xref: /linux-6.15/kernel/extable.c (revision a20deb3a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Rewritten by Rusty Russell, on the backs of many others...
3    Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.
4 
5 */
6 #include <linux/ftrace.h>
7 #include <linux/memory.h>
8 #include <linux/extable.h>
9 #include <linux/module.h>
10 #include <linux/mutex.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/filter.h>
14 
15 #include <asm/sections.h>
16 #include <linux/uaccess.h>
17 
18 /*
19  * mutex protecting text section modification (dynamic code patching).
20  * some users need to sleep (allocating memory...) while they hold this lock.
21  *
22  * Note: Also protects SMP-alternatives modification on x86.
23  *
24  * NOT exported to modules - patching kernel text is a really delicate matter.
25  */
26 DEFINE_MUTEX(text_mutex);
27 
28 extern struct exception_table_entry __start___ex_table[];
29 extern struct exception_table_entry __stop___ex_table[];
30 
31 /* Cleared by build time tools if the table is already sorted. */
32 u32 __initdata __visible main_extable_sort_needed = 1;
33 
34 /* Sort the kernel's built-in exception table */
35 void __init sort_main_extable(void)
36 {
37 	if (main_extable_sort_needed &&
38 	    &__stop___ex_table > &__start___ex_table) {
39 		pr_notice("Sorting __ex_table...\n");
40 		sort_extable(__start___ex_table, __stop___ex_table);
41 	}
42 }
43 
44 /* Given an address, look for it in the kernel exception table */
45 const
46 struct exception_table_entry *search_kernel_exception_table(unsigned long addr)
47 {
48 	return search_extable(__start___ex_table,
49 			      __stop___ex_table - __start___ex_table, addr);
50 }
51 
52 /* Given an address, look for it in the exception tables. */
53 const struct exception_table_entry *search_exception_tables(unsigned long addr)
54 {
55 	const struct exception_table_entry *e;
56 
57 	e = search_kernel_exception_table(addr);
58 	if (!e)
59 		e = search_module_extables(addr);
60 	if (!e)
61 		e = search_bpf_extables(addr);
62 	return e;
63 }
64 
65 int init_kernel_text(unsigned long addr)
66 {
67 	if (addr >= (unsigned long)_sinittext &&
68 	    addr < (unsigned long)_einittext)
69 		return 1;
70 	return 0;
71 }
72 
73 int notrace core_kernel_text(unsigned long addr)
74 {
75 	if (addr >= (unsigned long)_stext &&
76 	    addr < (unsigned long)_etext)
77 		return 1;
78 
79 	if (system_state < SYSTEM_FREEING_INITMEM &&
80 	    init_kernel_text(addr))
81 		return 1;
82 	return 0;
83 }
84 
85 int __kernel_text_address(unsigned long addr)
86 {
87 	if (kernel_text_address(addr))
88 		return 1;
89 	/*
90 	 * There might be init symbols in saved stacktraces.
91 	 * Give those symbols a chance to be printed in
92 	 * backtraces (such as lockdep traces).
93 	 *
94 	 * Since we are after the module-symbols check, there's
95 	 * no danger of address overlap:
96 	 */
97 	if (init_kernel_text(addr))
98 		return 1;
99 	return 0;
100 }
101 
102 int kernel_text_address(unsigned long addr)
103 {
104 	bool no_rcu;
105 	int ret = 1;
106 
107 	if (core_kernel_text(addr))
108 		return 1;
109 
110 	/*
111 	 * If a stack dump happens while RCU is not watching, then
112 	 * RCU needs to be notified that it requires to start
113 	 * watching again. This can happen either by tracing that
114 	 * triggers a stack trace, or a WARN() that happens during
115 	 * coming back from idle, or cpu on or offlining.
116 	 *
117 	 * is_module_text_address() as well as the kprobe slots,
118 	 * is_bpf_text_address() and is_bpf_image_address require
119 	 * RCU to be watching.
120 	 */
121 	no_rcu = !rcu_is_watching();
122 
123 	/* Treat this like an NMI as it can happen anywhere */
124 	if (no_rcu)
125 		rcu_nmi_enter();
126 
127 	if (is_module_text_address(addr))
128 		goto out;
129 	if (is_ftrace_trampoline(addr))
130 		goto out;
131 	if (is_kprobe_optinsn_slot(addr) || is_kprobe_insn_slot(addr))
132 		goto out;
133 	if (is_bpf_text_address(addr))
134 		goto out;
135 	ret = 0;
136 out:
137 	if (no_rcu)
138 		rcu_nmi_exit();
139 
140 	return ret;
141 }
142 
143 /*
144  * On some architectures (PPC64, IA64) function pointers
145  * are actually only tokens to some data that then holds the
146  * real function address. As a result, to find if a function
147  * pointer is part of the kernel text, we need to do some
148  * special dereferencing first.
149  */
150 int func_ptr_is_kernel_text(void *ptr)
151 {
152 	unsigned long addr;
153 	addr = (unsigned long) dereference_function_descriptor(ptr);
154 	if (core_kernel_text(addr))
155 		return 1;
156 	return is_module_text_address(addr);
157 }
158