task_pgrp(p, task_pgrp_nr(current));
1257 			set_task_session(p, task_session_nr(current));
1258 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1259 			attach_pid(p, PIDTYPE_SID, task_session(current));
1260 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1261 			__get_cpu_var(process_counts)++;
1262 		}
1263 		attach_pid(p, PIDTYPE_PID, pid);
1264 		nr_threads++;
1265 	}
1266 
1267 	total_forks++;
1268 	spin_unlock(&current->sighand->siglock);
1269 	write_unlock_irq(&tasklist_lock);
1270 	proc_fork_connector(p);
1271 	cgroup_post_fork(p);
1272 	return p;
1273 
1274 bad_fork_free_pid:
1275 	if (pid != &init_struct_pid)
1276 		free_pid(pid);
1277 bad_fork_cleanup_io:
1278 	put_io_context(p->io_context);
1279 bad_fork_cleanup_namespaces:
1280 	exit_task_namespaces(p);
1281 bad_fork_cleanup_keys:
1282 	exit_keys(p);
1283 bad_fork_cleanup_mm:
1284 	if (p->mm)
1285 		mmput(p->mm);
1286 bad_fork_cleanup_signal:
1287 	cleanup_signal(p);
1288 bad_fork_cleanup_sighand:
1289 	__cleanup_sighand(p->sighand);
1290 bad_fork_cleanup_fs:
1291 	exit_fs(p); /* blocking */
1292 bad_fork_cleanup_files:
1293 	exit_files(p); /* blocking */
1294 bad_fork_cleanup_semundo:
1295 	exit_sem(p);
1296 bad_fork_cleanup_audit:
1297 	audit_free(p);
1298 bad_fork_cleanup_security:
1299 	security_task_free(p);
1300 bad_fork_cleanup_policy:
1301 #ifdef CONFIG_NUMA
1302 	mpol_put(p->mempolicy);
1303 bad_fork_cleanup_cgroup:
1304 #endif
1305 	cgroup_exit(p, cgroup_callbacks_done);
1306 	delayacct_tsk_free(p);
1307 	if (p->binfmt)
1308 		module_put(p->binfmt->module);
1309 bad_fork_cleanup_put_domain:
1310 	module_put(task_thread_info(p)->exec_domain->module);
1311 bad_fork_cleanup_count:
1312 	put_group_info(p->group_info);
1313 	atomic_dec(&p->user->processes);
1314 	free_uid(p->user);
1315 bad_fork_free:
1316 	free_task(p);
1317 fork_out:
1318 	return ERR_PTR(retval);
1319 }
1320 
1321 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1322 {
1323 	memset(regs, 0, sizeof(struct pt_regs));
1324 	return regs;
1325 }
1326 
1327 struct task_struct * __cpuinit fork_idle(int cpu)
1328 {
1329 	struct task_struct *task;
1330 	struct pt_regs regs;
1331 
1332 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1333 			    &init_struct_pid, 0);
1334 	if (!IS_ERR(task))
1335 		init_idle(task, cpu);
1336 
1337 	return task;
1338 }
1339 
1340 /*
1341  *  Ok, this is the main fork-routine.
1342  *
1343  * It copies the process, and if successful kick-starts
1344  * it and waits for it to finish using the VM if required.
1345  */
1346 long do_fork(unsigned long clone_flags,
1347 	      unsigned long stack_start,
1348 	      struct pt_regs *regs,
1349 	      unsigned long stack_size,
1350 	      int __user *parent_tidptr,
1351 	      int __user *child_tidptr)
1352 {
1353 	struct task_struct *p;
1354 	int trace = 0;
1355 	long nr;
1356 
1357 	/*
1358 	 * We hope to recycle these flags after 2.6.26
1359 	 */
1360 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1361 		static int __read_mostly count = 100;
1362 
1363 		if (count > 0 && printk_ratelimit()) {
1364 			char comm[TASK_COMM_LEN];
1365 
1366 			count--;
1367 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1368 					"clone flags 0x%lx\n",
1369 				get_task_comm(comm, current),
1370 				clone_flags & CLONE_STOPPED);
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * When called from kernel_thread, don't do user tracing stuff.
1376 	 */
1377 	if (likely(user_mode(regs)))
1378 		trace = tracehook_prepare_clone(clone_flags);
1379 
1380 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1381 			 child_tidptr, NULL, trace);
1382 	/*
1383 	 * Do this prior waking up the new thread - the thread pointer
1384 	 * might get invalid after that point, if the thread exits quickly.
1385 	 */
1386 	if (!IS_ERR(p)) {
1387 		struct completion vfork;
1388 
1389 		trace_sched_process_fork(current, p);
1390 
1391 		nr = task_pid_vnr(p);
1392 
1393 		if (clone_flags & CLONE_PARENT_SETTID)
1394 			put_user(nr, parent_tidptr);
1395 
1396 		if (clone_flags & CLONE_VFORK) {
1397 			p->vfork_done = &vfork;
1398 			init_completion(&vfork);
1399 		}
1400 
1401 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1402 
1403 		/*
1404 		 * We set PF_STARTING at creation in case tracing wants to
1405 		 * use this to distinguish a fully live task from one that
1406 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1407 		 * clear it and set the child going.
1408 		 */
1409 		p->flags &= ~PF_STARTING;
1410 
1411 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1412 			/*
1413 			 * We'll start up with an immediate SIGSTOP.
1414 			 */
1415 			sigaddset(&p->pending.signal, SIGSTOP);
1416 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1417 			__set_task_state(p, TASK_STOPPED);
1418 		} else {
1419 			wake_up_new_task(p, clone_flags);
1420 		}
1421 
1422 		tracehook_report_clone_complete(trace, regs,
1423 						clone_flags, nr, p);
1424 
1425 		if (clone_flags & CLONE_VFORK) {
1426 			freezer_do_not_count();
1427 			wait_for_completion(&vfork);
1428 			freezer_count();
1429 			tracehook_report_vfork_done(p, nr);
1430 		}
1431 	} else {
1432 		nr = PTR_ERR(p);
1433 	}
1434 	return nr;
1435 }
1436 
1437 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1438 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1439 #endif
1440 
1441 static void sighand_ctor(void *data)
1442 {
1443 	struct sighand_struct *sighand = data;
1444 
1445 	spin_lock_init(&sighand->siglock);
1446 	init_waitqueue_head(&sighand->signalfd_wqh);
1447 }
1448 
1449 void __init proc_caches_init(void)
1450 {
1451 	sighand_cachep = kmem_cache_create("sighand_cache",
1452 			sizeof(struct sighand_struct), 0,
1453 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1454 			sighand_ctor);
1455 	signal_cachep = kmem_cache_create("signal_cache",
1456 			sizeof(struct signal_struct), 0,
1457 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1458 	files_cachep = kmem_cache_create("files_cache",
1459 			sizeof(struct files_struct), 0,
1460 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1461 	fs_cachep = kmem_cache_create("fs_cache",
1462 			sizeof(struct fs_struct), 0,
1463 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1464 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1465 			sizeof(struct vm_area_struct), 0,
1466 			SLAB_PANIC, NULL);
1467 	mm_cachep = kmem_cache_create("mm_struct",
1468 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1469 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1470 }
1471 
1472 /*
1473  * Check constraints on flags passed to the unshare system call and
1474  * force unsharing of additional process context as appropriate.
1475  */
1476 static void check_unshare_flags(unsigned long *flags_ptr)
1477 {
1478 	/*
1479 	 * If unsharing a thread from a thread group, must also
1480 	 * unshare vm.
1481 	 */
1482 	if (*flags_ptr & CLONE_THREAD)
1483 		*flags_ptr |= CLONE_VM;
1484 
1485 	/*
1486 	 * If unsharing vm, must also unshare signal handlers.
1487 	 */
1488 	if (*flags_ptr & CLONE_VM)
1489 		*flags_ptr |= CLONE_SIGHAND;
1490 
1491 	/*
1492 	 * If unsharing signal handlers and the task was created
1493 	 * using CLONE_THREAD, then must unshare the thread
1494 	 */
1495 	if ((*flags_ptr & CLONE_SIGHAND) &&
1496 	    (atomic_read(&current->signal->count) > 1))
1497 		*flags_ptr |= CLONE_THREAD;
1498 
1499 	/*
1500 	 * If unsharing namespace, must also unshare filesystem information.
1501 	 */
1502 	if (*flags_ptr & CLONE_NEWNS)
1503 		*flags_ptr |= CLONE_FS;
1504 }
1505 
1506 /*
1507  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1508  */
1509 static int unshare_thread(unsigned long unshare_flags)
1510 {
1511 	if (unshare_flags & CLONE_THREAD)
1512 		return -EINVAL;
1513 
1514 	return 0;
1515 }
1516 
1517 /*
1518  * Unshare the filesystem structure if it is being shared
1519  */
1520 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1521 {
1522 	struct fs_struct *fs = current->fs;
1523 
1524 	if ((unshare_flags & CLONE_FS) &&
1525 	    (fs && atomic_read(&fs->count) > 1)) {
1526 		*new_fsp = __copy_fs_struct(current->fs);
1527 		if (!*new_fsp)
1528 			return -ENOMEM;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Unsharing of sighand is not supported yet
1536  */
1537 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1538 {
1539 	struct sighand_struct *sigh = current->sighand;
1540 
1541 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1542 		return -EINVAL;
1543 	else
1544 		return 0;
1545 }
1546 
1547 /*
1548  * Unshare vm if it is being shared
1549  */
1550 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1551 {
1552 	struct mm_struct *mm = current->mm;
1553 
1554 	if ((unshare_flags & CLONE_VM) &&
1555 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1556 		return -EINVAL;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Unshare file descriptor table if it is being shared
1564  */
1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1566 {
1567 	struct files_struct *fd = current->files;
1568 	int error = 0;
1569 
1570 	if ((unshare_flags & CLONE_FILES) &&
1571 	    (fd && atomic_read(&fd->count) > 1)) {
1572 		*new_fdp = dup_fd(fd, &error);
1573 		if (!*new_fdp)
1574 			return error;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * unshare allows a process to 'unshare' part of the process
1582  * context which was originally shared using clone.  copy_*
1583  * functions used by do_fork() cannot be used here directly
1584  * because they modify an inactive task_struct that is being
1585  * constructed. Here we are modifying the current, active,
1586  * task_struct.
1587  */
1588 asmlinkage long sys_unshare(unsigned long unshare_flags)
1589 {
1590 	int err = 0;
1591 	struct fs_struct *fs, *new_fs = NULL;
1592 	struct sighand_struct *new_sigh = NULL;
1593 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1594 	struct files_struct *fd, *new_fd = NULL;
1595 	struct nsproxy *new_nsproxy = NULL;
1596 	int do_sysvsem = 0;
1597 
1598 	check_unshare_flags(&unshare_flags);
1599 
1600 	/* Return -EINVAL for all unsupported flags */
1601 	err = -EINVAL;
1602 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1603 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1604 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1605 				CLONE_NEWNET))
1606 		goto bad_unshare_out;
1607 
1608 	/*
1609 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1610 	 * to a new ipc namespace, the semaphore arrays from the old
1611 	 * namespace are unreachable.
1612 	 */
1613 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1614 		do_sysvsem = 1;
1615 	if ((err = unshare_thread(unshare_flags)))
1616 		goto bad_unshare_out;
1617 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1618 		goto bad_unshare_cleanup_thread;
1619 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1620 		goto bad_unshare_cleanup_fs;
1621 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1622 		goto bad_unshare_cleanup_sigh;
1623 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1624 		goto bad_unshare_cleanup_vm;
1625 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1626 			new_fs)))
1627 		goto bad_unshare_cleanup_fd;
1628 
1629 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1630 		if (do_sysvsem) {
1631 			/*
1632 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1633 			 */
1634 			exit_sem(current);
1635 		}
1636 
1637 		if (new_nsproxy) {
1638 			switch_task_namespaces(current, new_nsproxy);
1639 			new_nsproxy = NULL;
1640 		}
1641 
1642 		task_lock(current);
1643 
1644 		if (new_fs) {
1645 			fs = current->fs;
1646 			current->fs = new_fs;
1647 			new_fs = fs;
1648 		}
1649 
1650 		if (new_mm) {
1651 			mm = current->mm;
1652 			active_mm = current->active_mm;
1653 			current->mm = new_mm;
1654 			current->active_mm = new_mm;
1655 			activate_mm(active_mm, new_mm);
1656 			new_mm = mm;
1657 		}
1658 
1659 		if (new_fd) {
1660 			fd = current->files;
1661 			current->files = new_fd;
1662 			new_fd = fd;
1663 		}
1664 
1665 		task_unlock(current);
1666 	}
1667 
1668 	if (new_nsproxy)
1669 		put_nsproxy(new_nsproxy);
1670 
1671 bad_unshare_cleanup_fd:
1672 	if (new_fd)
1673 		put_files_struct(new_fd);
1674 
1675 bad_unshare_cleanup_vm:
1676 	if (new_mm)
1677 		mmput(new_mm);
1678 
1679 bad_unshare_cleanup_sigh:
1680 	if (new_sigh)
1681 		if (atomic_dec_and_test(&new_sigh->count))
1682 			kmem_cache_free(sighand_cachep, new_sigh);
1683 
1684 bad_unshare_cleanup_fs:
1685 	if (new_fs)
1686 		put_fs_struct(new_fs);
1687 
1688 bad_unshare_cleanup_thread:
1689 bad_unshare_out:
1690 	return err;
1691 }
1692 
1693 /*
1694  *	Helper to unshare the files of the current task.
1695  *	We don't want to expose copy_files internals to
1696  *	the exec layer of the kernel.
1697  */
1698 
1699 int unshare_files(struct files_struct **displaced)
1700 {
1701 	struct task_struct *task = current;
1702 	struct files_struct *copy = NULL;
1703 	int error;
1704 
1705 	error = unshare_fd(CLONE_FILES, &copy);
1706 	if (error || !copy) {
1707 		*displaced = NULL;
1708 		return error;
1709 	}
1710 	*displaced = task->files;
1711 	task_lock(task);
1712 	task->files = copy;
1713 	task_unlock(task);
1714 	return 0;
1715 }
1716