xref: /linux-6.15/kernel/exit.c (revision fb3bbcfe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
72 
73 #include <uapi/linux/wait.h>
74 
75 #include <asm/unistd.h>
76 #include <asm/mmu_context.h>
77 
78 #include "exit.h"
79 
80 /*
81  * The default value should be high enough to not crash a system that randomly
82  * crashes its kernel from time to time, but low enough to at least not permit
83  * overflowing 32-bit refcounts or the ldsem writer count.
84  */
85 static unsigned int oops_limit = 10000;
86 
87 #ifdef CONFIG_SYSCTL
88 static const struct ctl_table kern_exit_table[] = {
89 	{
90 		.procname       = "oops_limit",
91 		.data           = &oops_limit,
92 		.maxlen         = sizeof(oops_limit),
93 		.mode           = 0644,
94 		.proc_handler   = proc_douintvec,
95 	},
96 };
97 
98 static __init int kernel_exit_sysctls_init(void)
99 {
100 	register_sysctl_init("kernel", kern_exit_table);
101 	return 0;
102 }
103 late_initcall(kernel_exit_sysctls_init);
104 #endif
105 
106 static atomic_t oops_count = ATOMIC_INIT(0);
107 
108 #ifdef CONFIG_SYSFS
109 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
110 			       char *page)
111 {
112 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
113 }
114 
115 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
116 
117 static __init int kernel_exit_sysfs_init(void)
118 {
119 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
120 	return 0;
121 }
122 late_initcall(kernel_exit_sysfs_init);
123 #endif
124 
125 static void __unhash_process(struct task_struct *p, bool group_dead)
126 {
127 	nr_threads--;
128 	detach_pid(p, PIDTYPE_PID);
129 	if (group_dead) {
130 		detach_pid(p, PIDTYPE_TGID);
131 		detach_pid(p, PIDTYPE_PGID);
132 		detach_pid(p, PIDTYPE_SID);
133 
134 		list_del_rcu(&p->tasks);
135 		list_del_init(&p->sibling);
136 		__this_cpu_dec(process_counts);
137 	}
138 	list_del_rcu(&p->thread_node);
139 }
140 
141 /*
142  * This function expects the tasklist_lock write-locked.
143  */
144 static void __exit_signal(struct task_struct *tsk)
145 {
146 	struct signal_struct *sig = tsk->signal;
147 	bool group_dead = thread_group_leader(tsk);
148 	struct sighand_struct *sighand;
149 	struct tty_struct *tty;
150 	u64 utime, stime;
151 
152 	sighand = rcu_dereference_check(tsk->sighand,
153 					lockdep_tasklist_lock_is_held());
154 	spin_lock(&sighand->siglock);
155 
156 #ifdef CONFIG_POSIX_TIMERS
157 	posix_cpu_timers_exit(tsk);
158 	if (group_dead)
159 		posix_cpu_timers_exit_group(tsk);
160 #endif
161 
162 	if (group_dead) {
163 		tty = sig->tty;
164 		sig->tty = NULL;
165 	} else {
166 		/*
167 		 * If there is any task waiting for the group exit
168 		 * then notify it:
169 		 */
170 		if (sig->notify_count > 0 && !--sig->notify_count)
171 			wake_up_process(sig->group_exec_task);
172 
173 		if (tsk == sig->curr_target)
174 			sig->curr_target = next_thread(tsk);
175 	}
176 
177 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
178 			      sizeof(unsigned long long));
179 
180 	/*
181 	 * Accumulate here the counters for all threads as they die. We could
182 	 * skip the group leader because it is the last user of signal_struct,
183 	 * but we want to avoid the race with thread_group_cputime() which can
184 	 * see the empty ->thread_head list.
185 	 */
186 	task_cputime(tsk, &utime, &stime);
187 	write_seqlock(&sig->stats_lock);
188 	sig->utime += utime;
189 	sig->stime += stime;
190 	sig->gtime += task_gtime(tsk);
191 	sig->min_flt += tsk->min_flt;
192 	sig->maj_flt += tsk->maj_flt;
193 	sig->nvcsw += tsk->nvcsw;
194 	sig->nivcsw += tsk->nivcsw;
195 	sig->inblock += task_io_get_inblock(tsk);
196 	sig->oublock += task_io_get_oublock(tsk);
197 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
198 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
199 	sig->nr_threads--;
200 	__unhash_process(tsk, group_dead);
201 	write_sequnlock(&sig->stats_lock);
202 
203 	tsk->sighand = NULL;
204 	spin_unlock(&sighand->siglock);
205 
206 	__cleanup_sighand(sighand);
207 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
208 	if (group_dead)
209 		tty_kref_put(tty);
210 }
211 
212 static void delayed_put_task_struct(struct rcu_head *rhp)
213 {
214 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
215 
216 	kprobe_flush_task(tsk);
217 	rethook_flush_task(tsk);
218 	perf_event_delayed_put(tsk);
219 	trace_sched_process_free(tsk);
220 	put_task_struct(tsk);
221 }
222 
223 void put_task_struct_rcu_user(struct task_struct *task)
224 {
225 	if (refcount_dec_and_test(&task->rcu_users))
226 		call_rcu(&task->rcu, delayed_put_task_struct);
227 }
228 
229 void __weak release_thread(struct task_struct *dead_task)
230 {
231 }
232 
233 void release_task(struct task_struct *p)
234 {
235 	struct task_struct *leader;
236 	struct pid *thread_pid;
237 	int zap_leader;
238 repeat:
239 	/* don't need to get the RCU readlock here - the process is dead and
240 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
241 	rcu_read_lock();
242 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
243 	rcu_read_unlock();
244 
245 	cgroup_release(p);
246 
247 	write_lock_irq(&tasklist_lock);
248 	ptrace_release_task(p);
249 	thread_pid = get_pid(p->thread_pid);
250 	__exit_signal(p);
251 
252 	/*
253 	 * If we are the last non-leader member of the thread
254 	 * group, and the leader is zombie, then notify the
255 	 * group leader's parent process. (if it wants notification.)
256 	 */
257 	zap_leader = 0;
258 	leader = p->group_leader;
259 	if (leader != p && thread_group_empty(leader)
260 			&& leader->exit_state == EXIT_ZOMBIE) {
261 		/*
262 		 * If we were the last child thread and the leader has
263 		 * exited already, and the leader's parent ignores SIGCHLD,
264 		 * then we are the one who should release the leader.
265 		 */
266 		zap_leader = do_notify_parent(leader, leader->exit_signal);
267 		if (zap_leader)
268 			leader->exit_state = EXIT_DEAD;
269 	}
270 
271 	write_unlock_irq(&tasklist_lock);
272 	proc_flush_pid(thread_pid);
273 	put_pid(thread_pid);
274 	release_thread(p);
275 	/*
276 	 * This task was already removed from the process/thread/pid lists
277 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
278 	 * ->pending or, if group dead, signal->shared_pending. We can call
279 	 * flush_sigqueue() lockless.
280 	 */
281 	flush_sigqueue(&p->pending);
282 	if (thread_group_leader(p))
283 		flush_sigqueue(&p->signal->shared_pending);
284 
285 	put_task_struct_rcu_user(p);
286 
287 	p = leader;
288 	if (unlikely(zap_leader))
289 		goto repeat;
290 }
291 
292 int rcuwait_wake_up(struct rcuwait *w)
293 {
294 	int ret = 0;
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_mb(); /* (B) */
311 
312 	task = rcu_dereference(w->task);
313 	if (task)
314 		ret = wake_up_process(task);
315 	rcu_read_unlock();
316 
317 	return ret;
318 }
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320 
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 					struct task_struct *ignored_task)
331 {
332 	struct task_struct *p;
333 
334 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 		if ((p == ignored_task) ||
336 		    (p->exit_state && thread_group_empty(p)) ||
337 		    is_global_init(p->real_parent))
338 			continue;
339 
340 		if (task_pgrp(p->real_parent) != pgrp &&
341 		    task_session(p->real_parent) == task_session(p))
342 			return 0;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return 1;
346 }
347 
348 int is_current_pgrp_orphaned(void)
349 {
350 	int retval;
351 
352 	read_lock(&tasklist_lock);
353 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 	read_unlock(&tasklist_lock);
355 
356 	return retval;
357 }
358 
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 	struct task_struct *p;
362 
363 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 			return true;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return false;
369 }
370 
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 	struct pid *pgrp = task_pgrp(tsk);
380 	struct task_struct *ignored_task = tsk;
381 
382 	if (!parent)
383 		/* exit: our father is in a different pgrp than
384 		 * we are and we were the only connection outside.
385 		 */
386 		parent = tsk->real_parent;
387 	else
388 		/* reparent: our child is in a different pgrp than
389 		 * we are, and it was the only connection outside.
390 		 */
391 		ignored_task = NULL;
392 
393 	if (task_pgrp(parent) != pgrp &&
394 	    task_session(parent) == task_session(tsk) &&
395 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 	    has_stopped_jobs(pgrp)) {
397 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 	}
400 }
401 
402 static void coredump_task_exit(struct task_struct *tsk)
403 {
404 	struct core_state *core_state;
405 
406 	/*
407 	 * Serialize with any possible pending coredump.
408 	 * We must hold siglock around checking core_state
409 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
410 	 * will increment ->nr_threads for each thread in the
411 	 * group without PF_POSTCOREDUMP set.
412 	 */
413 	spin_lock_irq(&tsk->sighand->siglock);
414 	tsk->flags |= PF_POSTCOREDUMP;
415 	core_state = tsk->signal->core_state;
416 	spin_unlock_irq(&tsk->sighand->siglock);
417 	if (core_state) {
418 		struct core_thread self;
419 
420 		self.task = current;
421 		if (self.task->flags & PF_SIGNALED)
422 			self.next = xchg(&core_state->dumper.next, &self);
423 		else
424 			self.task = NULL;
425 		/*
426 		 * Implies mb(), the result of xchg() must be visible
427 		 * to core_state->dumper.
428 		 */
429 		if (atomic_dec_and_test(&core_state->nr_threads))
430 			complete(&core_state->startup);
431 
432 		for (;;) {
433 			set_current_state(TASK_IDLE|TASK_FREEZABLE);
434 			if (!self.task) /* see coredump_finish() */
435 				break;
436 			schedule();
437 		}
438 		__set_current_state(TASK_RUNNING);
439 	}
440 }
441 
442 #ifdef CONFIG_MEMCG
443 /* drops tasklist_lock if succeeds */
444 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
445 {
446 	bool ret = false;
447 
448 	task_lock(tsk);
449 	if (likely(tsk->mm == mm)) {
450 		/* tsk can't pass exit_mm/exec_mmap and exit */
451 		read_unlock(&tasklist_lock);
452 		WRITE_ONCE(mm->owner, tsk);
453 		lru_gen_migrate_mm(mm);
454 		ret = true;
455 	}
456 	task_unlock(tsk);
457 	return ret;
458 }
459 
460 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
461 {
462 	struct task_struct *t;
463 
464 	for_each_thread(g, t) {
465 		struct mm_struct *t_mm = READ_ONCE(t->mm);
466 		if (t_mm == mm) {
467 			if (__try_to_set_owner(t, mm))
468 				return true;
469 		} else if (t_mm)
470 			break;
471 	}
472 
473 	return false;
474 }
475 
476 /*
477  * A task is exiting.   If it owned this mm, find a new owner for the mm.
478  */
479 void mm_update_next_owner(struct mm_struct *mm)
480 {
481 	struct task_struct *g, *p = current;
482 
483 	/*
484 	 * If the exiting or execing task is not the owner, it's
485 	 * someone else's problem.
486 	 */
487 	if (mm->owner != p)
488 		return;
489 	/*
490 	 * The current owner is exiting/execing and there are no other
491 	 * candidates.  Do not leave the mm pointing to a possibly
492 	 * freed task structure.
493 	 */
494 	if (atomic_read(&mm->mm_users) <= 1) {
495 		WRITE_ONCE(mm->owner, NULL);
496 		return;
497 	}
498 
499 	read_lock(&tasklist_lock);
500 	/*
501 	 * Search in the children
502 	 */
503 	list_for_each_entry(g, &p->children, sibling) {
504 		if (try_to_set_owner(g, mm))
505 			goto ret;
506 	}
507 	/*
508 	 * Search in the siblings
509 	 */
510 	list_for_each_entry(g, &p->real_parent->children, sibling) {
511 		if (try_to_set_owner(g, mm))
512 			goto ret;
513 	}
514 	/*
515 	 * Search through everything else, we should not get here often.
516 	 */
517 	for_each_process(g) {
518 		if (atomic_read(&mm->mm_users) <= 1)
519 			break;
520 		if (g->flags & PF_KTHREAD)
521 			continue;
522 		if (try_to_set_owner(g, mm))
523 			goto ret;
524 	}
525 	read_unlock(&tasklist_lock);
526 	/*
527 	 * We found no owner yet mm_users > 1: this implies that we are
528 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
529 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
530 	 */
531 	WRITE_ONCE(mm->owner, NULL);
532  ret:
533 	return;
534 
535 }
536 #endif /* CONFIG_MEMCG */
537 
538 /*
539  * Turn us into a lazy TLB process if we
540  * aren't already..
541  */
542 static void exit_mm(void)
543 {
544 	struct mm_struct *mm = current->mm;
545 
546 	exit_mm_release(current, mm);
547 	if (!mm)
548 		return;
549 	mmap_read_lock(mm);
550 	mmgrab_lazy_tlb(mm);
551 	BUG_ON(mm != current->active_mm);
552 	/* more a memory barrier than a real lock */
553 	task_lock(current);
554 	/*
555 	 * When a thread stops operating on an address space, the loop
556 	 * in membarrier_private_expedited() may not observe that
557 	 * tsk->mm, and the loop in membarrier_global_expedited() may
558 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
559 	 * rq->membarrier_state, so those would not issue an IPI.
560 	 * Membarrier requires a memory barrier after accessing
561 	 * user-space memory, before clearing tsk->mm or the
562 	 * rq->membarrier_state.
563 	 */
564 	smp_mb__after_spinlock();
565 	local_irq_disable();
566 	current->mm = NULL;
567 	membarrier_update_current_mm(NULL);
568 	enter_lazy_tlb(mm, current);
569 	local_irq_enable();
570 	task_unlock(current);
571 	mmap_read_unlock(mm);
572 	mm_update_next_owner(mm);
573 	mmput(mm);
574 	if (test_thread_flag(TIF_MEMDIE))
575 		exit_oom_victim();
576 }
577 
578 static struct task_struct *find_alive_thread(struct task_struct *p)
579 {
580 	struct task_struct *t;
581 
582 	for_each_thread(p, t) {
583 		if (!(t->flags & PF_EXITING))
584 			return t;
585 	}
586 	return NULL;
587 }
588 
589 static struct task_struct *find_child_reaper(struct task_struct *father,
590 						struct list_head *dead)
591 	__releases(&tasklist_lock)
592 	__acquires(&tasklist_lock)
593 {
594 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
595 	struct task_struct *reaper = pid_ns->child_reaper;
596 	struct task_struct *p, *n;
597 
598 	if (likely(reaper != father))
599 		return reaper;
600 
601 	reaper = find_alive_thread(father);
602 	if (reaper) {
603 		pid_ns->child_reaper = reaper;
604 		return reaper;
605 	}
606 
607 	write_unlock_irq(&tasklist_lock);
608 
609 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
610 		list_del_init(&p->ptrace_entry);
611 		release_task(p);
612 	}
613 
614 	zap_pid_ns_processes(pid_ns);
615 	write_lock_irq(&tasklist_lock);
616 
617 	return father;
618 }
619 
620 /*
621  * When we die, we re-parent all our children, and try to:
622  * 1. give them to another thread in our thread group, if such a member exists
623  * 2. give it to the first ancestor process which prctl'd itself as a
624  *    child_subreaper for its children (like a service manager)
625  * 3. give it to the init process (PID 1) in our pid namespace
626  */
627 static struct task_struct *find_new_reaper(struct task_struct *father,
628 					   struct task_struct *child_reaper)
629 {
630 	struct task_struct *thread, *reaper;
631 
632 	thread = find_alive_thread(father);
633 	if (thread)
634 		return thread;
635 
636 	if (father->signal->has_child_subreaper) {
637 		unsigned int ns_level = task_pid(father)->level;
638 		/*
639 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
640 		 * We can't check reaper != child_reaper to ensure we do not
641 		 * cross the namespaces, the exiting parent could be injected
642 		 * by setns() + fork().
643 		 * We check pid->level, this is slightly more efficient than
644 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
645 		 */
646 		for (reaper = father->real_parent;
647 		     task_pid(reaper)->level == ns_level;
648 		     reaper = reaper->real_parent) {
649 			if (reaper == &init_task)
650 				break;
651 			if (!reaper->signal->is_child_subreaper)
652 				continue;
653 			thread = find_alive_thread(reaper);
654 			if (thread)
655 				return thread;
656 		}
657 	}
658 
659 	return child_reaper;
660 }
661 
662 /*
663 * Any that need to be release_task'd are put on the @dead list.
664  */
665 static void reparent_leader(struct task_struct *father, struct task_struct *p,
666 				struct list_head *dead)
667 {
668 	if (unlikely(p->exit_state == EXIT_DEAD))
669 		return;
670 
671 	/* We don't want people slaying init. */
672 	p->exit_signal = SIGCHLD;
673 
674 	/* If it has exited notify the new parent about this child's death. */
675 	if (!p->ptrace &&
676 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
677 		if (do_notify_parent(p, p->exit_signal)) {
678 			p->exit_state = EXIT_DEAD;
679 			list_add(&p->ptrace_entry, dead);
680 		}
681 	}
682 
683 	kill_orphaned_pgrp(p, father);
684 }
685 
686 /*
687  * This does two things:
688  *
689  * A.  Make init inherit all the child processes
690  * B.  Check to see if any process groups have become orphaned
691  *	as a result of our exiting, and if they have any stopped
692  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
693  */
694 static void forget_original_parent(struct task_struct *father,
695 					struct list_head *dead)
696 {
697 	struct task_struct *p, *t, *reaper;
698 
699 	if (unlikely(!list_empty(&father->ptraced)))
700 		exit_ptrace(father, dead);
701 
702 	/* Can drop and reacquire tasklist_lock */
703 	reaper = find_child_reaper(father, dead);
704 	if (list_empty(&father->children))
705 		return;
706 
707 	reaper = find_new_reaper(father, reaper);
708 	list_for_each_entry(p, &father->children, sibling) {
709 		for_each_thread(p, t) {
710 			RCU_INIT_POINTER(t->real_parent, reaper);
711 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
712 			if (likely(!t->ptrace))
713 				t->parent = t->real_parent;
714 			if (t->pdeath_signal)
715 				group_send_sig_info(t->pdeath_signal,
716 						    SEND_SIG_NOINFO, t,
717 						    PIDTYPE_TGID);
718 		}
719 		/*
720 		 * If this is a threaded reparent there is no need to
721 		 * notify anyone anything has happened.
722 		 */
723 		if (!same_thread_group(reaper, father))
724 			reparent_leader(father, p, dead);
725 	}
726 	list_splice_tail_init(&father->children, &reaper->children);
727 }
728 
729 /*
730  * Send signals to all our closest relatives so that they know
731  * to properly mourn us..
732  */
733 static void exit_notify(struct task_struct *tsk, int group_dead)
734 {
735 	bool autoreap;
736 	struct task_struct *p, *n;
737 	LIST_HEAD(dead);
738 
739 	write_lock_irq(&tasklist_lock);
740 	forget_original_parent(tsk, &dead);
741 
742 	if (group_dead)
743 		kill_orphaned_pgrp(tsk->group_leader, NULL);
744 
745 	tsk->exit_state = EXIT_ZOMBIE;
746 	/*
747 	 * sub-thread or delay_group_leader(), wake up the
748 	 * PIDFD_THREAD waiters.
749 	 */
750 	if (!thread_group_empty(tsk))
751 		do_notify_pidfd(tsk);
752 
753 	if (unlikely(tsk->ptrace)) {
754 		int sig = thread_group_leader(tsk) &&
755 				thread_group_empty(tsk) &&
756 				!ptrace_reparented(tsk) ?
757 			tsk->exit_signal : SIGCHLD;
758 		autoreap = do_notify_parent(tsk, sig);
759 	} else if (thread_group_leader(tsk)) {
760 		autoreap = thread_group_empty(tsk) &&
761 			do_notify_parent(tsk, tsk->exit_signal);
762 	} else {
763 		autoreap = true;
764 	}
765 
766 	if (autoreap) {
767 		tsk->exit_state = EXIT_DEAD;
768 		list_add(&tsk->ptrace_entry, &dead);
769 	}
770 
771 	/* mt-exec, de_thread() is waiting for group leader */
772 	if (unlikely(tsk->signal->notify_count < 0))
773 		wake_up_process(tsk->signal->group_exec_task);
774 	write_unlock_irq(&tasklist_lock);
775 
776 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
777 		list_del_init(&p->ptrace_entry);
778 		release_task(p);
779 	}
780 }
781 
782 #ifdef CONFIG_DEBUG_STACK_USAGE
783 unsigned long stack_not_used(struct task_struct *p)
784 {
785 	unsigned long *n = end_of_stack(p);
786 
787 	do {	/* Skip over canary */
788 # ifdef CONFIG_STACK_GROWSUP
789 		n--;
790 # else
791 		n++;
792 # endif
793 	} while (!*n);
794 
795 # ifdef CONFIG_STACK_GROWSUP
796 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
797 # else
798 	return (unsigned long)n - (unsigned long)end_of_stack(p);
799 # endif
800 }
801 
802 /* Count the maximum pages reached in kernel stacks */
803 static inline void kstack_histogram(unsigned long used_stack)
804 {
805 #ifdef CONFIG_VM_EVENT_COUNTERS
806 	if (used_stack <= 1024)
807 		count_vm_event(KSTACK_1K);
808 #if THREAD_SIZE > 1024
809 	else if (used_stack <= 2048)
810 		count_vm_event(KSTACK_2K);
811 #endif
812 #if THREAD_SIZE > 2048
813 	else if (used_stack <= 4096)
814 		count_vm_event(KSTACK_4K);
815 #endif
816 #if THREAD_SIZE > 4096
817 	else if (used_stack <= 8192)
818 		count_vm_event(KSTACK_8K);
819 #endif
820 #if THREAD_SIZE > 8192
821 	else if (used_stack <= 16384)
822 		count_vm_event(KSTACK_16K);
823 #endif
824 #if THREAD_SIZE > 16384
825 	else if (used_stack <= 32768)
826 		count_vm_event(KSTACK_32K);
827 #endif
828 #if THREAD_SIZE > 32768
829 	else if (used_stack <= 65536)
830 		count_vm_event(KSTACK_64K);
831 #endif
832 #if THREAD_SIZE > 65536
833 	else
834 		count_vm_event(KSTACK_REST);
835 #endif
836 #endif /* CONFIG_VM_EVENT_COUNTERS */
837 }
838 
839 static void check_stack_usage(void)
840 {
841 	static DEFINE_SPINLOCK(low_water_lock);
842 	static int lowest_to_date = THREAD_SIZE;
843 	unsigned long free;
844 
845 	free = stack_not_used(current);
846 	kstack_histogram(THREAD_SIZE - free);
847 
848 	if (free >= lowest_to_date)
849 		return;
850 
851 	spin_lock(&low_water_lock);
852 	if (free < lowest_to_date) {
853 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
854 			current->comm, task_pid_nr(current), free);
855 		lowest_to_date = free;
856 	}
857 	spin_unlock(&low_water_lock);
858 }
859 #else
860 static inline void check_stack_usage(void) {}
861 #endif
862 
863 static void synchronize_group_exit(struct task_struct *tsk, long code)
864 {
865 	struct sighand_struct *sighand = tsk->sighand;
866 	struct signal_struct *signal = tsk->signal;
867 
868 	spin_lock_irq(&sighand->siglock);
869 	signal->quick_threads--;
870 	if ((signal->quick_threads == 0) &&
871 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
872 		signal->flags = SIGNAL_GROUP_EXIT;
873 		signal->group_exit_code = code;
874 		signal->group_stop_count = 0;
875 	}
876 	spin_unlock_irq(&sighand->siglock);
877 }
878 
879 void __noreturn do_exit(long code)
880 {
881 	struct task_struct *tsk = current;
882 	int group_dead;
883 
884 	WARN_ON(irqs_disabled());
885 
886 	synchronize_group_exit(tsk, code);
887 
888 	WARN_ON(tsk->plug);
889 
890 	kcov_task_exit(tsk);
891 	kmsan_task_exit(tsk);
892 
893 	coredump_task_exit(tsk);
894 	ptrace_event(PTRACE_EVENT_EXIT, code);
895 	user_events_exit(tsk);
896 
897 	io_uring_files_cancel();
898 	exit_signals(tsk);  /* sets PF_EXITING */
899 
900 	seccomp_filter_release(tsk);
901 
902 	acct_update_integrals(tsk);
903 	group_dead = atomic_dec_and_test(&tsk->signal->live);
904 	if (group_dead) {
905 		/*
906 		 * If the last thread of global init has exited, panic
907 		 * immediately to get a useable coredump.
908 		 */
909 		if (unlikely(is_global_init(tsk)))
910 			panic("Attempted to kill init! exitcode=0x%08x\n",
911 				tsk->signal->group_exit_code ?: (int)code);
912 
913 #ifdef CONFIG_POSIX_TIMERS
914 		hrtimer_cancel(&tsk->signal->real_timer);
915 		exit_itimers(tsk);
916 #endif
917 		if (tsk->mm)
918 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
919 	}
920 	acct_collect(code, group_dead);
921 	if (group_dead)
922 		tty_audit_exit();
923 	audit_free(tsk);
924 
925 	tsk->exit_code = code;
926 	taskstats_exit(tsk, group_dead);
927 
928 	exit_mm();
929 
930 	if (group_dead)
931 		acct_process();
932 	trace_sched_process_exit(tsk);
933 
934 	exit_sem(tsk);
935 	exit_shm(tsk);
936 	exit_files(tsk);
937 	exit_fs(tsk);
938 	if (group_dead)
939 		disassociate_ctty(1);
940 	exit_task_namespaces(tsk);
941 	exit_task_work(tsk);
942 	exit_thread(tsk);
943 
944 	/*
945 	 * Flush inherited counters to the parent - before the parent
946 	 * gets woken up by child-exit notifications.
947 	 *
948 	 * because of cgroup mode, must be called before cgroup_exit()
949 	 */
950 	perf_event_exit_task(tsk);
951 
952 	sched_autogroup_exit_task(tsk);
953 	cgroup_exit(tsk);
954 
955 	/*
956 	 * FIXME: do that only when needed, using sched_exit tracepoint
957 	 */
958 	flush_ptrace_hw_breakpoint(tsk);
959 
960 	exit_tasks_rcu_start();
961 	exit_notify(tsk, group_dead);
962 	proc_exit_connector(tsk);
963 	mpol_put_task_policy(tsk);
964 #ifdef CONFIG_FUTEX
965 	if (unlikely(current->pi_state_cache))
966 		kfree(current->pi_state_cache);
967 #endif
968 	/*
969 	 * Make sure we are holding no locks:
970 	 */
971 	debug_check_no_locks_held();
972 
973 	if (tsk->io_context)
974 		exit_io_context(tsk);
975 
976 	if (tsk->splice_pipe)
977 		free_pipe_info(tsk->splice_pipe);
978 
979 	if (tsk->task_frag.page)
980 		put_page(tsk->task_frag.page);
981 
982 	exit_task_stack_account(tsk);
983 
984 	check_stack_usage();
985 	preempt_disable();
986 	if (tsk->nr_dirtied)
987 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
988 	exit_rcu();
989 	exit_tasks_rcu_finish();
990 
991 	lockdep_free_task(tsk);
992 	do_task_dead();
993 }
994 
995 void __noreturn make_task_dead(int signr)
996 {
997 	/*
998 	 * Take the task off the cpu after something catastrophic has
999 	 * happened.
1000 	 *
1001 	 * We can get here from a kernel oops, sometimes with preemption off.
1002 	 * Start by checking for critical errors.
1003 	 * Then fix up important state like USER_DS and preemption.
1004 	 * Then do everything else.
1005 	 */
1006 	struct task_struct *tsk = current;
1007 	unsigned int limit;
1008 
1009 	if (unlikely(in_interrupt()))
1010 		panic("Aiee, killing interrupt handler!");
1011 	if (unlikely(!tsk->pid))
1012 		panic("Attempted to kill the idle task!");
1013 
1014 	if (unlikely(irqs_disabled())) {
1015 		pr_info("note: %s[%d] exited with irqs disabled\n",
1016 			current->comm, task_pid_nr(current));
1017 		local_irq_enable();
1018 	}
1019 	if (unlikely(in_atomic())) {
1020 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1021 			current->comm, task_pid_nr(current),
1022 			preempt_count());
1023 		preempt_count_set(PREEMPT_ENABLED);
1024 	}
1025 
1026 	/*
1027 	 * Every time the system oopses, if the oops happens while a reference
1028 	 * to an object was held, the reference leaks.
1029 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1030 	 * reference counters to wrap around (if they're not using refcount_t).
1031 	 * This means that repeated oopsing can make unexploitable-looking bugs
1032 	 * exploitable through repeated oopsing.
1033 	 * To make sure this can't happen, place an upper bound on how often the
1034 	 * kernel may oops without panic().
1035 	 */
1036 	limit = READ_ONCE(oops_limit);
1037 	if (atomic_inc_return(&oops_count) >= limit && limit)
1038 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1039 
1040 	/*
1041 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1042 	 * leave this task alone and wait for reboot.
1043 	 */
1044 	if (unlikely(tsk->flags & PF_EXITING)) {
1045 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1046 		futex_exit_recursive(tsk);
1047 		tsk->exit_state = EXIT_DEAD;
1048 		refcount_inc(&tsk->rcu_users);
1049 		do_task_dead();
1050 	}
1051 
1052 	do_exit(signr);
1053 }
1054 
1055 SYSCALL_DEFINE1(exit, int, error_code)
1056 {
1057 	do_exit((error_code&0xff)<<8);
1058 }
1059 
1060 /*
1061  * Take down every thread in the group.  This is called by fatal signals
1062  * as well as by sys_exit_group (below).
1063  */
1064 void __noreturn
1065 do_group_exit(int exit_code)
1066 {
1067 	struct signal_struct *sig = current->signal;
1068 
1069 	if (sig->flags & SIGNAL_GROUP_EXIT)
1070 		exit_code = sig->group_exit_code;
1071 	else if (sig->group_exec_task)
1072 		exit_code = 0;
1073 	else {
1074 		struct sighand_struct *const sighand = current->sighand;
1075 
1076 		spin_lock_irq(&sighand->siglock);
1077 		if (sig->flags & SIGNAL_GROUP_EXIT)
1078 			/* Another thread got here before we took the lock.  */
1079 			exit_code = sig->group_exit_code;
1080 		else if (sig->group_exec_task)
1081 			exit_code = 0;
1082 		else {
1083 			sig->group_exit_code = exit_code;
1084 			sig->flags = SIGNAL_GROUP_EXIT;
1085 			zap_other_threads(current);
1086 		}
1087 		spin_unlock_irq(&sighand->siglock);
1088 	}
1089 
1090 	do_exit(exit_code);
1091 	/* NOTREACHED */
1092 }
1093 
1094 /*
1095  * this kills every thread in the thread group. Note that any externally
1096  * wait4()-ing process will get the correct exit code - even if this
1097  * thread is not the thread group leader.
1098  */
1099 SYSCALL_DEFINE1(exit_group, int, error_code)
1100 {
1101 	do_group_exit((error_code & 0xff) << 8);
1102 	/* NOTREACHED */
1103 	return 0;
1104 }
1105 
1106 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1107 {
1108 	return	wo->wo_type == PIDTYPE_MAX ||
1109 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1110 }
1111 
1112 static int
1113 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1114 {
1115 	if (!eligible_pid(wo, p))
1116 		return 0;
1117 
1118 	/*
1119 	 * Wait for all children (clone and not) if __WALL is set or
1120 	 * if it is traced by us.
1121 	 */
1122 	if (ptrace || (wo->wo_flags & __WALL))
1123 		return 1;
1124 
1125 	/*
1126 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1127 	 * otherwise, wait for non-clone children *only*.
1128 	 *
1129 	 * Note: a "clone" child here is one that reports to its parent
1130 	 * using a signal other than SIGCHLD, or a non-leader thread which
1131 	 * we can only see if it is traced by us.
1132 	 */
1133 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1134 		return 0;
1135 
1136 	return 1;
1137 }
1138 
1139 /*
1140  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1141  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1142  * the lock and this task is uninteresting.  If we return nonzero, we have
1143  * released the lock and the system call should return.
1144  */
1145 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1146 {
1147 	int state, status;
1148 	pid_t pid = task_pid_vnr(p);
1149 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1150 	struct waitid_info *infop;
1151 
1152 	if (!likely(wo->wo_flags & WEXITED))
1153 		return 0;
1154 
1155 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1156 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1157 			? p->signal->group_exit_code : p->exit_code;
1158 		get_task_struct(p);
1159 		read_unlock(&tasklist_lock);
1160 		sched_annotate_sleep();
1161 		if (wo->wo_rusage)
1162 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1163 		put_task_struct(p);
1164 		goto out_info;
1165 	}
1166 	/*
1167 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1168 	 */
1169 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1170 		EXIT_TRACE : EXIT_DEAD;
1171 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1172 		return 0;
1173 	/*
1174 	 * We own this thread, nobody else can reap it.
1175 	 */
1176 	read_unlock(&tasklist_lock);
1177 	sched_annotate_sleep();
1178 
1179 	/*
1180 	 * Check thread_group_leader() to exclude the traced sub-threads.
1181 	 */
1182 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1183 		struct signal_struct *sig = p->signal;
1184 		struct signal_struct *psig = current->signal;
1185 		unsigned long maxrss;
1186 		u64 tgutime, tgstime;
1187 
1188 		/*
1189 		 * The resource counters for the group leader are in its
1190 		 * own task_struct.  Those for dead threads in the group
1191 		 * are in its signal_struct, as are those for the child
1192 		 * processes it has previously reaped.  All these
1193 		 * accumulate in the parent's signal_struct c* fields.
1194 		 *
1195 		 * We don't bother to take a lock here to protect these
1196 		 * p->signal fields because the whole thread group is dead
1197 		 * and nobody can change them.
1198 		 *
1199 		 * psig->stats_lock also protects us from our sub-threads
1200 		 * which can reap other children at the same time.
1201 		 *
1202 		 * We use thread_group_cputime_adjusted() to get times for
1203 		 * the thread group, which consolidates times for all threads
1204 		 * in the group including the group leader.
1205 		 */
1206 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1207 		write_seqlock_irq(&psig->stats_lock);
1208 		psig->cutime += tgutime + sig->cutime;
1209 		psig->cstime += tgstime + sig->cstime;
1210 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1211 		psig->cmin_flt +=
1212 			p->min_flt + sig->min_flt + sig->cmin_flt;
1213 		psig->cmaj_flt +=
1214 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1215 		psig->cnvcsw +=
1216 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1217 		psig->cnivcsw +=
1218 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1219 		psig->cinblock +=
1220 			task_io_get_inblock(p) +
1221 			sig->inblock + sig->cinblock;
1222 		psig->coublock +=
1223 			task_io_get_oublock(p) +
1224 			sig->oublock + sig->coublock;
1225 		maxrss = max(sig->maxrss, sig->cmaxrss);
1226 		if (psig->cmaxrss < maxrss)
1227 			psig->cmaxrss = maxrss;
1228 		task_io_accounting_add(&psig->ioac, &p->ioac);
1229 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1230 		write_sequnlock_irq(&psig->stats_lock);
1231 	}
1232 
1233 	if (wo->wo_rusage)
1234 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1235 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1236 		? p->signal->group_exit_code : p->exit_code;
1237 	wo->wo_stat = status;
1238 
1239 	if (state == EXIT_TRACE) {
1240 		write_lock_irq(&tasklist_lock);
1241 		/* We dropped tasklist, ptracer could die and untrace */
1242 		ptrace_unlink(p);
1243 
1244 		/* If parent wants a zombie, don't release it now */
1245 		state = EXIT_ZOMBIE;
1246 		if (do_notify_parent(p, p->exit_signal))
1247 			state = EXIT_DEAD;
1248 		p->exit_state = state;
1249 		write_unlock_irq(&tasklist_lock);
1250 	}
1251 	if (state == EXIT_DEAD)
1252 		release_task(p);
1253 
1254 out_info:
1255 	infop = wo->wo_info;
1256 	if (infop) {
1257 		if ((status & 0x7f) == 0) {
1258 			infop->cause = CLD_EXITED;
1259 			infop->status = status >> 8;
1260 		} else {
1261 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1262 			infop->status = status & 0x7f;
1263 		}
1264 		infop->pid = pid;
1265 		infop->uid = uid;
1266 	}
1267 
1268 	return pid;
1269 }
1270 
1271 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1272 {
1273 	if (ptrace) {
1274 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1275 			return &p->exit_code;
1276 	} else {
1277 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1278 			return &p->signal->group_exit_code;
1279 	}
1280 	return NULL;
1281 }
1282 
1283 /**
1284  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1285  * @wo: wait options
1286  * @ptrace: is the wait for ptrace
1287  * @p: task to wait for
1288  *
1289  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1290  *
1291  * CONTEXT:
1292  * read_lock(&tasklist_lock), which is released if return value is
1293  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1294  *
1295  * RETURNS:
1296  * 0 if wait condition didn't exist and search for other wait conditions
1297  * should continue.  Non-zero return, -errno on failure and @p's pid on
1298  * success, implies that tasklist_lock is released and wait condition
1299  * search should terminate.
1300  */
1301 static int wait_task_stopped(struct wait_opts *wo,
1302 				int ptrace, struct task_struct *p)
1303 {
1304 	struct waitid_info *infop;
1305 	int exit_code, *p_code, why;
1306 	uid_t uid = 0; /* unneeded, required by compiler */
1307 	pid_t pid;
1308 
1309 	/*
1310 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1311 	 */
1312 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1313 		return 0;
1314 
1315 	if (!task_stopped_code(p, ptrace))
1316 		return 0;
1317 
1318 	exit_code = 0;
1319 	spin_lock_irq(&p->sighand->siglock);
1320 
1321 	p_code = task_stopped_code(p, ptrace);
1322 	if (unlikely(!p_code))
1323 		goto unlock_sig;
1324 
1325 	exit_code = *p_code;
1326 	if (!exit_code)
1327 		goto unlock_sig;
1328 
1329 	if (!unlikely(wo->wo_flags & WNOWAIT))
1330 		*p_code = 0;
1331 
1332 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1333 unlock_sig:
1334 	spin_unlock_irq(&p->sighand->siglock);
1335 	if (!exit_code)
1336 		return 0;
1337 
1338 	/*
1339 	 * Now we are pretty sure this task is interesting.
1340 	 * Make sure it doesn't get reaped out from under us while we
1341 	 * give up the lock and then examine it below.  We don't want to
1342 	 * keep holding onto the tasklist_lock while we call getrusage and
1343 	 * possibly take page faults for user memory.
1344 	 */
1345 	get_task_struct(p);
1346 	pid = task_pid_vnr(p);
1347 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1348 	read_unlock(&tasklist_lock);
1349 	sched_annotate_sleep();
1350 	if (wo->wo_rusage)
1351 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1352 	put_task_struct(p);
1353 
1354 	if (likely(!(wo->wo_flags & WNOWAIT)))
1355 		wo->wo_stat = (exit_code << 8) | 0x7f;
1356 
1357 	infop = wo->wo_info;
1358 	if (infop) {
1359 		infop->cause = why;
1360 		infop->status = exit_code;
1361 		infop->pid = pid;
1362 		infop->uid = uid;
1363 	}
1364 	return pid;
1365 }
1366 
1367 /*
1368  * Handle do_wait work for one task in a live, non-stopped state.
1369  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1370  * the lock and this task is uninteresting.  If we return nonzero, we have
1371  * released the lock and the system call should return.
1372  */
1373 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1374 {
1375 	struct waitid_info *infop;
1376 	pid_t pid;
1377 	uid_t uid;
1378 
1379 	if (!unlikely(wo->wo_flags & WCONTINUED))
1380 		return 0;
1381 
1382 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1383 		return 0;
1384 
1385 	spin_lock_irq(&p->sighand->siglock);
1386 	/* Re-check with the lock held.  */
1387 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1388 		spin_unlock_irq(&p->sighand->siglock);
1389 		return 0;
1390 	}
1391 	if (!unlikely(wo->wo_flags & WNOWAIT))
1392 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1393 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1394 	spin_unlock_irq(&p->sighand->siglock);
1395 
1396 	pid = task_pid_vnr(p);
1397 	get_task_struct(p);
1398 	read_unlock(&tasklist_lock);
1399 	sched_annotate_sleep();
1400 	if (wo->wo_rusage)
1401 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1402 	put_task_struct(p);
1403 
1404 	infop = wo->wo_info;
1405 	if (!infop) {
1406 		wo->wo_stat = 0xffff;
1407 	} else {
1408 		infop->cause = CLD_CONTINUED;
1409 		infop->pid = pid;
1410 		infop->uid = uid;
1411 		infop->status = SIGCONT;
1412 	}
1413 	return pid;
1414 }
1415 
1416 /*
1417  * Consider @p for a wait by @parent.
1418  *
1419  * -ECHILD should be in ->notask_error before the first call.
1420  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1421  * Returns zero if the search for a child should continue;
1422  * then ->notask_error is 0 if @p is an eligible child,
1423  * or still -ECHILD.
1424  */
1425 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1426 				struct task_struct *p)
1427 {
1428 	/*
1429 	 * We can race with wait_task_zombie() from another thread.
1430 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1431 	 * can't confuse the checks below.
1432 	 */
1433 	int exit_state = READ_ONCE(p->exit_state);
1434 	int ret;
1435 
1436 	if (unlikely(exit_state == EXIT_DEAD))
1437 		return 0;
1438 
1439 	ret = eligible_child(wo, ptrace, p);
1440 	if (!ret)
1441 		return ret;
1442 
1443 	if (unlikely(exit_state == EXIT_TRACE)) {
1444 		/*
1445 		 * ptrace == 0 means we are the natural parent. In this case
1446 		 * we should clear notask_error, debugger will notify us.
1447 		 */
1448 		if (likely(!ptrace))
1449 			wo->notask_error = 0;
1450 		return 0;
1451 	}
1452 
1453 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1454 		/*
1455 		 * If it is traced by its real parent's group, just pretend
1456 		 * the caller is ptrace_do_wait() and reap this child if it
1457 		 * is zombie.
1458 		 *
1459 		 * This also hides group stop state from real parent; otherwise
1460 		 * a single stop can be reported twice as group and ptrace stop.
1461 		 * If a ptracer wants to distinguish these two events for its
1462 		 * own children it should create a separate process which takes
1463 		 * the role of real parent.
1464 		 */
1465 		if (!ptrace_reparented(p))
1466 			ptrace = 1;
1467 	}
1468 
1469 	/* slay zombie? */
1470 	if (exit_state == EXIT_ZOMBIE) {
1471 		/* we don't reap group leaders with subthreads */
1472 		if (!delay_group_leader(p)) {
1473 			/*
1474 			 * A zombie ptracee is only visible to its ptracer.
1475 			 * Notification and reaping will be cascaded to the
1476 			 * real parent when the ptracer detaches.
1477 			 */
1478 			if (unlikely(ptrace) || likely(!p->ptrace))
1479 				return wait_task_zombie(wo, p);
1480 		}
1481 
1482 		/*
1483 		 * Allow access to stopped/continued state via zombie by
1484 		 * falling through.  Clearing of notask_error is complex.
1485 		 *
1486 		 * When !@ptrace:
1487 		 *
1488 		 * If WEXITED is set, notask_error should naturally be
1489 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1490 		 * so, if there are live subthreads, there are events to
1491 		 * wait for.  If all subthreads are dead, it's still safe
1492 		 * to clear - this function will be called again in finite
1493 		 * amount time once all the subthreads are released and
1494 		 * will then return without clearing.
1495 		 *
1496 		 * When @ptrace:
1497 		 *
1498 		 * Stopped state is per-task and thus can't change once the
1499 		 * target task dies.  Only continued and exited can happen.
1500 		 * Clear notask_error if WCONTINUED | WEXITED.
1501 		 */
1502 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1503 			wo->notask_error = 0;
1504 	} else {
1505 		/*
1506 		 * @p is alive and it's gonna stop, continue or exit, so
1507 		 * there always is something to wait for.
1508 		 */
1509 		wo->notask_error = 0;
1510 	}
1511 
1512 	/*
1513 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1514 	 * is used and the two don't interact with each other.
1515 	 */
1516 	ret = wait_task_stopped(wo, ptrace, p);
1517 	if (ret)
1518 		return ret;
1519 
1520 	/*
1521 	 * Wait for continued.  There's only one continued state and the
1522 	 * ptracer can consume it which can confuse the real parent.  Don't
1523 	 * use WCONTINUED from ptracer.  You don't need or want it.
1524 	 */
1525 	return wait_task_continued(wo, p);
1526 }
1527 
1528 /*
1529  * Do the work of do_wait() for one thread in the group, @tsk.
1530  *
1531  * -ECHILD should be in ->notask_error before the first call.
1532  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1533  * Returns zero if the search for a child should continue; then
1534  * ->notask_error is 0 if there were any eligible children,
1535  * or still -ECHILD.
1536  */
1537 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1538 {
1539 	struct task_struct *p;
1540 
1541 	list_for_each_entry(p, &tsk->children, sibling) {
1542 		int ret = wait_consider_task(wo, 0, p);
1543 
1544 		if (ret)
1545 			return ret;
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1552 {
1553 	struct task_struct *p;
1554 
1555 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1556 		int ret = wait_consider_task(wo, 1, p);
1557 
1558 		if (ret)
1559 			return ret;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1566 {
1567 	if (!eligible_pid(wo, p))
1568 		return false;
1569 
1570 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1571 		return false;
1572 
1573 	return true;
1574 }
1575 
1576 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1577 				int sync, void *key)
1578 {
1579 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1580 						child_wait);
1581 	struct task_struct *p = key;
1582 
1583 	if (pid_child_should_wake(wo, p))
1584 		return default_wake_function(wait, mode, sync, key);
1585 
1586 	return 0;
1587 }
1588 
1589 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1590 {
1591 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1592 			   TASK_INTERRUPTIBLE, p);
1593 }
1594 
1595 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1596 				 struct task_struct *target)
1597 {
1598 	struct task_struct *parent =
1599 		!ptrace ? target->real_parent : target->parent;
1600 
1601 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1602 				     same_thread_group(current, parent));
1603 }
1604 
1605 /*
1606  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1607  * and tracee lists to find the target task.
1608  */
1609 static int do_wait_pid(struct wait_opts *wo)
1610 {
1611 	bool ptrace;
1612 	struct task_struct *target;
1613 	int retval;
1614 
1615 	ptrace = false;
1616 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1617 	if (target && is_effectively_child(wo, ptrace, target)) {
1618 		retval = wait_consider_task(wo, ptrace, target);
1619 		if (retval)
1620 			return retval;
1621 	}
1622 
1623 	ptrace = true;
1624 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1625 	if (target && target->ptrace &&
1626 	    is_effectively_child(wo, ptrace, target)) {
1627 		retval = wait_consider_task(wo, ptrace, target);
1628 		if (retval)
1629 			return retval;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 long __do_wait(struct wait_opts *wo)
1636 {
1637 	long retval;
1638 
1639 	/*
1640 	 * If there is nothing that can match our criteria, just get out.
1641 	 * We will clear ->notask_error to zero if we see any child that
1642 	 * might later match our criteria, even if we are not able to reap
1643 	 * it yet.
1644 	 */
1645 	wo->notask_error = -ECHILD;
1646 	if ((wo->wo_type < PIDTYPE_MAX) &&
1647 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1648 		goto notask;
1649 
1650 	read_lock(&tasklist_lock);
1651 
1652 	if (wo->wo_type == PIDTYPE_PID) {
1653 		retval = do_wait_pid(wo);
1654 		if (retval)
1655 			return retval;
1656 	} else {
1657 		struct task_struct *tsk = current;
1658 
1659 		do {
1660 			retval = do_wait_thread(wo, tsk);
1661 			if (retval)
1662 				return retval;
1663 
1664 			retval = ptrace_do_wait(wo, tsk);
1665 			if (retval)
1666 				return retval;
1667 
1668 			if (wo->wo_flags & __WNOTHREAD)
1669 				break;
1670 		} while_each_thread(current, tsk);
1671 	}
1672 	read_unlock(&tasklist_lock);
1673 
1674 notask:
1675 	retval = wo->notask_error;
1676 	if (!retval && !(wo->wo_flags & WNOHANG))
1677 		return -ERESTARTSYS;
1678 
1679 	return retval;
1680 }
1681 
1682 static long do_wait(struct wait_opts *wo)
1683 {
1684 	int retval;
1685 
1686 	trace_sched_process_wait(wo->wo_pid);
1687 
1688 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1689 	wo->child_wait.private = current;
1690 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1691 
1692 	do {
1693 		set_current_state(TASK_INTERRUPTIBLE);
1694 		retval = __do_wait(wo);
1695 		if (retval != -ERESTARTSYS)
1696 			break;
1697 		if (signal_pending(current))
1698 			break;
1699 		schedule();
1700 	} while (1);
1701 
1702 	__set_current_state(TASK_RUNNING);
1703 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1704 	return retval;
1705 }
1706 
1707 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1708 			  struct waitid_info *infop, int options,
1709 			  struct rusage *ru)
1710 {
1711 	unsigned int f_flags = 0;
1712 	struct pid *pid = NULL;
1713 	enum pid_type type;
1714 
1715 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1716 			__WNOTHREAD|__WCLONE|__WALL))
1717 		return -EINVAL;
1718 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1719 		return -EINVAL;
1720 
1721 	switch (which) {
1722 	case P_ALL:
1723 		type = PIDTYPE_MAX;
1724 		break;
1725 	case P_PID:
1726 		type = PIDTYPE_PID;
1727 		if (upid <= 0)
1728 			return -EINVAL;
1729 
1730 		pid = find_get_pid(upid);
1731 		break;
1732 	case P_PGID:
1733 		type = PIDTYPE_PGID;
1734 		if (upid < 0)
1735 			return -EINVAL;
1736 
1737 		if (upid)
1738 			pid = find_get_pid(upid);
1739 		else
1740 			pid = get_task_pid(current, PIDTYPE_PGID);
1741 		break;
1742 	case P_PIDFD:
1743 		type = PIDTYPE_PID;
1744 		if (upid < 0)
1745 			return -EINVAL;
1746 
1747 		pid = pidfd_get_pid(upid, &f_flags);
1748 		if (IS_ERR(pid))
1749 			return PTR_ERR(pid);
1750 
1751 		break;
1752 	default:
1753 		return -EINVAL;
1754 	}
1755 
1756 	wo->wo_type	= type;
1757 	wo->wo_pid	= pid;
1758 	wo->wo_flags	= options;
1759 	wo->wo_info	= infop;
1760 	wo->wo_rusage	= ru;
1761 	if (f_flags & O_NONBLOCK)
1762 		wo->wo_flags |= WNOHANG;
1763 
1764 	return 0;
1765 }
1766 
1767 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1768 			  int options, struct rusage *ru)
1769 {
1770 	struct wait_opts wo;
1771 	long ret;
1772 
1773 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1774 	if (ret)
1775 		return ret;
1776 
1777 	ret = do_wait(&wo);
1778 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1779 		ret = -EAGAIN;
1780 
1781 	put_pid(wo.wo_pid);
1782 	return ret;
1783 }
1784 
1785 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1786 		infop, int, options, struct rusage __user *, ru)
1787 {
1788 	struct rusage r;
1789 	struct waitid_info info = {.status = 0};
1790 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1791 	int signo = 0;
1792 
1793 	if (err > 0) {
1794 		signo = SIGCHLD;
1795 		err = 0;
1796 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1797 			return -EFAULT;
1798 	}
1799 	if (!infop)
1800 		return err;
1801 
1802 	if (!user_write_access_begin(infop, sizeof(*infop)))
1803 		return -EFAULT;
1804 
1805 	unsafe_put_user(signo, &infop->si_signo, Efault);
1806 	unsafe_put_user(0, &infop->si_errno, Efault);
1807 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1808 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1809 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1810 	unsafe_put_user(info.status, &infop->si_status, Efault);
1811 	user_write_access_end();
1812 	return err;
1813 Efault:
1814 	user_write_access_end();
1815 	return -EFAULT;
1816 }
1817 
1818 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1819 		  struct rusage *ru)
1820 {
1821 	struct wait_opts wo;
1822 	struct pid *pid = NULL;
1823 	enum pid_type type;
1824 	long ret;
1825 
1826 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1827 			__WNOTHREAD|__WCLONE|__WALL))
1828 		return -EINVAL;
1829 
1830 	/* -INT_MIN is not defined */
1831 	if (upid == INT_MIN)
1832 		return -ESRCH;
1833 
1834 	if (upid == -1)
1835 		type = PIDTYPE_MAX;
1836 	else if (upid < 0) {
1837 		type = PIDTYPE_PGID;
1838 		pid = find_get_pid(-upid);
1839 	} else if (upid == 0) {
1840 		type = PIDTYPE_PGID;
1841 		pid = get_task_pid(current, PIDTYPE_PGID);
1842 	} else /* upid > 0 */ {
1843 		type = PIDTYPE_PID;
1844 		pid = find_get_pid(upid);
1845 	}
1846 
1847 	wo.wo_type	= type;
1848 	wo.wo_pid	= pid;
1849 	wo.wo_flags	= options | WEXITED;
1850 	wo.wo_info	= NULL;
1851 	wo.wo_stat	= 0;
1852 	wo.wo_rusage	= ru;
1853 	ret = do_wait(&wo);
1854 	put_pid(pid);
1855 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1856 		ret = -EFAULT;
1857 
1858 	return ret;
1859 }
1860 
1861 int kernel_wait(pid_t pid, int *stat)
1862 {
1863 	struct wait_opts wo = {
1864 		.wo_type	= PIDTYPE_PID,
1865 		.wo_pid		= find_get_pid(pid),
1866 		.wo_flags	= WEXITED,
1867 	};
1868 	int ret;
1869 
1870 	ret = do_wait(&wo);
1871 	if (ret > 0 && wo.wo_stat)
1872 		*stat = wo.wo_stat;
1873 	put_pid(wo.wo_pid);
1874 	return ret;
1875 }
1876 
1877 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1878 		int, options, struct rusage __user *, ru)
1879 {
1880 	struct rusage r;
1881 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1882 
1883 	if (err > 0) {
1884 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1885 			return -EFAULT;
1886 	}
1887 	return err;
1888 }
1889 
1890 #ifdef __ARCH_WANT_SYS_WAITPID
1891 
1892 /*
1893  * sys_waitpid() remains for compatibility. waitpid() should be
1894  * implemented by calling sys_wait4() from libc.a.
1895  */
1896 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1897 {
1898 	return kernel_wait4(pid, stat_addr, options, NULL);
1899 }
1900 
1901 #endif
1902 
1903 #ifdef CONFIG_COMPAT
1904 COMPAT_SYSCALL_DEFINE4(wait4,
1905 	compat_pid_t, pid,
1906 	compat_uint_t __user *, stat_addr,
1907 	int, options,
1908 	struct compat_rusage __user *, ru)
1909 {
1910 	struct rusage r;
1911 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1912 	if (err > 0) {
1913 		if (ru && put_compat_rusage(&r, ru))
1914 			return -EFAULT;
1915 	}
1916 	return err;
1917 }
1918 
1919 COMPAT_SYSCALL_DEFINE5(waitid,
1920 		int, which, compat_pid_t, pid,
1921 		struct compat_siginfo __user *, infop, int, options,
1922 		struct compat_rusage __user *, uru)
1923 {
1924 	struct rusage ru;
1925 	struct waitid_info info = {.status = 0};
1926 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1927 	int signo = 0;
1928 	if (err > 0) {
1929 		signo = SIGCHLD;
1930 		err = 0;
1931 		if (uru) {
1932 			/* kernel_waitid() overwrites everything in ru */
1933 			if (COMPAT_USE_64BIT_TIME)
1934 				err = copy_to_user(uru, &ru, sizeof(ru));
1935 			else
1936 				err = put_compat_rusage(&ru, uru);
1937 			if (err)
1938 				return -EFAULT;
1939 		}
1940 	}
1941 
1942 	if (!infop)
1943 		return err;
1944 
1945 	if (!user_write_access_begin(infop, sizeof(*infop)))
1946 		return -EFAULT;
1947 
1948 	unsafe_put_user(signo, &infop->si_signo, Efault);
1949 	unsafe_put_user(0, &infop->si_errno, Efault);
1950 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1951 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1952 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1953 	unsafe_put_user(info.status, &infop->si_status, Efault);
1954 	user_write_access_end();
1955 	return err;
1956 Efault:
1957 	user_write_access_end();
1958 	return -EFAULT;
1959 }
1960 #endif
1961 
1962 /*
1963  * This needs to be __function_aligned as GCC implicitly makes any
1964  * implementation of abort() cold and drops alignment specified by
1965  * -falign-functions=N.
1966  *
1967  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1968  */
1969 __weak __function_aligned void abort(void)
1970 {
1971 	BUG();
1972 
1973 	/* if that doesn't kill us, halt */
1974 	panic("Oops failed to kill thread");
1975 }
1976 EXPORT_SYMBOL(abort);
1977